[go: up one dir, main page]

JPH11352369A - Reinforced optical fiber cord and its production - Google Patents

Reinforced optical fiber cord and its production

Info

Publication number
JPH11352369A
JPH11352369A JP10155717A JP15571798A JPH11352369A JP H11352369 A JPH11352369 A JP H11352369A JP 10155717 A JP10155717 A JP 10155717A JP 15571798 A JP15571798 A JP 15571798A JP H11352369 A JPH11352369 A JP H11352369A
Authority
JP
Japan
Prior art keywords
optical fiber
reinforced
fiber
core
cord
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10155717A
Other languages
Japanese (ja)
Other versions
JP3940500B2 (en
Inventor
Toku Ishii
徳 石井
Takayoshi Nakasone
隆義 中曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co Ltd filed Critical Ube Nitto Kasei Co Ltd
Priority to JP15571798A priority Critical patent/JP3940500B2/en
Publication of JPH11352369A publication Critical patent/JPH11352369A/en
Application granted granted Critical
Publication of JP3940500B2 publication Critical patent/JP3940500B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce the diameter of a reinforced optical fiber cord and to improve its economy. SOLUTION: The outer periphery of an optical fiber 1 is longitudinally placed with sheath-core composite fibers of which the sheath parts consist of polyethylene(PE) having a m.p. of 125 deg.C and the core parts consist of polyester(PET) having a m.p. of 250 deg.C and a Young's modulus of 1,200 kg/cm<2> and of which the sectional area ratio of the sheath parts and the core parts is 30/70. This fiber is passed through a metallic molding nozzle of 0.27 mm in bore at the temp. at which only the sheath parts melt, thereby, the fiber reinforced thermoplastic(FRTP) coated optical fiber cord 4 of 0.25 mm in outside diameter consisting of the PET fiber as a reinforced fiber 2 and the PE as a matrix 3 is obtd. Four pieces of such fiber cords are further passed through a nozzle having a hole of a rectangular cross-section, to obtain the ribbon-like reinforced optical fiber cord.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバの保護
を強化した新規な構造の単心強化光ファイバコードをテ
ープ状又はバンドル状に形成する強化光ファイバコード
およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reinforced optical fiber cord for forming a single-core reinforced optical fiber cord having a novel structure with enhanced protection of an optical fiber in a tape shape or a bundle shape, and a method of manufacturing the same.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】熱硬
化性樹脂等の架橋性樹脂をマトリックスとした繊維強化
光ファイバコードにおいて、例えば、複数本の単心光フ
ァイバコードを使用してテープ状光ファイバコードとす
る場合、複数本の前記単心コードを平行に配列し、その
外周に透明な紫外線硬化性樹脂で一括被覆した後、紫外
線を照射して紫外線硬化性樹脂を硬化させる方法を用い
ていた。
2. Description of the Related Art In a fiber reinforced optical fiber cord using a cross-linkable resin such as a thermosetting resin as a matrix, for example, a tape-shaped optical fiber cord using a plurality of single-core optical fiber cords is used. In the case of a fiber cord, a method is used in which a plurality of the single-core cords are arranged in parallel, the outer periphery thereof is collectively covered with a transparent ultraviolet-curable resin, and then ultraviolet rays are irradiated to cure the ultraviolet-curable resin. Was.

【0003】ところがこの場合、ハンドリング等により
テープ状光ファイバコードが、単心コードに分岐しない
ように、紫外線硬化性樹脂の被覆厚みを十分に取る必要
があり、結果的に図3に示すようにテープ状光ファイバ
コードの肉厚が厚くなるという問題があった。
In this case, however, it is necessary to sufficiently cover the ultraviolet-curable resin so that the tape-shaped optical fiber cord does not branch into a single-core cord due to handling or the like. As a result, as shown in FIG. There is a problem that the thickness of the tape-shaped optical fiber cord is increased.

【0004】また、単心光ファイバコードを、図5に示
すようにバンドル状に集合して固める場合、紫外線が内
部まで届かないという問題があり、これには熱硬化性樹
脂等を使用して対応するとしても、十分な細密充填がで
きず、結果的に細径化できないという問題があった。な
お、これらの架橋性樹脂は、比較的高価であるため、テ
ープ状もしくはバンドル状光ファイバコードとするのに
経済的でないという問題点もあった。
[0004] Further, when the single-core optical fiber cords are assembled in a bundle as shown in FIG. 5 and hardened, there is a problem that ultraviolet rays do not reach the inside. For this purpose, a thermosetting resin or the like is used. Even so, there was a problem that sufficient fine packing could not be performed, and consequently the diameter could not be reduced. In addition, since these crosslinkable resins are relatively expensive, there is a problem that it is not economical to form a tape-shaped or bundle-shaped optical fiber cord.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、第一発明は、光ファイバ素線の外周に縦添された補
強繊維と、前記補強繊維を結着する熱可塑性樹脂マトリ
ックスとからなる強化被覆層を備えたテープ状強化光フ
ァイバコードであって、前記強化被覆層で前記光ファイ
バ素線の外周を被覆した単心強化光ファイバコードを複
数本一列状に配置し、隣接する前記強化被覆層同士の界
面を前記熱可塑性樹脂の融着により一体化した。この構
成とすることによって、各単心強化光ファイバの熱可塑
性樹脂マトリックスの表面同士が熱融着することによっ
て、テープ状に集合された強化光ファイバとなるので、
従来の如く別のバインダを介在させたり、全体を被覆し
たものと比較して極めて、コンパクトな断面形状のもの
が得られ、かつ、接着剤や被覆樹脂も不要なので、低コ
ストになる。また、第二発明では、光ファイバ素線の外
周に縦添された補強繊維と、前記補強繊維を結着する熱
可塑性樹脂マトリックスとからなる強化被覆層を備えた
バンドル状強化光ファイバコードであって、前記強化被
覆層で前記光ファイバ素線の外周を被覆した単心強化光
ファイバコードを複数本束状に配置し、隣接する前記強
化被覆層同士の界面を前記熱可塑性樹脂マトリックスの
融着により一体化した。この構成とすることによって、
バンドル状強化光ファイバにおいても、第一発明と同様
に、コンパクト化と低コスト化が図られる。前記第一ま
たは第二本発明では、前記補強繊維は、複合繊維の高融
点成分であって、前記熱可塑性樹脂マトリックスが前記
複合繊維の低融点成分で構成することができる。この構
成とすることによって、サイドバイサイド型、鞘芯型、
複数分割型等の複合繊維の高融点成分を補強繊維とし、
低融点成分を溶融してマトリックスとしているので、単
心の強化被覆層において補強繊維は均等配置されるの
で、方向性が少なく、これを複数本テープ状又はバンド
ル状に束ねても当然に均一な保護強化層を有する信頼性
の高い強化光ファイバコードを提供できる。第三発明
は、製造方法の発明であり、光ファイバ素線の外周に縦
添された補強繊維と、前記補強繊維を結着する熱可塑性
樹脂マトリックスとからなる強化被覆層を備え、前記補
強繊維は、複合繊維の高融点成分であり、前記熱可塑性
樹脂マトリックスが前記複合繊維の低融点成分であっ
て、前記光ファイバ素線の外周に前記複合繊維を縦添え
した後に、前記低融点成分を溶融して前記強化被覆層で
前記補強繊維を結着させた単心強化光ファイバコードを
形成する工程と、この工程の後に、前記単心強化光ファ
イバコードを所定内径の成形ノズルに複数本導いて、前
記低融点成分の融点以上、前記高融点成分の融点以下の
温度でテープ状又はバンドル状に賦形する。このような
構成とすることによって、単心強化光ファイバの強化被
覆層が熱変形しつつ、単心強化光ファイバの表面同士が
融着するので、接着剤等を介在させる必要がなく、接着
剤の塗布装置や硬化装置等を要せず、簡潔にテープ状又
はバンドル状の強化光ファイバコードを製造できる。
Means for Solving the Problems In order to achieve the above object, a first aspect of the present invention is to provide a reinforcing fiber vertically attached to the outer periphery of an optical fiber and a thermoplastic resin matrix for binding the reinforcing fiber. A plurality of single-core reinforced optical fiber cords in which the outer periphery of the optical fiber is covered with the reinforced coating layer. The interface between the reinforced coating layers was integrated by fusing the thermoplastic resin. By adopting this configuration, the surfaces of the thermoplastic resin matrix of each single-core reinforced optical fiber are thermally fused to each other, so that the reinforced optical fiber is gathered in a tape shape.
Compared to a conventional one in which another binder is interposed or the whole is covered, a very compact cross-sectional shape can be obtained, and no adhesive or coating resin is required, so that the cost is reduced. Further, in the second invention, there is provided a bundled reinforced optical fiber cord provided with a reinforced coating layer comprising a reinforcing fiber longitudinally attached to the outer periphery of the optical fiber and a thermoplastic resin matrix binding the reinforcing fiber. A plurality of single-core reinforced optical fiber cords in which the outer periphery of the optical fiber is covered with the reinforced coating layer are arranged in a bundle, and an interface between adjacent reinforced coating layers is fused with the thermoplastic resin matrix. And integrated. With this configuration,
Also in the bundle-shaped reinforced optical fiber, as in the first invention, the size and cost can be reduced. In the first or second aspect of the present invention, the reinforcing fiber may be a high melting point component of the conjugate fiber, and the thermoplastic resin matrix may be formed of a low melting point component of the conjugate fiber. With this configuration, a side-by-side type, a sheath-core type,
The high melting point component of the composite fiber such as a multiple split type is used as a reinforcing fiber,
Since the low-melting-point component is melted to form a matrix, the reinforcing fibers are evenly arranged in the single-core reinforcing coating layer, so that there is little directionality, and even if this is bundled in a plurality of tapes or bundles, it is naturally uniform. A highly reliable reinforced optical fiber cord having a protective reinforced layer can be provided. The third invention is an invention of a manufacturing method, comprising a reinforcing fiber vertically attached to the outer periphery of the optical fiber, and a reinforcing coating layer comprising a thermoplastic resin matrix binding the reinforcing fiber, wherein the reinforcing fiber Is a high melting point component of the composite fiber, the thermoplastic resin matrix is a low melting point component of the composite fiber, after longitudinally adding the composite fiber to the outer periphery of the optical fiber, the low melting point component. A step of forming a single-core reinforced optical fiber cord in which the reinforcing fibers are bound by the reinforced coating layer, and after this step, a plurality of the single-core reinforced optical fiber cords are guided to a forming nozzle having a predetermined inner diameter. Then, it is shaped into a tape or a bundle at a temperature equal to or higher than the melting point of the low melting point component and equal to or lower than the melting point of the high melting point component. With such a configuration, the surfaces of the single-core reinforced optical fibers are fused together while the reinforcing coating layer of the single-core reinforced optical fiber is thermally deformed, so that it is not necessary to interpose an adhesive or the like, and the adhesive It is possible to simply manufacture a tape-shaped or bundle-shaped reinforced optical fiber cord without requiring a coating device or a curing device.

【0006】[0006]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて説明する。本発明において使用される単心強化光フ
ァイバコードは、光ファイバ素線の外周を被覆する強化
被覆層を抗張力性を有する補強繊維と、補強繊維の間隙
に存在して、これらを結着する熱可塑性樹脂マトリック
スとで構成する。この場合、マトリックスと補強繊維と
は、相互に相溶性を有するもの、もしくは、有しないも
ののいずれであってもよい。
Embodiments of the present invention will be described below. The single-core reinforced optical fiber cord used in the present invention has a reinforcing coating layer covering the outer circumference of the optical fiber, a reinforcing fiber having tensile strength, and a heat existing in the gap between the reinforcing fibers and binding them. It is composed of a plastic resin matrix. In this case, the matrix and the reinforcing fiber may be mutually compatible or non-compatible.

【0007】強化被覆層における、補強繊維の分散をよ
り均一にするためには、光ファイバ素線の外周に縦添え
した状態で溶融されてマトリックスとなる低融点成分
と、補強繊維となる高融点成分とを一体化した複合繊維
が好ましい。
In order to make the dispersion of the reinforcing fibers more uniform in the reinforced coating layer, a low melting point component which becomes a matrix when melted while being vertically attached to the outer periphery of the optical fiber and a high melting point which becomes the reinforcing fibers Composite fibers in which the components are integrated are preferred.

【0008】複合繊維としては、サイドバイサイド型、
鞘芯型、分割型等であって良いが、芯部の繊維を補強繊
維としてより均一な分散状態に配置できる点から、鞘部
と芯部とからなる鞘芯型複合繊維が好ましい。この場
合、鞘部の融点は、芯部の融点より20℃以上低いもの
が望ましい。
[0008] As the composite fiber, side-by-side type,
A sheath-core type, split type, or the like may be used, but a sheath-core type composite fiber comprising a sheath portion and a core portion is preferable because the fibers of the core portion can be arranged in a more uniform dispersion state as reinforcing fibers. In this case, the melting point of the sheath is desirably at least 20 ° C. lower than the melting point of the core.

【0009】本発明のテープ状又はバンドル状強化光フ
ァイバコードの製造方法では、単心強化光ファイバコー
ドを複数本挿通賦形するための型は、テープ又はバンド
ルの外形寸法に応じた内壁を有し、熱可塑性樹脂マトリ
ックスを溶融成形するための加熱制御手段を有してい
る。
In the method for producing a tape-shaped or bundle-shaped reinforced optical fiber cord according to the present invention, the mold for inserting and shaping a plurality of single-core reinforced optical fiber cords has an inner wall corresponding to the external dimensions of the tape or bundle. And a heating control means for melt-molding the thermoplastic resin matrix.

【0010】単心強化光ファイバコードは、成形ノズル
に挿通する前に予熱を施すと成形ノズルの長さは短く出
来、溶融賦形加工の引取り抵抗を低減できる。以下、本
発明について好適な実施例により説明する。なお、本願
発明は下記の実施例に制限されるものではない。
When the single-core reinforced optical fiber cord is preheated before being inserted into the forming nozzle, the length of the forming nozzle can be shortened, and the take-up resistance in the melt shaping process can be reduced. Hereinafter, preferred embodiments of the present invention will be described. The present invention is not limited to the following embodiments.

【0011】実施例 実施例1. Φ125μmの石英系光ファイバの外周にU
V樹脂被覆を施した外径Φ0.18mmのUV樹脂被覆
光ファイバ素線1をボビンクリールから供給し、その外
周に鞘部が融点125℃のポリエチレン(PE)、芯部
が融点250℃、ヤング率1200kg/cm2のポリ
エステル(PET)であって、鞘部と芯部の断面積比が
30/70の鞘芯複合繊維60デニールのもの4本を、
案内板を介して光ファイバ素線1の外周に縦添えし、鞘
部のみ溶融する温度である200℃に調温設定された、
内径0.27mmの金属製成形ノズルに通し、30m/
minで連続的に引取り、PET繊維を補強繊維2aと
し、PEをマトリックス2bとする外径0.25mmの
繊維強化熱可塑性プラスチック(FRTP)被覆の単心
強化光ファイバコード4を得た(図1参照)。
Embodiments Embodiment 1 The outer circumference of a quartz optical fiber of Φ125 μm
A UV resin-coated optical fiber 1 having an outer diameter of 0.18 mm and coated with a V resin is supplied from a bobbin creel, and its outer periphery is made of polyethylene (PE) having a melting point of 125 ° C., a core portion having a melting point of 250 ° C., and Young. A polyester (PET) having a rate of 1200 kg / cm 2 and a sheath / core composite fiber having a cross-sectional area ratio of 30/70 and a denier of 60/100 denier,
It was vertically attached to the outer periphery of the optical fiber 1 via the guide plate, and the temperature was set to 200 ° C., which is the temperature at which only the sheath portion was melted.
Through a metal forming nozzle with an inner diameter of 0.27 mm,
The fiber was continuously taken out at a time of 2 min, and a fiber-reinforced thermoplastic (FRTP) -coated single-core reinforced optical fiber cord 4 having an outer diameter of 0.25 mm and having a PET fiber as a reinforcing fiber 2a and a PE as a matrix 2b was obtained (FIG. 1).

【0012】図1に示した単心強化光ファイバコード4
は、中心に配置された光ファイバ素線1と、その外周に
被覆形成された強化被覆層2とを備えている。強化被覆
層2は、補強繊維2aと、マトリックス2bとを有して
いる。補強繊維2aは、光ファイバ素線1の外周に沿っ
て縦添されている。
The single-core reinforced optical fiber cord 4 shown in FIG.
Comprises an optical fiber 1 disposed at the center and a reinforced coating layer 2 formed on the outer periphery thereof. The reinforced coating layer 2 has a reinforcing fiber 2a and a matrix 2b. The reinforcing fibers 2 a are vertically attached along the outer periphery of the optical fiber 1.

【0013】得られた単心強化光ファイバコード4は、
0.65%伸度時の強力が0.5kg,FRTP部の引
張弾性率が850kg/mm2、最小曲げ直径3mm、
光伝送性能が0.35dB/kmと光コードに適した性
能を有したものである。
The obtained single-core reinforced optical fiber cord 4 is
0.5 kg of elongation at 0.65% elongation, 850 kg / mm 2 of tensile elasticity of FRTP part, minimum bending diameter of 3 mm,
The optical transmission performance is 0.35 dB / km, which is suitable for an optical code.

【0014】この単心強化光ファイバコード4を160
℃に予備加熱しつつ、4本平行かつ一列状に配置し、2
00℃に温度調整された高さ0.24mm、幅0.96
mmの長方形の孔断面形状で長さ5mmの金属製成形ノ
ズルに30m/minの速度で挿通して、図2に示す略
長方形断面を有し、0.24mm×0.96mmの薄肉
テープ状強化光ファイバコード5を得た。
The single-core reinforced optical fiber cord 4 is
While preheating to 4 ° C., four pieces are arranged in parallel and in a row.
0.24mm height, 0.96 width, temperature controlled to 00 ° C
2 mm at a speed of 30 m / min through a 5 mm long metal forming nozzle with a rectangular cross-sectional shape, and has a thin tape-like reinforcement of 0.24 mm x 0.96 mm having a substantially rectangular cross section shown in FIG. An optical fiber cord 5 was obtained.

【0015】図2に示したテープ状強化光ファイバコー
ド5は、強化被覆層2で光ファイバ素線1の外周を被覆
した単心強化光ファイバコード4を4本一列状に配置
し、隣接する強化被覆層2同士の界面を熱可塑性樹脂の
融着により一体化させた構造になっている。このテープ
状強化光ファイバコード5は、65%伸度時の応力が2
kgで実用上十分な物性を備えていた。得られたテープ
状強化光ファイバコード5の性能を表1にまとめて示
す。
In the tape-shaped reinforced optical fiber cord 5 shown in FIG. 2, four single-core reinforced optical fiber cords 4 in which the outer periphery of the optical fiber 1 is covered with the reinforced coating layer 2 are arranged in a line and are adjacent to each other. The interface between the reinforcing coating layers 2 is integrated by fusion of a thermoplastic resin. This tape-shaped reinforced optical fiber cord 5 has a stress at 65% elongation of 2%.
Kg had sufficient physical properties for practical use. The performance of the obtained tape-shaped reinforced optical fiber cord 5 is summarized in Table 1.

【0016】比較例1 Φ0.18mmのUV被覆光ファイバ素線1に、ヤング
率が1200kg/mm2の45デニールのPET繊維
を4本縦添えし、これに硬化性触媒を含むビニルエステ
ル樹脂を含浸して、内径0.25mmのノズルで絞り成
形した後、10m/minの速度で引取ながら、これを
溶融押出機のクロスヘッドに導き、ふっ化エチレンプロ
ピレン(FEP)樹脂を環状に押出して外径0.4mm
に被覆し、直ちに被覆層を冷却した後、140℃の蒸気
加熱槽中で内部のビニルエステル樹脂を硬化させて、F
EP被覆を剥離し、外径0.25mmの単心FRP被覆
光ファイバコード6を得た。
Comparative Example 1 Four 45-denier PET fibers having a Young's modulus of 1200 kg / mm 2 were vertically added to a UV-coated optical fiber 1 having a diameter of 0.18 mm, and a vinyl ester resin containing a curable catalyst was added thereto. After impregnating and drawing with a nozzle having an inner diameter of 0.25 mm, it is drawn at a speed of 10 m / min and led to a crosshead of a melt extruder to extrude an ethylene propylene (FEP) resin into an annular shape. 0.4mm in diameter
After cooling the coating layer immediately, the vinyl ester resin inside was cured in a steam heating tank at 140 ° C.
The EP coating was peeled off to obtain a single-core FRP-coated optical fiber cord 6 having an outer diameter of 0.25 mm.

【0017】この単心FRP被覆光ファイバコード6を
4本平行に配列し、その外周を透明な紫外線硬化性樹脂
7で一括被覆して、図3に示すテープ状FRP被覆光フ
ァイバコード8を得た。
Four single-core FRP-coated optical fiber cords 6 are arranged in parallel, and the outer periphery thereof is collectively covered with a transparent ultraviolet curable resin 7 to obtain a tape-shaped FRP-coated optical fiber cord 8 shown in FIG. Was.

【0018】得られたコード8は、ハンドリング等によ
りテープ状光ファイバコード8が単心コードに分岐しな
いように、紫外線硬化性樹脂7の被覆厚みを考慮したの
で、0.32mm×1.1mmと実施例1のものより、
大なる寸法のものとなった。
The obtained cord 8 has a thickness of 0.32 mm × 1.1 mm because the coating thickness of the ultraviolet curable resin 7 is taken into consideration so that the tape-shaped optical fiber cord 8 does not branch into a single-core cord due to handling or the like. From the example 1,
It was of large dimensions.

【0019】得られたテープ状強化光ファイバコード8
の性能を表1に示す。 なお、用いたビニルエステル樹
脂、紫外線硬化性樹脂は比較的高価であるため、テープ
状もしくはバンドル状光ファイバコードとするのに経済
的でないという問題点もあった。
The obtained tape-shaped reinforced optical fiber cord 8
Table 1 shows the performance. Since the vinyl ester resin and the ultraviolet curable resin used are relatively expensive, there is a problem that it is not economical to form a tape-shaped or bundle-shaped optical fiber cord.

【0020】実施例2 実施例1と同じ外径0.25mmの単心強化光ファイバ
コード4を、160℃に予備加熱しつつ略六角形状に7
本配置し、200℃に温度設定された、内径0.72m
mの金属製成形ノズルに30m/minの速度で挿通す
ることで、図4に示す略円形断面を有するバンドル状強
化光ファイバコード10を得た。
Embodiment 2 The same single-core reinforced optical fiber cord 4 having an outer diameter of 0.25 mm as in Embodiment 1 was preheated to 160.degree.
0.72m inside diameter with this arrangement and temperature set to 200 ° C
By passing through a metal forming nozzle of m at a speed of 30 m / min, a bundle-shaped reinforced optical fiber cord 10 having a substantially circular cross section shown in FIG. 4 was obtained.

【0021】図4に示した強化光ファイバコード10
は、第1実施例と同様に、光ファイバ素線1の外周に縦
添された補強繊維2aと、補強繊維2aを結着する熱可
塑性樹脂マトリックス2bとからなる強化被覆層2を備
えている。
The reinforced optical fiber cord 10 shown in FIG.
Is provided with a reinforced coating layer 2 composed of a reinforcing fiber 2a vertically attached to the outer periphery of the optical fiber 1 and a thermoplastic resin matrix 2b binding the reinforcing fiber 2a, as in the first embodiment. .

【0022】また、この強化光ファイバコード10は、
強化被覆層2で光ファイバ素線1の外周を被覆した単心
強化光ファイバコード4を複数本束状に配置し、隣接す
る強化被覆層2同士の界面を熱可塑性樹脂マトリックス
2bの融着により一体化させている。このバンドル状強
化光ファイバコード10は、65%伸度時の応力が3.
5kgで実用上十分な物性を備えていた。得られたコー
ドの性能を表1に示す。
The reinforced optical fiber cord 10 is
A plurality of single-core reinforced optical fiber cords 4 in which the outer periphery of the optical fiber 1 is covered with a reinforced coating layer 2 are arranged in a bundle, and the interface between adjacent reinforced coating layers 2 is fused by a thermoplastic resin matrix 2b. It is integrated. This bundle-shaped reinforced optical fiber cord 10 has a stress at 65% elongation of 3.%.
5 kg had practically sufficient physical properties. Table 1 shows the performance of the obtained cord.

【0023】比較例2 比較例1と同じ外径0.25mmの単心FRP被覆光フ
ァイバコード6を略六角形状に7本配置し、その外周に
透明な紫外線硬化性樹脂7を一括被覆して、図
COMPARATIVE EXAMPLE 2 Seven single-core FRP-coated optical fiber cords 6 having the same outer diameter of 0.25 mm as those of Comparative Example 1 were arranged in a substantially hexagonal shape, and the outer periphery thereof was covered with a transparent ultraviolet-curable resin 7 at a time. , Figure

【0024】5に示すバンドル状FRP被覆光ファイバ
コード11を得た。得られたコード11は、ハンドリン
グ等によりバンドル状光ファイバコードが単心コードに
分岐しないように、紫外線硬化性樹脂の被覆厚みを考慮
したので、最外径が0.8mmの六角断面形状となり、
実施例2の外寸0.72mmのものよりは大なる寸法と
なった。得られた光ファイバコードの性能を表1に示
す。
A bundled FRP-coated optical fiber cord 11 shown in FIG. 5 was obtained. The obtained cord 11 has a hexagonal cross-sectional shape with an outermost diameter of 0.8 mm, because the coating thickness of the ultraviolet curable resin is considered so that the bundled optical fiber cord does not branch into a single-core cord due to handling or the like.
The dimensions were larger than those of Example 2 having an outer dimension of 0.72 mm. Table 1 shows the performance of the obtained optical fiber cord.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【発明の効果】以上、実施例で詳細に説明したように、
本発明にかかるテープ状又はバンドル状強化光ファイバ
コードは、極めて小寸法に形成されているので、省スペ
ース化が図られ、また比較的高価な架橋性樹脂、紫外線
硬化性樹脂を使用しないのでコストの低減を図ることが
できる実用性の高いものである。本発明の製造方法で
は、単心のFRTP強化光ファイバコードを複数本、所
定形状の成形ノズルに挿通し、単心強化光ファイバコー
ド同士を熱融着するので、接着剤や、硬化性樹脂等を使
用せず、簡素な工程でテープ状又はバンドル状の強化光
ファイバコードを得ることができる。また、従来のFR
P被覆タイプに比べて柔軟性を有しており、かつ製造速
度も上げることができ、結果として経済的にも優れたも
のを提供できる。
As described above in detail in the embodiments,
Since the tape-shaped or bundle-shaped reinforced optical fiber cord according to the present invention is formed in a very small size, it is possible to save space and to use relatively expensive cross-linkable resin and ultraviolet-curable resin, so that the cost is reduced. It is a highly practical one that can reduce the amount of slag. In the manufacturing method of the present invention, a plurality of single-core FRTP reinforced optical fiber cords are inserted into a molding nozzle having a predetermined shape, and the single-core reinforced optical fiber cords are thermally fused to each other. Can be used to obtain a tape-shaped or bundle-shaped reinforced optical fiber cord by a simple process. In addition, conventional FR
Compared to the P-coated type, it has flexibility and can increase the production speed, and as a result, can provide an economically excellent product.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に使用する単心強化光ファイバコードの
一例を示す断面説明図である。
FIG. 1 is an explanatory sectional view showing an example of a single-core reinforced optical fiber cord used in the present invention.

【図2】本発明の実施例1のテープ状強化光ファイバコ
ードの断面説明図である。
FIG. 2 is an explanatory sectional view of the tape-shaped reinforced optical fiber cord according to the first embodiment of the present invention.

【図3】比較例1のテープ状FRP強化光ファイバコー
ドの断面説明図である。
FIG. 3 is an explanatory sectional view of a tape-shaped FRP reinforced optical fiber cord of Comparative Example 1.

【図4】本発明の実施例2のバンドル状強化光ファイバ
コードの断面説明図である。
FIG. 4 is an explanatory sectional view of a bundled reinforced optical fiber cord according to a second embodiment of the present invention.

【図5】比較例2のバンドル状FRP強化光ファイバコ
ードの断面説明図である。
FIG. 5 is an explanatory sectional view of a bundled FRP reinforced optical fiber cord of Comparative Example 2.

【符号の簡単な説明】[Brief description of reference numerals]

1 光ファイバ素線 2 強化被覆層 2a 補強繊維 2b 熱可塑性樹脂マトリックス 4 単心強化光ファイバコード 5 テープ状強化光ファイバコード 10 バンドル状強化光ファイバコード DESCRIPTION OF SYMBOLS 1 Optical fiber 2 Reinforcement coating layer 2a Reinforcement fiber 2b Thermoplastic resin matrix 4 Single core reinforced optical fiber cord 5 Tape-shaped reinforced optical fiber cord 10 Bundle-shaped reinforced optical fiber cord

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバ素線の外周に縦添された補強
繊維と、前記補強繊維を結着する熱可塑性樹脂マトリッ
クスとからなる強化被覆層を備えたテープ状強化光ファ
イバコードであって、 前記強化被覆層で前記光ファイバ素線の外周を被覆した
単心強化光ファイバコードを複数本一列状に配置し、隣
接する前記強化被覆層同士の界面を前記熱可塑性樹脂の
融着により一体化したことを特徴とする強化光ファイバ
コード。
1. A tape-shaped reinforced optical fiber cord comprising a reinforced coating layer comprising a reinforcing fiber vertically attached to an outer periphery of an optical fiber and a thermoplastic resin matrix binding the reinforcing fiber, A plurality of single-core reinforced optical fiber cords in which the outer periphery of the optical fiber is covered with the reinforced coating layer are arranged in a line, and an interface between adjacent reinforced coating layers is integrated by fusing the thermoplastic resin. A reinforced optical fiber cord characterized in that:
【請求項2】 光ファイバ素線の外周に縦添された補強
繊維と、前記補強繊維を結着する熱可塑性樹脂マトリッ
クスとからなる強化被覆層を備えたバンドル状強化光フ
ァイバコードであって、 前記強化被覆層で前記光ファイバ素線の外周を被覆した
単心強化光ファイバコードを複数本束状に配置し、隣接
する前記強化被覆層同士の界面を前記熱可塑性樹脂マト
リックスの融着により一体化したことを特徴とする強化
光ファイバコード。
2. A bundle-shaped reinforced optical fiber cord comprising a reinforced coating layer comprising a reinforcing fiber longitudinally attached to an outer periphery of an optical fiber and a thermoplastic resin matrix binding the reinforcing fiber, A plurality of single-core reinforced optical fiber cords in which the outer periphery of the optical fiber is covered with the reinforced coating layer are arranged in a bundle, and an interface between adjacent reinforced coating layers is integrated by fusion of the thermoplastic resin matrix. A reinforced optical fiber cord characterized in that
【請求項3】 前記補強繊維は、複合繊維の高融点成分
であって、前記熱可塑性樹脂マトリックスが前記複合繊
維の低融点成分であることを特徴とする請求項1または
2記載の強化光ファイバコード。
3. The reinforced optical fiber according to claim 1, wherein the reinforcing fiber is a high melting point component of the conjugate fiber, and the thermoplastic resin matrix is a low melting point component of the conjugate fiber. code.
【請求項4】 光ファイバ素線の外周に縦添された補強
繊維と、前記補強繊維を結着する熱可塑性樹脂マトリッ
クスとからなる強化被覆層を備え、 前記補強繊維は、複合繊維の高融点成分であり、前記熱
可塑性樹脂マトリックスが前記複合繊維の低融点成分で
あって、 前記光ファイバ素線の外周に前記複合繊維を縦添えした
後に、前記低融点成分を溶融して前記強化被覆層で前記
補強繊維を結着させた単心強化光ファイバコードを形成
する工程と、 この工程の後に、前記単心強化光ファイバコードを所定
内径の成形ノズルに複数本導いて、前記低融点成分の融
点以上、前記高融点成分の融点以下の温度でテープ状又
はバンドル状に賦形することを特徴とする強化光ファイ
バコードの製造方法。
4. A reinforcing fiber layer comprising a reinforcing fiber vertically attached to an outer periphery of an optical fiber and a thermoplastic resin matrix binding the reinforcing fiber, wherein the reinforcing fiber has a high melting point of the composite fiber. Component, wherein the thermoplastic resin matrix is a low-melting component of the conjugate fiber, and after vertically attaching the conjugate fiber to the outer periphery of the optical fiber, the low-melting component is melted to form the reinforced coating layer. A step of forming a single-core reinforced optical fiber cord having the reinforcing fibers bound thereto, and after this step, a plurality of the single-core reinforced optical fiber cords are guided to a molding nozzle having a predetermined inner diameter, and the low melting point component A method for producing a reinforced optical fiber cord, comprising shaping a tape or a bundle at a temperature not lower than the melting point and not higher than the melting point of the high melting point component.
JP15571798A 1998-06-04 1998-06-04 Reinforced optical fiber cord and manufacturing method thereof Expired - Lifetime JP3940500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15571798A JP3940500B2 (en) 1998-06-04 1998-06-04 Reinforced optical fiber cord and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15571798A JP3940500B2 (en) 1998-06-04 1998-06-04 Reinforced optical fiber cord and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11352369A true JPH11352369A (en) 1999-12-24
JP3940500B2 JP3940500B2 (en) 2007-07-04

Family

ID=15611958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15571798A Expired - Lifetime JP3940500B2 (en) 1998-06-04 1998-06-04 Reinforced optical fiber cord and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3940500B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100360982B1 (en) * 1998-12-31 2003-01-08 주식회사 머큐리 Ribbon Fluorescent Cord and Manufacturing Method
KR100373235B1 (en) * 2000-11-01 2003-02-25 최연배 Optical fiber cable manufacturing process
JP2008134358A (en) * 2006-11-28 2008-06-12 Toyobo Co Ltd Fiber cord tension member
CN115877529A (en) * 2023-01-04 2023-03-31 江苏中天科技股份有限公司 Fiber-reinforced optical cable and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100360982B1 (en) * 1998-12-31 2003-01-08 주식회사 머큐리 Ribbon Fluorescent Cord and Manufacturing Method
KR100373235B1 (en) * 2000-11-01 2003-02-25 최연배 Optical fiber cable manufacturing process
JP2008134358A (en) * 2006-11-28 2008-06-12 Toyobo Co Ltd Fiber cord tension member
CN115877529A (en) * 2023-01-04 2023-03-31 江苏中天科技股份有限公司 Fiber-reinforced optical cable and manufacturing method thereof

Also Published As

Publication number Publication date
JP3940500B2 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
EP0375896B1 (en) Twisted FRP structure and process for manufacturing the same
CA1301421C (en) Continuous molding method for rod-like product
CA1269552A (en) Reinforced optical fiber and production of the same
EP1411378A2 (en) Non-round filler rods and tubes with superabsorbent water swellable material for large optical cables
US5016973A (en) Cable reinforcement for an optical fiber cable
JP2005148373A (en) FRP tensile body and drop optical fiber cable
US5830304A (en) Method for producing a tension-resistance core element for a cable
JP3940500B2 (en) Reinforced optical fiber cord and manufacturing method thereof
JP2849418B2 (en) Tension member for reinforcing optical fiber ribbon and method of manufacturing the same
JP4116968B2 (en) FRP tensile body for drop optical fiber cable
JP2869116B2 (en) Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same
JP3596983B2 (en) Fiber reinforced optical fiber cord and method of manufacturing the same
JP2996481B2 (en) Method for manufacturing fiber reinforced curable resin spacer for supporting optical fiber
US20240353639A1 (en) Optical fiber cable and method for manufacturing optical fiber cable
CN217484556U (en) 5G sheath optical cable capable of being welded quickly
JP4242802B2 (en) Optical fiber cord
JPH11237537A (en) Reinforced optical fiber cord
JP2849421B2 (en) Optical fiber supporting spacer and method of manufacturing the same
JP3104926B2 (en) Manufacturing method of single groove spiral slot
JP2018180126A (en) Optical fiber cable and method of manufacturing optical fiber cable
JPH0749450Y2 (en) Fiber Optic Tension Member
JPH0428082Y2 (en)
JPS59213647A (en) Manufacturing method of optical fiber core wire
JP3940498B2 (en) Reinforced optical fiber cord
JPH02131923A (en) Manufacture of long sized fiber reinforced plastic(frp) material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term