JPH1138174A - Residual heat removal device - Google Patents
Residual heat removal deviceInfo
- Publication number
- JPH1138174A JPH1138174A JP9197251A JP19725197A JPH1138174A JP H1138174 A JPH1138174 A JP H1138174A JP 9197251 A JP9197251 A JP 9197251A JP 19725197 A JP19725197 A JP 19725197A JP H1138174 A JPH1138174 A JP H1138174A
- Authority
- JP
- Japan
- Prior art keywords
- reactor
- water
- reactor water
- pressure vessel
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 309
- 238000001816 cooling Methods 0.000 claims abstract description 106
- 239000000498 cooling water Substances 0.000 claims abstract description 55
- 239000007921 spray Substances 0.000 claims abstract description 34
- 230000001172 regenerating effect Effects 0.000 claims description 42
- 230000008929 regeneration Effects 0.000 claims description 2
- 238000011069 regeneration method Methods 0.000 claims description 2
- 230000035939 shock Effects 0.000 abstract description 9
- 238000010586 diagram Methods 0.000 description 20
- 239000000463 material Substances 0.000 description 5
- 230000001105 regulatory effect Effects 0.000 description 4
- 230000008646 thermal stress Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、原子力プラントに
適用する残留熱除去装置に係り、特に、原子炉遮断時あ
るいは原子炉停止時、炉心で発生した崩壊熱、残留熱に
より高温化した炉水を取り出し、その炉水を適温に冷却
して原子炉に戻す残留熱除去装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a residual heat removing apparatus applied to a nuclear power plant, and more particularly, to reactor water heated by decay heat and residual heat generated in a reactor core when the reactor is shut down or shut down. The present invention relates to a residual heat removing device for taking out the reactor water, cooling the reactor water to an appropriate temperature, and returning the reactor water to the reactor.
【0002】[0002]
【従来の技術】沸騰水型原子力プラントでは、原子炉停
止時等において、冷却時間を短縮するためにヘッドスプ
レイ運転を行い、原子炉圧力容器の温度降下を迅速に促
進することがある。このヘッドスプレイ運転を行うスプ
レイ水は、炉心から取水し、取水した高温の炉水を残留
熱除去装置(以下RHR系と記す)で適温に冷却して炉
心に戻すようになっており、そのRHR系の構成として
図13に示すものがある。2. Description of the Related Art In a boiling water nuclear power plant, when the reactor is stopped, a head spray operation is sometimes performed to shorten the cooling time, and the temperature drop of the reactor pressure vessel may be rapidly promoted. The spray water for performing the head spray operation is taken from the reactor core, and the taken high-temperature reactor water is cooled to an appropriate temperature by a residual heat removal device (hereinafter referred to as RHR system) and returned to the reactor core. FIG. 13 shows a system configuration.
【0003】RHR系1は、原子炉圧力容器4に設けら
れ、再循環ポンプ7を備えた原子炉再循環系3および流
量調整弁10を備えたヘッドスプレイ系2に連続一体と
して接続するとともに、RHRポンプ6、流量調整弁9
および再生熱交換器5を備えた炉水冷却系11、バイパ
ス弁8を備えたバイパス系12、冷却炉水戻り系13を
備えた構成になっており、原子炉再循環系3の再循環ポ
ンプ7で取水した原子炉圧力容器4からの炉水の一部を
RHRポンプ6で昇圧し、炉水冷却系11の非再生熱交
換器5またはバイパス系12を介して冷却炉水戻り系1
3に集められ、ここからヘッドスプレイ系2および原子
炉再循環系3を介して原子炉圧力容器4に戻すようにな
っている。[0003] The RHR system 1 is provided in the reactor pressure vessel 4 and is connected to the reactor recirculation system 3 equipped with a recirculation pump 7 and the head spray system 2 equipped with a flow control valve 10 as a continuous unit. RHR pump 6, flow control valve 9
And a reactor water cooling system 11 having a regenerative heat exchanger 5, a bypass system 12 having a bypass valve 8, and a cooling reactor water return system 13. A part of the reactor water from the reactor pressure vessel 4 taken in at 7 is pressurized by the RHR pump 6 and is supplied to the cooling water return system 1 via the non-regenerative heat exchanger 5 of the reactor water cooling system 11 or the bypass system 12.
3 and is returned to the reactor pressure vessel 4 via the head spray system 2 and the reactor recirculation system 3.
【0004】また、RHR系1は、その管系が室温より
も若干高い温度に維持されているため、起動運転時、原
子炉再循環系3の再循環ポンプ7に定格運転をさせる
と、高温の炉水がその管系に熱衝撃を与える。[0004] Further, since the RHR system 1 has its pipe system maintained at a temperature slightly higher than room temperature, when the recirculation pump 7 of the reactor recirculation system 3 performs a rated operation during the start-up operation, a high temperature is generated. Reactor water gives a thermal shock to the tubing.
【0005】このため、RHR系1は、再循環ポンプ7
に間欠運転を行わせ、その管系を通る炉水の温度が急激
に変化しないように図っている。For this reason, the RHR system 1 includes a recirculation pump 7
Is operated intermittently so that the temperature of the reactor water passing through the pipe system does not suddenly change.
【0006】[0006]
【発明が解決しようとする課題】RHR系1は、上述の
通り、原子炉停止時、原子炉圧力容器4の冷却時間を短
くするために、原子炉圧力容器4の炉水を再循環ポンプ
7で間欠的に取水し、その炉水を非再生熱交換器5で冷
却し、その冷却水を冷却炉水戻り系13およびヘッドス
プレイ系2を介して原子炉圧力容器4に戻すようにして
いるが、再循環ポンプ7の間欠運転に際し、何らかの事
情により再循環ポンプ7に動作不良が出て所定の運転時
間よりも長くなり、過量の炉水が非再生熱交換器5に流
れ、ここで生成される冷却水がヘッドスプレイ系2で必
要とする流量よりも過量になることがあった。As described above, the RHR system 1 uses the recirculation pump 7 to recirculate the reactor water in the reactor pressure vessel 4 in order to shorten the cooling time of the reactor pressure vessel 4 when the reactor is stopped. The reactor water is cooled intermittently by the non-regenerative heat exchanger 5, and the cooling water is returned to the reactor pressure vessel 4 via the cooling water return system 13 and the head spray system 2. However, during the intermittent operation of the recirculation pump 7, the recirculation pump 7 malfunctions for some reason and becomes longer than a predetermined operation time, and an excessive amount of reactor water flows to the non-regenerative heat exchanger 5, where it is generated. In some cases, the amount of cooling water to be supplied exceeds the flow rate required by the head spray system 2.
【0007】このように、冷却水が過量になると、炉水
との間に大きな温度差が出、この温度差に伴って局所的
に発生する温度の熱応力のために、原子炉圧力容器4は
材力強度維持の健全性が失われるおそれがあった。As described above, when the amount of the cooling water becomes excessive, a large temperature difference is generated between the cooling water and the reactor water. Due to the thermal stress generated locally due to the temperature difference, the reactor pressure vessel 4 There was a possibility that the soundness of maintaining the strength of the steel might be lost.
【0008】また、再循環ポンプ7に間欠運転を行わせ
ることは、そのポンプ軸やインペラに材料疲労を与える
ことになって材力強度を長く維持させることが難しくな
り、さらに電気系統の接点に劣化を起させ、動作不良を
招く要因にもなっていた。Further, making the recirculation pump 7 perform the intermittent operation gives material fatigue to the pump shaft and the impeller, making it difficult to maintain the material strength for a long time. Deterioration is caused, and it is also a factor of causing malfunction.
【0009】本発明は、このような事情に基づいてなさ
れたもので、再循環ポンプに起動時から連続運転を行わ
せるとともに、RHR系の炉水冷却系およびバイパス系
を併用させ、原子炉圧力容器から取水した炉水を適温に
調整して原子炉圧力容器に戻す残留熱除去装置を提供す
ることを目的とする。The present invention has been made in view of such circumstances, and has a recirculation pump that performs continuous operation from the start-up, and a reactor water cooling system and a bypass system of an RHR system are used in combination, and the reactor pressure is reduced. It is an object of the present invention to provide a residual heat removing device that adjusts reactor water taken from a vessel to an appropriate temperature and returns the reactor water to a reactor pressure vessel.
【0010】[0010]
【課題を解決するための手段】本発明に係る残留熱除去
装置は、上記目的を達成するために、請求項1に記載し
たように、原子炉再循環系を介して原子炉圧力容器から
取水した炉水を冷却する炉水冷却系に並設するバイパス
系を備え、この炉水冷却系で冷却した炉水およびバイパ
ス系の炉水のいずれか一方を原子炉圧力容器に戻す残留
熱除去装置において、上記バイパス系の炉水の一部をヘ
ッドスプレイ系を介して原子炉圧力容器に戻すととも
に、上記バイパス系の残りの炉水を上記炉水冷却系で冷
却した炉水に合流させて上記原子炉圧力容器に戻す冷却
炉水戻し系を設けたものである。According to a first aspect of the present invention, there is provided a residual heat removing apparatus for removing water from a reactor pressure vessel via a reactor recirculation system. A residual heat removal device that includes a bypass system juxtaposed to the reactor water cooling system that cools the reactor water, and returns one of the reactor water cooled by the reactor water cooling system and the reactor water of the bypass system to the reactor pressure vessel. In, while a part of the reactor water of the bypass system is returned to the reactor pressure vessel via the head spray system, the remaining reactor water of the bypass system is combined with the reactor water cooled by the reactor water cooling system, and A cooling water return system for returning to the reactor pressure vessel is provided.
【0011】本発明に係る残留熱除去装置は、上記目的
を達成するために、請求項2に記載したように、原子炉
再循環系を介して原子炉圧力容器から取水した炉水を冷
却する炉水冷却系に並設するバイパス系を備え、この炉
水冷却系で冷却した炉水およびバイパス系の炉水のいず
れか一方を原子炉圧力容器に戻す残留熱除去装置におい
て、上記バイパス系の炉水の一部をヘッドスプレイ系を
介して原子炉圧力容器に戻すとともに、上記バイパス系
の残りの炉水を上記炉水冷却系で冷却した炉水に合流さ
せて上記原子炉圧力容器に戻す冷却炉水戻し系と、上記
原子炉再循環と上記冷却炉水系との間に設けられた温度
緩衝装置とを備えたものである。In order to achieve the above object, a residual heat removing apparatus according to the present invention cools reactor water taken from a reactor pressure vessel via a reactor recirculation system. A residual heat removal device for returning one of the reactor water cooled by the reactor water cooling system and the reactor water of the bypass system to the reactor pressure vessel, comprising a bypass system juxtaposed with the reactor water cooling system; A part of the reactor water is returned to the reactor pressure vessel via the head spray system, and the remaining reactor water of the bypass system is combined with the reactor water cooled by the reactor water cooling system and returned to the reactor pressure vessel. A cooling water return system, and a temperature buffer provided between the reactor recirculation and the cooling water system.
【0012】本発明に係る残留熱除去装置は、上記目的
を達成するために、請求項3に記載したように、温度緩
衝装置は貯水槽であることを特徴とするものである。In order to achieve the above object, the residual heat removing device according to the present invention is characterized in that the temperature buffer device is a water storage tank.
【0013】本発明に係る残留熱除去装置は、上記目的
を達成するために、請求項4に記載したように、貯水槽
は、入口ノズルと出口ノズルを備え、入口ノズルと出口
ノズルに対し、距離を置いて落差を形成して設置したも
のである。[0013] In order to achieve the above object, the residual heat removing device according to the present invention, as described in claim 4, wherein the water storage tank has an inlet nozzle and an outlet nozzle. It is installed with a head formed at a distance.
【0014】本発明に係る残留熱除去装置は、上記目的
を達成するために、請求項5に記載したように、貯水槽
は、炉水の自由表面に気層を形成したものである。In order to achieve the above object, in the residual heat removing apparatus according to the present invention, the water storage tank has an air layer formed on a free surface of the reactor water.
【0015】本発明に係る残留熱除去装置は、上記目的
を達成するために、請求項6に記載したように、貯水槽
は、加圧器を設けたものである。In order to achieve the above object, in the residual heat removing apparatus according to the present invention, the water storage tank is provided with a pressurizer.
【0016】本発明に係る残留熱除去装置は、上記目的
を達成するために、請求項7に記載したように、貯水槽
の入口ノズルは、スリットを形成したものである。In order to achieve the above object, in the residual heat removing device according to the present invention, the inlet nozzle of the water storage tank is formed with a slit.
【0017】本発明に係る残留熱除去装置は、上記目的
を達成するために、請求項8に記載したように、原子炉
再循環系を介して原子炉圧力容器から取水した炉水を冷
却する炉水冷却系に並設するバイパス系を備え、この炉
水冷却系で冷却した炉水およびバイパス系の炉水のいず
れか一方を原子炉圧力容器に戻す残留熱除去装置におい
て、上記バイパス系の炉水の一部をヘッドスプレイ系を
介して原子炉圧力容器に戻すとともに、上記バイパス系
の残りの炉水を上記炉水冷却系で冷却した炉水に合流さ
せて上記原子炉圧力容器に戻す冷却炉水戻し系と、上記
原子炉再循環と上記冷却炉水系との間に設けられた非再
生熱交換器とを備えたものである。In order to achieve the above object, a residual heat removing apparatus according to the present invention cools reactor water taken from a reactor pressure vessel via a reactor recirculation system. A residual heat removal device for returning one of the reactor water cooled by the reactor water cooling system and the reactor water of the bypass system to the reactor pressure vessel, comprising a bypass system juxtaposed with the reactor water cooling system; A part of the reactor water is returned to the reactor pressure vessel via the head spray system, and the remaining reactor water of the bypass system is combined with the reactor water cooled by the reactor water cooling system and returned to the reactor pressure vessel. A cooling water return system, and a non-regenerative heat exchanger provided between the reactor recirculation and the cooling water system.
【0018】本発明に係る残留熱除去装置は、上記目的
を達成するために、請求項9に記載したように、非再生
熱交換器は、非再生熱交換器バイパス系を備えたもので
ある。In order to achieve the above object, in the residual heat removing apparatus according to the present invention, the non-regenerative heat exchanger includes a non-regenerative heat exchanger bypass system. .
【0019】本発明に係る残留熱除去装置は、上記目的
を達成するために、請求項10に記載したように、原子
炉再循環系を介して原子炉圧力容器から取水した炉水を
冷却する炉水冷却系に並設するバイパス系を備え、この
炉水冷却系で冷却した炉水およびバイパス系の炉水のい
ずれか一方を原子炉圧力容器に戻す残留熱除去装置にお
いて、上記バイパス系の炉水の一部をヘッドスプレイ系
を介して原子炉圧力容器に戻すとともに、上記バイパス
系の残りの炉水を上記炉水冷却系で冷却した炉水に合流
させて上記原子炉圧力容器に戻す冷却炉水戻し系と、上
記原子炉再循環と上記冷却炉水系との間に非再生熱交換
器とを設けるとともに、上記非再生熱交換器に非再生熱
交換器バイパス系を備える一方、上記炉水冷却系の残留
熱除去ポンプを駆動するモータにインバータ回路を組み
込んだものである。In order to achieve the above object, the residual heat removing apparatus according to the present invention cools reactor water taken from a reactor pressure vessel via a reactor recirculation system. A residual heat removal device for returning one of the reactor water cooled by the reactor water cooling system and the reactor water of the bypass system to the reactor pressure vessel, comprising a bypass system juxtaposed with the reactor water cooling system; A part of the reactor water is returned to the reactor pressure vessel via the head spray system, and the remaining reactor water of the bypass system is combined with the reactor water cooled by the reactor water cooling system and returned to the reactor pressure vessel. While providing a non-regenerative heat exchanger between the cooling water return system and the reactor recirculation and the cooling water system, the non-regenerative heat exchanger includes a non-regenerative heat exchanger bypass system, Drive the residual heat removal pump of the reactor water cooling system A motor for those incorporating the inverter circuit.
【0020】本発明に係る残留熱除去装置は、上記目的
を達成するために、請求項11に記載したように、原子
炉再循環系を介して原子炉圧力容器から取水した炉水を
冷却する炉水冷却系に並設するバイパス系を備え、この
炉水冷却系で冷却した炉水およびバイパス系の炉水のい
ずれか一方を原子炉圧力容器に戻す残留熱除去装置にお
いて、上記バイパス系の炉水をヘッドスプレイ系を介し
て原子炉圧力容器に戻すとともに、上記炉水冷却系で冷
却した炉水を、流量コントロールして上記ヘッドスプレ
イ系に供給する流量調整弁と、上記炉水冷却系で冷却し
た炉水を、流量コントロールして上記冷却炉水戻り系か
ら上記原子炉圧力容器に戻す流量調整弁とを備えたもの
である。In order to achieve the above object, a residual heat removing apparatus according to the present invention cools reactor water taken from a reactor pressure vessel via a reactor recirculation system, as described in claim 11. A residual heat removal device for returning one of the reactor water cooled by the reactor water cooling system and the reactor water of the bypass system to the reactor pressure vessel, comprising a bypass system juxtaposed with the reactor water cooling system; Returning a reactor water to the reactor pressure vessel via a head spray system, and controlling a flow rate of the reactor water cooled by the reactor water cooling system to supply the reactor water to the head spray system; and a flow control valve for the reactor water cooling system. And a flow rate control valve for controlling the flow rate of the reactor water cooled in step 2 and returning the reactor water from the cooling water return system to the reactor pressure vessel.
【0021】本発明に係る残留熱除去装置は、上記目的
を達成するために、請求項12に記載したように、原子
炉再循環系を介して原子炉圧力容器から取水した炉水を
冷却する炉水冷却系に並設するバイパス系を備え、この
炉水冷却系で冷却した炉水およびバイパス系の炉水のい
ずれか一方を原子炉圧力容器に戻す残留熱除去装置にお
いて、上記炉水冷却系に第1副バイパス系を設けるとと
もに、上記バイパス系に第2副バイパス系を設けたもの
である。In order to achieve the above object, a residual heat removing apparatus according to the present invention cools reactor water taken from a reactor pressure vessel via a reactor recirculation system. A residual heat removing device for returning either the reactor water cooled by the reactor water cooling system or the reactor water of the bypass system to the reactor pressure vessel. A first sub-bypass system is provided in the system, and a second sub-bypass system is provided in the bypass system.
【0022】本発明に係る残留熱除去装置は、上記目的
を達成するために、請求項13に記載したように、原子
炉再循環系を介して原子炉圧力容器から取水した炉水を
冷却する炉水冷却系に並設するバイパス系を備え、この
炉水冷却系で冷却した炉水およびバイパス系の炉水のい
ずれか一方を原子炉圧力容器に戻す残留熱除去装置にお
いて、上記バイパス系の炉水の一部をヘッドスプレイ系
を介して原子炉圧力容器に戻すとともに、上記バイパス
系の残りの炉水を上記炉水冷却系で冷却した炉水に合流
させて上記原子炉圧力容器に戻す冷却炉水戻し系と、上
記原子炉再循環と上記冷却炉水系との間に温度緩衝装置
とを設ける一方、上記冷却炉水戻し系を上記温度緩衝装
置に接続したものである。In order to achieve the above object, the apparatus for removing residual heat according to the present invention cools reactor water taken from a reactor pressure vessel via a reactor recirculation system. A residual heat removal device for returning one of the reactor water cooled by the reactor water cooling system and the reactor water of the bypass system to the reactor pressure vessel, comprising a bypass system juxtaposed with the reactor water cooling system; A part of the reactor water is returned to the reactor pressure vessel via the head spray system, and the remaining reactor water of the bypass system is combined with the reactor water cooled by the reactor water cooling system and returned to the reactor pressure vessel. A cooling water return system and a temperature buffer between the reactor recirculation and the cooling water system are provided, while the cooling water return system is connected to the temperature buffer.
【0023】本発明に係る残留熱除去装置は、上記目的
を達成するために、請求項14に記載したように、原子
炉再循環系を介して原子炉圧力容器から取水した炉水を
冷却する炉水冷却系に並設するバイパス系を備え、この
炉水冷却系で冷却した炉水およびバイパス系の炉水のい
ずれか一方を原子炉圧力容器に戻す残留熱除去装置にお
いて、上記原子炉再循環系と上記炉水冷却系との間に再
生熱交換器を設けるとともに、上記バイパス系の炉水を
上記炉水冷却系で冷却した炉水を合流させ、その合流水
の一部を上記原子炉圧力容器に戻す一方、上記合流水の
残りを上記再生熱交換器に供給する冷却炉水戻り系を備
えたものである。In order to achieve the above object, the apparatus for removing residual heat according to the present invention cools reactor water taken from a reactor pressure vessel via a reactor recirculation system. In the residual heat removing apparatus, a bypass system is provided in parallel with the reactor water cooling system, and either the reactor water cooled in the reactor water cooling system or the reactor water in the bypass system is returned to the reactor pressure vessel. A regenerative heat exchanger is provided between the circulation system and the reactor water cooling system, and the reactor water cooled by the reactor water cooling system is combined with the reactor water of the bypass system. A cooling furnace water return system is provided for supplying the rest of the combined water to the regenerative heat exchanger while returning the combined water to the furnace pressure vessel.
【0024】[0024]
【発明の実施の形態】以下、本発明に係る残留熱除去装
置の実施形態を図面および図面に付した部品番号を引用
して説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a residual heat removing apparatus according to the present invention will be described below with reference to the drawings and the part numbers attached to the drawings.
【0025】図1は、本発明に係る残留熱除去装置の第
1実施形態を示す概略系統図である。FIG. 1 is a schematic system diagram showing a first embodiment of the residual heat removing apparatus according to the present invention.
【0026】本実施形態に係る残留熱除去装置20(以
下、RHR系と記す)は、原子炉圧力容器21に設けら
れ、再循環ポンプ22を備えた原子炉再循環系23およ
び流量調整弁24を備えたヘッドスプレイ系25に連続
一体として接続する構成になっている。A residual heat removal apparatus 20 (hereinafter, referred to as an RHR system) according to the present embodiment is provided in a reactor pressure vessel 21 and includes a reactor recirculation system 23 having a recirculation pump 22 and a flow control valve 24. Is connected continuously to the head spray system 25 provided with
【0027】また、RHR系20は、原子炉圧力容器2
1から原子炉再循環系23の再循環ポンプ22により取
水した炉水を昇圧させるRHRポンプ26、その炉水の
一部を冷却する流量調整弁27、非再生熱交換器28を
備えた炉水冷却系29、非再生熱交換器28で冷却した
炉水に、上述炉水の残りをバイパスして合流させるバイ
パス弁30、逆止弁31を備えたバイパス系32、バイ
パス系32の炉水と炉水冷却系29の冷却水としての炉
水とを合流させて適温にし、その合流水を原子炉再循環
系23を介して原子炉圧力容器21に戻す冷却炉水戻り
系33を備えている。Further, the RHR system 20 includes the reactor pressure vessel 2
RHR pump 26 for increasing the pressure of the reactor water taken in from reactor 1 by recirculation pump 22 of reactor recirculation system 23, flow rate regulating valve 27 for cooling part of the reactor water, and reactor water including non-regenerative heat exchanger 28 A cooling system 29, a bypass valve 30 having a non-return valve 31, a bypass valve 30 having a bypass valve 30 for bypassing the remainder of the reactor water with the reactor water cooled by the non-regenerative heat exchanger 28, A cooling water return system 33 is provided for merging reactor water as cooling water of the reactor water cooling system 29 to an appropriate temperature and returning the combined water to the reactor pressure vessel 21 via the reactor recirculation system 23. .
【0028】このような構成を備えるRHR系20は、
原子炉圧力容器21の停止運転時、原子炉圧力容器21
から原子炉再循環系23の再循環ポンプ22で連続的に
取水した炉水の一部をバイパスさせ、RHRポンプ26
を介して炉水冷却系29およびバイパス系30に供給す
る。The RHR system 20 having such a configuration is
During shutdown operation of the reactor pressure vessel 21, the reactor pressure vessel 21
A part of the reactor water continuously taken in by the recirculation pump 22 of the reactor recirculation system 23 is bypassed from the RHR pump 26
To the reactor water cooling system 29 and the bypass system 30.
【0029】炉水冷却系29に供給された炉水は、流量
調整弁27で流量コントロールされ、非再生熱交換器2
8で冷却される。The flow rate of the reactor water supplied to the reactor water cooling system 29 is controlled by a flow control valve 27, and the non-regenerative heat exchanger 2
Cooled at 8.
【0030】また、バイパス系30に供給された炉水
は、流量調整弁27で流量コントロールされて、その一
部がヘッドスプレイ系25を介して原子炉圧力容器21
に戻されるとともに、残りの一部が逆止弁31を介して
非再生熱交換器28からの冷却水としての炉水に合流
し、ここで適温の冷却水として調整される。バイパス系
32からの炉水と炉水冷却系29からの冷却水としての
炉水とが合流し、適温に調整された合流水は、冷却炉水
戻り系33、原子炉再循環系23を介して原子炉圧力容
器21に戻される。なお、非再生熱交換器28で冷却さ
れる炉水の温度降下速度は、流量調整弁27の弁開度に
より調整される。The flow rate of the reactor water supplied to the bypass system 30 is controlled by a flow control valve 27, and a part of the reactor water is supplied via the head spray system 25 to the reactor pressure vessel 21.
And the remaining part is combined with the reactor water as the cooling water from the non-regenerative heat exchanger 28 via the check valve 31, where the cooling water is adjusted to the appropriate temperature. The reactor water from the bypass system 32 and the reactor water as the cooling water from the reactor water cooling system 29 are merged, and the merged water adjusted to an appropriate temperature passes through the cooling water return system 33 and the reactor recirculation system 23. And returned to the reactor pressure vessel 21. The rate of temperature decrease of the reactor water cooled by the non-regenerative heat exchanger 28 is adjusted by the opening degree of the flow control valve 27.
【0031】このように、本実施形態では、RHR系2
0の炉水冷却系29とバイパス系32を併用させ、炉水
冷却系29からの冷却水としての炉水に、バイパス系3
2からの炉水を合流させ、この合流水を適温にして原子
炉圧力容器21に戻すようにしたから、炉水から受ける
原子炉圧力容器21の熱衝撃を従来よりも低く抑えるこ
とができる。As described above, in this embodiment, the RHR system 2
The cooling water 29 from the reactor water cooling system 29 is used as the cooling water from the reactor water cooling system 29 and the bypass system 3
Since the reactor water from the reactor water 2 is joined and the combined water is returned to the reactor pressure vessel 21 at an appropriate temperature, the thermal shock of the reactor pressure vessel 21 received from the reactor water can be suppressed lower than before.
【0032】したがって、本実施形態によれば、原子炉
圧力容器21の停止運転時、原子炉再循環系23の再循
環ポンプ22を連続運転させRHR系の炉水の冷却を適
正温度に調整する、いわゆるシャットダウンクーリング
運転を行わせたから、従来のように再循環ポンプ22の
間欠運転に基づく炉水を過冷却にして不測の事故を発生
させることもなく、原子炉圧力容器21の再起動運転に
際し、迅速かつ安定運転を行わせることができる。Therefore, according to the present embodiment, when the reactor pressure vessel 21 is stopped, the recirculation pump 22 of the reactor recirculation system 23 is continuously operated to adjust the cooling of the RHR system water to an appropriate temperature. Since the so-called shutdown cooling operation is performed, the reactor water is supercooled based on the intermittent operation of the recirculation pump 22 as in the related art, without causing an unexpected accident. , Quick and stable operation can be performed.
【0033】図2は、本発明に係るRHR系の第2実施
形態を示す概略系統図である。なお、第1実施形態の構
成部品と同一または対応する部分には同一符号を付す。FIG. 2 is a schematic system diagram showing a second embodiment of the RHR system according to the present invention. Note that the same reference numerals are given to portions that are the same as or correspond to the components of the first embodiment.
【0034】本実施形態は、原子炉再循環系23の再循
環ポンプ22とRHR系20のRHRポンプ26との間
に炉水の温度緩衝装置34を設けたものである。In this embodiment, a reactor water temperature buffer 34 is provided between the recirculation pump 22 of the reactor recirculation system 23 and the RHR pump 26 of the RHR system 20.
【0035】この温度緩衝装置34は、図3に示すよう
に、炉水を一時的に貯める貯水槽35になっている。貯
水槽35は、その一側に入口ノズル36を、その他側に
出口ノズル37を備え、入口ノズル36に対し、出口ノ
ズル37に距離を置いて落差をもたせるように配置され
ている。もともと、貯水槽35には、低温の炉水が貯め
られており、入口ノズル36から瞬間的に高温の炉水が
流入しても、貯水槽35内で高温の炉水と低温の炉水と
が混合するため、出口ノズル37から流出する炉水はそ
の温度を降下させることができる。As shown in FIG. 3, the temperature buffer device 34 is a water storage tank 35 for temporarily storing reactor water. The water storage tank 35 has an inlet nozzle 36 on one side and an outlet nozzle 37 on the other side, and is arranged so that the inlet nozzle 36 has a head at a distance from the outlet nozzle 37. Originally, low-temperature reactor water is stored in the water storage tank 35. Even if high-temperature reactor water flows in from the inlet nozzle 36 momentarily, high-temperature reactor water and low-temperature reactor water are stored in the water storage tank 35. Is mixed, the temperature of the reactor water flowing out of the outlet nozzle 37 can be lowered.
【0036】したがって、本実施形態では、温度降下し
た炉水を非再生熱交換器28で冷却させる際、従来より
も少ない冷却水の水量で炉水を冷却させて原子炉圧力容
器21に与える熱衝撃を低く抑えることができ、炉水の
冷却を伴う冷却水の温排水に基づく環境問題を低くする
ことができる。Therefore, in the present embodiment, when the reactor water whose temperature has fallen is cooled by the non-regenerative heat exchanger 28, the reactor water is cooled with a smaller amount of cooling water than before, and the heat applied to the reactor pressure vessel 21 is reduced. The impact can be suppressed to a low level, and environmental problems due to the hot water drainage of the cooling water accompanying the cooling of the reactor water can be reduced.
【0037】図4は、本実施形態に係る温度緩衝装置の
第2実施例を示す概略図である。なお、第1実施例に係
る温度緩衝装置の構成部品と同一部分には同一符号を付
す。FIG. 4 is a schematic diagram showing a second example of the temperature buffer device according to the present embodiment. The same parts as those of the temperature buffer device according to the first embodiment are denoted by the same reference numerals.
【0038】本実施例に係る温度緩衝装置34は、炉水
を一時的に貯める貯水槽35にし、貯水槽35に入口ノ
ズル36、出口ノズル37を設けるとともに、槽内の炉
水の自由表面38に気層39を形成させたものである。The temperature buffer device 34 according to the present embodiment is a water storage tank 35 for temporarily storing reactor water. The water storage tank 35 is provided with an inlet nozzle 36 and an outlet nozzle 37, and the free surface 38 of the reactor water in the tank. Is formed with an air layer 39.
【0039】本実施例は、高温の炉水を気層39で冷す
ので、予め残された低温の炉水で高温の炉水を冷やすの
に較べてその温度降下を比較的早くでき、有利である。In this embodiment, since the high-temperature reactor water is cooled by the gas layer 39, the temperature drop can be made relatively quicker than cooling the high-temperature reactor water with the low-temperature reactor water left beforehand. It is.
【0040】図5は、本実施形態に係る温度緩衝装置の
第3実施例を示す概略図である。なお、第1実施例に係
る温度緩衝装置の構成部品と同一部分には同一符号を付
す。FIG. 5 is a schematic view showing a third example of the temperature buffer according to the present embodiment. The same parts as those of the temperature buffer device according to the first embodiment are denoted by the same reference numerals.
【0041】本実施例は、貯水槽35に加圧器40を設
け、加圧器40から供給される媒体、例えば空気または
窒素等の不活性ガスにより炉水の自由表面38に押圧力
を加え、気層39を確実に確保させたものである。In this embodiment, a pressurizer 40 is provided in a water storage tank 35, and a pressing force is applied to a free surface 38 of the reactor water by a medium supplied from the pressurizer 40, for example, an inert gas such as air or nitrogen. The layer 39 is ensured.
【0042】したがって、本実施例では、加圧器40の
媒体により貯水槽35の気層39を確実に確保させたか
ら、入口ノズル36から供給された高温の炉水を比較的
早く冷すことができる。Therefore, in this embodiment, since the gas layer 39 of the water storage tank 35 is ensured by the medium of the pressurizer 40, the high-temperature reactor water supplied from the inlet nozzle 36 can be cooled relatively quickly. .
【0043】図6は、本実施形態に係る温度緩衝装置の
第4実施例を示す概略図である。なお、第1実施形態に
係る温度緩衝装置の構成部品と同一部分には同一符号を
付す。FIG. 6 is a schematic view showing a fourth example of the temperature buffer according to the present embodiment. The same parts as those of the temperature buffer device according to the first embodiment are denoted by the same reference numerals.
【0044】本実施例は、入口ノズル36にスリット4
1を形成したものである。本実施例は、入口ノズル36
にスリット41を形成させているので、万一、気層39
で高温の炉水を冷すことができず、入口ノズル36に熱
ひずみが発生しても、スリット41で吸収させることが
でき、入口ノズル36の材力強度を高い状態に維持する
ことができる。In this embodiment, the slit 4 is
1 is formed. In this embodiment, the inlet nozzle 36
Since the slit 41 is formed in the air layer 39,
In this case, even if the high-temperature reactor water cannot be cooled, even if thermal strain occurs in the inlet nozzle 36, it can be absorbed by the slit 41, and the material strength of the inlet nozzle 36 can be maintained in a high state. .
【0045】図7は、本発明に係るRHR系の第3実施
形態を示す概略系統図である。なお、第1実施形態の構
成部品と同一部分には同一符号を付す。FIG. 7 is a schematic system diagram showing a third embodiment of the RHR system according to the present invention. The same parts as those of the first embodiment are denoted by the same reference numerals.
【0046】本実施形態は、原子炉再循環系23の再循
環ポンプ22とRHR系20のRHRポンプ26との間
に別の非再生熱交換器42を設けるとともに、この非再
生熱交換器42にバイパス弁43を備えた非再生熱交換
器バイパス系44を設けたものである。In the present embodiment, another non-regenerative heat exchanger 42 is provided between the recirculation pump 22 of the reactor recirculation system 23 and the RHR pump 26 of the RHR system 20. And a non-regenerative heat exchanger bypass system 44 having a bypass valve 43.
【0047】原子炉圧力容器21の運転停止時、炉水が
RHR系20に流れると、その熱衝撃によりRHR系2
0の炉水冷却系29やバイパス系32の各機器は損傷す
る可能性がある。このため、本実施形態では、非再生熱
交換器42で炉水を予め冷却させてRHR系20の各機
器を熱衝撃から保護し、炉水の温度と各機器のメタルの
温度がほぼ同一になったとき、バイパス弁43を開弁さ
せ、冷却炉水戻り系33からの冷却水としての炉水を非
再生熱交換器バイパス系44、原子炉再循環系23を介
して原子炉圧力容器21に戻している。When the reactor water flows into the RHR system 20 when the operation of the reactor pressure vessel 21 is stopped, the RHR system 2
Each device of the reactor water cooling system 29 and the bypass system 32 of 0 may be damaged. For this reason, in this embodiment, the reactor water is pre-cooled by the non-regenerative heat exchanger 42 to protect each device of the RHR system 20 from thermal shock, and the temperature of the reactor water and the temperature of the metal of each device are substantially the same. When this happens, the bypass valve 43 is opened, and the reactor water as the cooling water from the cooling water return system 33 is supplied to the reactor pressure vessel 21 via the non-regenerative heat exchanger bypass system 44 and the reactor recirculation system 23. Back to.
【0048】このように、本実施形態では、原子炉再循
環系23の再循環ポンプ22とRHR系20のRHRポ
ンプ26との間に非再生熱交換器42を設け、予め炉水
を冷却させてからRHR系20の各機器に供給するの
で、高温炉水の熱衝撃から各機器を確実に防護すること
ができる。As described above, in this embodiment, the non-regenerative heat exchanger 42 is provided between the recirculation pump 22 of the reactor recirculation system 23 and the RHR pump 26 of the RHR system 20 to cool the reactor water in advance. Since the power is supplied to each device of the RHR system 20 after that, each device can be reliably protected from the thermal shock of the high-temperature reactor water.
【0049】図8は、本発明に係るRHR系の第4実施
形態を示す概略系統図である。なお、第1実施形態の構
成部品と同一部分には同一符号を付す。FIG. 8 is a schematic system diagram showing a fourth embodiment of the RHR system according to the present invention. The same parts as those of the first embodiment are denoted by the same reference numerals.
【0050】本実施形態は、原子炉再循環系23の再循
環ポンプ22とRHR系20のRHRポンプ26との間
に非再生熱交換器42を設け、この非再生熱交換器42
にバイパス弁43を備えた非再生熱交換器バイパス系4
4を形成する一方、RHRポンプ26を駆動するモータ
45にインバータ回路46を組み込んだものである。In this embodiment, a non-regenerative heat exchanger 42 is provided between the recirculation pump 22 of the reactor recirculation system 23 and the RHR pump 26 of the RHR system 20.
Non-regenerative heat exchanger bypass system 4 with bypass valve 43
4, while an inverter circuit 46 is incorporated in a motor 45 for driving the RHR pump 26.
【0051】本実施形態では、再循環ポンプ22に、従
来と異なって連続運転を行わせたことに伴い、RHRポ
ンプ26を駆動するモータ45にインバータ回路46を
組み込んだので、RHRポンプ26に電力消費の少ない
効果的な運転を行わせることができる。In the present embodiment, since the recirculation pump 22 is operated continuously, unlike the conventional case, the inverter circuit 46 is incorporated in the motor 45 for driving the RHR pump 26. Effective driving with less consumption can be performed.
【0052】図9は、本発明に係るRHR系の第5実施
形態を示す概略系統図である。なお、第1実施形態の構
成部品と同一部分には同一符号を付す。FIG. 9 is a schematic system diagram showing a fifth embodiment of the RHR system according to the present invention. The same parts as those of the first embodiment are denoted by the same reference numerals.
【0053】本実施形態は、炉水冷却系29の非再生熱
交換器28の出口側にヘッドスプレイ系用流量調整弁4
7を設けるとともに、冷却炉水戻り系33に原子炉再循
環系用流量調整弁48を設けたものである。In the present embodiment, the flow control valve 4 for the head spray system is provided at the outlet side of the non-regenerative heat exchanger 28 of the reactor water cooling system 29.
7 and a flow rate adjusting valve 48 for a reactor recirculation system in the cooling water return system 33.
【0054】本実施形態では、炉水冷却系29の非再生
熱交換器28の出口側にヘッドスプレイ系用流量調整弁
47を設けるとともに、冷却炉水戻り系33に原子炉再
循環系用流量調整弁48を設け、各流量調整弁47,4
8で冷却水としての炉水を流量コントロールして原子炉
圧力容器21に戻すように図ったので、原子炉圧力容器
21に適正量の炉水を戻すことができ、炉水による熱衝
撃から原子炉圧力容器21を保護することができる。In this embodiment, a flow control valve 47 for the head spray system is provided on the outlet side of the non-regenerative heat exchanger 28 of the reactor water cooling system 29, and the flow rate for the reactor recirculation system is provided in the cooling water return system 33. A regulating valve 48 is provided, and each flow regulating valve 47, 4
Since the flow rate of the reactor water as the cooling water was controlled in step 8 to return the reactor water to the reactor pressure vessel 21, an appropriate amount of reactor water could be returned to the reactor pressure vessel 21 and the reactor water was subjected to thermal shock due to thermal shock. The furnace pressure vessel 21 can be protected.
【0055】図10は、本発明に係るRHR系の第6実
施形態を示す概略系統図である。なお、第1実施形態の
構成部品と同一部分には同一符号を付す。FIG. 10 is a schematic system diagram showing a sixth embodiment of the RHR system according to the present invention. The same parts as those of the first embodiment are denoted by the same reference numerals.
【0056】本実施形態は、炉水冷却系29を原子炉再
循環系23に接続するとともに、バイパス系32をヘッ
ドスプレイ系25に接続し、炉水冷却系29およびバイ
パス系32のそれぞれを別個独立に使い分けることがで
きるように専用化を図ったものである。In this embodiment, the reactor water cooling system 29 is connected to the reactor recirculation system 23, the bypass system 32 is connected to the head spray system 25, and the reactor water cooling system 29 and the bypass system 32 are separately provided. It is designed for exclusive use so that it can be used independently.
【0057】炉水冷却系29は、流量調整弁27、非再
生熱交換器28のほかにバイパス弁49を介装させた第
1副バイパス系50で構成されている。The reactor water cooling system 29 includes a first sub-bypass system 50 in which a bypass valve 49 is interposed in addition to the flow control valve 27 and the non-regenerative heat exchanger 28.
【0058】また、バイパス系32は、非再生熱交換器
51、流量調整弁52を備えるとともに、バイパス弁5
3を備え第2副バイパス系54で構成されている。The bypass system 32 includes a non-regenerative heat exchanger 51 and a flow control valve 52 and a bypass valve 5.
3 and a second sub-bypass system 54.
【0059】本実施形態では、原子炉圧力容器21の運
転停止時、原子炉圧力容器21から原子炉再循環系23
の再循環ポンプ22を介して取水した炉水を、炉水冷却
系29で冷却し、その冷却水としての炉水を冷却炉水戻
り系33、原子炉再循環系23を介して原子炉圧力容器
21に戻す際、万一、不測の事態により事故が発生して
も、第2副バイパス系54を使用し、ヘッドスプレイ系
25を介して原子炉圧力容器21に炉水を戻すことがで
きる。In this embodiment, when the operation of the reactor pressure vessel 21 is stopped, the reactor recirculation system 23
The reactor water taken in through the recirculation pump 22 is cooled in the reactor water cooling system 29, and the reactor water as the cooling water is cooled through the reactor water return system 33 and the reactor recirculation system 23. When returning to the vessel 21, even if an accident should occur due to an unexpected situation, the reactor water can be returned to the reactor pressure vessel 21 via the head spray system 25 using the second sub-bypass system 54. .
【0060】したがって、本実施形態によれば、炉水冷
却系29とバイパス系32とを別個独立に使い分けがで
きるように専用化を図ったので、原子炉圧力容器21に
炉水を確実に戻すことができ、原子炉圧力容器21に発
生する熱応力を低く抑えることができる。Therefore, according to the present embodiment, since the reactor water cooling system 29 and the bypass system 32 are dedicated so that they can be used separately and independently, the reactor water is surely returned to the reactor pressure vessel 21. Therefore, thermal stress generated in the reactor pressure vessel 21 can be suppressed low.
【0061】図11は、本発明に係るRHR系の第7実
施形態を示す概略系統図である。なお、第1実施形態の
構成部品と同一部分には同一符号を付す。FIG. 11 is a schematic system diagram showing a seventh embodiment of the RHR system according to the present invention. The same parts as those of the first embodiment are denoted by the same reference numerals.
【0062】本実施形態は、原子炉再循環系23の再循
環ポンプ22とRHR系20のRHRポンプ26との間
に温度緩衝装置34を設けるとともに、冷却炉水戻り系
33を温度緩衝装置34に接続したものである。In this embodiment, a temperature buffer 34 is provided between the recirculation pump 22 of the reactor recirculation system 23 and the RHR pump 26 of the RHR system 20, and the cooling water return system 33 is connected to the temperature buffer 34. Connected to.
【0063】温度緩衝装置34は、原子炉再循環系23
に接続する入口ノズル36、冷却炉水戻り系33に流量
調整弁55を介装させて接続する循環入口ノズル56、
RHR系20のRHRポンプ26に接続する出口ノズル
37を備えた貯水槽35になっている。The temperature buffer device 34 is connected to the reactor recirculation system 23.
A circulation inlet nozzle 56 connected to the cooling water return system 33 with a flow control valve 55 interposed therebetween.
The water storage tank 35 has an outlet nozzle 37 connected to the RHR pump 26 of the RHR system 20.
【0064】このように、本実施形態では、再循環ポン
プ22とRHRポンプ26との間に温度緩衝装置34を
設け、この温度緩衝装置34に冷却炉水戻り系33を接
続させ、原子炉再循環系23を介して原子炉圧力容器2
1から温度緩衝装置34に供給された高温の炉水に、冷
却炉水戻り系33から温度緩衝装置34に供給された冷
却水としての炉水を合流させて適温にし、その合流水を
RHR系20に供給したので、RHR系20の各機器の
炉水から受ける熱衝撃を低く抑えることができ、材力強
度を高い状態に維持することができる。As described above, in the present embodiment, the temperature buffer device 34 is provided between the recirculation pump 22 and the RHR pump 26, and the cooling water return system 33 is connected to the temperature buffer device 34 so that the reactor Reactor pressure vessel 2 via circulation system 23
1 to the high-temperature reactor water supplied to the temperature buffer 34, the reactor water as the cooling water supplied from the cooling water return system 33 to the temperature buffer 34 is brought to an appropriate temperature, and the combined water is supplied to the RHR system. As a result, the thermal shock received from the reactor water of each device of the RHR system 20 can be kept low, and the material strength can be kept high.
【0065】図12は、本発明に係るRHR系の第8実
施形態を示す概略系統図である。なお、第1実施形態の
構成部品と同一部分には同一符号を付す。FIG. 12 is a schematic system diagram showing an eighth embodiment of the RHR system according to the present invention. The same parts as those of the first embodiment are denoted by the same reference numerals.
【0066】本実施形態は、原子炉再循環系23の再循
環ポンプ22とRHR系20のRHRポンプ26との間
に再生熱交換器57を設けるとともに、この再生熱交換
器57に流量調整弁58を備えた冷却炉水戻り系33を
接続し、原子炉再循環系23を介して原子炉圧力容器2
1から再生熱交換器57に供給された高温の炉水に、冷
却炉水戻り系33から再生熱交換器57に供給された冷
却水としての炉水を熱交換させたものである。In this embodiment, a regenerative heat exchanger 57 is provided between the recirculation pump 22 of the reactor recirculation system 23 and the RHR pump 26 of the RHR system 20, and the regenerative heat exchanger 57 is provided with a flow control valve. The cooling water return system 33 provided with the reactor pressure vessel 58 is connected to the reactor pressure vessel 2 via the reactor recirculation system 23.
This is obtained by exchanging heat with the high-temperature reactor water supplied to the regenerative heat exchanger 57 from the reactor water as cooling water supplied to the regenerative heat exchanger 57 from the cooling water return system 33.
【0067】このように、本実施形態では、原子炉圧力
容器21の炉水に、流量調整弁58から冷却炉水戻り系
33を介して供給される冷却水としての炉水を再生熱交
換器57で熱交換させたので、RHR系20に供給され
た炉水が非再生熱交換器28で過冷却されて冷却炉水戻
り系33に還流しても、その過冷却の還流水を高温の炉
水で加温させ、適温にすることができる。As described above, in the present embodiment, the reactor water as the cooling water supplied from the flow regulating valve 58 through the cooling water return system 33 is supplied to the reactor water of the reactor pressure vessel 21. Since the heat exchange was performed at 57, the reactor water supplied to the RHR system 20 was supercooled by the non-regenerative heat exchanger 28 and returned to the cooling reactor water return system 33. It can be heated to the appropriate temperature by heating with furnace water.
【0068】したがって、本実施形態によれば、再生熱
交換器57からヘッドスプレイ系25を介して原子炉圧
力容器21に供給される冷却水としての炉水を適温にし
ているので、原子炉圧力容器21の炉水から受け熱衝撃
を低くすることができ、炉水による熱応力の発生を低く
抑えることができる。Therefore, according to this embodiment, the reactor water as the cooling water supplied from the regenerative heat exchanger 57 to the reactor pressure vessel 21 via the head spray system 25 is kept at an appropriate temperature. The thermal shock received from the reactor water in the container 21 can be reduced, and the generation of thermal stress due to the reactor water can be suppressed.
【0069】[0069]
【発明の効果】以上の説明の通り、本発明に係る残留熱
除去装置は、原子炉再循環系の再循環ポンプに連続運転
を行わせるとともに、炉水冷却系の非再生熱交換器で冷
却した炉水に、バイパス系からの高温の炉水を合流させ
る手段を備え、その合流水を適温にして原子炉圧力容器
に戻すように図ったので、原子炉圧力容器の炉水から受
ける熱衝撃を低く抑えることができ、また、従来のよう
に再循環ポンプの間欠運転に伴って発生する不測の電気
的事故等を防止して安定運転を行うことができる。As described above, the apparatus for removing residual heat according to the present invention allows the recirculation pump of the reactor recirculation system to perform continuous operation and cools by the non-regenerative heat exchanger of the reactor water cooling system. A means to join the high-temperature reactor water from the bypass system to the reactor water, and the combined water was adjusted to an appropriate temperature and returned to the reactor pressure vessel. Can be suppressed, and an unexpected electrical accident or the like that occurs with the intermittent operation of the recirculation pump as in the related art can be prevented, and stable operation can be performed.
【0070】また、本発明に係る残留熱除去装置は、原
子炉再循環系の再循環ポンプと残留熱除去装置のポンプ
との間に冷却手段を設け、この冷却手段により原子炉圧
力容器から取水した高温の炉水を適温にして炉水冷却系
に供給するので、炉水冷却系の各機器の炉水から受ける
熱応力の発生を低く抑えることができ、安定した材料強
度を維持することができる。In the residual heat removing apparatus according to the present invention, cooling means is provided between the recirculation pump of the reactor recirculation system and the pump of the residual heat removing apparatus, and the cooling means removes water from the reactor pressure vessel. Since the high-temperature reactor water is supplied to the reactor water cooling system at an appropriate temperature, the generation of thermal stress from the reactor water of each component of the reactor water cooling system can be reduced, and stable material strength can be maintained. it can.
【図1】本発明に係る残留熱除去装置の第1実施形態を
示す概略系統図。FIG. 1 is a schematic system diagram showing a first embodiment of a residual heat removing device according to the present invention.
【図2】本発明に係る残留熱除去装置の第2実施形態を
示す概略系統図。FIG. 2 is a schematic system diagram showing a second embodiment of the residual heat removing device according to the present invention.
【図3】本発明に係る残留熱除去装置の第2実施形態に
おける第1実施例を示す概略図。FIG. 3 is a schematic view showing a first example of the second embodiment of the residual heat removing device according to the present invention.
【図4】本発明に係る残留熱除去装置の第2実施形態に
おける第2実施例を示す概略図。FIG. 4 is a schematic diagram showing a second example of the second embodiment of the residual heat removing device according to the present invention.
【図5】本発明に係る残留熱除去装置の第2実施形態に
おける第3実施例を示す概略図。FIG. 5 is a schematic diagram showing a third example of the second embodiment of the residual heat removing device according to the present invention.
【図6】本発明に係る残留熱除去装置の第2実施形態に
おける第4実施例を示す概略図。FIG. 6 is a schematic view showing a fourth example of the second embodiment of the residual heat removing apparatus according to the present invention.
【図7】本発明に係る残留熱除去装置の第3実施形態を
示す概略系統図。FIG. 7 is a schematic system diagram showing a third embodiment of the residual heat removing device according to the present invention.
【図8】本発明に係る残留熱除去装置の第4実施形態を
示す概略系統図。FIG. 8 is a schematic system diagram showing a fourth embodiment of the residual heat removing device according to the present invention.
【図9】本発明に係る残留熱除去装置の第5実施形態を
示す概略系統図。FIG. 9 is a schematic system diagram showing a fifth embodiment of the residual heat removing device according to the present invention.
【図10】本発明に係る残留熱除去装置の第6実施形態
を示す概略系統図。FIG. 10 is a schematic system diagram showing a sixth embodiment of the residual heat removing device according to the present invention.
【図11】本発明に係る残留熱除去装置の第7実施形態
を示す概略系統図。FIG. 11 is a schematic system diagram showing a seventh embodiment of the residual heat removing device according to the present invention.
【図12】本発明に係る残留熱除去装置の第8実施形態
を示す概略系統図。FIG. 12 is a schematic system diagram showing an eighth embodiment of the residual heat removing device according to the present invention.
【図13】従来の残留熱除去装置を示す概略系統図。FIG. 13 is a schematic system diagram showing a conventional residual heat removing device.
1 残留熱除去装置(RHR系) 2 ヘッドスプレイ系 3 原子炉再循環系 4 原子炉圧力容器 5 非再生熱交換器 6 RHRポンプ 7 再循環ポンプ 8 バイパス弁 9,10 流量調整弁 11 炉水冷却系 12 バイパス系 13 冷却炉水戻り系 20 残留熱除去装置(RHR系) 21 原子炉圧力容器 22 再循環ポンプ 23 原子炉再循環系 24 流量調整弁 25 ヘッドスプレイ系 26 RHRポンプ 27 流量調整弁 28 非再生熱交換器 29 炉水冷却系 30 バイパス弁 31 逆止弁 32 バイパス系 33 冷却炉水戻り系 34 温度緩衝装置 35 貯水槽 36 入口ノズル 37 出口ノズル 38 自由表面 39 気層 40 加圧器 41 スリット 42 非再生熱交換器 43 バイパス弁 44 非再生熱交換器バイパス系 45 モータ 46 インバータ回路 47 ヘッドスプレイ系用流量調整弁 48 原子炉再循環系用流量調整弁 49 バイパス弁 50 第1副バイパス系 51 非再生熱交換器 52 流量調整弁 53 バイパス弁 54 第2副バイパス弁 55 流量調整弁 56 循環入口ノズル 57 再生熱交換器 DESCRIPTION OF SYMBOLS 1 Residual heat removal apparatus (RHR system) 2 Head spray system 3 Reactor recirculation system 4 Reactor pressure vessel 5 Non-regenerative heat exchanger 6 RHR pump 7 Recirculation pump 8 Bypass valve 9 and 10 Flow control valve 11 Reactor water cooling System 12 Bypass system 13 Cooling reactor water return system 20 Residual heat removal device (RHR system) 21 Reactor pressure vessel 22 Recirculation pump 23 Reactor recirculation system 24 Flow control valve 25 Head spray system 26 RHR pump 27 Flow control valve 28 Non-regenerative heat exchanger 29 Furnace water cooling system 30 Bypass valve 31 Check valve 32 Bypass system 33 Cooling furnace water return system 34 Temperature buffer device 35 Water tank 36 Inlet nozzle 37 Outlet nozzle 38 Free surface 39 Gas layer 40 Pressurizer 41 Slit 42 Non-regenerative heat exchanger 43 Bypass valve 44 Non-regenerative heat exchanger bypass system 45 Motor 46 Inverter cycle 47 Flow control valve for head spray system 48 Flow control valve for reactor recirculation system 49 Bypass valve 50 First sub bypass system 51 Non-regenerative heat exchanger 52 Flow control valve 53 Bypass valve 54 Second sub bypass valve 55 Flow control valve 56 Recirculation inlet nozzle 57 Regeneration heat exchanger
───────────────────────────────────────────────────── フロントページの続き (72)発明者 淺野 政之 神奈川県横浜市鶴見区末広町二丁目4番地 株式会社東芝京浜事業所内 (72)発明者 齋藤 雄二 神奈川県横浜市鶴見区末広町二丁目4番地 株式会社東芝京浜事業所内 (72)発明者 若松 建吾 東京都府中市東芝町1番地 株式会社東芝 府中工場内 (72)発明者 金澤 寧 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 (72)発明者 佐伯 綾一 神奈川県横浜市磯子区新杉田町8番地 株 式会社東芝横浜事業所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Masayuki Asano 2--4, Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Inside the Toshiba Keihin Plant (72) Inventor Yuji Saito 2-chome, Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Address: Toshiba Keihin Plant (72) Inventor Kengo Wakamatsu 1 Toshiba-cho, Fuchu-shi, Tokyo Toshiba Corporation Fuchu Plant (72) Inventor Ning Kanazawa 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Toshiba Yokohama Co., Ltd. In-house (72) Inventor Ayaichi Saeki 8 Shinsugita-cho, Isogo-ku, Yokohama-shi, Kanagawa In-house Yokohama Toshiba Corporation
Claims (14)
から取水した炉水を冷却する炉水冷却系に並設するバイ
パス系を備え、この炉水冷却系で冷却した炉水およびバ
イパス系の炉水のいずれか一方を原子炉圧力容器に戻す
残留熱除去装置において、上記バイパス系の炉水の一部
をヘッドスプレイ系を介して原子炉圧力容器に戻すとと
もに、上記バイパス系の残りの炉水を上記炉水冷却系で
冷却した炉水に合流させて上記原子炉圧力容器に戻す冷
却炉水戻し系を設けたことを特徴とする残留熱除去装
置。1. A reactor system comprising: a bypass system juxtaposed to a reactor water cooling system for cooling reactor water taken from a reactor pressure vessel via a reactor recirculation system; In the residual heat removing device for returning one of the system reactor water to the reactor pressure vessel, a part of the bypass system reactor water is returned to the reactor pressure vessel via the head spray system, and the remaining part of the bypass system is removed. A cooling water return system for combining the reactor water with the reactor water cooled by the reactor water cooling system and returning the reactor water to the reactor pressure vessel.
から取水した炉水を冷却する炉水冷却系に並設するバイ
パス系を備え、この炉水冷却系で冷却した炉水およびバ
イパス系の炉水のいずれか一方を原子炉圧力容器に戻す
残留熱除去装置において、上記バイパス系の炉水の一部
をヘッドスプレイ系を介して原子炉圧力容器に戻すとと
もに、上記バイパス系の残りの炉水を上記炉水冷却系で
冷却した炉水に合流させて上記原子炉圧力容器に戻す冷
却炉水戻し系と、上記原子炉再循環と上記冷却炉水系と
の間に設けられた温度緩衝装置とを備えたことを特徴と
する残留熱除去装置。2. A reactor water cooling system for cooling reactor water taken from a reactor pressure vessel via a reactor recirculation system, the reactor water cooling system comprising a bypass system, and a reactor water cooled by the reactor water cooling system and a bypass system. In the residual heat removing device for returning one of the system reactor water to the reactor pressure vessel, a part of the bypass system reactor water is returned to the reactor pressure vessel via the head spray system, and the remaining part of the bypass system is removed. The reactor water is cooled by the reactor water cooling system, the reactor water is cooled, and the reactor water is returned to the reactor pressure vessel.The cooling water return system, and the temperature provided between the reactor recirculation and the reactor water system A residual heat removing device comprising a buffer device.
とする請求項2記載の残留熱除去装置。3. The residual heat removing device according to claim 2, wherein the temperature buffer device is a water storage tank.
え、入口ノズルと出口ノズルに対し、距離を置いて落差
を形成して設置したことを特徴とする請求項3記載の残
留熱除去装置。4. The residual heat removing device according to claim 3, wherein the water storage tank has an inlet nozzle and an outlet nozzle, and the water tank is installed with a head formed at a distance from the inlet nozzle and the outlet nozzle. .
したことを特徴とする請求項3記載の残留熱除去装置。5. The residual heat removing device according to claim 3, wherein the water storage tank has a gas layer formed on a free surface of the reactor water.
する請求項3記載の残留熱除去装置。6. The residual heat removing device according to claim 3, wherein the water storage tank is provided with a pressurizer.
したことを特徴とする請求項4記載の残留熱除去装置。7. The residual heat removing device according to claim 4, wherein a slit is formed in an inlet nozzle of the water storage tank.
から取水した炉水を冷却する炉水冷却系に並設するバイ
パス系を備え、この炉水冷却系で冷却した炉水およびバ
イパス系の炉水のいずれか一方を原子炉圧力容器に戻す
残留熱除去装置において、上記バイパス系の炉水の一部
をヘッドスプレイ系を介して原子炉圧力容器に戻すとと
もに、上記バイパス系の残りの炉水を上記炉水冷却系で
冷却した炉水に合流させて上記原子炉圧力容器に戻す冷
却炉水戻し系と、上記原子炉再循環と上記冷却炉水系と
の間に設けた非再生熱交換器とを備えたことを特徴とす
る残留熱除去装置。8. A reactor water cooling system for cooling reactor water taken from a reactor pressure vessel via a reactor recirculation system, the reactor water cooling system being provided in parallel with the reactor water cooled by the reactor water cooling system and the bypass. In the residual heat removing device for returning one of the system reactor water to the reactor pressure vessel, a part of the bypass system reactor water is returned to the reactor pressure vessel via the head spray system, and the remaining part of the bypass system is removed. A cooling water return system that combines the reactor water with the reactor water cooled by the reactor water cooling system and returns the reactor water to the reactor pressure vessel; and a non-regeneration system provided between the reactor recirculation and the cooling water system. A residual heat removing device comprising a heat exchanger.
パス系を備えたことを特徴とする請求項8記載の残留熱
除去装置。9. The apparatus according to claim 8, wherein the non-regenerative heat exchanger includes a non-regenerative heat exchanger bypass system.
器から取水した炉水を冷却する炉水冷却系に並設するバ
イパス系を備え、この炉水冷却系で冷却した炉水および
バイパス系の炉水のいずれか一方を原子炉圧力容器に戻
す残留熱除去装置において、上記バイパス系の炉水の一
部をヘッドスプレイ系を介して原子炉圧力容器に戻すと
ともに、上記バイパス系の残りの炉水を上記炉水冷却系
で冷却した炉水に合流させて上記原子炉圧力容器に戻す
冷却炉水戻し系と、上記原子炉再循環と上記冷却炉水系
との間に非再生熱交換器とを設けるとともに、上記非再
生熱交換器に非再生熱交換器バイパス系を備える一方、
上記炉水冷却系の残留熱除去ポンプを駆動するモータに
インバータ回路を組み込んだことを特徴とする残留熱除
去装置。10. A reactor water cooling system for cooling reactor water taken from a reactor pressure vessel via a reactor recirculation system, the reactor water cooling system having a bypass system, and the reactor water cooled by the reactor water cooling system and the bypass system. In the residual heat removing device for returning one of the system reactor water to the reactor pressure vessel, a part of the bypass system reactor water is returned to the reactor pressure vessel via the head spray system, and the remaining part of the bypass system is removed. A non-regenerative heat exchange between the reactor water recirculation system and the reactor water recirculation system, in which the reactor water is combined with the reactor water cooled by the reactor water cooling system and returned to the reactor pressure vessel. And a non-regenerative heat exchanger with a non-regenerative heat exchanger bypass system.
A residual heat removing device, wherein an inverter circuit is incorporated in a motor for driving the residual heat removing pump of the reactor water cooling system.
器から取水した炉水を冷却する炉水冷却系に並設するバ
イパス系を備え、この炉水冷却系で冷却した炉水および
バイパス系の炉水のいずれか一方を原子炉圧力容器に戻
す残留熱除去装置において、上記バイパス系の炉水をヘ
ッドスプレイ系を介して原子炉圧力容器に戻すととも
に、上記炉水冷却系で冷却した炉水を、流量コントロー
ルして上記ヘッドスプレイ系に供給する流量調整弁と、
上記炉水冷却系で冷却した炉水を、流量コントロールし
て上記冷却炉水戻り系から上記原子炉圧力容器に戻す流
量調整弁とを備えたことを特徴とする残留熱除去装置。11. A reactor water cooling system for cooling reactor water taken from a reactor pressure vessel via a reactor recirculation system, a bypass system provided in parallel with the reactor water cooling system, and a reactor water cooled by the reactor water cooling system and a bypass system. In the residual heat removing device that returns one of the system reactor water to the reactor pressure vessel, the reactor water of the bypass system is returned to the reactor pressure vessel via the head spray system, and is cooled by the reactor water cooling system. Flow rate control valve for supplying the reactor water to the head spray system by controlling the flow rate,
A residual heat removing device, comprising: a flow rate control valve for controlling a flow rate of the reactor water cooled by the reactor water cooling system and returning the reactor water from the cooling reactor water return system to the reactor pressure vessel.
器から取水した炉水を冷却する炉水冷却系に並設するバ
イパス系を備え、この炉水冷却系で冷却した炉水および
バイパス系の炉水のいずれか一方を原子炉圧力容器に戻
す残留熱除去装置において、上記炉水冷却系に第1副バ
イパス系を設けるとともに、上記バイパス系に第2副バ
イパス系を設けたことを特徴とする残留熱除去装置。12. A reactor water cooling system for cooling reactor water taken from a reactor pressure vessel via a reactor recirculation system, the reactor water cooling system comprising a bypass system, and a reactor water cooled by the reactor water cooling system. In the residual heat removing device for returning one of the system reactor water to the reactor pressure vessel, the reactor water cooling system is provided with a first sub-bypass system, and the bypass system is provided with a second sub-bypass system. Characteristic residual heat removal equipment.
器から取水した炉水を冷却する炉水冷却系に並設するバ
イパス系を備え、この炉水冷却系で冷却した炉水および
バイパス系の炉水のいずれか一方を原子炉圧力容器に戻
す残留熱除去装置において、上記バイパス系の炉水の一
部をヘッドスプレイ系を介して原子炉圧力容器に戻すと
ともに、上記バイパス系の残りの炉水を上記炉水冷却系
で冷却した炉水に合流させて上記原子炉圧力容器に戻す
冷却炉水戻し系と、上記原子炉再循環と上記冷却炉水系
との間に温度緩衝装置とを設ける一方、上記冷却炉水戻
し系を上記温度緩衝装置に接続したことを特徴とする残
留熱除去装置。13. A reactor water cooling system for cooling reactor water taken from a reactor pressure vessel via a reactor recirculation system, the reactor water cooling system comprising: In the residual heat removing device for returning one of the system reactor water to the reactor pressure vessel, a part of the bypass system reactor water is returned to the reactor pressure vessel via a head spray system, and the remaining part of the bypass system is removed. A cooling water return system that combines the reactor water with the reactor water cooled by the reactor water cooling system and returns to the reactor pressure vessel, and a temperature buffer between the reactor recirculation and the cooling water system. Wherein the cooling water return system is connected to the temperature buffer device.
器から取水した炉水を冷却する炉水冷却系に並設するバ
イパス系を備え、この炉水冷却系で冷却した炉水および
バイパス系の炉水のいずれか一方を原子炉圧力容器に戻
す残留熱除去装置において、上記原子炉再循環系と上記
炉水冷却系との間に再生熱交換器を設けるとともに、上
記バイパス系の炉水を上記炉水冷却系で冷却した炉水を
合流させ、その合流水の一部を上記原子炉圧力容器に戻
す一方、上記合流水の残りを上記再生熱交換器に供給す
る冷却炉水戻り系を備えたことを特徴とする残留熱除去
装置。14. A reactor water cooling system for cooling reactor water taken from a reactor pressure vessel via a reactor recirculation system, the reactor water cooling system comprising a bypass system, and a reactor water cooled by the reactor water cooling system. In the residual heat removing device for returning one of the system reactor water to the reactor pressure vessel, a regenerative heat exchanger is provided between the reactor recirculation system and the reactor water cooling system, and the bypass system furnace is provided. The reactor water cooled by the reactor water cooling system is combined with the reactor water, and part of the combined water is returned to the reactor pressure vessel, while the rest of the combined water is supplied to the regenerative heat exchanger. A residual heat removing device comprising a system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9197251A JPH1138174A (en) | 1997-07-23 | 1997-07-23 | Residual heat removal device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9197251A JPH1138174A (en) | 1997-07-23 | 1997-07-23 | Residual heat removal device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1138174A true JPH1138174A (en) | 1999-02-12 |
Family
ID=16371367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9197251A Pending JPH1138174A (en) | 1997-07-23 | 1997-07-23 | Residual heat removal device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1138174A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007187543A (en) * | 2006-01-13 | 2007-07-26 | Toshiba Corp | Residual heat removal system and its operation method |
CN104078086A (en) * | 2014-06-04 | 2014-10-01 | 中国核电工程有限公司 | Active and passive combined containment sump water cooling system |
CN111477363A (en) * | 2019-01-24 | 2020-07-31 | 华龙国际核电技术有限公司 | A reactor core cooling system |
-
1997
- 1997-07-23 JP JP9197251A patent/JPH1138174A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007187543A (en) * | 2006-01-13 | 2007-07-26 | Toshiba Corp | Residual heat removal system and its operation method |
JP4542992B2 (en) * | 2006-01-13 | 2010-09-15 | 株式会社東芝 | Residual heat removal system and operation method thereof |
CN104078086A (en) * | 2014-06-04 | 2014-10-01 | 中国核电工程有限公司 | Active and passive combined containment sump water cooling system |
CN111477363A (en) * | 2019-01-24 | 2020-07-31 | 华龙国际核电技术有限公司 | A reactor core cooling system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2442719C (en) | A method of conditioning a power generation circuit of a nuclear reactor power plant | |
JP2004281243A5 (en) | ||
JP3530939B2 (en) | Reactor plant | |
US4123324A (en) | Apparatus for decontaminating a radioactively contaminated coolant | |
JPH1138174A (en) | Residual heat removal device | |
JP5315167B2 (en) | Boiling water nuclear power plant and reactor pressure vessel pressure leak test method | |
JP2002329521A (en) | Fuel cell system and fuel cell automobile | |
JPS591998A (en) | Heat medium pressure control device for waste heat restrieving device | |
JP3964709B2 (en) | Gas turbine fuel gas supply system and operation method thereof | |
JP3165619B2 (en) | Thermal stress reduction operation method of steam turbine in single shaft combined cycle | |
CN114447474A (en) | Power battery thermal management system and method thereof | |
JPS5993103A (en) | Nuclear power generating plant | |
JP2005044520A (en) | Fuel cell system | |
JPS604695A (en) | Liquefied gas transport tank truck unloading equipment | |
JP3089679B2 (en) | Reactor coolant supply system | |
JPS604439B2 (en) | How to operate a nuclear reactor plant | |
JPH0926273A (en) | Temperature controller for water fed to cooler | |
JP2016075162A (en) | Cooling system, cogeneration facility | |
JPS6038691A (en) | Cooling system of auxiliary machinery for nuclear reactor | |
JP2022121782A (en) | Heat supply system and heat supply method | |
JPH088761B2 (en) | Method for adjusting hydrogen pressure of hydrogen-cooled rotating electric machine | |
JPS5915890A (en) | Auxiliary cooling device for atomic power plant | |
JPS61243397A (en) | Reactor emergency core cooling system | |
JPS62129791A (en) | Decay-heat removing operating method | |
CS200699B3 (en) | Equipment of passive subsystem of emergency recooling of pressurized-water reactor |