JPH1138105A - Method for calculating residual capacity of battery and method for outputting alarm to insufficient residual capacity - Google Patents
Method for calculating residual capacity of battery and method for outputting alarm to insufficient residual capacityInfo
- Publication number
- JPH1138105A JPH1138105A JP9189851A JP18985197A JPH1138105A JP H1138105 A JPH1138105 A JP H1138105A JP 9189851 A JP9189851 A JP 9189851A JP 18985197 A JP18985197 A JP 18985197A JP H1138105 A JPH1138105 A JP H1138105A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- terminal voltage
- discharge current
- value
- reference power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/3644—Constructional arrangements
- G01R31/3648—Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
- G01R31/3828—Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Tests Of Electric Status Of Batteries (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電池の残存容量算
出方法および残存容量不足警報出力方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for calculating a remaining capacity of a battery and a method for outputting an insufficient remaining capacity alarm.
【0002】[0002]
【従来の技術】特開平5−341022号公報は、定期
的に充放電電流を積算して初期値に対し加減算すること
により電流積算による残存容量を求めるとともに、大電
流放電時に電流および端子電圧から内部抵抗を求め、こ
の内部抵抗から電池の放電率を求め、この放電率に基づ
いて内部抵抗推定による残存容量を求め、上記二つの残
存容量を比較して、誤差が大きくなったら後者の残存容
量を選択するニッケル系電池の残存容量算出方法を提案
している。2. Description of the Related Art Japanese Unexamined Patent Publication No. Hei 5-341022 discloses that a charge / discharge current is periodically added and subtracted from an initial value to obtain a remaining capacity by current integration. Obtain the internal resistance, obtain the discharge rate of the battery from this internal resistance, obtain the remaining capacity by estimating the internal resistance based on this discharge rate, compare the above two remaining capacities, and when the error increases, the latter remaining capacity Has been proposed to calculate the remaining capacity of a nickel-based battery.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上述し
た従来の電池の残存容量算出方法では、電池の温度、劣
化度合などにより誤差が大きくなるという問題があっ
た。結局、上記従来の残存容量算出方法では、端子電圧
と放電電流とから内部抵抗を求め、内部抵抗から放電率
を求め、放電率から残存容量を求めるという演算を繰り
返す手法により、上述の内部抵抗推定による残存容量を
推定しており、これは端的にまとめれば、端子電圧と放
電電流と残存容量との3元マップから残存容量を求める
手法である。However, the above-described conventional method for calculating the remaining capacity of a battery has a problem that an error increases due to the temperature of the battery, the degree of deterioration, and the like. After all, in the above-described conventional remaining capacity calculation method, the above-described internal resistance estimation is performed by a method in which the internal resistance is obtained from the terminal voltage and the discharge current, the discharge rate is obtained from the internal resistance, and the remaining capacity is obtained from the discharge rate. Is a technique for obtaining the remaining capacity from a three-way map of the terminal voltage, the discharge current, and the remaining capacity.
【0004】しかし、電池の端子電圧と放電電流と残存
容量との関係は、電池の劣化の度合やその温度状態によ
って、大きく変わるものであり、単純に3元マップへ端
子電圧値と放電電流値とを入力するだけでは、求めた残
存容量が大きな誤差を含むことになってしまう。本発明
は上記問題点に鑑みなされたものであり、高精度に残存
容量を算出可能な電池の残存容量算出方法を提供するこ
とを、その解決すべき課題としている。However, the relationship between the terminal voltage of the battery, the discharge current and the remaining capacity greatly changes depending on the degree of deterioration of the battery and its temperature state. Simply by inputting the following, the obtained remaining capacity includes a large error. The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for calculating the remaining capacity of a battery that can calculate the remaining capacity with high accuracy.
【0005】[0005]
【課題を解決するための手段】請求項1に記載した本発
明の電池の残存容量算出方法によれば、ある測定期間内
に測定した電池の放電電流値および端子電圧値の多数の
ペアから、一次回帰分析により統計的に電圧・電流関係
式V=Vo−R・Iを求め、この式に所定の基準端子電
圧値Vcまたは所定の基準放電電流値Icを代入して、
端子電圧Vが所定の基準端子電圧値Vcである場合の基
準放電電流値Ic、または、放電電流Iが基準放電電流
値Icである場合の基準端子電圧値Vcを算出し、これ
ら基準端子電圧値Vcと基準放電電流値Iとの積から出
力可能基準電力Pcを算出し、出力可能基準電力Pcの
低下量ΔPcに基づいて残存容量を推定するので、高精
度に残存容量を推定することができる。According to the method for calculating the remaining capacity of a battery according to the present invention, a large number of pairs of a discharge current value and a terminal voltage value of a battery measured during a certain measurement period are obtained. A voltage-current relational expression V = Vo-RI is statistically obtained by linear regression analysis, and a predetermined reference terminal voltage value Vc or a predetermined reference discharge current value Ic is substituted into this expression,
A reference discharge current value Ic when the terminal voltage V is a predetermined reference terminal voltage value Vc, or a reference terminal voltage value Vc when the discharge current I is the reference discharge current value Ic, is calculated. Since the available output reference power Pc is calculated from the product of Vc and the reference discharge current value I, and the remaining capacity is estimated based on the decrease ΔPc of the available output power Pc, the remaining capacity can be estimated with high accuracy. .
【0006】請求項2に記載した本発明の電池の残存容
量算出方法によれば、ある測定期間内に測定した電池の
放電電流値および端子電圧値の多数のペアから、一次回
帰分析により統計的に電圧・電流関係式V=Vo−R・
Iを求め、この式に所定の基準端子電圧値Vcまたは所
定の基準放電電流値Icを代入して、端子電圧Vが所定
の基準端子電圧値Vcである場合の基準放電電流値I
c、または、放電電流Iが基準放電電流値Icである場
合の基準端子電圧値Vcを算出し、これら基準端子電圧
値Vcと基準放電電流値Icとの積から出力可能基準電
力Pcを算出し、出力可能基準電力Pcの低下量ΔPc
に基づいて残存容量の不足を推定して警報を出力するの
で、残存容量不足を高精度に警報することができる。According to the method for calculating the remaining capacity of a battery according to the second aspect of the present invention, a number of pairs of the discharge current value and the terminal voltage value of the battery measured within a certain measurement period are statistically analyzed by linear regression analysis. The voltage-current relational expression V = Vo-R.
I is determined, and a predetermined reference terminal voltage value Vc or a predetermined reference discharge current value Ic is substituted into this equation to obtain a reference discharge current value I when the terminal voltage V is the predetermined reference terminal voltage value Vc.
c or a reference terminal voltage value Vc when the discharge current I is the reference discharge current value Ic, and an outputable reference power Pc is calculated from a product of the reference terminal voltage value Vc and the reference discharge current value Ic. , The amount of decrease ΔPc in the outputable reference power Pc
, The warning is output by estimating the shortage of the remaining capacity, so that the shortage of the remaining capacity can be warned with high accuracy.
【0007】上記2つの発明の作用効果について以下に
更に詳しく説明する。まず、たとえば車両走行動力供給
用の電池などでは、負荷電流の頻繁な変化により、その
放電電流Iと端子電圧Vは頻繁に変動する。また、放電
電流Iが変動すると、電池内部の電気化学的な反応速度
すなわち電池反応速度のばらつきが生じ、それが電池の
内部抵抗Rに反映されるなどの理由で、たとえ関係式V
=Vo−R・Iに端子電圧V、初期電圧値Vo、放電電
流Iを入力して内部抵抗Rを求めても、求めた内部抵抗
Rは、電流値やその最近の変化履歴や周囲の状況などで
変動し、このためにこの内部抵抗から残存容量を推定す
ると誤差が大きくなってしまう。The effects of the above two inventions will be described in more detail below. First, for example, in a battery for supplying power for driving a vehicle, the discharge current I and the terminal voltage V frequently fluctuate due to frequent changes in load current. If the discharge current I fluctuates, the electrochemical reaction speed inside the battery, that is, the battery reaction speed varies, and this is reflected in the internal resistance R of the battery.
= Vo−R · I, the terminal voltage V, the initial voltage value Vo, and the discharge current I are input to determine the internal resistance R. However, the determined internal resistance R is the current value, its recent change history, and surrounding conditions. For example, when the remaining capacity is estimated from the internal resistance, an error increases.
【0008】これに対し、本発明では、端子電圧Vと放
電電流Iとの多数のペアをサンプリングしてその一次回
帰式に基づいて、現時点の電池の端子電圧Vと放電電流
Iとの関係を決定し、それに基づいて残存容量の算出ま
たは残存容量不足の検出を行うので、上記した電池特有
の内部抵抗のばらつきが残存容量推定に反映されるのを
抑止することができ、その結果として、従来より格段に
高精度の残存容量推定が可能となった。On the other hand, in the present invention, a large number of pairs of the terminal voltage V and the discharge current I are sampled, and the relationship between the current terminal voltage V and the discharge current I of the battery is determined based on the linear regression equation. Since the determination is made and the remaining capacity is calculated or the remaining capacity is detected based on the determined value, it is possible to prevent the above-described variation in the internal resistance specific to the battery from being reflected in the remaining capacity estimation. A much more accurate estimation of the remaining capacity is now possible.
【0009】次に、本発明では、上述の方法で最小二乗
法などを用いて統計的に求めたある時点における電池の
端子電圧Vと放電電流Iとの関係式から、その時点の出
力可能基準電力Pcを算出し、同様に、異なる時点の出
力可能基準電力Pc’を算出し、その差Pc−Pc’と
これら時点間の放電量ΔAhとの関係に基づいて、残存
容量の推定を行ったり、残存容量不足を判断したりする
ので、高精度の残存容量推定や残存容量不足の判断を行
うことができる。この詳細については更に実施例により
詳述する。Next, according to the present invention, the output possible reference at that time is obtained from a relational expression between the terminal voltage V of the battery and the discharge current I at a certain time statistically obtained by the above method using the least square method or the like. The power Pc is calculated, similarly, the outputable reference power Pc ′ at different time points is calculated, and the remaining capacity is estimated based on the relationship between the difference Pc−Pc ′ and the discharge amount ΔAh between these time points. Since the remaining capacity is determined to be insufficient, the remaining capacity can be estimated and the remaining capacity can be determined with high accuracy. This will be described in more detail with reference to examples.
【0010】請求項3記載の発明によれば請求項2記載
の電池の残存容量不足警報出力方法において更に、放電
電流の積算により検出した電池の残存容量が所定割合以
下に達するまでは、上記残存容量不足警報の出力を禁止
するので、電池の放電初期における急激な出力可能基準
電力Pcの低下を、電池の放電終期における急激な出力
可能基準電力Pcの低下と間違えて、警報を発すること
を防止することができる。According to a third aspect of the present invention, in the battery remaining capacity shortage warning output method according to the second aspect, the battery remaining capacity detected by the integration of the discharge current is reduced to a predetermined rate or less. Since the output of the capacity shortage alarm is prohibited, it is possible to prevent a sudden drop in the reference output power Pc at the beginning of the battery discharge from being mistaken for a sudden drop in the reference output power Pc at the end of the battery discharge, and to issue an alarm. can do.
【0011】[0011]
【発明を実施するための形態】以下、本発明の好適な態
様をニッケル水素電池を用いた以下の実施例により詳細
に説明する。ただし、本発明の残存容量推定に関する2
つの方法は、ニッケル水素電池以外の電池へも適用可能
である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the following examples using a nickel-metal hydride battery. However, 2 regarding the remaining capacity estimation of the present invention.
The two methods can be applied to batteries other than nickel-metal hydride batteries.
【0012】[0012]
【実施例】以下、本発明の好適な態様を以下の実施例で
詳細に説明する。図1は、電気自動車用電源回路を示す
等価回路図であり、1は電池、2はその充放電電流を検
出する電流センサ、3は走向用モ−タ、4は減圧用のD
C/DCコンバ−タを含む定電圧電源装置、5はこの定
電圧電源装置4から電源電圧を給電されるマイコン構成
のコントロ−ラである。The preferred embodiments of the present invention will be described in detail in the following examples. FIG. 1 is an equivalent circuit diagram showing a power supply circuit for an electric vehicle, wherein 1 is a battery, 2 is a current sensor for detecting its charging / discharging current, 3 is a running motor, and 4 is a decompression D.
A constant-voltage power supply device 5 including a C / DC converter is a controller having a microcomputer configuration supplied with a power supply voltage from the constant-voltage power supply device 4.
【0013】このコントロ−ラ5による電池1の電池の
残存容量算出および残存容量不足警報出力の方法につい
て図2のフロ−チャ−トを参照して説明する。まず、電
源オンとともにリセット(S100)し、電流積算によ
る残存容量の算出を行う(S102〜S106)。更に
説明すると、S104で規定される所定時間(たとえば
1秒)ごとに充放電電流Iを読み込み(S102)、こ
の検出した充放電電流Iと上記所定時間との積である容
量変化量ΔAhを現在の容量Ahに加減算して残存容量
Ahrを算出する(S106)。A method of calculating the remaining capacity of the battery 1 and outputting a low-capacity warning by the controller 5 will be described with reference to the flowchart of FIG. First, the power is turned on and reset (S100), and the remaining capacity is calculated by current integration (S102 to S106). More specifically, the charging / discharging current I is read every predetermined time (for example, one second) specified in S104 (S102), and the capacitance change amount ΔAh, which is the product of the detected charging / discharging current I and the above-mentioned predetermined time, is calculated. The remaining capacity Ahr is calculated by adding / subtracting the remaining capacity Ah (S106).
【0014】なお、この電流積算による残存容量では、
初期容量はたとえば満充電時に予め決められた値にセッ
トされるが、定期的に他の残存容量測定方式で決められ
た値に訂正することもできる、これらの制御について
は、この発明の要部ではないので説明を省略する。上記
電流積算による残存容量算出は残存容量Ahrが、全容
量すなわち満充電容量の50%以下まで低下するまで実
施される。The remaining capacity obtained by the current integration is as follows:
For example, the initial capacity is set to a predetermined value at the time of full charge, but can be periodically corrected to a value determined by another remaining capacity measurement method. Therefore, the description is omitted. The calculation of the remaining capacity by the current integration is performed until the remaining capacity Ahr decreases to 50% or less of the full capacity, that is, the full charge capacity.
【0015】残存容量Ahrが、予め記憶する満充電容
量の50%以下まで低下したことを検出すると(S10
8)、本実施例の特徴をなす出力可能基準電力Pcの低
下量ΔPcに基づく残存容量決定ル−チン(S110〜
S122)を実行する。以下、この残存容量決定ル−チ
ンについて、図2および図3のフロ−チャ−トを参照し
て以下に説明する。When it is detected that the state of charge Ahr has dropped to 50% or less of the full charge capacity stored in advance (S10).
8), the remaining capacity determination routine based on the decrease amount ΔPc of the outputable reference power Pc (S110 to S110), which is a feature of this embodiment.
S122) is executed. Hereinafter, the remaining capacity determination routine will be described with reference to the flowcharts of FIGS.
【0016】まず、端子電圧Vと充放電電流Iを読み込
み(S110)、充放電電流Iが充電電流であるかどう
かを調べ(S112)、充電電流であれば、後述の放電
量積算値ΣAhを0にリセットして(S111)、S1
10へリタ−ンし、放電電流であれば、放電量積算値Σ
Ahに放電電流I×所定時間tの積を加算し(S11
4)、放電量積算値ΣAhが1Ah以上となったかどう
かを調べ(S116)、なっていなければ所定時間t’
だけ待機してS110にリタ−ンする。このS118に
おける所定時間t’の待機により、S110における端
子電圧Vおよび放電電流Iの読み込み、及びS114に
よる放電量積算値ΣAhの積算は、所定時間tごとに実
行される。First, the terminal voltage V and the charge / discharge current I are read (S110), and it is checked whether or not the charge / discharge current I is a charge current (S112). 0 (S111), and S1
Return to 10, if the discharge current, discharge amount integrated value Σ
Ah, the product of the discharge current I × the predetermined time t is added (S11
4) It is checked whether the integrated discharge amount 量 Ah is 1 Ah or more (S116), and if not, the predetermined time t '
And then returns to S110. By waiting for the predetermined time t 'in S118, the reading of the terminal voltage V and the discharge current I in S110, and the integration of the discharge amount integrated value ΣAh in S114 are executed every predetermined time t.
【0017】なお、この所定時間tは、放電量積算値Σ
Ahが1Ahになるまでに、最大放電電流状態でも端子
電圧Vおよび放電電流Iを最低3回以上読み込める値に
設定される。S116において放電量積算値ΣAhが1
Ah以上となれば、S110で読み込んだ端子電圧Vお
よび放電電流Iの各デ−タにもとづいて出力可能基準電
力Pcを算出する(S120)。The predetermined time t is equal to the integrated discharge amount 積 算
By the time Ah becomes 1 Ah, the terminal voltage V and the discharge current I are set to values at which the terminal voltage V and the discharge current I can be read at least three times even in the maximum discharge current state. In S116, the discharge amount integrated value ΣAh is 1
If Ah or more, the output available reference power Pc is calculated based on the data of the terminal voltage V and the discharge current I read in S110 (S120).
【0018】この出力可能基準電力Pcの算出法につい
て更に説明する。前回の出力可能基準電力Pcを算出し
てから、又は最後の充電状態が終了してから、放電量積
算値ΣAhが1Ahに達するまでの期間として定義され
る測定期間に、S110でサンプリングされた多数の端
子電圧Vおよび放電電流Iのペアを、一次回帰分析サブ
ル−チン(図示せず)に導入し、線形モデルである関係
式V=Vo−R・Iを最小二乗法を用いて決定する。な
お、端子電圧Vおよび放電電流Iは変数、開放端子電圧
Voおよび電池抵抗Rは定数であり、上記関係式を決定
するということは、定数である開放端子電圧値Voおよ
び電池抵抗値Rを算出することである。The method of calculating the outputable reference power Pc will be further described. During the measurement period defined as the period from when the previous outputable reference power Pc was calculated or after the last state of charge was completed to when the discharge amount integrated value ΣAh reached 1 Ah, the number of samples sampled in S110 Is introduced into a first-order regression analysis subroutine (not shown), and a relational expression V = Vo−R · I, which is a linear model, is determined using the least squares method. The terminal voltage V and the discharge current I are variables, and the open terminal voltage Vo and the battery resistance R are constants. To determine the above relational expression means that the open terminal voltage value Vo and the battery resistance value R, which are constants, are calculated. It is to be.
【0019】次に、求めた上記式の変数Vに所定の基準
端子電圧値Vc(たとえば100V)を代入して、その
時の基準放電電流値Icを算出し、VcとIcとを積算
して出力可能基準電力Pcを算出する。したがって、こ
の出力可能基準電力Pcは電池が現時点において出力可
能な電力を示す。次に、前回実行したS120において
算出した出力可能基準電力Pcの前回値と、S120に
おいて今回算出した出力可能基準電力Pcの今回値との
減算により、出力可能基準電力Pcの低下量ΔPcを算
出する(S122)。なお、図2のフロ−チャ−トでは
図示省略するが、ル−チンを実行して初回は上記前回値
が0であり、この場合には上記減算結果である低下量Δ
Pcは負となるので、この場合にはS122からS11
0にリタ−ンする。Next, a predetermined reference terminal voltage value Vc (for example, 100 V) is substituted for the obtained variable V in the above equation, a reference discharge current value Ic at that time is calculated, and Vc and Ic are integrated and output. The possible reference power Pc is calculated. Therefore, the outputable reference power Pc indicates the power that the battery can output at the present time. Next, a decrease ΔPc in the outputable reference power Pc is calculated by subtracting the previous value of the outputable reference power Pc calculated in the previous step S120 from the previous value of the outputable reference power Pc calculated in the step S120. (S122). Although not shown in the flowchart of FIG. 2, the previous value is 0 for the first time after the execution of the routine, and in this case, the decrease amount Δ which is the subtraction result is used.
Since Pc is negative, in this case, S122 to S11
Return to 0.
【0020】次に、算出した出力可能基準電力Pcの低
下量ΔPcと、予め記憶するその所定のしきい値ΔPc
thとを比較し(S124)、低下量ΔPcがしきい値
ΔPcthを上回る場合には残存容量不足と判断として
警報を発し(S126)、そうでなければ、放電量積算
値ΣAhを0にリセットして(S128)、S130へ
進む。Next, the calculated decrease amount ΔPc of the outputable reference power Pc and the predetermined threshold value ΔPc stored in advance
is compared with the threshold value th (S124). If the decrease amount ΔPc exceeds the threshold value ΔPcth, a warning is issued as a judgment that the remaining capacity is insufficient (S126). Otherwise, the discharge amount integrated value ΣAh is reset to 0. Then (S128), the process proceeds to S130.
【0021】S130では、出力可能基準電力Pcの低
下量ΔPcと残存容量との関係を予め記憶するテ−ブル
に、S122で算出した低下量ΔPcを代入して残存容
量を求め、その後、S110へ戻って、上記説明した残
存容量不足警報出力ならびに残存容量算出を行うル−チ
ンを繰り返し実行する。以下、上記制御ル−チンにより
実現できる作用効果について説明する。In step S130, the remaining amount is obtained by substituting the amount of reduction .DELTA.Pc calculated in step S122 into a table in which the relationship between the amount of decrease .DELTA.Pc of the outputable reference power Pc and the remaining capacity is stored in advance. Returning, the routine for calculating the remaining capacity shortage alarm output and the remaining capacity calculation described above is repeatedly executed. Hereinafter, the function and effect that can be realized by the control routine will be described.
【0022】電気自動車の一般走行時の端子電圧Vの変
化を図4に示し、その時の充放電電流Iの変化を図5に
示す。これらの図からわかるように、電気自動車の電池
1の端子電圧Vおよび充放電電流Iは、時間と共に極め
て頻繁に変動する。この問題は、電池1に頻繁に充電も
行われるため一層、顕著となる。このような端子電圧V
および放電電流Iの変動は電池反応環境の変動を生じる
ので、電池の内部抵抗は最近の上記変動履歴の影響を受
け、結局、端子電圧Vおよび放電電流Iの変動は電池の
内部抵抗の時間的な変動を生じさせる。したがって、上
記S110で入力される各デ−タを端子電圧Vと放電電
流Iとを座標軸とする二次元座標空間にプロットする
と、それらは一直線上に並ぶのではなく、たとえば図6
に例示するように分散する。FIG. 4 shows a change in the terminal voltage V during normal running of the electric vehicle, and FIG. 5 shows a change in the charge / discharge current I at that time. As can be seen from these figures, the terminal voltage V and the charge / discharge current I of the battery 1 of the electric vehicle fluctuate very frequently with time. This problem becomes more remarkable because the battery 1 is frequently charged. Such a terminal voltage V
Since the fluctuation of the discharge current I causes the fluctuation of the battery reaction environment, the internal resistance of the battery is affected by the recent fluctuation history. Cause significant fluctuations. Therefore, when the respective data input in S110 are plotted in a two-dimensional coordinate space using the terminal voltage V and the discharge current I as coordinate axes, they are not aligned in a straight line, but are, for example, shown in FIG.
Disperse as exemplified in
【0023】そこで本実施例では、S120のステップ
で、一次回帰分析を実行することにより、図6の特性線
Lで示される関係式V=Vo−R・Iを得る。図6の特
性線Lの傾斜率はRの大きさを示す。このようにすれ
ば、電気自動車の走行エネルギ−供給用の電池などのよ
うに負荷変動が激しく、更には回生充電にも対応するよ
うな電池においても、極めて正確にその内部抵抗を算出
することができる。Therefore, in the present embodiment, the relational expression V = Vo−R · I shown by the characteristic line L in FIG. 6 is obtained by executing a linear regression analysis in step S120. The gradient of the characteristic line L in FIG. This makes it possible to calculate the internal resistance very accurately even in a battery such as a battery for supplying running energy of an electric vehicle, which has a drastic load variation and which also supports regenerative charging. it can.
【0024】更にこの実施例では、上記関係式V=Vo
−R・Iに基準の端子電圧Vcを代入することにより、
基準の放電電流Iを求め、基準の端子電圧Vcと基準の
放電電流Iとの積として定義される出力可能基準電力P
cを算出し、算出した出力可能基準電力Pcの低下量Δ
Pcにより、電池1の残存容量Ahrを推定している。Further, in this embodiment, the above relational expression V = Vo
By substituting the reference terminal voltage Vc for −R · I,
A reference discharge current I is obtained, and an outputable reference power P defined as a product of the reference terminal voltage Vc and the reference discharge current I
c, and the amount of decrease Δ in the calculated outputable reference power Pc
The remaining capacity Ahr of the battery 1 is estimated from Pc.
【0025】なお、他の変形例として、上記関係式V=
Vo−R・Iに基準の放電電流Icを代入することによ
り、基準の端子電圧Vcを求め、基準の端子電圧Vcと
基準の放電電流Iとの積として出力可能基準電力Pcを
算出してもよく、これは上記関係式V=Vo−R・Iに
基準の端子電圧Vcを代入して出力可能基準電力Pcを
算出するのとまったく均等である。As another modified example, the relational expression V =
By substituting the reference discharge current Ic for Vo−R · I, the reference terminal voltage Vc is obtained, and the outputtable reference power Pc is calculated as the product of the reference terminal voltage Vc and the reference discharge current I. This is quite equivalent to calculating the outputtable reference power Pc by substituting the reference terminal voltage Vc into the relational expression V = Vo-RI.
【0026】新品の電池と劣化した電池における出力可
能基準電力Pcと放電深度DODとの関係を図7に示
し、各温度における電池の出力可能基準電力Pcと放電
深度DODとの関係を図8に示す。これらの特性図か
ら、電池1は、その劣化度合または温度状態により、上
記特性が出力可能基準電力Pcの変動方向へ平行移動す
るとほぼみなせる。したがって、電池1は、その劣化度
合または温度状態にかかわらず、その出力可能基準電力
Pcの低下量ΔPcと放電深度DODとの関係はほぼ一
定であるとみなせることがわかる。 放電深度DODは
満充電容量に対する放電容量の割合であり、残存容量A
hrは満充電容量から放電容量を差し引いたものである
ので、結局、残存容量Ahrと出力可能基準電力Pcの
低下量ΔPcとは、一定の関係にあることがわかる。FIG. 7 shows the relationship between the outputable reference power Pc and the depth of discharge DOD of the new battery and the deteriorated battery, and FIG. 8 shows the relationship between the outputable reference power Pc of the battery and the depth of discharge DOD at each temperature. Show. From these characteristic diagrams, it can be considered that the above-described characteristics of the battery 1 are substantially parallel-shifted in the direction in which the outputable reference power Pc fluctuates depending on the degree of deterioration or the temperature state. Therefore, it can be seen that the relationship between the amount of decrease ΔPc in the outputable reference power Pc and the depth of discharge DOD of the battery 1 can be regarded as substantially constant regardless of the degree of deterioration or the temperature state. The depth of discharge DOD is the ratio of the discharge capacity to the full charge capacity, and the remaining capacity A
Since hr is a value obtained by subtracting the discharge capacity from the full charge capacity, it can be seen that the residual capacity Ahr and the decrease ΔPc of the outputable reference power Pc have a fixed relationship.
【0027】したがって、本実施例のように、出力可能
基準電力Pcの低下量ΔPcと残存容量Ahrとの関係
をあらかじめテ−ブルとして記憶しておき、これに算出
した出力可能基準電力Pcの低下量ΔPcを代入すれ
ば、電池劣化または電池温度にかかわらず、高精度に電
池の残存容量Ahrを推定することができることがわか
る。Therefore, as in the present embodiment, the relationship between the reduction amount ΔPc of the outputable reference power Pc and the remaining capacity Ahr is stored in advance as a table, and the calculated reduction of the outputable reference power Pc is stored. It can be seen that, by substituting the amount ΔPc, the remaining capacity Ahr of the battery can be estimated with high accuracy regardless of battery deterioration or battery temperature.
【0028】また、図7、図8からわかるように、放電
終期には、放電深度DOD(残存容量Ahr)の単位変
化量当たりの上記低下量ΔPcは急激に増大する。そこ
で、低下量ΔPcが所定値を超えたことを検出すること
により電池の残存容量不足を正確に警報することができ
る。更に、図7、図8からわかるように、放電初期に
も、放電深度DOD(残存容量Ahr)の単位変化量当
たりの上記低下量ΔPcは急激に増大する。As can be seen from FIGS. 7 and 8, at the end of discharge, the decrease ΔPc per unit change in the depth of discharge DOD (remaining capacity Ahr) sharply increases. Therefore, by detecting that the amount of decrease ΔPc has exceeded a predetermined value, it is possible to accurately warn of the shortage of the remaining capacity of the battery. Furthermore, as can be seen from FIGS. 7 and 8, even at the beginning of the discharge, the decrease ΔPc per unit change in the depth of discharge DOD (remaining capacity Ahr) increases sharply.
【0029】そこで本実施例では、放電がある程度(こ
こでは50%)進むまでは、上記した出力可能基準電力
Pcの低下量ΔPcを用いた残存容量不足を警報を実行
しないようにしている。これにより、誤警報を防止する
ことができる。 (変形態様)上記実施例では、S110におけるサンプ
リングを、放電が連続する測定期間に連続して行ってい
るが、充電状態期間を含む測定期間に行うことができ
る。ただし、充電時のデ−タは用いない。したがって、
この場合には、充電分だけ測定期間が延長され、より多
数のデ−タがサンプリングされる。Therefore, in the present embodiment, until the discharge has advanced to some extent (here, 50%), an alarm is not executed for the remaining capacity shortage using the above-mentioned decrease ΔPc of the outputable reference power Pc. Thereby, a false alarm can be prevented. (Modification) In the above embodiment, the sampling in S110 is performed continuously during the measurement period in which the discharge is continuous, but can be performed in the measurement period including the charge state period. However, data during charging is not used. Therefore,
In this case, the measurement period is extended by the amount of charge, and more data is sampled.
【図面の簡単な説明】[Brief description of the drawings]
【図1】実施例に用いた電気自動車用電源回路を示す等
価回路図である。FIG. 1 is an equivalent circuit diagram showing a power supply circuit for an electric vehicle used in an embodiment.
【図2】図1のコントロ−ラ5の残存容量算出および残
存容量不足警報出力の方法を示すフロ−チャ−トであ
る。FIG. 2 is a flowchart showing a method of calculating a remaining capacity of a controller 5 of FIG.
【図3】図1のコントロ−ラ5の残存容量算出および残
存容量不足警報出力の方法を示すフロ−チャ−トであ
る。FIG. 3 is a flowchart showing a method of calculating a remaining capacity of a controller 5 of FIG. 1 and outputting a remaining capacity shortage alarm.
【図4】電気自動車の一般走向時の端子電圧Vの変化を
示すタイミングチャ−トである。FIG. 4 is a timing chart showing a change in terminal voltage V during general running of an electric vehicle.
【図5】電気自動車の一般走向時の充放電電流Iの変化
を示すタイミングチャ−トである。FIG. 5 is a timing chart showing a change in charge / discharge current I during a general running of the electric vehicle.
【図6】図2に示すS110で入力される各デ−タと、
それらの一次回帰分析により求めた関係式V=Vo−R
・Iとの例を示す図である。FIG. 6 shows each data input in S110 shown in FIG.
The relational expression V = Vo-R obtained by the linear regression analysis
It is a figure showing an example with I.
【図7】新品の電池と劣化した電池における出力可能基
準電力Pcと放電深度DODとの関係を示す特性図であ
る。FIG. 7 is a characteristic diagram showing a relationship between an outputable reference power Pc and a depth of discharge DOD in a new battery and a deteriorated battery.
【図8】各温度における電池の出力可能基準電力Pcと
放電深度DODとの関係を示す特性図である。FIG. 8 is a characteristic diagram showing a relationship between a battery outputable reference power Pc and a depth of discharge DOD at each temperature.
1は電池、5はコントロ−ラ 1 is a battery, 5 is a controller
Claims (3)
値を所定の測定期間内のn(nは3以上の整数)個の測
定時点ごとに検出し、 各前記放電電流測定値および端子電圧測定値に基づい
て、変数である端子電圧V、定数である開放端子電圧V
o、変数である放電電流I、定数である電池抵抗R間の
関係式V=Vo−R・Iを回帰分析法を用いて決定し、 前記端子電圧Vが所定の基準端子電圧値Vcである場合
の基準放電電流値Ic、または、前記端子電圧Vが所定
の基準端子電圧値Vcである場合の基準放電電流値Ic
を算出し、 前記VcとIcとの積として定義される出力可能基準電
力Pcを算出し、 前記出力可能基準電力Pcを所定の放電量ΔAhごとに
順次算出し、 各前記出力可能基準電力Pcに基づいて基準の放電量Δ
Ah当たりの前記出力可能基準電力Pcの低下量ΔPc
を算出し、 前記低下量ΔPcと残存容量との関係を予め記憶してお
き、 算出した前記低下量ΔPcと前記関係とに基づいて残存
容量を求めることを特徴とする電池の残存容量算出方
法。、1. A discharge current measurement value and a terminal voltage measurement value of a battery are detected at every n (n is an integer of 3 or more) measurement time points within a predetermined measurement period, and each of the discharge current measurement value and the terminal voltage is detected. Based on the measured values, the terminal voltage V as a variable and the open terminal voltage V as a constant
o, a relational expression V = Vo−R · I between a discharge current I as a variable and a battery resistance R as a constant is determined using a regression analysis method, and the terminal voltage V is a predetermined reference terminal voltage value Vc. The reference discharge current value Ic, or the reference discharge current value Ic when the terminal voltage V is a predetermined reference terminal voltage value Vc.
Is calculated, and the output possible reference power Pc defined as the product of the Vc and Ic is calculated. The output possible reference power Pc is sequentially calculated for each predetermined discharge amount ΔAh. Based on the reference discharge amount Δ
Amount of decrease ΔPc in outputable reference power Pc per Ah
Calculating the relationship between the amount of decrease ΔPc and the remaining capacity in advance, and calculating the remaining capacity based on the calculated amount of decrease ΔPc and the relationship. ,
値を所定の測定期間内のn(nは3以上の整数)個の測
定時点ごとに検出し、 各前記放電電流測定値および端子電圧測定値に基づい
て、変数である端子電圧V、定数である開放端子電圧V
o、変数である放電電流I、定数である電池抵抗R間の
関係式V=Vo−R・Iを回帰分析法を用いて決定し、 前記端子電圧Vが所定の基準端子電圧値Vcである場合
の基準放電電流値Ic、または、前記端子電圧Vが所定
の基準端子電圧値Vcである場合の基準放電電流値Ic
を算出し、 前記VcとIcとの積として定義される出力可能基準電
力Pcを算出し、 前記出力可能基準電力Pcを所定の放電量ΔAhごとに
順次算出し、 各前記出力可能基準電力Pcに基づいて基準の放電量Δ
Ah当たりの前記出力可能基準電力Pcの低下量ΔPc
を算出し、 前記低下量ΔPcが予め記憶する所定しきい値を上回る
場合に電池残量不足警報を出力することを特徴とする電
池の残存容量不足警報出力方法。2. A discharge current measurement value and a terminal voltage measurement value of a battery are detected at each of n (n is an integer of 3 or more) measurement points within a predetermined measurement period, and each of the discharge current measurement value and the terminal voltage is detected. Based on the measured values, the terminal voltage V as a variable and the open terminal voltage V as a constant
o, a relational expression V = Vo−R · I between a discharge current I as a variable and a battery resistance R as a constant is determined using a regression analysis method, and the terminal voltage V is a predetermined reference terminal voltage value Vc. The reference discharge current value Ic, or the reference discharge current value Ic when the terminal voltage V is a predetermined reference terminal voltage value Vc.
Is calculated, and an outputable reference power Pc defined as a product of the Vc and Ic is calculated. The outputable reference power Pc is sequentially calculated for each predetermined discharge amount ΔAh. Based on the reference discharge amount Δ
Amount of decrease ΔPc in outputable reference power Pc per Ah
And outputting an insufficient battery warning when the amount of decrease ΔPc exceeds a predetermined threshold value stored in advance.
力方法において、 前記電池の放電電流の積算により検出した残存容量が所
定割合以下に達するまでは、前記警報の出力を禁止する
ことを特徴とする電池の残存容量不足警報出力方法。3. The battery output method according to claim 2, wherein the output of the alarm is inhibited until the remaining capacity detected by integrating the discharge current of the battery reaches a predetermined ratio or less. Characteristic low battery capacity warning output method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9189851A JPH1138105A (en) | 1997-07-15 | 1997-07-15 | Method for calculating residual capacity of battery and method for outputting alarm to insufficient residual capacity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9189851A JPH1138105A (en) | 1997-07-15 | 1997-07-15 | Method for calculating residual capacity of battery and method for outputting alarm to insufficient residual capacity |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1138105A true JPH1138105A (en) | 1999-02-12 |
Family
ID=16248257
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9189851A Pending JPH1138105A (en) | 1997-07-15 | 1997-07-15 | Method for calculating residual capacity of battery and method for outputting alarm to insufficient residual capacity |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1138105A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002234408A (en) * | 2000-12-08 | 2002-08-20 | Yazaki Corp | Method and apparatus for estimating open circuit voltage of vehicle battery |
WO2005050810A1 (en) * | 2003-11-20 | 2005-06-02 | Lg Chem, Ltd. | Method for calculating power capability of battery packs using advanced cell model predictive techniques |
KR100869584B1 (en) | 2006-01-31 | 2008-11-21 | 가부시키가이샤 덴소 | Method and apparatus for calculating battery state and apparatus for controlling power voltage in vehicle |
US7965059B2 (en) * | 2005-11-30 | 2011-06-21 | Lg Chem, Ltd. | System, method, and article of manufacture for determining an estimated battery parameter vector |
US8341449B2 (en) | 2010-04-16 | 2012-12-25 | Lg Chem, Ltd. | Battery management system and method for transferring data within the battery management system |
US8519675B2 (en) | 2008-01-30 | 2013-08-27 | Lg Chem, Ltd. | System, method, and article of manufacture for determining an estimated battery cell module state |
US8859119B2 (en) | 2011-06-30 | 2014-10-14 | Lg Chem, Ltd. | Heating system for a battery module and method of heating the battery module |
US8974929B2 (en) | 2011-06-30 | 2015-03-10 | Lg Chem, Ltd. | Heating system for a battery module and method of heating the battery module |
US8974928B2 (en) | 2011-06-30 | 2015-03-10 | Lg Chem, Ltd. | Heating system for a battery module and method of heating the battery module |
US8993136B2 (en) | 2011-06-30 | 2015-03-31 | Lg Chem, Ltd. | Heating system for a battery module and method of heating the battery module |
US9272635B2 (en) | 2012-11-16 | 2016-03-01 | Toyota Jidosha Kabushiki Kaisha | Power storage system and method of calculating full charge capacity |
JP2019134505A (en) * | 2018-01-29 | 2019-08-08 | トヨタ自動車株式会社 | Electric vehicle and method for controlling electric vehicle |
EP3514557A4 (en) * | 2016-09-14 | 2020-05-06 | Kabushiki Kaisha Toshiba | DEVICE, METHOD AND PROGRAM FOR ESTIMATING ELECTRICITY STORAGE CAPACITY |
-
1997
- 1997-07-15 JP JP9189851A patent/JPH1138105A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002234408A (en) * | 2000-12-08 | 2002-08-20 | Yazaki Corp | Method and apparatus for estimating open circuit voltage of vehicle battery |
WO2005050810A1 (en) * | 2003-11-20 | 2005-06-02 | Lg Chem, Ltd. | Method for calculating power capability of battery packs using advanced cell model predictive techniques |
US7969120B2 (en) | 2003-11-20 | 2011-06-28 | Lg Chem, Ltd. | Method for calculating power capability of battery packs using advanced cell model predictive techniques |
US7965059B2 (en) * | 2005-11-30 | 2011-06-21 | Lg Chem, Ltd. | System, method, and article of manufacture for determining an estimated battery parameter vector |
KR100869584B1 (en) | 2006-01-31 | 2008-11-21 | 가부시키가이샤 덴소 | Method and apparatus for calculating battery state and apparatus for controlling power voltage in vehicle |
US8519675B2 (en) | 2008-01-30 | 2013-08-27 | Lg Chem, Ltd. | System, method, and article of manufacture for determining an estimated battery cell module state |
US8341449B2 (en) | 2010-04-16 | 2012-12-25 | Lg Chem, Ltd. | Battery management system and method for transferring data within the battery management system |
US8859119B2 (en) | 2011-06-30 | 2014-10-14 | Lg Chem, Ltd. | Heating system for a battery module and method of heating the battery module |
US8974929B2 (en) | 2011-06-30 | 2015-03-10 | Lg Chem, Ltd. | Heating system for a battery module and method of heating the battery module |
US8974928B2 (en) | 2011-06-30 | 2015-03-10 | Lg Chem, Ltd. | Heating system for a battery module and method of heating the battery module |
US8993136B2 (en) | 2011-06-30 | 2015-03-31 | Lg Chem, Ltd. | Heating system for a battery module and method of heating the battery module |
US9272635B2 (en) | 2012-11-16 | 2016-03-01 | Toyota Jidosha Kabushiki Kaisha | Power storage system and method of calculating full charge capacity |
EP3514557A4 (en) * | 2016-09-14 | 2020-05-06 | Kabushiki Kaisha Toshiba | DEVICE, METHOD AND PROGRAM FOR ESTIMATING ELECTRICITY STORAGE CAPACITY |
US11054475B2 (en) | 2016-09-14 | 2021-07-06 | Kabushiki Kaisha Toshiba | Electric storage capacity estimation apparatus and method for operating the same |
JP2019134505A (en) * | 2018-01-29 | 2019-08-08 | トヨタ自動車株式会社 | Electric vehicle and method for controlling electric vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8274291B2 (en) | Charged state estimating device and charged state estimating method of secondary battery | |
US7688032B2 (en) | Battery remaining capacity detecting apparatus and battery remaining capacity detecting method | |
US6885951B2 (en) | Method and device for determining the state of function of an energy storage battery | |
US9759779B2 (en) | State of charge estimation device and method of estimating state of charge | |
US10712393B2 (en) | Energy storage device management apparatus, energy storage device module, vehicle, and energy storage device management method | |
CN100447577C (en) | Battery (pack) state of charge estimation device | |
EP1555537B1 (en) | Battery remaining capacity measuring apparatus | |
US7692410B2 (en) | Method and device for determining characteristics of an unknown battery | |
CN100449859C (en) | Method for detecting state of secondary battery and device for detecting state of second battery | |
US6157169A (en) | Monitoring technique for accurately determining residual capacity of a battery | |
EP2669695A2 (en) | Internal resistance estimation device and method of estimating internal resistance | |
US10023064B2 (en) | Power capability estimation for vehicle battery systems | |
EP2664938B1 (en) | Open circuit voltage estimation device, condition estimation device, and method of estimating open circuit voltage | |
US20120022816A1 (en) | Method for determining a parameter of at least one accumulator of a battery | |
JPH06174808A (en) | Method of detecting residual capacity of battery | |
JPH1138105A (en) | Method for calculating residual capacity of battery and method for outputting alarm to insufficient residual capacity | |
JP2020079723A (en) | Secondary battery system | |
JP4668015B2 (en) | Secondary battery state detection method and secondary battery state detection device | |
JP4802414B2 (en) | Battery remaining capacity meter | |
CN119179009A (en) | Battery real-time internal short circuit detection |