[go: up one dir, main page]

JPH1138380A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH1138380A
JPH1138380A JP9203918A JP20391897A JPH1138380A JP H1138380 A JPH1138380 A JP H1138380A JP 9203918 A JP9203918 A JP 9203918A JP 20391897 A JP20391897 A JP 20391897A JP H1138380 A JPH1138380 A JP H1138380A
Authority
JP
Japan
Prior art keywords
liquid crystal
light transmittance
display device
region
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9203918A
Other languages
Japanese (ja)
Other versions
JP4013292B2 (en
Inventor
Toshimi Watanabe
利巳 渡邉
Toru Iwane
透 岩根
Susumu Honma
行 本間
Takehiko Ueda
武彦 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP20391897A priority Critical patent/JP4013292B2/en
Publication of JPH1138380A publication Critical patent/JPH1138380A/en
Application granted granted Critical
Publication of JP4013292B2 publication Critical patent/JP4013292B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To make it possible to display a closed region with a simple electrode structure, by making different the relation between a light transmittance and an applied voltage in a first liquid crystal region and in a second liquid crystal region. SOLUTION: The liquid crystal display device 1 is provided with polymer dispersion type liquid crystals 10, 11 different in voltage-light transmittance characteristic so that the polymer dispersion type liquid crystal 11 can display numerals. In the liquid crystal display device 1 the polymer dispersion type liquid crystals 10, 11 are formed between a pair of glass plates 13 and the periphery is sealed with a sealant. Transmissive electrodes 12 are respectively formed on the whole surfaces on the sides in contact with each of the liquid crystal 10, 11 of the glass plates 13. In this case, when an applied voltage decreases down to a specific value, since the light transmittance of the liquid crystal 10 becomes larger than the light transmittance of the liquid crystal 11 to generate a difference between the light transmittances of the both liquid crystals 10, 11, it becomes possible to visually recognize the numerals with the liquid crystal 11. Thus, the contrast of the displayed numerals can be varied by varying the applied voltage to the liquid crystals 10, 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶表示装置に関
し、特に高分子分散型液晶を用いた液晶表示装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display, and more particularly, to a liquid crystal display using a polymer dispersed liquid crystal.

【0002】[0002]

【従来の技術】高分子分散型液晶による液晶表示装置
は、高分子樹脂と液晶を分散させて形成した液晶表示素
子を用い、印加電圧により光の透過・不透過を制御して
所定の表示を行うものとして公知である。ここで、高分
子分散型液晶は、電圧を印加したとき、光透過性とな
る。
2. Description of the Related Art A liquid crystal display device using a polymer dispersed liquid crystal uses a liquid crystal display element formed by dispersing a polymer resin and a liquid crystal, and controls a light transmission / non-transmission by an applied voltage to perform a predetermined display. It is known to do. Here, the polymer dispersed liquid crystal becomes light transmissive when a voltage is applied.

【0003】[0003]

【発明が解決しようとする課題】高分子分散型液晶を用
いた従来の液晶表示装置において所定の表示をするため
に、表示パターンに対応してガラス基板上に透光性電極
をパターニングした場合、次のような問題が生じる。図
9に示すように、ガラス基板上の全面に高分子分散型液
晶層91を形成し、この液晶層91において図9の実線
で示す閉領域92を表示する場合、領域92に対応して
図の破線で示すようにパターニングされた透光性電極9
3をガラス基板に形成し、更に電極93に連続して端子
部93aを形成し、この端子部93aを介して外部から
電圧を印加する。
In a conventional liquid crystal display device using a polymer-dispersed liquid crystal, when a translucent electrode is patterned on a glass substrate in accordance with a display pattern in order to perform a predetermined display, The following problems arise. As shown in FIG. 9, a polymer-dispersed liquid crystal layer 91 is formed on the entire surface of a glass substrate, and a closed region 92 indicated by a solid line in FIG. Transparent electrode 9 patterned as shown by the broken line
3 is formed on a glass substrate, a terminal portion 93a is formed continuously with the electrode 93, and a voltage is externally applied through the terminal portion 93a.

【0004】図9のように、閉領域92を表示させる場
合、端子部93aから電圧を印加すると、電極93に対
応する閉領域92の光透過率が上昇し、閉領域92の光
透過率が周囲と異なるようになるため、閉領域92が表
示されるが、このとき同時に端子部93aに対応する領
域もその光透過率が変化するため表示されてしまう。こ
のように、高分子分散型液晶を用いた従来の液晶表示装
置において閉領域を表示させようとすると、端子部のよ
うな不要の領域まで表示させてしまい、液晶表示品質上
好ましくない。
As shown in FIG. 9, when displaying a closed area 92, when a voltage is applied from a terminal portion 93a, the light transmittance of the closed area 92 corresponding to the electrode 93 increases, and the light transmittance of the closed area 92 decreases. Since the area differs from the surrounding area, the closed area 92 is displayed. At this time, the area corresponding to the terminal portion 93a is also displayed because the light transmittance changes. As described above, when an attempt is made to display a closed region in a conventional liquid crystal display device using a polymer-dispersed liquid crystal, an unnecessary region such as a terminal portion is displayed, which is not preferable in terms of liquid crystal display quality.

【0005】本発明の目的は、簡単な電極構成で閉領域
を表示することのできる液晶表示装置を提供することで
ある。
An object of the present invention is to provide a liquid crystal display device capable of displaying a closed region with a simple electrode configuration.

【0006】[0006]

【課題を解決するための手段】上記課題の達成のため、
本発明は、光透過率が印加電圧に応じて変化する液晶に
より所定の表示を行う液晶表示装置において、光透過率
と印加電圧とが第1の関係で変化する第1の液晶領域
と、光透過率と印加電圧とが第1の関係と異なる第2の
関係で変化する第2の液晶領域とを有することを特徴と
する。
In order to achieve the above object,
The present invention relates to a liquid crystal display device that performs a predetermined display by using a liquid crystal in which light transmittance changes according to an applied voltage, a first liquid crystal region in which the light transmittance and the applied voltage change in a first relationship, It has a second liquid crystal region in which the transmittance and the applied voltage change in a second relationship different from the first relationship.

【0007】本発明によれば、第1の液晶領域と第2の
液晶領域は光透過率と印加電圧との関係が相違するた
め、印加電圧が所定の状態であるとき、両領域の各光透
過率が異なるため、第1及び第2の液晶領域を区別して
視認できる。これにより、電極を特にパターニングする
ことなく所定の表示を行うことができ、また、電極の端
子部等が表示されてしまう、といった問題は生じない。
According to the present invention, since the relationship between the light transmittance and the applied voltage is different between the first liquid crystal region and the second liquid crystal region, when the applied voltage is in a predetermined state, each light in both regions is different. Since the transmittances are different, the first and second liquid crystal regions can be visually recognized separately. Thus, a predetermined display can be performed without particularly patterning the electrode, and there is no problem that the terminal portion of the electrode is displayed.

【0008】また、第1の液晶領域と第2の液晶領域と
の光透過率の差により前記所定の表示を行うとともに、
前記印加電圧を変化させることにより第1の液晶領域と
第2の液晶領域との光透過率を同一または近似させて前
記所定の表示を視認できないように構成できる。
The predetermined display is performed based on a difference in light transmittance between the first liquid crystal region and the second liquid crystal region.
By changing the applied voltage, the light transmittance of the first liquid crystal region and the light transmittance of the second liquid crystal region can be made equal or close to each other so that the predetermined display cannot be viewed.

【0009】これにより、両液晶領域の光透過率の差に
よって所定の表示を行う一方、第1の関係と第2の関係
によって決まる所定の電圧に制御して両光透過率を同一
または近似させることによって、第1及び第2の液晶領
域を区別できなくして視認できないようにする。このよ
うにして、所定の表示を行い、また非表示にできる。
Thus, while a predetermined display is performed based on a difference between the light transmittances of the two liquid crystal regions, a predetermined voltage determined by the first relationship and the second relationship is controlled so that the two light transmittances are the same or approximate. This makes the first and second liquid crystal regions indistinguishable and invisible. In this way, a predetermined display can be performed and can be hidden.

【0010】また、前記各液晶領域は高分子分散型液晶
から構成できる。
Each of the liquid crystal regions can be composed of a polymer dispersed liquid crystal.

【0011】また、第1の液晶領域が前記所定の表示を
行うようパターン化されているとともに、第2の液晶領
域に包囲されているようにできる。第1の液晶領域を任
意のパターンとすることにより、複雑な表示が可能とな
り、また閉領域においても電極の形状によらず表示可能
となる。
The first liquid crystal region may be patterned so as to perform the predetermined display, and may be surrounded by the second liquid crystal region. By making the first liquid crystal region an arbitrary pattern, a complicated display becomes possible, and even in a closed region, display becomes possible irrespective of the shape of the electrode.

【0012】また、第1の液晶領域と第2の液晶領域と
を一対の透光性基板の間に挟み込むように配置でき、こ
れにより、閉領域における所定表示が可能である。
Further, the first liquid crystal region and the second liquid crystal region can be arranged so as to be sandwiched between a pair of translucent substrates, whereby predetermined display in a closed region is possible.

【0013】また、前記各液晶領域に電圧を印可するた
めの透光性電極を前記一対の透光性基板の全面にそれぞ
れ備えさせるようにできる。
Also, a light-transmitting electrode for applying a voltage to each of the liquid crystal regions may be provided on the entire surface of the pair of light-transmitting substrates.

【0014】また、第1の液晶領域と第2の液晶領域と
が一対の透光性基板の間に挟み込まれており、前記各液
晶領域に電圧を印可するための透光性電極を前記一対の
透光性基板にそれぞれ備えさせ、前記透光性電極の少な
くとも一方を前記パターン化された第1の液晶領域に対
応するよう分割して設けるようにできる。
Further, a first liquid crystal region and a second liquid crystal region are sandwiched between a pair of translucent substrates, and a translucent electrode for applying a voltage to each of the liquid crystal regions is provided with the pair of translucent electrodes. And at least one of the light-transmitting electrodes may be divided and provided so as to correspond to the patterned first liquid crystal region.

【0015】これにより、電極を分割して、第1の液晶
領域と第2の液晶領域の各印加電圧を異なるように制御
できるため、例えば各光透過率の差が大きくなるように
して表示の視認性を高めたり、また、任意の光透過率に
おいて視認できなくなるようにすることが可能となる。
Thus, the electrodes can be divided and the applied voltages of the first liquid crystal region and the second liquid crystal region can be controlled so as to be different from each other. It is possible to enhance the visibility and make it invisible at an arbitrary light transmittance.

【0016】[0016]

【発明の実施の形態】以下、本発明による第1〜第3の
実施の形態について図面を用いて説明する。 〈第1の実施の形態〉図1は本発明の第1の実施の形態
による高分子分散型液晶を用いた液晶表示装置の平面図
であり、図2は図1のII−II線断面図、図3は同じくII
I−III線断面図である。図1に示す液晶表示装置1は、
電圧−光透過率特性の異なる高分子分散型液晶10と1
1とを備え、高分子分散型液晶11が数字「8888」
を表示できるようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, first to third embodiments of the present invention will be described with reference to the drawings. <First Embodiment> FIG. 1 is a plan view of a liquid crystal display device using a polymer-dispersed liquid crystal according to a first embodiment of the present invention, and FIG. 2 is a sectional view taken along line II-II of FIG. , Figure 3 is also II
FIG. 3 is a sectional view taken along line I-III. The liquid crystal display device 1 shown in FIG.
Polymer dispersed liquid crystals 10 and 1 having different voltage-light transmittance characteristics
1 and the polymer-dispersed liquid crystal 11 has the number “8888”
Can be displayed.

【0017】図2及び図3の断面図に示すように、液晶
表示装置1は、一対のガラス基板13,13の間に、高
分子分散型液晶10,11が形成されており、その周囲
がシール材14により封止されている。ガラス基板1
3,13の各液晶10,11に接する側には全面に透光
性電極12,12がそれぞれ形成されている。透光性電
極12,12は、例えばITO(Indium Tin
Oxide)等から蒸着等により形成することができ
る。
As shown in the sectional views of FIG. 2 and FIG. 3, the liquid crystal display device 1 has polymer dispersed liquid crystals 10 and 11 formed between a pair of glass substrates 13 and 13, and the periphery thereof is formed. It is sealed by a sealing material 14. Glass substrate 1
Light-transmissive electrodes 12, 12 are formed on the entire surface of the sides of the liquid crystals 10, 11 in contact with the liquid crystals 10, 11, respectively. The translucent electrodes 12, 12 are made of, for example, ITO (Indium Tin).
Oxide) can be formed by vapor deposition or the like.

【0018】図4に第1の実施の形態における各液晶1
0,11の印加電圧と光透過率との関係を示す。図4に
示す電圧光透過率特性曲線101が液晶10の特性を、
電圧光透過率曲線102が液晶11の特性をそれぞれ示
している。図4から分かるように、印加電圧がV1のと
き、液晶10の光透過率T1(V1)と液晶11の光透
過率T2(V1)とが等しくなり、両液晶10,11の
光透過率に差がないため、液晶11による数字「888
8」は視認できない。しかし、印加電圧が低下してV2
となると、液晶10の光透過率T1(V2)が液晶11
の光透過率T2(V2)よりも大きくなるため、両液晶
10,11の光透過率に差が生じるために、液晶11に
よる数字「8888」を視認できるようになる。印加電
圧がVのときの光透過率差DT(V)は、次の式(1)
により表すことができる。
FIG. 4 shows each liquid crystal 1 according to the first embodiment.
The relationship between the applied voltage of 0, 11 and the light transmittance is shown. A voltage light transmittance characteristic curve 101 shown in FIG.
The voltage light transmittance curve 102 shows the characteristics of the liquid crystal 11 respectively. As can be seen from FIG. 4, when the applied voltage is V1, the light transmittance T1 (V1) of the liquid crystal 10 and the light transmittance T2 (V1) of the liquid crystal 11 become equal, and the light transmittance of both liquid crystals 10 and 11 becomes smaller. Since there is no difference, the numeral “888”
8 "is not visible. However, the applied voltage decreases and V2
When the light transmittance T1 (V2) of the liquid crystal 10 is
Is larger than the light transmittance T2 (V2) of the liquid crystal 11, and a difference occurs between the light transmittances of the two liquid crystals 10 and 11, so that the numeral “8888” by the liquid crystal 11 can be visually recognized. The light transmittance difference DT (V) when the applied voltage is V is given by the following equation (1).
Can be represented by

【0019】 DT(V)=abs(T1(V)−T2(V)) (1) ここで、abs( )は絶対値を求める関数、T1
(V)は液晶10の印加電圧がVであるときの光透過
率、T2(V)は液晶11の印加電圧が同じくVである
ときの光透過率である。
DT (V) = abs (T1 (V) −T2 (V)) (1) where abs () is a function for obtaining an absolute value, T1
(V) is the light transmittance when the applied voltage of the liquid crystal 10 is V, and T2 (V) is the light transmittance when the applied voltage of the liquid crystal 11 is also V.

【0020】このようにして、液晶に対する印加電圧を
変化させることにより、液晶表示装置1の表示数字等の
コントラストを変化させることができる。このような液
晶表示装置1をバックライト照明した場合、印加電圧V
1において液晶10と液晶11の各領域はともに白色
(高輝度)に見え、印加電圧V2において液晶10は白
色(高輝度)に見えるとともに液晶11はグレー(低輝
度)に見える。更に、電圧を下げて無印加の状態にする
と、液晶10はグレー(高輝度)に見え、液晶11は黒
色(低輝度)に見える。
In this manner, by changing the voltage applied to the liquid crystal, the contrast of the display numbers and the like of the liquid crystal display device 1 can be changed. When such a liquid crystal display device 1 is illuminated with backlight, the applied voltage V
In FIG. 1, the respective regions of the liquid crystal 10 and the liquid crystal 11 both appear white (high luminance), and at the applied voltage V2, the liquid crystal 10 appears white (high luminance) and the liquid crystal 11 appears gray (low luminance). Further, when the voltage is reduced to a state where no voltage is applied, the liquid crystal 10 looks gray (high luminance) and the liquid crystal 11 looks black (low luminance).

【0021】このように、電圧の無印加時に、数字等が
表示される一方、印加電圧を上げていくとある電圧以上
で数字等が見えなくなる。かかる構成の液晶表示装置
は、電圧を印可していない状態で表示ができるので、例
えば電圧低下時の警告をする警告灯の表示に用いること
ができる。
As described above, when no voltage is applied, numbers and the like are displayed, but when the applied voltage is increased, the numbers and the like become invisible at a certain voltage or higher. Since the liquid crystal display device having such a configuration can perform display without applying a voltage, it can be used, for example, for displaying a warning light for giving a warning when the voltage drops.

【0022】なお、この場合、電圧Vは、直流電圧でよ
いが、交流電圧でもよく、また液晶表示装置は、デュー
ティ駆動により行われる。
In this case, the voltage V may be a DC voltage, but may be an AC voltage, and the liquid crystal display device is operated by duty driving.

【0023】また、高分子分散型液晶を図4のように電
圧光透過率特性に差を持たせるように作製するには、例
えば、液晶と高分子樹脂との混合比を変えることにより
実現でき、また、高分子樹脂に紫外光硬化性のものを用
いた場合には硬化時の温度を変えて硬化後の樹脂の網目
構造を変えることにより実現できる。
In order to produce a polymer-dispersed liquid crystal having a difference in the voltage light transmittance characteristic as shown in FIG. 4, for example, it can be realized by changing the mixing ratio between the liquid crystal and the polymer resin. Further, when an ultraviolet-curable polymer resin is used as the polymer resin, it can be realized by changing the temperature at the time of curing to change the network structure of the cured resin.

【0024】〈第2の実施の形態〉第2の実施の形態に
おける液晶表示装置は、図1〜図3に示すものと同一の
構成であるが、各液晶10,11における印加電圧と光
透過率との関係を図5のようにしたものである。
<Second Embodiment> A liquid crystal display device according to a second embodiment has the same configuration as that shown in FIGS. 1 to 3 except for the applied voltage and light transmission in each of the liquid crystals 10 and 11. The relationship with the ratio is as shown in FIG.

【0025】図5に示す電圧光透過率特性曲線103が
液晶10の特性を、電圧光透過率曲線104が液晶11
の特性をそれぞれ示している。図4から分かるように、
印加電圧がV3のとき、液晶10の光透過率T3(V
3)と液晶11の光透過率T4(V3)とが等しくな
り、両液晶10,11の光透過率に差がないため、液晶
11による数字「8888」は視認できない。しかし、
印加電圧が上昇してV4となると、液晶10の光透過率
T3(V4)が液晶11の光透過率T4(V4)よりも
小さくなるため、両液晶10,11の光透過率に差が生
じるために、液晶11による数字「8888」を視認で
きるようになる。印加電圧Vのときの光透過率差DT
(V)は、式(1)と同じように次の式(2)により表
すことができる。
The voltage light transmittance characteristic curve 103 shown in FIG. 5 shows the characteristics of the liquid crystal 10, and the voltage light transmittance curve 104 shows the characteristics of the liquid crystal 11.
Are shown. As can be seen from FIG.
When the applied voltage is V3, the light transmittance T3 (V
3) and the light transmittance T4 (V3) of the liquid crystal 11 become equal, and there is no difference between the light transmittances of the two liquid crystals 10 and 11, so that the numeral “8888” by the liquid crystal 11 cannot be visually recognized. But,
When the applied voltage rises to V4, the light transmittance T3 (V4) of the liquid crystal 10 becomes smaller than the light transmittance T4 (V4) of the liquid crystal 11, so that there is a difference between the light transmittances of the two liquid crystals 10, 11. Therefore, the numeral “8888” by the liquid crystal 11 can be visually recognized. Light transmittance difference DT at applied voltage V
(V) can be expressed by the following equation (2), similarly to equation (1).

【0026】 DT(V)=abs(T3(V)−T4(V)) (2) 〈第3の実施の形態〉図6は本発明の第3の実施の形態
によるより具体的な液晶表示装置の分解斜視図である。
図6示す液晶表示装置19は、電圧−光透過率特性の異
なる高分子分散型液晶層16a,16bと、これらの液
晶層16a,16bを挟み込むように配置された透光性
電極15a,15bと、これらの電極15a,15bに
交流電圧を付加する交流電源17と、この電源17をO
N/OFF制御するスイッチ18とを備えている。スイ
ッチ18により高分子分散型液晶層16a,16bの光
透過性、光拡散状態を制御する。
DT (V) = abs (T3 (V) −T4 (V)) (3) <Third Embodiment> FIG. 6 shows a more specific liquid crystal display according to a third embodiment of the present invention. It is an exploded perspective view of a device.
The liquid crystal display device 19 shown in FIG. 6 includes polymer dispersed liquid crystal layers 16a and 16b having different voltage-light transmittance characteristics, and translucent electrodes 15a and 15b arranged so as to sandwich these liquid crystal layers 16a and 16b. An AC power supply 17 for applying an AC voltage to these electrodes 15a and 15b;
A switch 18 for performing N / OFF control. The switch 18 controls the light transmittance and light diffusion state of the polymer dispersed liquid crystal layers 16a and 16b.

【0027】高分子分散型液晶層16a,16bの各電
圧−光透過率特性を図7に示し、電圧光透過率特性曲線
105aが液晶層16aの特性を、電圧光透過率曲線1
05bが液晶層16bの特性をそれぞれ示している。図
7から分かるように、高分子分散型液晶層16bは、電
圧を印可していない状態で大きな光透過率を示す。
FIG. 7 shows the voltage-light transmittance characteristics of the polymer-dispersed liquid crystal layers 16a and 16b. The voltage light transmittance characteristic curve 105a shows the characteristics of the liquid crystal layer 16a and the voltage light transmittance curve 1
05b shows the characteristics of the liquid crystal layer 16b. As can be seen from FIG. 7, the polymer-dispersed liquid crystal layer 16b shows a large light transmittance when no voltage is applied.

【0028】図8は、図6の液晶表示装置19の表示状
態を示す平面図である。いま、交流電源17の電圧をV
5にしてスイッチ18をオンすると、図7に示すよう
に、図6の両電極15a,15bに挟まれた液晶層16
aは光透過率が上昇し、電極15a,15bに挟まれて
いない液晶層16bの光透過率とほぼ等しくなる。液晶
層16aに対応するのは図8の領域20であり、液晶層
16bと対応するのが領域21であるから、図8におい
て領域20と領域21とは区別の付かない状態となる。
なお、電極15a,15bの交流電源との接続のための
各端子は、図6のように互いに重なり合わないように電
極15aでは図の上方側に、電極15bでは図の下方側
に、それぞれ設けられているから、スイッチ18がオン
のとき、電圧は液晶層16bには印加されない。
FIG. 8 is a plan view showing a display state of the liquid crystal display device 19 of FIG. Now, the voltage of the AC power supply 17 is set to V
5 and the switch 18 is turned on, as shown in FIG. 7, the liquid crystal layer 16 sandwiched between the electrodes 15a and 15b in FIG.
The light transmittance a increases and becomes substantially equal to the light transmittance of the liquid crystal layer 16b not interposed between the electrodes 15a and 15b. The region 20 in FIG. 8 corresponds to the liquid crystal layer 16a, and the region 21 corresponds to the liquid crystal layer 16b. Therefore, in FIG. 8, the region 20 and the region 21 are indistinguishable.
The terminals for connecting the electrodes 15a and 15b to the AC power supply are provided on the upper side of the figure for the electrode 15a and on the lower side of the figure for the electrode 15b so as not to overlap each other as shown in FIG. Therefore, when the switch 18 is turned on, no voltage is applied to the liquid crystal layer 16b.

【0029】次に、スイッチ18をオフにすると、図6
の液晶層16aは光拡散状態(白濁状態)となり光透過
率がほぼゼロとなる一方、液晶層16bはスイッチオフ
前と同じ光透過状態であるから、図8において領域20
と領域21とは明りょうに区別できるようになる。この
ようにして、光透過性であり明るい領域21の中に閉領
域である光透過性でない暗い領域20を表示することが
できる。そして、かかる構成を、電極の配置が複雑とな
らずに簡単な電極配置により、実現することができる。
Next, when the switch 18 is turned off, FIG.
The liquid crystal layer 16a has a light diffusion state (white turbid state) and the light transmittance is almost zero, while the liquid crystal layer 16b has the same light transmission state as before the switch-off.
And the region 21 can be clearly distinguished. In this manner, the non-light-transmitting dark area 20 that is a closed area can be displayed in the light-transmitting and light area 21. Such a configuration can be realized by a simple electrode arrangement without complicated electrode arrangement.

【0030】以上のように、各実施の形態によれば、領
域毎に高分子分散型液晶の各電圧−光透過率特性を異な
らせることにより、全面に透光性電極を配置しても(ま
たは電極の簡単な配置で)閉領域の表示・非表示が可能
となる。従って、図9に示す従来の液晶表示装置のよう
に、閉領域の表示のために必然的に生じてしまう電極端
子部の表示といった表示品質の低下の問題はない。
As described above, according to each embodiment, the voltage-light transmittance characteristics of the polymer-dispersed liquid crystal are different for each region, so that the light-transmitting electrodes can be arranged on the entire surface ( Alternatively, it is possible to display / hide the closed area (with simple arrangement of the electrodes). Therefore, unlike the conventional liquid crystal display device shown in FIG. 9, there is no problem of deterioration of display quality such as display of an electrode terminal portion which is inevitably generated for displaying a closed region.

【0031】なお、透光性電極を分割して形成し、高分
子分散型液晶の第1の液晶領域と第2の液晶領域とをそ
れぞれ独立して制御するようにすると、印加電圧をそれ
ぞれ独立に設定できるから、例えば第1の液晶領域と第
2の液晶領域の光透過率の差が大きくなるようにでき、
コントラスト差が大きくなり、表示の視認性を高めるこ
とが可能となる。また、各光透過率をほぼ等しくして表
示を見えなくすることを、任意の光透過率において可能
とすることができる。
It is to be noted that if the translucent electrode is formed by dividing and the first liquid crystal region and the second liquid crystal region of the polymer-dispersed liquid crystal are controlled independently, the applied voltage is controlled independently. Therefore, for example, the difference in light transmittance between the first liquid crystal region and the second liquid crystal region can be increased,
The contrast difference increases, and the visibility of the display can be improved. In addition, it is possible to make the display invisible by making the respective light transmittances substantially equal at an arbitrary light transmittance.

【0032】また、例えば図4に示す電圧光透過率特性
が温度依存性を有する場合、温度が両液晶領域の光透過
率の差として現れるから、温度計としても利用すること
ができる。この場合、電極に印加する液晶の駆動電圧を
調整することにより、温度校正を行うことができる。
Further, for example, when the voltage light transmittance characteristic shown in FIG. 4 has temperature dependence, the temperature appears as a difference between the light transmittances of the two liquid crystal regions, so that it can be used as a thermometer. In this case, temperature calibration can be performed by adjusting the drive voltage of the liquid crystal applied to the electrodes.

【0033】[0033]

【発明の効果】本発明によれば、電極の端子部等が表示
されてしまうことなく簡単な電極構成で閉領域を表示す
ることのできる液晶表示装置を提供することができる。
According to the present invention, it is possible to provide a liquid crystal display device capable of displaying a closed region with a simple electrode configuration without displaying the terminal portions of the electrodes and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態による高分子分散型
液晶を用いた液晶表示装置の平面図である。
FIG. 1 is a plan view of a liquid crystal display device using a polymer dispersed liquid crystal according to a first embodiment of the present invention.

【図2】図1のII−II線断面図である。FIG. 2 is a sectional view taken along line II-II of FIG.

【図3】図1のIII−III線断面図である。FIG. 3 is a sectional view taken along line III-III of FIG. 1;

【図4】図1の各高分子分散型液晶の印加電圧と光透過
率との関係を示す図である。
FIG. 4 is a diagram showing a relationship between an applied voltage and light transmittance of each polymer-dispersed liquid crystal of FIG.

【図5】第2の実施の形態における各高分子分散型液晶
の印加電圧と光透過率との関係を示す図である。
FIG. 5 is a diagram illustrating a relationship between an applied voltage and light transmittance of each polymer-dispersed liquid crystal according to the second embodiment.

【図6】第3の実施の形態による液晶表示装置の分解斜
視図である。
FIG. 6 is an exploded perspective view of a liquid crystal display device according to a third embodiment.

【図7】図6の各高分子分散型液晶層の印加電圧と光透
過率との関係を示す図である。
FIG. 7 is a diagram showing a relationship between an applied voltage and light transmittance of each polymer-dispersed liquid crystal layer of FIG.

【図8】図6の液晶表示装置の平面図である。8 is a plan view of the liquid crystal display device of FIG.

【図9】従来の液晶表示素子を説明するための平面図で
ある。
FIG. 9 is a plan view for explaining a conventional liquid crystal display element.

【符号の説明】[Explanation of symbols]

1,19 液晶表示装置 10 高分子分散型液晶
(第1の液晶領域) 11 高分子分散型液晶
(第2の液晶領域) 101,103,105a 第1の液晶領域の電
圧光透過率特性曲線 102,104,105b 第2の液晶領域の電
圧光透過率特性曲線 12 透光性電極 13 ガラス基板 14 シール材 16a 高分子分散型液晶層
(第1の液晶領域) 16b 高分子分散型液晶層
(第2の液晶領域) 15a,15b 透光性電極
Reference Signs List 1,19 Liquid crystal display device 10 Polymer dispersed liquid crystal (first liquid crystal region) 11 Polymer dispersed liquid crystal (second liquid crystal region) 101,103,105a Voltage light transmittance characteristic curve of first liquid crystal region 102 , 104, 105b Voltage light transmittance characteristic curve of second liquid crystal region 12 Translucent electrode 13 Glass substrate 14 Sealing material 16a Polymer dispersed liquid crystal layer (first liquid crystal region) 16b Polymer dispersed liquid crystal layer (second liquid crystal region) 2a) 15a, 15b translucent electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上田 武彦 東京都千代田区丸の内3丁目2番3号 株 式会社ニコン内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Takehiko Ueda Nikon Corporation, 2-3-2 Marunouchi, Chiyoda-ku, Tokyo

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 光透過率が印加電圧に応じて変化する液
晶により所定の表示を行う液晶表示装置において、 光透過率と印加電圧とが第1の関係で変化する第1の液
晶領域と、光透過率と印加電圧とが第1の関係と異なる
第2の関係で変化する第2の液晶領域とを有することを
特徴とする液晶表示装置。
1. A liquid crystal display device for performing a predetermined display by using a liquid crystal in which light transmittance changes according to an applied voltage, a first liquid crystal region in which light transmittance and an applied voltage change in a first relationship, A liquid crystal display device comprising: a second liquid crystal region in which light transmittance and applied voltage change in a second relationship different from the first relationship.
【請求項2】 第1の液晶領域と第2の液晶領域との光
透過率の差により前記所定の表示を行うとともに、前記
印加電圧を変化させることにより第1の液晶領域と第2
の液晶領域との光透過率を同一または近似させて前記所
定の表示を視認できないようにすることを特徴とする請
求項1記載の液晶表示装置。
2. The method according to claim 1, wherein the predetermined display is performed by a difference in light transmittance between the first liquid crystal region and the second liquid crystal region, and the first liquid crystal region and the second liquid crystal region are changed by changing the applied voltage.
2. The liquid crystal display device according to claim 1, wherein the predetermined display is made invisible by making the light transmittance with the liquid crystal region the same or similar.
【請求項3】 前記各液晶領域は高分子分散型液晶から
構成されている請求項1または2記載の液晶表示装置。
3. The liquid crystal display device according to claim 1, wherein each of the liquid crystal regions is made of a polymer dispersed liquid crystal.
【請求項4】 第1の液晶領域が前記所定の表示を行う
ようパターン化されているとともに、第2の液晶領域に
包囲されている請求項1,2または3記載の液晶表示装
置。
4. The liquid crystal display device according to claim 1, wherein the first liquid crystal region is patterned so as to perform the predetermined display, and is surrounded by the second liquid crystal region.
【請求項5】 第1の液晶領域と第2の液晶領域とが一
対の透光性基板の間に挟み込まれている請求項1,2,
3または4記載の液晶表示装置。
5. The liquid crystal display according to claim 1, wherein the first liquid crystal region and the second liquid crystal region are sandwiched between a pair of translucent substrates.
5. The liquid crystal display device according to 3 or 4.
【請求項6】 前記各液晶領域に電圧を印可するための
透光性電極を前記一対の透光性基板の全面にそれぞれ備
えさせた請求項5記載の液晶表示装置。
6. The liquid crystal display device according to claim 5, wherein a light-transmitting electrode for applying a voltage to each of said liquid crystal regions is provided on the entire surface of said pair of light-transmitting substrates.
【請求項7】 第1の液晶領域と第2の液晶領域とが一
対の透光性基板の間に挟み込まれており、前記各液晶領
域に電圧を印可するための透光性電極を前記一対の透光
性基板にそれぞれ備えさせ、前記透光性電極の少なくと
も一方を前記パターン化された第1の液晶領域に対応す
るよう分割して設けた請求項4記載の液晶表示装置。
7. A first liquid crystal region and a second liquid crystal region are sandwiched between a pair of translucent substrates, and a translucent electrode for applying a voltage to each of the liquid crystal regions is provided on the pair of light transmissive electrodes. 5. The liquid crystal display device according to claim 4, wherein at least one of said light-transmitting electrodes is divided and provided corresponding to said patterned first liquid crystal region.
JP20391897A 1997-07-15 1997-07-15 Liquid crystal display Expired - Lifetime JP4013292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20391897A JP4013292B2 (en) 1997-07-15 1997-07-15 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20391897A JP4013292B2 (en) 1997-07-15 1997-07-15 Liquid crystal display

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007181210A Division JP4770805B2 (en) 2007-07-10 2007-07-10 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPH1138380A true JPH1138380A (en) 1999-02-12
JP4013292B2 JP4013292B2 (en) 2007-11-28

Family

ID=16481857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20391897A Expired - Lifetime JP4013292B2 (en) 1997-07-15 1997-07-15 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP4013292B2 (en)

Also Published As

Publication number Publication date
JP4013292B2 (en) 2007-11-28

Similar Documents

Publication Publication Date Title
US7358943B2 (en) Color display apparatus
EP0964321B1 (en) Timepiece
US20020085155A1 (en) Liquid crystal display device and electronic apparatus provided with the same
JP2003157026A (en) Display device and driving method thereof
US7154574B2 (en) Color liquid crystal display devices
JP2002196323A (en) Liquid crystal display device
EP1182494B1 (en) Liquid crystal panel
US7710522B1 (en) Liquid crystal device having variable reflected wavelength
KR101099338B1 (en) Liquid crystal display with split electrode
JP4013292B2 (en) Liquid crystal display
JP4770805B2 (en) Liquid crystal display
JP2947447B2 (en) Liquid crystal display
KR20070031507A (en) Color liquid crystal display
KR20130055205A (en) Driving method of liquid crystal display device including cholesteric liquid crystal layer
JPH11281961A (en) Driving method for color liquid crystal display element
JP2852387B2 (en) Liquid crystal electro-optical device
JPH11133374A (en) Method for driving color liquid crystal display device
KR100319723B1 (en) Reflective Polymer Dispersion Liquid Crystal Display
CN116679472A (en) Display panel with switchable partitioned wide and narrow viewing angles, display device and driving method
JP2003015115A (en) Polymer dispersed liquid crystal display element
WO2011022048A1 (en) Display with split electrode between two substrates
JPH10339871A (en) Reflection type liquid crystal display device
JP2000122026A (en) Color liquid crystal display device
JPH10319410A (en) Liquid crystal display device
JP2001183656A (en) Reflection type liquid crystal display device and image display device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070710

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term