[go: up one dir, main page]

JPH11354469A - Thin film formation method - Google Patents

Thin film formation method

Info

Publication number
JPH11354469A
JPH11354469A JP16322798A JP16322798A JPH11354469A JP H11354469 A JPH11354469 A JP H11354469A JP 16322798 A JP16322798 A JP 16322798A JP 16322798 A JP16322798 A JP 16322798A JP H11354469 A JPH11354469 A JP H11354469A
Authority
JP
Japan
Prior art keywords
thin film
substrate
film
target
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16322798A
Other languages
Japanese (ja)
Other versions
JP3938437B2 (en
Inventor
Makoto Arai
新井  真
Akira Ishibashi
暁 石橋
Junya Kiyota
淳也 清田
Isao Sugiura
功 杉浦
Shimei Hayashi
志銘 林
Hajime Nakamura
肇 中村
Takahide Hori
隆英 堀
Yoshifumi Ota
賀文 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP16322798A priority Critical patent/JP3938437B2/en
Publication of JPH11354469A publication Critical patent/JPH11354469A/en
Application granted granted Critical
Publication of JP3938437B2 publication Critical patent/JP3938437B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique capable of reducing hillocks to be a problem especially at the time of using an Al thin film as a wiring material, in the manufacturing method of an Al or Al alloy wiring film. SOLUTION: When contamination for which the oxidative gas of oxygen or water or the like remains inside a processor at the time of sputtering for forming the Al thin film is generated, an oxidized film is formed at the grain boundary of the Al film, the growth of grains is obstructed and the hillock is generated on the surface of the Al thin film in a heating process thereafter. In order to prevent that, in this case, before growing the Al thin films 5a and 5c on a substrate 5, high frequency power weak enough not to sputter a target 3 is supplied to the target 3, plasma is generated, the surface of the target 3 and the surface of the substrate 5 are cleaned and the oxidative gas is removed. Thus, the oxidized film is prevented from being formed at the grain boundary, the growth of the grains is not obstructed and the generation of many hillocks on the surface is prevented even when a heating processing is performed after forming the thin film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液晶等の表示素子
や半導体素子に用いられるAl薄膜或いはAlを主成分
とする合金薄膜から成る薄膜配線の製造方法にかかり、
特に、薄膜配線のヒロックの発生量を少なくする技術に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a thin film wiring made of an Al thin film or an alloy thin film containing Al as a main component, which is used for a display device such as a liquid crystal device or a semiconductor device.
In particular, the present invention relates to a technique for reducing the amount of hillocks generated in thin film wiring.

【0002】[0002]

【従来の技術】従来より、半導体素子では、薄膜配線の
材料として純粋なAl、或いはAlを主成分とする合金
が一般的に用いられている。一方、薄膜トランジスタ
(以下TFTと称す)を駆動素子として用いる液晶表示装
置(以下LCDと称す)では、薄膜配線の材料としてCr
やMo等が用いられてきた。
2. Description of the Related Art Conventionally, in a semiconductor device, pure Al or an alloy containing Al as a main component has been generally used as a material of a thin film wiring. Meanwhile, thin film transistor
(Hereinafter referred to as TFT) as a driving element in a liquid crystal display device (hereinafter referred to as LCD), a thin film wiring material such as Cr
And Mo have been used.

【0003】しかしながら、CrやMo等は抵抗が比較
的高いため、LCDの大型化や高精細化が要求されると
ともに、薄膜配線の抵抗成分による信号遅延や画素への
書き込み不足という問題が顕著になってきた。
However, since the resistance of Cr, Mo, and the like is relatively high, the LCD is required to have a large size and high definition, and the problems of signal delay and insufficient writing to pixels due to the resistance component of the thin film wiring are remarkable. It has become.

【0004】そこでCrやMo等に代えて、より低抵抗
なAl或いはAlを主成分とする合金を薄膜配線の材料
に用いようとする試みがなされている。ところで、半導
体素子やTFTで用いられるAl或いはAlを主成分と
する薄膜(本明細書では、Alを主成分とする薄膜をA
l薄膜と呼ぶ。)は、一般的に直流(DC)マグネトロン
スパッタ法で製造されているが、ガラス基板やSiウエ
ハー基板上にAl薄膜を形成し、薄膜配線を構成させた
場合、その後のプロセスにおける熱処理の際に、Al薄
膜配線上にヒロック(突起物)が発生してしまい、Al薄
膜配線上の絶縁膜を突き破ると、絶縁膜上に形成された
上層の薄膜配線と短絡してしまうという問題が生じてい
た。
Attempts have been made to use, as a material for thin film wiring, Al or an alloy containing Al as a main component, instead of Cr, Mo, or the like. By the way, Al or a thin film containing Al as a main component used in a semiconductor element or a TFT (in this specification, a thin film containing Al as a main component is referred to as A
1 called a thin film. ) Is generally manufactured by a direct current (DC) magnetron sputtering method, but when an Al thin film is formed on a glass substrate or a Si wafer substrate to form a thin film wiring, the heat treatment in a subsequent process is performed. Hillocks (protrusions) are generated on the Al thin film wiring, and if the insulating film on the Al thin film wiring is pierced, a short circuit occurs with the upper thin film wiring formed on the insulating film. .

【0005】このようなヒロックの発生を防止するため
に、Cu、SiやTi、Ta、Nd、Mo、Zr等の高
融点金属をAl薄膜配線の材料に添加しておく方法があ
るが、その効果を高めるため、高融点金属の添加量を増
加させると、薄膜配線の抵抗値が大きくなってしまうと
いう問題がある。
In order to prevent the occurrence of such hillocks, there is a method in which a refractory metal such as Cu, Si, Ti, Ta, Nd, Mo, or Zr is added to the material of the Al thin film wiring. If the amount of the high melting point metal added is increased to enhance the effect, there is a problem that the resistance value of the thin film wiring increases.

【0006】[0006]

【発明が解決しようとする課題】本発明は、このような
従来の技術の課題を解決するために創作されたもので、
その目的は、Al薄膜配線の抵抗値を増加させずにヒロ
ックの発生量を少なくすることができる技術を提供する
ことにある。
SUMMARY OF THE INVENTION The present invention has been made in order to solve such problems of the prior art.
An object of the present invention is to provide a technique capable of reducing the amount of hillocks generated without increasing the resistance value of the Al thin film wiring.

【0007】[0007]

【課題を解決するための手段】図1(a),(b)に、スパ
ッタ法を用いて形成したAl薄膜配線10、20の結晶
粒の状態を示す。符号11a〜11c,21a〜21fは、
Al薄膜配線10、20を構成する結晶粒を示してい
る。
FIGS. 1A and 1B show the state of crystal grains of Al thin film wirings 10 and 20 formed by using a sputtering method. Symbols 11a to 11c and 21a to 21f are:
The crystal grains constituting the Al thin film wirings 10 and 20 are shown.

【0008】このようなAl薄膜配線10、20が形成
された後は、更にその表面上に層間絶縁膜や上層の薄膜
配線が形成されるが、Al薄膜配線10、20の熱膨張
係数と、下地となる基板の熱膨張係数とには差があるた
め、Al薄膜配線10、20を形成した後のプロセス中
の熱処理により、低温状態と高温状態とが繰り返される
と、Al薄膜配線10、20内に圧縮応力が発生し、そ
の際、結晶粒11a〜11c、21a〜21fの粒界に沿っ
てAl原子が移動し、粒界の交点でヒロックが形成され
てしまう。
After the Al thin film wirings 10 and 20 are formed, an interlayer insulating film and an upper thin film wiring are further formed on the surface thereof. Since there is a difference in the coefficient of thermal expansion of the substrate serving as the base, if the low-temperature state and the high-temperature state are repeated by the heat treatment during the process after the formation of the Al thin-film wirings 10, 20, the Al thin-film wirings 10, 20 Compressive stress is generated inside, and at that time, Al atoms move along the grain boundaries of the crystal grains 11a to 11c and 21a to 21f, and hillocks are formed at intersections of the grain boundaries.

【0009】このとき、図1(a)に示すように、結晶粒
11a〜11cの粒径が大きいAl薄膜配線10では、粒
界の総面積や粒界の交点が少ないため、ヒロックが発生
しにくいのに対し、図1(b)に示すように、結晶粒21
a〜21fが小さいAl薄膜配線20では、粒界の総面積
が大きく、また粒界の交点22a〜22dが多数存在する
ため、それだけヒロックが発生しやすくなる。
At this time, as shown in FIG. 1A, in the Al thin film wiring 10 in which the crystal grains 11a to 11c have a large grain size, hillocks are generated because the total area of the grain boundaries and the intersections of the grain boundaries are small. However, as shown in FIG.
In the Al thin film wiring 20 having small a to 21f, the total area of the grain boundaries is large, and there are many intersections 22a to 22d of the grain boundaries, so that hillocks are easily generated.

【0010】また、ヒロックによる短絡の発生は、結晶
粒の大きさだけで決まるものではなく、結晶粒の配向性
にも影響されることが知られており、Al薄膜配線の結
晶粒が均一であれば、結晶粒が不均一な場合に比べて、
Al薄膜配線内に局所的に大きな圧縮応力が発生するこ
とが少ないため、ヒロックが生じた場合でもそのサイズ
は小さい。従って、ヒロックが層間絶縁膜を突き破るこ
とがなく、短絡が発生しにくくなる。
It is known that the occurrence of a short circuit due to a hillock is not determined only by the size of crystal grains, but is also affected by the orientation of crystal grains. If there is, compared to the case where the crystal grains are uneven,
Since a large compressive stress rarely occurs locally in the Al thin film wiring, even if a hillock occurs, its size is small. Therefore, the hillock does not break through the interlayer insulating film, and a short circuit is less likely to occur.

【0011】本発明の発明者等は、これらの結晶粒径、
結晶粒の配向性にはスパッタ成膜の際の残留ガスや、タ
ーゲット表面や基板表面に吸着するガスが大きく影響す
ることを見いだした。
The inventors of the present invention have determined that these crystal grain sizes,
It has been found that the residual gas at the time of sputter deposition and the gas adsorbed on the target surface and the substrate surface greatly affect the crystal grain orientation.

【0012】特に、酸素や水などの酸化性のガスがター
ゲット表面や基板表面に吸着した状態でスパッタリング
が行われると、Al膜の結晶粒界に酸化膜が形成されて
しまって結晶粒の成長が妨げられてしまい、また、配向
性も不均一になると考えられる。
In particular, when sputtering is performed in a state where an oxidizing gas such as oxygen or water is adsorbed on a target surface or a substrate surface, an oxide film is formed at a crystal grain boundary of an Al film, and crystal grains grow. Is considered to be hindered, and the orientation is considered to be non-uniform.

【0013】本発明は、上記知見に基づいて創作された
ものであり、請求項1記載の発明のように、処理室内に
基板を配置し、真空雰囲気にした状態でスパッタガスを
導入してAlを含むターゲットをスパッタし、前記基板
上に薄膜を形成する薄膜の形成方法であって、前記基板
上に薄膜を成長させる前に、前記ターゲットがスパッタ
されない程度に弱い高周波電力を前記ターゲットに印加
する前処理工程を設けている。
[0013] The present invention has been made based on the above findings. As in the first aspect of the present invention, a substrate is placed in a processing chamber, and a sputtering gas is introduced in a vacuum atmosphere to introduce Al. A thin film formed on the substrate by sputtering a target including: applying a weak high-frequency power to the target such that the target is not sputtered before growing the thin film on the substrate. A pre-processing step is provided.

【0014】このように構成することにより、薄膜を成
長させる以前にプラズマを発生させて基板表面やターゲ
ット表面をクリーニングすることができ(本明細書では
このことをプラズマクリーニングと称する。)、基板表
面やターゲット表面から吸着ガスを除去することができ
る。
With this configuration, it is possible to clean the substrate surface and the target surface by generating plasma before growing the thin film (this is referred to as plasma cleaning in this specification), and the substrate surface is cleaned. And the adsorbed gas can be removed from the target surface.

【0015】従って、特に酸化性ガスなどのガスが基板
表面やターゲット表面に吸着して、結晶粒界に酸化膜が
形成されることを抑制することができ、結晶粒径が大き
く配向性のそろった膜を得ることができる。その結果、
熱処理工程後でもAl膜上でのヒロックの発生を大幅に
低減することができる。
Therefore, it is possible to suppress that a gas such as an oxidizing gas is adsorbed on the substrate surface or the target surface to form an oxide film at the crystal grain boundary, and the crystal grain size is large and the orientation is uniform. Film can be obtained. as a result,
Even after the heat treatment step, generation of hillocks on the Al film can be significantly reduced.

【0016】ところで、ターゲットに供給する高周波電
力の大きさによっては、プラズマクリーニング時にター
ゲットがスパッタされ、成膜が開始されてしまう。この
ときには基板表面やターゲット表面から吸着ガスが除去
される前に、成膜が開始されてしまうので、基板上に部
分的に酸化したAl膜が成膜されてしまい、その後直流
電圧印加によって形成されるAl薄膜の結晶性が劣化し
てしまう。
By the way, depending on the magnitude of the high-frequency power supplied to the target, the target is sputtered at the time of plasma cleaning, and film formation is started. At this time, since the film formation is started before the adsorbed gas is removed from the substrate surface or the target surface, a partially oxidized Al film is formed on the substrate, and then formed by applying a DC voltage. The crystallinity of the Al thin film deteriorates.

【0017】本発明の発明者等は、圧力0.3PaのA
rガス雰囲気で、Alからなる面積3400cm2のタ
ーゲットに、13.56MHzの高周波電力を50W〜
500Wの範囲の所定値で供給してプラズマを発生さ
せ、Alの析出速度を測定した。この測定結果を図2の
グラフに示す。図2において横軸は高周波電力、縦軸は
Alの析出速度である。
The inventors of the present invention have reported that A at a pressure of 0.3 Pa
In a r gas atmosphere, a 13.56 MHz high frequency power of 50 W to a target of 3400 cm 2 made of Al is applied.
Plasma was generated by supplying a predetermined value in the range of 500 W, and the deposition rate of Al was measured. The measurement results are shown in the graph of FIG. In FIG. 2, the horizontal axis represents high-frequency power, and the vertical axis represents the deposition rate of Al.

【0018】図2のグラフから、高周波電力が250W
以下では、Alの析出速度は0Å/minであってターゲ
ット3が全くスパッタされていないが、300Wで約3
Å/minになり、300W以上になるとAlの析出速度
はさらに増加することがわかる。
From the graph of FIG. 2, the high frequency power is 250 W
In the following, the deposition rate of Al is 0 ° / min and the target 3 is not sputtered at all.
It can be seen that the deposition rate of Al is further increased when the rate becomes Å / min and becomes 300 W or more.

【0019】以上により、請求項1記載の薄膜形成方法
については、請求項2記載の発明のように、前記前処理
工程では、300W未満の高周波電力を印加することに
より、ターゲットがスパッタされることなくプラズマを
発生させることができる。
As described above, in the thin film forming method according to the first aspect, as in the second aspect, the target is sputtered by applying a high frequency power of less than 300 W in the pretreatment step. Without generating plasma.

【0020】さらに、請求項3に記載するように、請求
項1又は請求項2記載の薄膜形成方法において、前記前
処理工程では、前記スパッタガス中に、還元性ガスを添
加してもよい。
Further, as described in claim 3, in the thin film forming method according to claim 1 or 2, in the pretreatment step, a reducing gas may be added to the sputtering gas.

【0021】このように構成することにより、プラズマ
クリーニング中に、酸化性ガスのガス分子がプラズマの
みでは除去しきれずに残存しても、還元性ガスで還元す
ることができるので、ターゲットや基板の表面に吸着す
る酸化性ガスの量をさらに少なくすることができる。
With this configuration, even if gas molecules of the oxidizing gas cannot be completely removed by plasma alone during plasma cleaning, the gas molecules can be reduced by the reducing gas. The amount of the oxidizing gas adsorbed on the surface can be further reduced.

【0022】また、Al薄膜に加えられる圧縮応力を緩
和するために、先ず基板表面にAl薄膜の熱膨張係数に
近い金属薄膜を形成し、その金属薄膜上にAl薄膜を形
成すると、結晶粒径やその配向性を一層向上させること
ができる。
In order to alleviate the compressive stress applied to the Al thin film, first, a metal thin film having a thermal expansion coefficient close to that of the Al thin film is formed on the substrate surface, and the Al thin film is formed on the metal thin film. And its orientation can be further improved.

【0023】従って、請求項1乃至請求項3のいずれか
1項記載の薄膜形成方法については、請求項4記載の発
明のように、前記基板上にTi薄膜を形成した後、該T
i薄膜上に前記薄膜を形成するとよい。
Therefore, according to the thin film forming method according to any one of the first to third aspects, after the Ti thin film is formed on the substrate, the T
Preferably, the thin film is formed on the i thin film.

【0024】なお、上記請求項1乃至請求項4のいずれ
か1項記載の薄膜形成方法は、請求項5記載の発明のよ
うに、基板がガラス基板又はシリコン基板である場合
に、特に有用である。
The thin film forming method according to any one of the first to fourth aspects is particularly useful when the substrate is a glass substrate or a silicon substrate as in the fifth aspect of the invention. is there.

【0025】[0025]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照しながら説明する。図3(a)を参照し、符
号1は本発明の薄膜形成方法に用いられるスパッタ成膜
装置である。このスパッタ成膜装置1は、真空排気可能
なチャンバー2を有しており、該チャンバー2の底部に
は載置台4が設けられ、天井側には面積が3400cm
2のターゲット3が設けられている。
Embodiments of the present invention will be described below with reference to the drawings. Referring to FIG. 3A, reference numeral 1 denotes a sputtering film forming apparatus used in the thin film forming method of the present invention. This sputtering film forming apparatus 1 has a chamber 2 that can be evacuated, a mounting table 4 is provided at the bottom of the chamber 2, and an area of 3400 cm on the ceiling side.
Two targets 3 are provided.

【0026】チャンバー2には、ガス導入口6と排気口
7とが設けられており、ガス導入口6は不図示のガス導
入系に接続され、排気口7は不図示の真空ポンプに接続
されている。
The chamber 2 is provided with a gas inlet 6 and an exhaust port 7. The gas inlet 6 is connected to a gas introducing system (not shown), and the exhaust port 7 is connected to a vacuum pump (not shown). ing.

【0027】チャンバー2の外部には、直流電源8と高
周波電源9とが設けられている。ターゲット3には、直
流電源8が直接接続されるとともに、RFフィルタ13
を介して高周波電源9が接続されている。
A DC power source 8 and a high-frequency power source 9 are provided outside the chamber 2. The DC power source 8 is directly connected to the target 3 and the RF filter 13
The high frequency power supply 9 is connected via the.

【0028】このようなスパッタ成膜装置1を用い、基
板(300×400×1.1mmのコーニング社製#70
59ガラス基板)5上に直接Al薄膜を成膜する場合に
ついて以下で説明する。
A substrate (300 × 400 × 1.1 mm # 70 manufactured by Corning Incorporated) is used by using such a sputtering film forming apparatus 1.
The case where an Al thin film is formed directly on the (59 glass substrate) 5 will be described below.

【0029】まず、予め不図示の真空ポンプによってチ
ャンバー2内を真空排気した後、その真空状態を維持し
たまま、ガラス表面が露出した基板5をチャンバー2内
に搬入し、成膜面をターゲット3に向け、載置台4上に
載置した。
First, after the inside of the chamber 2 is evacuated by a vacuum pump (not shown) in advance, the substrate 5 whose glass surface is exposed is loaded into the chamber 2 while maintaining the vacuum state, and the film forming surface is And was placed on the mounting table 4.

【0030】次に、チャンバー2内に、スパッタガス
(Arガス)をガス導入口6から導入し、チャンバー2内
部が0.3Paの圧力で安定したところで高周波電源9
を起動して、13.56MHz、50Wの高周波電力を
ターゲット3に供給し、チャンバー2内にプラズマを発
生させた。
Next, a sputtering gas is introduced into the chamber 2.
(Ar gas) was introduced from the gas inlet 6, and when the inside of the chamber 2 was stabilized at a pressure of 0.3 Pa, the high frequency power
Was started, and a high frequency power of 13.56 MHz and 50 W was supplied to the target 3 to generate plasma in the chamber 2.

【0031】高周波電力の供給開始から20秒後に供給
を停止した後に、引き続いてターゲット3に直流電圧を
印加して、DCマグネトロンスパッタ法によりスパッタ
した。スパッタの際は、基板5の温度が100℃になる
ようにし、その状態で基板5表面にAl薄膜を形成し
た。
After the supply of high frequency power was stopped 20 seconds after the start of supply, a DC voltage was continuously applied to the target 3 and sputtering was performed by a DC magnetron sputtering method. At the time of sputtering, the temperature of the substrate 5 was set to 100 ° C., and an Al thin film was formed on the surface of the substrate 5 in that state.

【0032】Al薄膜の膜厚が3000Åに達したとこ
ろで、直流電圧の印加及びスパッタガスの導入を終了さ
せ、基板5をチャンバー2外に搬出した。基板5の断面
図を図3(b)に示す。基板5表面にはAl薄膜5aが直
接形成されている。
When the thickness of the Al thin film reached 3000 ° C., the application of the DC voltage and the introduction of the sputtering gas were terminated, and the substrate 5 was carried out of the chamber 2. FIG. 3B is a sectional view of the substrate 5. On the surface of the substrate 5, an Al thin film 5a is directly formed.

【0033】次に、オーブンにより、基板5を大気圧・
窒素ガス雰囲気下で加熱し、350℃1時間の熱処理を
行った。そのAl薄膜5aの表面をSEM(Scanning ele
ctron microscope:走査型電子顕微鏡)で観察し、ヒロ
ックの個数をカウントした。
Next, the substrate 5 is placed in an oven at atmospheric pressure.
Heating was performed in a nitrogen gas atmosphere, and heat treatment was performed at 350 ° C. for 1 hour. The surface of the Al thin film 5a is SEM (Scanning ele
The number of hillocks was counted by observation with a ctron microscope (scanning electron microscope).

【0034】なお、熱処理の温度を350℃にしたの
は、TFTのゲートバスラインを形成した後に、ゲート
絶縁膜を成膜するためのCVD法が、同温度で行われる
ことによる。
The reason for setting the temperature of the heat treatment to 350 ° C. is that the CVD method for forming the gate insulating film after forming the gate bus line of the TFT is performed at the same temperature.

【0035】その後、他の条件は上記条件と変えずに、
高周波電力を50W〜500Wの範囲の所定値にして、
基板5上に3000ÅのAl薄膜5aを形成した後、上
記と同じ条件で熱処理をし、ヒロックの個数をカウント
した。ヒロック密度と高周波電力との関係を図4のグラ
フに示す。図4で横軸は高周波電力、縦軸はヒロック密
度である。
After that, other conditions are not changed from the above conditions,
The high frequency power is set to a predetermined value in the range of 50 W to 500 W,
After forming a 3000 ° Al thin film 5a on the substrate 5, heat treatment was performed under the same conditions as above, and the number of hillocks was counted. The relationship between hillock density and high frequency power is shown in the graph of FIG. In FIG. 4, the horizontal axis represents high-frequency power, and the vertical axis represents hillock density.

【0036】このグラフから、ターゲット3の面積が3
400cm2でスパッタ雰囲気が0.3Paの場合は、
高周波電力が50W〜200Wの範囲でヒロック密度を
0.01個/μm2以下(150Wで最小値をとる)まで
小さくすることができることがわかる。
From this graph, it can be seen that the area of the target 3 is 3
When the sputtering atmosphere is 0.3 Pa at 400 cm 2 ,
It can be seen that the hillock density can be reduced to 0.01 / μm 2 or less (the minimum value is taken at 150 W) when the high frequency power is in the range of 50 W to 200 W.

【0037】なお、上述のAl薄膜5aの比抵抗は、5
0W〜200Wの範囲の高周波電力を供給したかぎりで
は高くならず、3.1μΩcmという比較的低い比抵抗値
を得ることができた。このように、抵抗値を上昇させる
ことなくヒロックの発生量を少なくすることができる。
The specific resistance of the Al thin film 5a is 5
As long as high-frequency power in the range of 0 W to 200 W was supplied, the resistivity was not increased, and a relatively low specific resistance value of 3.1 μΩcm could be obtained. Thus, the amount of hillocks can be reduced without increasing the resistance value.

【0038】上述のAl薄膜5aの形成においては、ス
パッタガスとしてArガスのみを用いたが、以下に説明
するように、スパッタガスに水素ガスなどの還元性ガス
を添加してプラズマクリーニングを行うと、ヒロックの
発生量をさらに少なくすることができる。
In the above-described formation of the Al thin film 5a, only Ar gas was used as a sputtering gas. However, as described below, plasma cleaning is performed by adding a reducing gas such as hydrogen gas to the sputtering gas. And the amount of hillocks generated can be further reduced.

【0039】供給する高周波電力を150Wに固定し、
Arガスに、1×10-4〜2×10 -2Paの範囲内の所
定値の水素ガスを添加して、プラズマクリーニングを行
った後にターゲット3をスパッタして、基板5上に直接
Al薄膜を成膜し、上記実施例と同様の熱処理を行い、
ヒロックの個数をカウントした。
The supplied high frequency power is fixed at 150 W,
1 × 10 in Ar gas-Four~ 2 × 10 -2Place within the range of Pa
Plasma cleaning is performed by adding a fixed value of hydrogen gas.
Target 3 is sputtered directly on the substrate 5
An Al thin film is formed, and the same heat treatment as in the above embodiment is performed.
The number of hillocks was counted.

【0040】図5のグラフに、その測定結果を示す。図
5で横軸は添加された水素ガスの分圧(以下でこの分圧
を水素添加分圧と称する。)、縦軸はヒロック密度であ
る。このグラフより、水素添加分圧が増加するととも
に、ヒロック密度が小さくなり、Arガスのみでプラズ
マを発生させた場合に比してさらにヒロックの発生量を
少なくできることがわかる。特に、水素添加分圧が1×
10-4〜5×10-3Paの範囲内ではヒロック密度は0
個/μm2であり、ヒロックの発生は全くみられなかっ
た。
The measurement results are shown in the graph of FIG. In FIG. 5, the horizontal axis represents the partial pressure of the added hydrogen gas (hereinafter, this partial pressure is referred to as hydrogen addition partial pressure), and the vertical axis represents the hillock density. From this graph, it can be seen that the hillock density decreases as the hydrogen-added partial pressure increases, and the hillock generation amount can be further reduced as compared with the case where plasma is generated using only Ar gas. In particular, the hydrogenation partial pressure is 1 ×
The hillock density is 0 within the range of 10 −4 to 5 × 10 −3 Pa.
Particles / μm 2 , and no hillocks were generated.

【0041】これは、還元性ガスである水素ガス雰囲気
でプラズマを発生させると、プラズマによって除去し得
なかった水や酸素などの酸化性ガスのガス分子が水素ガ
スで還元されるので、ターゲット3や基板5の表面にこ
れらの酸化性ガスが付着することを防止する効果が強ま
ったためであると考えられる。
This is because, when plasma is generated in a hydrogen gas atmosphere as a reducing gas, gas molecules of an oxidizing gas such as water or oxygen that cannot be removed by the plasma are reduced by the hydrogen gas. It is considered that this is because the effect of preventing the oxidizing gas from adhering to the surface of the substrate 5 or the substrate 5 has increased.

【0042】以上説明したように、Al薄膜5aを基板
5上に直接形成する場合には、Al薄膜5aの成長の開
始前にプラズマクリーニングを行うことで、ヒロックの
発生量を少なくできることがわかったが、基板5上にT
i膜を成膜し、その後Al薄膜を形成すると、ヒロック
の発生量をさらに少なくすることができる。以下でこの
場合について説明する。
As described above, when the Al thin film 5a is formed directly on the substrate 5, it has been found that the amount of hillocks can be reduced by performing plasma cleaning before the start of the growth of the Al thin film 5a. But T on the substrate 5
When an i film is formed and then an Al thin film is formed, the amount of hillocks can be further reduced. Hereinafter, this case will be described.

【0043】まず、スパッタガスとしてArを用いて、
0.3Paの圧力下で、予めスパッタ法により基板5上
に膜厚500ÅのTi薄膜を形成した後、チャンバー2
内を真空排気して真空状態を維持した状態で基板5をチ
ャンバー2内に搬入し、Arガスをガス導入口6から導
入し、チャンバー2内部が0.3Paの圧力で安定した
ところで13.56MHz、50Wの高周波電力をター
ゲット3に供給し、チャンバー2内にプラズマを発生さ
せた。
First, using Ar as a sputtering gas,
After forming a Ti thin film having a thickness of 500 ° on the substrate 5 in advance by a sputtering method under a pressure of 0.3 Pa, the chamber 2
The inside of the chamber 2 is evacuated and the vacuum state is maintained, the substrate 5 is carried into the chamber 2, Ar gas is introduced from the gas inlet 6, and 13.56 MHz when the inside of the chamber 2 is stabilized at a pressure of 0.3 Pa. , 50 W of high frequency power was supplied to the target 3 to generate plasma in the chamber 2.

【0044】供給開始から20秒後に高周波電力の供給
を止め、引き続いてターゲット3に直流電圧を印加して
スパッタし、Ti薄膜表面にAl薄膜を形成した。その
後Al薄膜の膜厚が3000Åに達したところで、直流
電圧の印加及びスパッタガスの導入を終了させ、基板5
をチャンバー2外に搬出した。
After 20 seconds from the start of the supply, the supply of the high-frequency power was stopped. Subsequently, a DC voltage was applied to the target 3 to perform sputtering to form an Al thin film on the surface of the Ti thin film. Thereafter, when the thickness of the Al thin film reaches 3000 °, the application of the DC voltage and the introduction of the sputtering gas are terminated, and the substrate 5
Was carried out of the chamber 2.

【0045】そのときの基板5の断面図を図3(c)に示
す。基板5表面にはTi膜5b、Al薄膜5aが順次形成
されている。次に、オーブンにより、その基板5を大気
圧・窒素ガス雰囲気下で加熱し、350℃、1時間の熱
処理を行った。そのAl薄膜5aの表面をSEMで観察
し、ヒロックの個数をカウントした。
FIG. 3C shows a sectional view of the substrate 5 at that time. On the surface of the substrate 5, a Ti film 5b and an Al thin film 5a are sequentially formed. Next, the substrate 5 was heated in an oven under atmospheric pressure and nitrogen gas atmosphere, and heat treatment was performed at 350 ° C. for 1 hour. The surface of the Al thin film 5a was observed by SEM, and the number of hillocks was counted.

【0046】この場合における高周波電力とヒロック密
度の関係を図6のグラフに示す。このグラフを図4のグ
ラフと比較すると、ヒロック密度が全体的に少なくなっ
ていることがわかる。特に、高周波電力が100〜20
0Wの範囲ではヒロック密度は0個/μm2であって、
ヒロックの発生は全くみられなかったことがわかる。
FIG. 6 is a graph showing the relationship between the high-frequency power and the hillock density in this case. Comparing this graph with the graph of FIG. 4, it can be seen that the hillock density is reduced as a whole. In particular, high frequency power of 100 to 20
In the range of 0 W, the hillock density is 0 / μm 2 ,
It can be seen that hillocks were not generated at all.

【0047】なお、上述のAl薄膜5a、5cは、純Al
薄膜であったが、本発明はそれに限定されるものではな
く、Alを主成分とするAl薄膜に広く適用することが
できる。例えば、Alと、Cu、Si、Ti、Ta、N
d、Mo、Zr等とが合金化したターゲットを用いてA
l薄膜を形成する場合にも適用可能である。
The above Al thin films 5a and 5c are made of pure Al.
Although the present invention is a thin film, the present invention is not limited thereto, and can be widely applied to an Al thin film containing Al as a main component. For example, Al, Cu, Si, Ti, Ta, N
A using a target alloyed with d, Mo, Zr, etc.
It is also applicable when forming a thin film.

【0048】また、スパッタガスの圧力を0.3Paと
したが、本発明はそれに限定されるものではなく、スパ
ッタガスの圧力を0.2〜2Pa程度の範囲内で上下さ
せてもよい。
Although the pressure of the sputtering gas is set to 0.3 Pa, the present invention is not limited to this, and the pressure of the sputtering gas may be increased or decreased within a range of about 0.2 to 2 Pa.

【0049】さらに、基板5にはガラス基板を用いた
が、本発明はそれに限られるものではなく、シリコンな
どの半導体ウエハーを基板とする場合にも適用すること
ができる。
Furthermore, although a glass substrate is used as the substrate 5, the present invention is not limited to this, and can be applied to a case where a semiconductor wafer such as silicon is used as the substrate.

【0050】また、スパッタガスに添加する還元性ガス
として水素ガスを用いたが、メタンガスやエタンガスな
どの他の還元性ガスを用いてもよい。また本実験では、
プラズマクリーニングとして13.56MHzの高周波
を用いたが、本発明のプラズマクリーニングでの周波数
は13.56MHzに限定されるものではなく、例えば
100kHz程度の中周波を用いても、同様のプラズマ
クリーニング効果が得られた。
Although hydrogen gas is used as a reducing gas to be added to the sputtering gas, another reducing gas such as methane gas or ethane gas may be used. In this experiment,
Although a high frequency of 13.56 MHz was used as the plasma cleaning, the frequency in the plasma cleaning of the present invention is not limited to 13.56 MHz. For example, even if a medium frequency of about 100 kHz is used, the same plasma cleaning effect can be obtained. Obtained.

【0051】[0051]

【発明の効果】以上述べたように本発明によれば、熱処
理工程後におけるAl或いはAl合金薄膜上でのヒロッ
クの発生を大幅に低減することができる。その結果、ヒ
ロックによる短絡などの問題を抑止することができ、T
FTや半導体の製造工程において、安価で低抵抗なAl
配線を信頼性よく用いることができる。
As described above, according to the present invention, the generation of hillocks on the Al or Al alloy thin film after the heat treatment step can be greatly reduced. As a result, problems such as short-circuiting due to hillocks can be suppressed, and T
Inexpensive and low-resistance Al in FT and semiconductor manufacturing processes
Wiring can be used with high reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】成膜の際の基板上の結晶粒の状態を示す図で、
(a):結晶粒径が大きい場合の結晶粒の状態を示す図
(b):結晶粒径が小さい場合の結晶粒の状態を示す
FIG. 1 is a view showing a state of crystal grains on a substrate at the time of film formation;
(A): A diagram showing the state of crystal grains when the crystal grain size is large. (B): A diagram showing the state of crystal grains when the crystal grain size is small.

【図2】本発明でターゲットに印加される高周波電力と
Alの析出速度との関係を示すグラフ
FIG. 2 is a graph showing the relationship between high-frequency power applied to a target and the deposition rate of Al in the present invention.

【図3】本発明の実施形態における実験を説明する図
で、(a):本実施形態で行った実験に用いたスパッタ
成膜装置の構成を説明する断面図 (b):実験により
Al膜が表面に形成されたガラス基板の状態を説明する
断面図 (c):実験によりTi膜、Al膜が順次表面
に形成されたガラス基板の状態を説明する断面図
3A and 3B are diagrams illustrating an experiment according to an embodiment of the present invention. FIG. 3A is a cross-sectional view illustrating a configuration of a sputtering film forming apparatus used in the experiment performed in the embodiment. FIG. Sectional view for explaining the state of a glass substrate on which a surface is formed (c): Cross-sectional view for explaining the state of a glass substrate on which a Ti film and an Al film are sequentially formed on the surface by experiments

【図4】本発明の実施形態でガラス基板上にAl膜のみ
を形成した場合の、高周波電力とヒロック密度との関係
を示すグラフ
FIG. 4 is a graph showing the relationship between high-frequency power and hillock density when only an Al film is formed on a glass substrate in an embodiment of the present invention.

【図5】本発明の実施形態でスパッタガスに水素ガスを
添加した場合における水素添加量とヒロック密度との関
係を示すグラフ
FIG. 5 is a graph showing a relationship between a hydrogen addition amount and a hillock density when a hydrogen gas is added to a sputtering gas in the embodiment of the present invention.

【図6】本発明の実施形態でガラス基板上にTi膜、A
l膜を順次形成した場合の、高周波電力とヒロック密度
との関係を示すグラフ
FIG. 6 shows a Ti film, A on a glass substrate in an embodiment of the present invention.
Graph showing the relationship between high-frequency power and hillock density when l films are sequentially formed

【符号の説明】[Explanation of symbols]

1…スパッタ成膜装置 2…チャンバー(処理室) 3
…ターゲット 4…載置台 5…基板 5a,5c…A
l薄膜 5b…Ti膜 10、20…Al薄膜配線 1
1a,11b,11c,…結晶粒 21a,21b,2
1c,21d,21e,21f…結晶粒 22a,22
b,22c,22d…粒界の交点
DESCRIPTION OF SYMBOLS 1 ... Sputter film-forming apparatus 2 ... Chamber (processing chamber) 3
... Target 4 ... Placement table 5 ... Substrate 5a, 5c ... A
1 thin film 5b ... Ti film 10, 20 ... Al thin film wiring 1
1a, 11b, 11c,..., Crystal grains 21a, 21b, 2
1c, 21d, 21e, 21f ... crystal grains 22a, 22
b, 22c, 22d ... intersection of grain boundaries

───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉浦 功 千葉県山武郡山武町横田523番地 日本真 空技術株式会社千葉超材料研究所内 (72)発明者 林 志銘 千葉県山武郡山武町横田523番地 日本真 空技術株式会社千葉超材料研究所内 (72)発明者 中村 肇 千葉県山武郡山武町横田523番地 日本真 空技術株式会社千葉超材料研究所内 (72)発明者 堀 隆英 千葉県山武郡山武町横田523番地 日本真 空技術株式会社千葉超材料研究所内 (72)発明者 太田 賀文 千葉県山武郡山武町横田523番地 日本真 空技術株式会社千葉超材料研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Isao Sugiura, 523 Yokota, Yamatake-cho, Yamatake-gun, Chiba Prefecture Inside the Chiba Super Materials Research Laboratory, Japan Sky Technology Co., Ltd. (72) Shigenori Hayashi, 523 Yokota, Yamatake-cho, Yamatake-gun, Chiba No. 523, Japan Vapor Technology Co., Ltd.Chiba Super Materials Research Laboratories (72) Inventor Hajime Nakamura 523, Yamatake-cho, Yamatake-gun, Chiba Prefecture Japan Vacuum Technologies Co., Ltd.Chiba Super Materials Research Laboratories (72) Inventor Takahide Hori 523 Yokota Takemachi Japan Chiku Technology Co., Ltd.Chiba Super Materials Research Institute (72) Inventor Kafumi Ota 523 Yamatake Town Yokota Sanmu-gun Chiba Prefecture Japan Chiku Technology Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】処理室内に基板を配置し、真空雰囲気にし
た状態でスパッタガスを導入してAlを含むターゲット
をスパッタし、前記基板上に薄膜を形成する薄膜の形成
方法であって、 前記基板上に薄膜を成長させる前に、前記ターゲットが
スパッタされない程度に弱い高周波電力を前記ターゲッ
トに印加する前処理工程を設けたことを特徴とする薄膜
形成方法。
1. A method for forming a thin film on a substrate, wherein a substrate is placed in a processing chamber, a sputtering gas is introduced in a vacuum atmosphere, and a target containing Al is sputtered to form a thin film on the substrate. A method of forming a thin film, comprising: before growing a thin film on a substrate, a pretreatment step of applying a high-frequency power weak enough to not sputter the target to the target.
【請求項2】前記前処理工程では、300W未満の高周
波電力を印加することを特徴とする請求項1記載の薄膜
形成方法。
2. The thin film forming method according to claim 1, wherein high frequency power of less than 300 W is applied in said pretreatment step.
【請求項3】前記前処理工程では、前記スパッタガス中
に、還元性ガスを添加することを特徴とする請求項1又
は請求項2記載の薄膜形成方法。
3. The thin film forming method according to claim 1, wherein in the pretreatment step, a reducing gas is added to the sputtering gas.
【請求項4】前記基板上にTi膜を成膜した後に、前記
薄膜を形成することを特徴とする請求項1乃至請求項3
のいずれか1項記載の薄膜形成方法。
4. The method according to claim 1, wherein the thin film is formed after a Ti film is formed on the substrate.
The method for forming a thin film according to any one of the preceding claims.
【請求項5】前記薄膜は、ガラス基板又はシリコン基板
上に形成することを特徴とする請求項1乃至請求項4の
いずれか1項記載の薄膜形成方法。
5. The thin film forming method according to claim 1, wherein the thin film is formed on a glass substrate or a silicon substrate.
JP16322798A 1998-06-11 1998-06-11 Thin film formation method Expired - Fee Related JP3938437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16322798A JP3938437B2 (en) 1998-06-11 1998-06-11 Thin film formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16322798A JP3938437B2 (en) 1998-06-11 1998-06-11 Thin film formation method

Publications (2)

Publication Number Publication Date
JPH11354469A true JPH11354469A (en) 1999-12-24
JP3938437B2 JP3938437B2 (en) 2007-06-27

Family

ID=15769749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16322798A Expired - Fee Related JP3938437B2 (en) 1998-06-11 1998-06-11 Thin film formation method

Country Status (1)

Country Link
JP (1) JP3938437B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077203A (en) * 2009-09-29 2011-04-14 Fuji Electric Systems Co Ltd Semiconductor device manufacturing method
JP2013227198A (en) * 2012-03-26 2013-11-07 Ulvac Japan Ltd Method and apparatus for forming gallium nitride film
JP2015115358A (en) * 2013-12-09 2015-06-22 昭和電工株式会社 Semiconductor element manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7543635B2 (en) 2018-04-11 2024-09-03 Agc株式会社 Wiring film and method for forming wiring film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077203A (en) * 2009-09-29 2011-04-14 Fuji Electric Systems Co Ltd Semiconductor device manufacturing method
JP2013227198A (en) * 2012-03-26 2013-11-07 Ulvac Japan Ltd Method and apparatus for forming gallium nitride film
JP2015115358A (en) * 2013-12-09 2015-06-22 昭和電工株式会社 Semiconductor element manufacturing method

Also Published As

Publication number Publication date
JP3938437B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
US6110598A (en) Low resistive tantalum thin film structure and method for forming the same
JP2002053954A (en) Vacuum chamber for physical vapor deposition, physical vapor deposition method, thin film device, and liquid crystal display
JPS62287071A (en) Thin film forming device and method
US11674216B2 (en) Methods and apparatus for depositing aluminum by physical vapor deposition (PVD) with controlled cooling
CN103201839B (en) Method for depositing thin film electrodes and thin film stacks
JP2000235962A (en) Manufacture of barrier film
JP2004523878A (en) Preliminary poly coating of glass substrate
WO2023045835A1 (en) Preparation method for metal compound film
CN100492603C (en) plasma etching method
JPH11354469A (en) Thin film formation method
JPH0855804A (en) Method for manufacturing semiconductor thin film
JP2004055842A (en) Semiconductor device electrode / wiring, semiconductor device electrode film/ wiring film and sputtering target for forming aluminum alloy thin film
US9257291B2 (en) Method for forming a silicide layer at the bottom of a hole and device for implementing said method
JPH0773738A (en) Transparent conductive film and manufacture thereof
JP3986178B2 (en) Al thin film forming method
JPH0282578A (en) Manufacturing method of thin film transistor
JP4132869B2 (en) Semiconductor device electrode / wiring
JPH0492423A (en) Manufacture of semiconductor integrated circuit device
JP4246159B2 (en) Semiconductor device manufacturing apparatus and manufacturing method
JPH05171434A (en) Formation of aluminum alloy film
JP2003517514A (en) Method for utilizing hydrogen and oxygen gas in sputter deposition of aluminum-containing film and aluminum-containing film obtained thereby
JPH07297404A (en) Manufacture of thin film transistor
JPH05331619A (en) Method and apparatus for forming thin film
JP3397214B2 (en) Thin film formation method
JP6082577B2 (en) Method for forming tungsten wiring layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees