[go: up one dir, main page]

JPH11347400A - Deoxidizing agent package body - Google Patents

Deoxidizing agent package body

Info

Publication number
JPH11347400A
JPH11347400A JP15286098A JP15286098A JPH11347400A JP H11347400 A JPH11347400 A JP H11347400A JP 15286098 A JP15286098 A JP 15286098A JP 15286098 A JP15286098 A JP 15286098A JP H11347400 A JPH11347400 A JP H11347400A
Authority
JP
Japan
Prior art keywords
oxygen
polymer
packaging material
crosslinked
crosslinked polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15286098A
Other languages
Japanese (ja)
Other versions
JP4178334B2 (en
Inventor
Masukazu Hirata
益一 平田
Kazuhiro Otsu
和弘 大津
Noriyuki Kimura
紀之 木村
Takahiro Seki
高宏 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP15286098A priority Critical patent/JP4178334B2/en
Publication of JPH11347400A publication Critical patent/JPH11347400A/en
Application granted granted Critical
Publication of JP4178334B2 publication Critical patent/JP4178334B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable application in a wide range of humidities by partially or wholly coating with a gas-permeable packaging material powdery or granular deoxidizing constituent having a particular average particle size, and prepared by partially crosslinking a diene polymer or the like having particular C-C unsaturated bond and crosslinkage. SOLUTION: This deoxidizing agent package body is prepared by coating partially or wholly with a gas-permeable packaging material 2 a powdery or granular deoxidizing constituent 1 having an average particle size of 0.01-5 mm, comprising a crosslinked polymer prepared by partially crosslinking a diene polymer or a copolymer of a diene with another unsaturated compound, having 0.0001-0.025 mol of C-C unsaturated bond and 0.0001-0.02 mol of crosslinkage per gram of crosslinked polymer molecule. The crosslinked polymer is preferred to have a flexural modulus of elasticity of 0.1 Mpa or higher at 25 deg.C, a flexural strength of 100 Mpa or lower and a linear expansion of 50% or lower when being swollen by immersion in toluene for one day.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、脱酸素性能に優
れ、かつ乾燥状態から高湿度状態までの広い湿度範囲に
おいて使用可能な脱酸素剤包装体に関する。本発明の包
装体脱酸素剤は、食品、医薬品、金属製品や電子製品な
どの、酸素の影響を受けて変質し易い各種物品の酸化を
防止して、長期の保存を可能とする目的に使用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxygen-absorbing agent package having excellent oxygen-absorbing performance and usable in a wide humidity range from a dry state to a high humidity state. The package oxygen absorber of the present invention is used for the purpose of preventing the oxidation of various articles which are susceptible to deterioration under the influence of oxygen, such as foods, pharmaceuticals, metal products and electronic products, and enabling long-term storage. Is done.

【0002】[0002]

【従来の技術】食品、医薬品、金属製品や電子製品に代
表される、酸素の影響を受けて変質し易い各種物品の酸
化を防止する目的で、これらを収納した包装容器や包装
袋内の酸素除去を行う脱酸素剤が従来より使用されてい
る。この脱酸素剤として初期に開発され現在も多く使用
されている形態は、粉状または粒状の脱酸素成分を包材
に入れた小袋型のものである(特公昭56−5061
8、特公昭62−6846など)。また、脱酸素成分を
練り込んだ樹脂からなる層を含む単層または多層のシー
トの形状として、そのシートの小片を包材に入れて、ラ
ベル型、カード型、パッキング型などにした形態がある
(特開平7−219430、特開平7−137759な
ど)。
2. Description of the Related Art For the purpose of preventing the oxidation of various articles, such as foods, pharmaceuticals, metal products and electronic products, which are susceptible to deterioration under the influence of oxygen, oxygen contained in a packaging container or a packaging bag containing them is used. Deoxidizers for removal have been used in the past. A form initially developed and still widely used as this oxygen absorber is a small bag type containing a powdery or granular oxygen absorber in a packaging material (JP-B-56-5061).
8, Japanese Patent Publication No. 62-6846). Further, as a shape of a single-layer or multi-layer sheet including a layer made of a resin into which a deoxygenating component is kneaded, there is a form in which a small piece of the sheet is put into a packaging material to be a label type, a card type, a packing type, and the like. (For example, JP-A-7-219430 and JP-A-7-137759).

【0003】脱酸素成分としては、現在、鉄粉が最も多
く用いられている。しかし、この鉄粉などの金属粉を酸
化させるには、水分が必要であり、脱酸素の対象となる
系に水分が少ない場合(以下、乾燥系と呼ぶ)には、脱
酸素が生じないか、または速度が極めて低かった。これ
に対して、本発明者らは、高湿度の系だけでなく乾燥系
でも使用可能で、その全てが固体で扱い易い、粉状また
は粒状の脱酸素成分を先に提案した(特願平9−174
348)。この脱酸素成分は、炭素−炭素不飽和結合を
有する有機化合物に適度な架橋構造を導入したものであ
り、粉状または粒状としてその表面積を大きくすること
で、同時に優れた脱酸素性能を得た。以上のように、新
規な脱酸素成分を得ることはできたが、粉または粒その
ものの状態では食品等の各種物品に用いることはでき
ず、実際に直接使用できる脱酸素剤包装体の形態にする
必要があった。
At present, iron powder is most frequently used as a deoxidizing component. However, in order to oxidize metal powder such as iron powder, moisture is required, and if the system to be deoxidized has a small amount of moisture (hereinafter referred to as a drying system), is there any possibility that deoxidation will occur? Or the speed was very low. On the other hand, the present inventors have previously proposed a powdery or granular deoxygenation component which can be used not only in a high-humidity system but also in a drying system, and all of which are solid and easy to handle (Japanese Patent Application No. Hei 10-284,837). 9-174
348). This deoxygenation component is obtained by introducing an appropriate cross-linking structure into an organic compound having a carbon-carbon unsaturated bond, and simultaneously obtaining excellent deoxygenation performance by increasing the surface area as a powder or a granule. . As described above, a new oxygen-absorbing component could be obtained, but in the form of powder or granules, it could not be used for various articles such as foods. I needed to.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、前記
の問題点を解決して、脱酸素性能に優れ、乾燥状態から
高湿度状態までの広い湿度範囲において使用でき、各種
物品に接触させても問題のない脱酸素剤包装体を提供す
ることにある。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems, to provide excellent deoxidation performance, to be used in a wide humidity range from a dry state to a high humidity state, and to contact various articles. Another object of the present invention is to provide an oxygen absorber package having no problem.

【0005】[0005]

【課題を解決するための手段】発明者らは、鋭意検討を
重ねた結果、炭素−炭素不飽和結合を有する架橋高分子
からなる脱酸素成分を通気性の包材で被覆することによ
り、各種物品に接触させても問題がなく乾燥状態の物品
等の保存に好適な脱酸素剤包装体となることを見出し
て、本発明を完成した。
Means for Solving the Problems As a result of intensive studies, the inventors have found that by coating a deoxygenating component comprising a crosslinked polymer having a carbon-carbon unsaturated bond with a gas-permeable packaging material, various types of materials can be obtained. The present inventors have found that the oxygen-absorbing agent package is suitable for preserving dry articles without any problem even when brought into contact with the articles, thereby completing the present invention.

【0006】本発明は、架橋高分子1g 当たり0.00
1〜0.025mol の炭素−炭素不飽和結合と0.00
01〜0.02mol の架橋点とを含有する、ジエンの重
合体又はジエンと他の不飽和化合物との共重合体を部分
架橋させた架橋高分子からなる平均粒径が0.01〜5
mmの粉状又は粒状の脱酸素成分を、一部又は全部が通気
性の包材で被覆してなる脱酸素剤包装体に関する。また
本発明は、架橋高分子1g 当たり0.001〜0.02
5mol の炭素−炭素不飽和結合と0.0001〜0.0
2mol の架橋点とを含有する、ジエンの重合体又はジエ
ンと他の不飽和化合物との共重合体を部分架橋させた架
橋高分子からなる平均粒径が0.01〜5mmの粉状又は
粒状の脱酸素成分を、熱可塑性樹脂中に分散させてから
シート又はフィルムに成形し、このシート又はフィルム
の小片を一部又は全部が通気性の包材で被覆してなる脱
酸素剤包装体に関する。また本発明は、架橋高分子1g
当たり0.001〜0.025mol の炭素−炭素不飽和
結合と0.0001〜0.02mol の架橋点とを含有す
る、ジエンの重合体又はジエンと他の不飽和化合物との
共重合体を部分架橋させた架橋高分子からなる平均粒径
が0.01〜5mmの粉状又は粒状の脱酸素成分を、熱可
塑性樹脂中に分散させてからシート又はフィルムに成形
し、延伸して連続微多孔化されたシート又はフィルムの
小片を一部又は全部が通気性の包材で被覆してなる脱酸
素剤包装体に関する。また本発明は、これらの脱酸素剤
包装体の包材表面の一部に粘着性を付与してなるラベル
型の脱酸素剤包装体に関する。また本発明は、これらの
脱酸素剤包装体の包材の一部に強固な基材を用いてなる
カード型の脱酸素剤包装体に関する。また本発明は、こ
れらの脱酸素剤包装体の脱酸素剤包装体の包材の一部に
柔軟な基材を用いてなるパッキング型の脱酸素剤包装体
に関する。
[0006] The present invention relates to a method for producing a polymer comprising 0.00 g of a crosslinked polymer.
1 to 0.025 mol of carbon-carbon unsaturated bonds and 0.00
An average particle size of a crosslinked polymer partially crosslinked from a diene polymer or a copolymer of a diene and another unsaturated compound, having a crosslinking point of from 0.01 to 0.02 mol, having an average particle size of 0.01 to 5
The present invention relates to an oxygen-absorbing agent package in which a powdery or granular oxygen-absorbing component having a thickness of mm is partially or entirely covered with a gas-permeable packaging material. In addition, the present invention provides a method for producing a polymer comprising:
5 mol of carbon-carbon unsaturated bonds and 0.0001 to 0.0
A powdery or granular material having an average particle size of 0.01 to 5 mm, comprising a crosslinked polymer partially crosslinked with a diene polymer or a copolymer of a diene and another unsaturated compound containing 2 mol of crosslinking points; The oxygen-absorbing component is dispersed in a thermoplastic resin and then molded into a sheet or film, and a small or small piece of the sheet or film is partially or entirely covered with a gas-permeable packaging material. . Also, the present invention provides a crosslinked polymer 1 g
Per part of a diene polymer or a copolymer of diene and another unsaturated compound containing 0.001 to 0.025 mol of carbon-carbon unsaturated bonds and 0.0001 to 0.02 mol of crosslinking points per molecule. A powdery or granular deoxygenating component having an average particle size of 0.01 to 5 mm composed of a crosslinked crosslinked polymer is dispersed in a thermoplastic resin, then molded into a sheet or film, and stretched to obtain a continuous microporous material. TECHNICAL FIELD The present invention relates to an oxygen-absorbing agent package obtained by partially or entirely covering small pieces of a formed sheet or film with a gas-permeable packaging material. In addition, the present invention relates to a label-type oxygen-absorbing agent package obtained by imparting adhesiveness to a part of the surface of the packaging material of the oxygen-absorbing agent package. In addition, the present invention relates to a card-type oxygen absorber package using a strong base material as a part of the packaging material of the oxygen absorber package. The present invention also relates to a packing type oxygen absorber package using a flexible base material as a part of the oxygen absorber package of the oxygen absorber package.

【0007】[0007]

【発明の実施の形態】本発明における架橋高分子とは、
架橋高分子1g 当たり0.001〜0.025mol の炭
素−炭素不飽和結合と0.0001〜0.02mol の架
橋点とを含有する、ジエンの重合体又はジエンと他の不
飽和化合物との共重合体を部分架橋させた高分子化合物
のことである。
BEST MODE FOR CARRYING OUT THE INVENTION The crosslinked polymer in the present invention is
Polymers of diene or copolymers of diene and other unsaturated compounds containing from 0.001 to 0.025 mol of carbon-carbon unsaturated bonds and from 0.0001 to 0.02 mol of crosslinking points per gram of crosslinked polymer. A high molecular compound obtained by partially cross-linking a polymer.

【0008】本発明における架橋とは、共有結合からな
る架橋を言う。この場合、種々の共有結合を利用できる
が、架橋高分子に耐熱性を与えるためには、C−C、C
−O、C−Nなどの高い結合エネルギーを持つ結合によ
る架橋構造が望ましい。このような架橋構造の導入によ
り、分子が巨大化し不溶、不融となるため、扱い易い脱
酸素成分になって、その応用範囲が広がる。また、担体
などが不要となるため、単位重量当たりの酸素吸収量が
増加する。
The term “crosslink” in the present invention refers to a crosslink consisting of a covalent bond. In this case, various covalent bonds can be used, but in order to impart heat resistance to the crosslinked polymer, C-C, C-
A crosslinked structure by a bond having a high binding energy such as -O or CN is desirable. By introducing such a crosslinked structure, the molecules become large and become insoluble or infusible, so that they become easy-to-handle deoxygenating components and their application range is expanded. In addition, since a carrier or the like is not required, the amount of oxygen absorbed per unit weight increases.

【0009】本発明における架橋高分子の製造には、高
分子化学において知られている各種の方法を用いること
ができる。例えば、比較的分子量が小さい単独種または
複数種のモノマー(官能基数が3以上のものを一部含
み、全体の平均官能基数は2よりも大きい)を直接重合
して架橋高分子を得てもよいし、比較的分子量が大きな
オリゴマーやポリマーを後から架橋して架橋高分子を得
てもよい。これらのうち、重合熱の発生が少なく大量生
産向きの後者の方法が適当である。後から架橋を行う方
法としては、通常の物理的または化学的な手段を用いる
ことが可能である。物理的な架橋方法には、単純な高温
加熱、電磁波(紫外線、γ線、マイクロ波など)、粒子
線(電子線など)、超音波などの照射による方法があ
り、化学的な架橋方法には、開始剤や架橋剤として知ら
れる各種のラジカル発生剤を用いた反応による方法があ
る。これらのうちでは、ラジカル発生剤として有機過酸
化物を用いた架橋反応による方法が最も簡便である。ま
た、ラジカル発生剤由来の低分子化合物の架橋高分子中
への残留を防ぐことまで考慮するならば、電子線照射や
酸素存在下での放電などで架橋を行えばよい。化学的な
架橋を用いた具体的な粉状または粒状の架橋高分子の製
造方法は以下となる。すなわち、まず、架橋前の有機化
合物(被架橋物)とラジカル発生剤との混合物に対し
て、塊状態での架橋、溶液状態での架橋、懸濁状態や乳
化状態での架橋などのいずれかを行う。その後、粉状ま
たは粒状の固体とするために、塊状態での架橋であれば
粉砕、溶液状態での架橋であれば乾燥と粉砕、懸濁状態
や乳化状態での架橋であれば液相の分離と乾燥を行う。
これらのうちの各単位操作については、化学工学的に知
られている多くの手法と装置が使用可能である。
Various methods known in polymer chemistry can be used for producing the crosslinked polymer in the present invention. For example, a crosslinked polymer can be obtained by directly polymerizing a single or plural types of monomers having a relatively small molecular weight (including some of which have three or more functional groups, and having a total average functional group of more than 2). Alternatively, a crosslinked polymer may be obtained by later crosslinking an oligomer or polymer having a relatively large molecular weight. Of these, the latter method, which generates less heat of polymerization and is suitable for mass production, is suitable. As a method for performing crosslinking later, it is possible to use ordinary physical or chemical means. Physical crosslinking methods include simple high-temperature heating, irradiation with electromagnetic waves (ultraviolet rays, γ rays, microwaves, etc.), particle beams (electrons, etc.), and ultrasonic waves. Chemical crosslinking methods include And a method using a reaction using various radical generators known as an initiator or a crosslinking agent. Among these, a method by a crosslinking reaction using an organic peroxide as a radical generator is the simplest. In addition, if it is taken into consideration to prevent the low molecular compound derived from the radical generator from remaining in the crosslinked polymer, the crosslinking may be performed by electron beam irradiation, discharge in the presence of oxygen, or the like. A specific method for producing a powdery or granular crosslinked polymer using chemical crosslinking is as follows. That is, first, the mixture of the organic compound (substance to be crosslinked) and the radical generator before crosslinking is crosslinked in a lump state, crosslinked in a solution state, crosslinked in a suspension state or an emulsified state, or the like. I do. Then, in order to make a powdery or granular solid, pulverization in the case of crosslinking in a lump state, drying and pulverization in the case of crosslinking in a solution state, and liquid phase in the case of crosslinking in a suspension state or an emulsification state. Separate and dry.
For each of these unit operations, many techniques and devices known from chemical engineering can be used.

【0010】本発明における架橋高分子は、平均粒径が
0.01〜5mmの粉状または粒状であり、望ましい粒径
の範囲は、0.03〜0.5mmである。粒径が大き過ぎ
ると酸素吸収速度が低くなり過ぎ、粒径が小さ過ぎると
粉塵爆発などの危険性が生じる。本発明においては、脱
酸素成分として平均粒径が0.01〜5mmの粉状または
粒状の架橋高分子を用いる。
The crosslinked polymer in the present invention is in the form of powder or granules having an average particle size of 0.01 to 5 mm, and a preferable range of the particle size is 0.03 to 0.5 mm. If the particle size is too large, the oxygen absorption rate becomes too low, and if the particle size is too small, there is a danger such as dust explosion. In the present invention, a powdery or granular crosslinked polymer having an average particle size of 0.01 to 5 mm is used as a deoxidizing component.

【0011】本発明における架橋高分子中の架橋の程度
は、粉または粒を得ることが容易であり、同時に適当な
耐熱性や酸素吸収性能が得られるような範囲で設定され
る必要がある。このような適当な架橋の程度は被架橋物
の分子構造や分子量によっても変化するが、架橋高分子
1g 当たり0.0001〜0.02mol の架橋点を含
む。その結果、たとえば塊状態での架橋の後に粉砕する
場合には、適度な架橋により架橋高分子の可塑性が低下
し、脆くなって粉砕が容易になる。
The degree of cross-linking in the cross-linked polymer in the present invention must be set within such a range that powder or granules can be easily obtained and at the same time, appropriate heat resistance and oxygen absorption performance can be obtained. The appropriate degree of crosslinking varies depending on the molecular structure and molecular weight of the object to be crosslinked, but includes 0.0001 to 0.02 mol of crosslinking points per gram of the crosslinked polymer. As a result, for example, in the case of pulverization after cross-linking in a lump state, the plasticity of the cross-linked polymer is reduced due to appropriate cross-linking, and the cross-linked polymer becomes brittle to facilitate pulverization.

【0012】架橋による物性の変化として、本発明にお
ける架橋高分子は、25℃における曲げ弾性率が0.1
MPa 以上であることが好ましく、1MPa 以上がより好ま
しく、10MPa 以上が更に好ましい。また、本発明にお
ける架橋高分子は、25℃における曲げ強度(破壊強
度)が少なくとも100MPa 以下であることが好まし
く、10MPa 以下がより好ましい。また、本発明におけ
る架橋高分子は、25℃においてトルエンに1日浸漬し
た後の線膨張(一方向での増加分)が50%以下である
ことが好ましい。
As a change in physical properties due to crosslinking, the crosslinked polymer of the present invention has a flexural modulus at 25 ° C. of 0.1.
It is preferably at least MPa, more preferably at least 1 MPa, even more preferably at least 10 MPa. Further, the crosslinked polymer in the present invention preferably has a bending strength (breaking strength) at 25 ° C. of at least 100 MPa or less, more preferably 10 MPa or less. Further, the crosslinked polymer in the present invention preferably has a linear expansion (increase in one direction) of 50% or less after immersion in toluene at 25 ° C. for one day.

【0013】耐熱性と架橋の程度との関係では、粉また
は粒のままで脱酸素剤として用いる場合には100℃以
上まで、望ましくは150℃以上まで、樹脂に練り込ん
で各種の形態で用いる場合には150℃以上まで、望ま
しくは200℃以上まで、流動または相互に付着しない
ように架橋する。これにより、各使用形態において脱酸
素成分を固体状態に保たせることができ、鉄粉の場合と
同じように脱酸素剤とすることができる。
With respect to the relationship between heat resistance and degree of crosslinking, when powder or granules are used as an oxygen scavenger, they are kneaded in a resin up to 100 ° C. or higher, preferably 150 ° C. or higher, and used in various forms. In some cases, the crosslinking is carried out up to 150 ° C. or more, preferably up to 200 ° C. or more so as not to flow or adhere to each other. Thereby, the deoxidizing component can be kept in a solid state in each use form, and can be used as a deoxidizing agent as in the case of iron powder.

【0014】酸素吸収性能と架橋の程度との関係では、
炭素−炭素不飽和結合を含む有機化合物を被架橋物に用
いれば、主に同結合(正確には同結合の炭素とそれに隣
接する炭素)が架橋に関与するが、同結合は酸素との反
応にも必要であるため、同結合を適度に残す必要があ
る。具体的には、1分子中に複数の炭素−炭素不飽和結
合を含む有機化合物を用い、同結合の一部のみを用いて
架橋して、架橋後も1g当たり0.001〜0.025m
ol の炭素−炭素不飽和結合を残す。
In relation to the oxygen absorption performance and the degree of crosslinking,
When an organic compound containing a carbon-carbon unsaturated bond is used for the object to be crosslinked, the same bond (precisely, the carbon having the same bond and the carbon adjacent thereto) mainly participates in the crosslinking, but the same bond reacts with oxygen. Therefore, it is necessary to leave the bond appropriately. Specifically, an organic compound containing a plurality of carbon-carbon unsaturated bonds in one molecule is used, cross-linking is performed using only a part of the bonds, and 0.001 to 0.025 m / g after cross-linking.
leaving a carbon-carbon unsaturated bond of ol.

【0015】本発明の脱酸素成分としては、架橋高分子
に通常の有機化合物の自動酸化において知られている各
種の金属または金属化合物を触媒として添加し、脱酸素
成分の酸化反応を未添加の場合よりも促進させることが
好ましい。ただし、粒径を小さくすることでも反応性が
高まるため、十分に小さくすれば、この触媒を添加せず
に適度な酸化速度を得ることも可能である。また、一般
に、粒径が小さいほど触媒は少なくてよい。さらに、被
架橋物として各種の重合体を用いる場合には、残留して
いる微量の重合触媒のみで、有効な酸化触媒となる可能
性もある。触媒として用いる金属または金属化合物中の
金属種としては、特に限定されないが、その電子状態が
触媒向けであることからも特に遷移金属が望ましい。こ
の金属種のうち、特に高活性の触媒作用を示すものとし
てコバルトが知られており、また、比較的安全なものと
して鉄やマンガンが知られている。触媒は、架橋前に被
架橋物と、特に化学的架橋では被架橋物およびラジカル
発生剤と、混合される。これにより、触媒が均一に分散
または溶解され、架橋後も均一に含まれることになる。
ここで、触媒がさらに均一に分散または溶解できるよう
に、被架橋物である有機化合物に対する溶解性の高い触
媒を用いることが望ましい。具体的には金属の脂肪酸塩
などである。その場合、脂肪酸部分に炭素−炭素不飽和
結合を含んでいれば、架橋高分子中に組み込むことも可
能となる。脱酸素成分中の触媒は架橋構造中に取り込ま
れるため、脱酸素成分から触媒が漏れ出すことが少な
い。その結果、この脱酸素成分をマトリックス成分とな
る熱可塑性樹脂に練り込んで使用する場合にも、触媒が
脱酸素成分から漏れ出し難いために、マトリックス成分
の酸化による劣化が最小限に抑えられる。本発明の脱酸
素成分では、同じく自動酸化において知られているよう
に、光(主に紫外領域)の照射によっても酸化反応が促
進される。しかし、粉または粒が小さいことにより、さ
らに触媒を添加する場合にはその触媒の作用もあること
により、光の照射は必須ではない。
As the deoxidizing component of the present invention, various metals or metal compounds known in the autoxidation of ordinary organic compounds are added to the crosslinked polymer as a catalyst, and the oxidation reaction of the deoxidizing component is not added. It is preferable to promote it more than the case. However, even if the particle size is reduced, the reactivity is increased. Therefore, if the particle size is sufficiently reduced, an appropriate oxidation rate can be obtained without adding this catalyst. Also, in general, the smaller the particle size, the less the catalyst may be. Further, when various polymers are used as the object to be crosslinked, there is a possibility that an effective oxidation catalyst may be obtained with only a small amount of the remaining polymerization catalyst. The metal used in the catalyst or the metal species in the metal compound is not particularly limited, but a transition metal is particularly desirable because its electronic state is for a catalyst. Of these metal species, cobalt is known to exhibit particularly high catalytic activity, and iron and manganese are known to be relatively safe. The catalyst is mixed with the object to be cross-linked before cross-linking, particularly in the case of chemical cross-linking, with the object to be cross-linked and a radical generator. As a result, the catalyst is uniformly dispersed or dissolved, and is uniformly contained even after crosslinking.
Here, it is desirable to use a catalyst having high solubility in the organic compound to be crosslinked so that the catalyst can be more uniformly dispersed or dissolved. Specific examples include metal fatty acid salts. In that case, if the fatty acid portion contains a carbon-carbon unsaturated bond, it can be incorporated into a crosslinked polymer. Since the catalyst in the deoxygenated component is taken into the crosslinked structure, the catalyst rarely leaks from the deoxygenated component. As a result, even when the deoxygenated component is kneaded and used in a thermoplastic resin serving as a matrix component, the catalyst is unlikely to leak out of the deoxygenated component, so that deterioration due to oxidation of the matrix component is minimized. In the deoxidizing component of the present invention, the oxidation reaction is also promoted by irradiation with light (mainly in the ultraviolet region), as is also known in autoxidation. However, irradiation of light is not essential because the powder or the particles are small, and when a catalyst is further added, the catalyst also acts.

【0016】本発明の脱酸素成分では、特に触媒の量が
少ない場合、酸素雰囲気に放置した後の、初期の酸素吸
収速度が遅く、誘導期間が生じる。これは、本発明の脱
酸素剤の形態を製造する時間に余裕ができるため、望ま
しい面もある。しかし、その誘導期間が長過ぎる場合に
は、脱酸素剤として使用を開始してから短時間で酸素吸
収を開始するように、例えば、予め誘導期間程度の間、
酸素雰囲気で放置しておくなどの処理を行ってもよい。
In the deoxidizing component of the present invention, especially when the amount of the catalyst is small, the initial oxygen absorption rate after being left in an oxygen atmosphere is low, and an induction period occurs. This is also desirable because it allows more time to produce the form of the oxygen scavenger of the present invention. However, if the induction period is too long, so as to start oxygen absorption in a short time after starting to use as a deoxidizer, for example, during the induction period in advance,
A treatment such as leaving the substrate in an oxygen atmosphere may be performed.

【0017】被架橋物としては、炭素−炭素不飽和結合
を含む化合物が用いられる。単位重量当たりに含まれる
炭素−炭素不飽和結合が多い化合物として、ジエン化合
物の重合体(オリゴマー、ポリマーやコポリマー)が好
ましく、具体的には、ポリブタジエン、ポリイソプレン
などが挙げられる。なお、ジエン化合物の重合体では、
酸化防止剤が添加されていることが多い。このような酸
化防止剤は、架橋して脱酸素体とした後における脱酸素
を妨げるため、含まれていないことが望ましいが、少量
であればあまり問題にはならず、また、架橋反応時に不
活性化させることもできる。
As the object to be crosslinked, a compound containing a carbon-carbon unsaturated bond is used. As the compound having a large number of carbon-carbon unsaturated bonds contained per unit weight, a polymer (oligomer, polymer or copolymer) of a diene compound is preferable, and specific examples thereof include polybutadiene and polyisoprene. In the polymer of the diene compound,
Antioxidants are often added. It is desirable that such an antioxidant is not contained because it prevents deoxidation after cross-linking to form a deoxygenated product. It can also be activated.

【0018】本発明による脱酸素成分では、架橋高分子
そのものは低極性のために帯電し易く、特に微粉とした
場合に周囲への付着が著しくなり、取扱いが困難とな
る。そこで、この帯電を防止するために、比較的高極性
の化合物を加えることが望ましい。このような化合物は
一般に帯電防止剤として知られており、特に食品添加物
としても認められているものが、安全性の面から望まし
い。さらに、本発明による脱酸素成分ではこのような化
合物を架橋前から加えて、架橋構造中に取り込んでおく
ことが望ましい。
In the deoxidizing component according to the present invention, the crosslinked polymer itself is easily charged due to its low polarity, and particularly when it is made into fine powder, adhesion to the surroundings becomes remarkable and handling becomes difficult. Therefore, in order to prevent this charging, it is desirable to add a compound having a relatively high polarity. Such compounds are generally known as antistatic agents, and those which are also recognized as food additives are particularly desirable from the viewpoint of safety. Further, in the deoxidizing component according to the present invention, it is desirable to add such a compound before crosslinking and incorporate it into the crosslinked structure.

【0019】本発明による脱酸素成分の誤食などに対す
る安全性は極めて高い。これは、架橋物であることによ
り、粉または粒の全体としての溶解性が極めて低く、ま
た、個々の粉または粒からの、酸化で生じた低分子化合
物や触媒の金属などの溶出も極めて少ないためである。
The safety against accidental eating of the deoxygenated component according to the present invention is extremely high. This is because, as a crosslinked product, the solubility of the powder or the whole as a whole is extremely low, and the elution of the low-molecular compound or the metal of the catalyst generated by the oxidation from the individual powder or the particle is extremely small. That's why.

【0020】一般に、有機化合物を主成分とする脱酸素
成分では、酸化反応に伴って臭気のもとになる低分子化
合物が生成する。しかし、本発明における架橋高分子
は、内部の結合が密なために低分子化合物の生成が少な
く、さらに粉または粒の外への低分子化合物の放出(揮
散や溶出)も少ない。また、架橋構造により酸化反応時
の体積増加が制限されるため、酸化反応が進み過ぎず、
低分子化合物の生成が少なくなる。さらなる臭気の改善
として、まず、被酸化物の分子構造からの改善がある。
これは、酸化反応で共有結合が切断されても、低分子化
合物として脱離されない構造とすることに相当する。具
体的には、例えばジエン化合物のオリゴマーやポリマー
では、側鎖が少ない1,2結合の比率が低い品種の利
用、また、ポリイソプレンよりもポリブタジエンの利用
が推奨される。また、酸素吸収性能は低くなるが、炭素
−炭素不飽和結合が疎に含まれているジエンとオレフィ
ンなどとの共重合体、ジエン化合物のオリゴマーやポリ
マーの部分水素添加物などの使用も有効である。また、
化学的な架橋では、ラジカル発生剤由来の低分子化合物
の存在があり、これについてもラジカル開裂後の分子が
できるだけ大きなものを選ぶか、同じくできるだけ小さ
なものを選んで架橋後に除去する、などにより、臭気の
発生を低減する。他方、酸化後において発生を避けられ
ない臭気の除去方法としては、脱酸素成分と共に活性炭
などの吸着剤を用いてもよい。
In general, in the case of a deoxygenated component containing an organic compound as a main component, a low-molecular-weight compound that emits odor is generated along with the oxidation reaction. However, the crosslinked polymer in the present invention has a low internal bond, so that a low-molecular compound is hardly generated, and further, the release (volatilization and elution) of the low-molecular compound out of the powder or the particles is small. In addition, since the volume increase during the oxidation reaction is limited by the crosslinked structure, the oxidation reaction does not proceed too much,
The production of low molecular weight compounds is reduced. As a further improvement in odor, first, there is an improvement in the molecular structure of the oxide target.
This corresponds to a structure which is not eliminated as a low molecular compound even if a covalent bond is broken by an oxidation reaction. Specifically, for example, in the case of oligomers or polymers of diene compounds, it is recommended to use a variety having a small number of side chains and a low ratio of 1,2 bonds, and use of polybutadiene rather than polyisoprene. In addition, although the oxygen absorption performance is low, it is also effective to use a copolymer of a diene and an olefin containing a carbon-carbon unsaturated bond loosely, an oligomer of a diene compound or a partially hydrogenated product of a polymer. is there. Also,
In chemical cross-linking, there is a low molecular compound derived from a radical generator, and for this too, a molecule after radical cleavage is selected as large as possible, or similarly as small as possible and removed after cross-linking. Reduces odor generation. On the other hand, as a method of removing the odor that cannot be avoided after oxidation, an adsorbent such as activated carbon may be used together with the deoxidizing component.

【0021】本発明の脱酸素成分は脱酸素剤の主成分と
なるものであり、単独で用いるだけでなく、乾燥成分、
吸着成分、抗菌成分などと共に用いることができる。ま
た、他の脱酸素成分と共に用いてもよい。比較的多量の
架橋高分子を用いて多量の酸素を吸収させる場合には、
酸素吸収時の発熱量が増加し、熱の放散が悪いと架橋高
分子の温度上昇(蓄熱)とそれによる各種物品への影響
が無視できなくなる。この対策として、複数の粉または
粒の相互の間隔を離すために、吸熱成分として熱的に安
定で脱酸素機能のない他の粉や粒を添加してもよい。こ
の目的のためには、熱容量が大きい各種の無機化合物や
有機化合物が利用可能である。そのうち、特にその熱容
量が大きいものとして、100℃付近またはそれ以下に
融点を持ち、相変化でも熱を吸収できる熱可塑性樹脂な
どが特に望ましい。
The oxygen-absorbing component of the present invention is a main component of the oxygen-absorbing agent.
It can be used together with an adsorption component, an antibacterial component and the like. Moreover, you may use together with another deoxygenation component. When using a relatively large amount of crosslinked polymer to absorb a large amount of oxygen,
If the calorific value at the time of oxygen absorption increases and the heat dissipation is poor, the temperature rise (heat storage) of the crosslinked polymer and the effect on various articles due to the temperature rise cannot be ignored. As a countermeasure, other powders or grains which are thermally stable and do not have a deoxygenation function may be added as an endothermic component in order to keep a plurality of powders or grains apart from each other. For this purpose, various inorganic and organic compounds having a large heat capacity can be used. Among them, a thermoplastic resin having a large heat capacity, which has a melting point around 100 ° C. or lower and is capable of absorbing heat even in a phase change, is particularly desirable.

【0022】上記の蓄熱の防止だけでなく、粉や粒の飛
散防止、さらに誤食防止のために、架橋高分子からなる
脱酸素成分を熱可塑性樹脂に練り込んで分散させ、一体
の樹脂組成物としてからシート等の形状にして用いるこ
とができる。この場合、他の成分、具体的には、吸着成
分、乾燥成分、抗菌成分のうち一種以上を同時に練り込
むことも可能である。このような熱可塑性樹脂として
は、エチレン、プロピレン、1−ブテン、4−メチル−
1−ペンテンなどの各種オレフィン類の単独重合体およ
び共重合体、エチレン−酢酸ビニル共重合体、スチレン
−ブタジエン共重合体の水素添加物など、多くのものが
使用可能であり、また、これらの変性物、グラフト体、
混合物などでもよい。
In order to prevent not only the above-described heat storage, but also the scattering of powder and particles, and the prevention of accidental eating, a deoxidizing component composed of a crosslinked polymer is kneaded and dispersed in a thermoplastic resin to form an integrated resin composition. It can be used in the form of a sheet or the like as an object. In this case, it is also possible to simultaneously knead at least one of the other components, specifically, one of the adsorption component, the dry component, and the antibacterial component. Such thermoplastic resins include ethylene, propylene, 1-butene, 4-methyl-
Many things can be used, such as homopolymers and copolymers of various olefins such as 1-pentene, ethylene-vinyl acetate copolymer, hydrogenated styrene-butadiene copolymer, and the like. Modified products, grafts,
It may be a mixture or the like.

【0023】上記のシート等の形状にした樹脂組成物
は、脱酸素成分が熱可塑性樹脂で遮蔽されて酸素吸収速
度が低下する。そこで、このシート等を延伸や発砲によ
り連続微多孔化させ、その連続微多孔を介して脱酸素成
分と周囲の雰囲気とを直接接触させることで、酸素吸収
速度を高めることが望ましい。延伸により連続微多孔化
させる場合には、比較的高い体積分率で架橋高分子の粉
または粒を熱可塑性樹脂に練り込む必要がある。その体
積分率は概ね0.10〜0.60、より好ましくは0.
20〜0.40であり、体積分率がより低い場合には延
伸後のシート等が連続微多孔化されず、より高い場合に
は延伸後にシート等が脆くなる。ここで、架橋高分子の
密度と熱可塑性樹脂の密度とが同じ程度の値を持つこと
から、架橋高分子の添加比率は、概ね10〜60wt%、
より好ましくは20〜40wt%となる。また、架橋高分
子と他の成分とを同時に練り込む場合には、それらを合
わせた体積分率がこの範囲内であればよい。
In the resin composition in the form of a sheet or the like, the oxygen-absorbing rate is reduced because the deoxidized component is shielded by the thermoplastic resin. Therefore, it is desirable to increase the oxygen absorption rate by making the sheet or the like continuous microporous by stretching or firing, and directly contacting the deoxygenated component with the surrounding atmosphere through the continuous microporous. In the case of continuous microporosity by stretching, it is necessary to knead the powder or granules of the crosslinked polymer into the thermoplastic resin at a relatively high volume fraction. Its volume fraction is approximately 0.10 to 0.60, more preferably 0.1 to 0.60.
When the volume fraction is lower, the sheet or the like after stretching is not continuously microporous, and when the volume fraction is higher, the sheet or the like becomes brittle after stretching. Here, since the density of the crosslinked polymer and the density of the thermoplastic resin have approximately the same value, the addition ratio of the crosslinked polymer is generally 10 to 60 wt%,
More preferably, it becomes 20 to 40% by weight. When the crosslinked polymer and the other components are kneaded at the same time, the combined volume fraction may be within this range.

【0024】本発明の脱酸素剤包装体は、粉状又は粒状
の脱酸素成分、あるいはシート又はフィルムの小片状の
脱酸素成分、あるいは微多孔質のシート又はフィルムの
小片状の脱酸素成分を一部又は全部が通気性の包材で被
覆してなるものである。例えば、全部が通気性の包材で
作成された小袋に脱酸素成分を入れて密封したもの、表
が通気性の包材で裏がバリア性の包材で作成された小袋
に脱酸素成分を入れて密封したもの等が挙げられる。
The oxygen scavenger package of the present invention may be a powdery or granular oxygen scavenger, a sheet or film oxygen scavenger, or a microporous sheet or film oxygen absorber. Some or all of the components are covered with a breathable packaging material. For example, a bag made entirely of breathable packaging material and sealed with a deoxygenating component, a bag made of a breathable packaging material with a barrier material on the back, And sealed.

【0025】通気性の包材としては、単層または多層
の、通常知られている種々の通気性の層状物(樹脂フィ
ルム、紙など)を用いることができる。ここで、気相中
からの脱酸素を行うのであれば、無孔質(総厚みで見て
貫通孔がないもの)の層状物または多孔質の層状物の両
方が使用可能で、特に通気性の高い多孔質の層状物が望
ましい。また、液体が多い対象物を含む系から脱酸素す
る場合や、さらには液中に脱酸素剤包装体を浸漬して脱
酸素する場合には、無孔質の層状物が望ましく、多くの
場合は無孔質の層状物であることが必須となる。
As the air-permeable packaging material, various kinds of generally known air-permeable layered materials (resin film, paper, etc.) having a single layer or a multi-layer can be used. Here, if deoxygenation is performed from the gas phase, both a nonporous (those having no through-hole in the total thickness) layered material and a porous layered material can be used. It is desirable to use a porous layered material having a high viscosity. Further, when deoxidizing from a system containing an object having a large amount of liquid, or further, when deoxidizing by immersing a deoxidizer package in a liquid, a nonporous layered material is desirable, and in many cases, Must be a nonporous layered material.

【0026】包材の通気性としては、この包材の酸素透
過の速度が架橋高分子からなる脱酸素成分の酸素吸収の
速度よりも高いことが望ましく、2桁以上高いことがさ
らに望ましい。これにより、包材の酸素透過が律速とな
らず、脱酸素成分である架橋高分子が本来持っている酸
素吸収速度を十分に発揮させることが可能となる。包材
の通気性は、空気の透過率で5×10-5〔cm3 /cm2
h/Pa〕以上であることが好ましい。このような空気の
透過率を無孔質の層状物で実現するのは、層状物の厚さ
が小さくなり過ぎるために、一般に困難である。そのた
め、より広い面積の包材を用いるか、または速度が低下
するのを許容するか、を選択することになる。他方、多
孔質の層状物、特に肉眼で確認できる程度の貫通孔を持
つ層状物であれば、この透過率を容易に実現できる。
As for the air permeability of the packaging material, it is desirable that the rate of oxygen permeation of this packaging material is higher than the rate of oxygen absorption of the deoxygenated component composed of the crosslinked polymer, and it is more preferable that the rate of permeability is two orders of magnitude or more. As a result, the oxygen permeability of the packaging material does not become rate-determining, and the oxygen absorption rate inherent to the crosslinked polymer as the deoxidizing component can be sufficiently exhibited. The air permeability of the packaging material is 5 × 10 −5 [cm 3 / cm 2 /
h / Pa] or more. It is generally difficult to achieve such air permeability with a nonporous layered material because the thickness of the layered material is too small. Therefore, a choice is made between using a larger area of the packaging material or allowing the speed to decrease. On the other hand, a porous layered material, particularly a layered material having a through-hole that can be visually confirmed, can easily realize this transmittance.

【0027】包材については、複数種の包材を多段階で
用いる多重包装としてもよく、また、耐水性や耐油性を
与えるために安全性の高い撥水剤や撥油剤などを予め包
剤に含浸させてもよい。さらに、包材の外側の一部に粘
着性を付与した部分を加えてラベル型の脱酸素剤包装体
とすること、包材の一部に強固な基材を用いてカード型
の脱酸素剤包装体とすること、包材の一部に柔軟な基材
を用いてパッキング型の脱酸素剤包装体とすることがで
きる。
The packaging material may be a multi-package using a plurality of types of packaging materials in multiple stages, or a highly safe water repellent or oil repellent to impart water resistance or oil resistance. May be impregnated. Further, a label-type oxygen absorbing agent package is formed by adding an adhesive portion to an outer part of the packaging material, and a card-type oxygen absorbing agent using a strong base material as a part of the packaging material. It is possible to form a packing and a packing type oxygen absorber using a flexible base material as a part of the packaging material.

【0028】本発明の脱酸素成分は、酸素吸収後の廃棄
時に焼却しても問題が少なく、さらに生物的な分解も期
待できる。そこで、この脱酸素成分を練り込む熱可塑性
樹脂や包材にも、生分解性樹脂や紙などの環境調和型の
各種素材を用いれば、脱酸素剤全体での廃棄に関して
も、問題が更に少なくなる。本発明の脱酸素成分は、金
属状態の金属元素を含まない。そのため、電磁波との相
互作用が弱く、金属探知機を動作させることがなく、ま
た、電子レンジ中でもほとんど加熱されない。これらの
性質は脱酸素剤包装体の中でも保持される。
The deoxidizing component of the present invention has few problems even if it is incinerated at the time of disposal after absorbing oxygen, and it can be expected that it is also biologically decomposed. Therefore, if various environmentally conscious materials such as biodegradable resin and paper are used for the thermoplastic resin and the packaging material into which the deoxidizing component is kneaded, the problem of disposal of the entire deoxidizing agent is further reduced. Become. The deoxidizing component of the present invention does not contain a metal element in a metal state. Therefore, the interaction with the electromagnetic wave is weak, the metal detector is not operated, and the microwave is hardly heated even in the microwave oven. These properties are retained in the oxygen absorber package.

【0029】本発明の脱酸素剤包装体は、樹脂などのフ
ィルムからなる袋、樹脂容器、金属製の缶、ガラス容器
などの、通常知られている各種の気体バリヤ性の容器ま
たは包装袋に、脱酸素の対象となる各種物品と共に入れ
て密封し、その各種物品の保存に用いることができる。
実際に用いる脱酸素成分の量は、上記の容器または包装
袋のバリヤ性の程度、容器または包装袋の中の酸素体
積、脱酸素を終了させたい時間などを考慮して決めるこ
とになる。容器または包装袋のバリヤ性が高く、脱酸素
時間が数日以内の通常の場合では、上記の酸素体積の2
〜3倍程度の酸素を吸収できる脱酸素成分を用いること
が望ましく、容器または包装袋のバリヤ性が低い場合や
脱酸素時間をより短くしたい場合には、さらに多量の脱
酸素成分を用いることが望ましい。図1は、脱酸素成分
を含む全ての成分を通気性包材からなる小袋に入れた脱
酸素剤包装体を示す。図2は、脱酸素成分を含む全ての
成分を熱可塑性樹脂に練り込んで延伸微多孔化した小片
を小袋に入れた脱酸素剤包装体を示す。図3は、図2と
同じ小片を、その外側の一部に粘着性を付与した部分を
加えた包材に入れた、ラベル型の脱酸素剤包装体を示
す。図4は、図2と同じ小片を、その一部に強固な基材
または柔軟な基材を用いた包材に入れた、カード型また
はパッキング型の脱酸素剤包装体を示す。
The oxygen-absorbing agent package of the present invention can be formed into various known gas barrier containers or packaging bags, such as bags made of resin or other films, resin containers, metal cans, and glass containers. It can be put together with various articles to be deoxidized, sealed, and used for preservation of the various articles.
The amount of the deoxidizing component to be actually used is determined in consideration of the degree of barrier property of the container or the packaging bag, the volume of oxygen in the container or the packaging bag, the time at which the deoxygenation is desired, and the like. In the normal case where the barrier property of the container or the packaging bag is high and the deoxidation time is within several days, 2
It is desirable to use a deoxidizing component capable of absorbing up to about three times as much oxygen. If the barrier property of the container or the packaging bag is low or if it is desired to shorten the deoxidizing time, it is preferable to use a larger amount of the deoxidizing component. desirable. FIG. 1 shows an oxygen-absorbing agent package in which all components including the oxygen-absorbing component are placed in a small bag made of a breathable packaging material. FIG. 2 shows an oxygen-absorbing agent package in which a small piece obtained by kneading all components including a deoxidizing component into a thermoplastic resin and making it microporous is placed in a small bag. FIG. 3 shows a label-type oxygen-absorbing agent package in which the same small piece as in FIG. 2 is placed in a packaging material to which a part having an adhesive property has been added to an outer part thereof. FIG. 4 shows a card-type or packing-type oxygen absorber package in which the same small pieces as those in FIG. 2 are partially placed in a packaging material using a rigid or flexible substrate.

【0030】[0030]

【実施例】以下、実施例と比較例を用いて本発明をさら
に詳しく説明するが、本発明はこれによって限定される
ものではない。使用した化合物は以下である。被架橋
物、ブタジエンオリゴマー:日本ゼオン(株)製、商品
名Polyoil 130、平均分子量3000、1,4構造99
%、20℃における粘度3000cPの液体、炭素−炭素
二重結合の数はモノマーの分子量54より、1/54=
0.0185mol/g と算定される。有機過酸化物、α,
α'-bis(tert-butylperoxy)diisopropylbenzene :日本
油脂(株)製、商品名パーブチルP、分子量338、1
mol 当たりの有効官能基数は2mol 、純度95%。触
媒、ステアリン酸鉄(III) :三津和化学薬品(株)製、
純度95%以上。帯電防止成分、ステアリン酸モノグリ
セリンエステル:日本油脂(株)製、商品名モノグリ
M、純度95%以上。吸着剤、活性炭:武田薬品工業
(株)製、白鷺A、篩別して50μm 以上のものを使
用。熱可塑性樹脂、ポリプロピレン:日本ポリケム
(株)製、商品名NOVATEC PP FG3D 、商品分類上はポリ
プロピレンであるが、実際はエチレンを若干含む共重合
体、メルトフローレート7.0g/10min (230
℃)。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. The compounds used are as follows. Cross-linked product, butadiene oligomer: manufactured by Nippon Zeon Co., Ltd., trade name Polyoil 130, average molecular weight 3000, 1,4 structure 99
%, Liquid having a viscosity of 3000 cP at 20 ° C., the number of carbon-carbon double bonds is 1/54 =
It is calculated to be 0.0185 mol / g. Organic peroxide, α,
α'-bis (tert-butylperoxy) diisopropylbenzene: manufactured by NOF Corporation, trade name: Perbutyl P, molecular weight: 338, 1
The number of effective functional groups per mol is 2 mol, and the purity is 95%. Catalyst, iron (III) stearate: manufactured by Mitsuwa Chemicals Co., Ltd.
Purity 95% or more. Antistatic component, monoglycerin stearate: manufactured by NOF CORPORATION, trade name: Monogly M, purity: 95% or more. Adsorbent, activated carbon: Shirasagi A, manufactured by Takeda Pharmaceutical Co., Ltd., having a size of 50 μm or more after sieving. Thermoplastic resin, polypropylene: manufactured by Nippon Polychem Co., Ltd., trade name: NOVATEC PP FG3D. The product is classified as polypropylene, but is actually a copolymer containing a small amount of ethylene, and has a melt flow rate of 7.0 g / 10 min (230
° C).

【0031】各種の性質の測定方法は以下である。脱酸
素成分の曲げ弾性率と曲げ強度は、粉砕前の架橋物から
試験片(例えば4cm×1cm×2mm)を切り出し、25℃
にて3点曲げ試験を行って測定した。このとき、曲げ弾
性率Eは比較的少ない変形を与えた場合において、式;
E=FL3/4WT3 Dを用いて、また、曲げ強度Sは
破壊するまで変形を与えた場合において、式;S=3F
L/2WT2 を用いて、それぞれ計算した。ここで、
F;荷重、L;スパン、W;試験片の幅、T;試験片の
厚さ、D;変位(たわみ)、である(JIS K 72
03(1995))。なお、変形速度を約10cm/sとし
た。脱酸素成分の膨潤による線膨張(増加分の比率)
は、粉砕前の架橋物から試験片(長さ5cm程度、厚さ2
mm以下)を切り出し、25℃にてトルエン(特級品、試
験片の約100倍の体積を使用)中に1日間浸漬し、浸
漬前後の長さ方向の寸法より、寸法の変化分を浸漬前の
寸法で除して、求めた。なお、後述の試料はいずれも6
時間以内に膨潤平衡に達していた。脱酸素成分の密度
は、架橋物を沈める液体にエタノール(特級品)を用い
て、比重瓶にて25℃で測定した。脱酸素成分の架橋度
は、膨潤による体積変化により、架橋鎖(2つの架橋点
で挟まれた部分鎖)の密度νを、式;ν=−(v+μv
2 +log e ( 1−v))/(ρVo (v1/3 −v/
2))+2/Mで計算することで推定した(古川淳二,
山下晋三, 日本ゴム協会誌, 30,955(1957))。ここで、
v;膨潤後の体積に対する膨潤前の体積の分率、膨潤に
よる線膨張(増加分の比率、前述のように実測)をαと
して、v=1/(1+α)3 となる、μ;高分子(ここ
では架橋物)と溶媒との相互作用パラメータ(後述の個
々の対象系に対する値は、例えば、R.G.Beaman, J.Poly
mer Sci., 9,470(1952) )、ρ;架橋物の密度(前述の
ように実測)、Vo ;溶媒の分子容(25℃のトルエン
では107cm3/mol )、M;架橋前の被架橋物の分子
量、である。これから得られるνより、架橋点の数はν
の1/2と計算される。架橋物中の炭素−炭素二重結合
の数は、架橋反応によりその一部が使用される(ただ
し、一般に架橋反応分の全てが同結合に由来するもので
はない)ことから、架橋前の同結合の数から架橋点の数
を減じた数になると仮定して算出した。脱酸素成分の耐
熱性は、所定の温度に加熱した金属板の上に粉または粒
を約30秒間(長時間では変形や酸化による変色などが
ある)置き、その流動や変形または相互の付着を観察し
て判断した。包材には、空気の透過率が約2×10
-4[cm3 /cm2 /h /Pa]の、有孔ポリエチレンフィル
ムと紙とを積層したもの、片面に粘着剤(他のものに付
着させる前には、この粘着剤側は剥離用のフィルムがつ
いている)のついたポリエチレンフィルム、厚さ約1mm
の紙にポリエチレンフィルムを積層したもの、厚さ約
0.5mmの発泡ポリエチレンのシート、を組み合わせて
用いた。脱酸素剤の酸素吸収性能の測定は、各形態の脱
酸素剤と所定量の空気を、ポリ塩化ビニリデンをコート
したナイロン層を含む透明な酸素バリヤ性の袋に入れ
て、25℃における酸素濃度の経時変化をガスクロマト
グラフで追跡することで行った。そして、酸素濃度が
0.1体積%に達するまでの時間を脱酸素時間とした。
ここで、酸素濃度の経時変化は単調減少となるため、酸
素吸収性能はこの脱酸素時間で表現すれば十分である。
臭気は、袋内部の気体を嗅ぐことで、感覚的に判断し
た。
The methods for measuring various properties are as follows. The flexural modulus and flexural strength of the deoxidized component were determined by cutting a test piece (for example, 4 cm x 1 cm x 2 mm) from the crosslinked product before pulverization,
And performed a three-point bending test. At this time, the bending elastic modulus E is given by the following equation when a relatively small deformation is given:
E = FL 3 / 4WT 3 D, and the bending strength S is given by the following equation when deformation is given to failure: S = 3F
With L / 2WT 2, it was calculated, respectively. here,
F: load, L: span, W: width of test piece, T: thickness of test piece, D: displacement (deflection) (JIS K72)
03 (1995)). The deformation speed was about 10 cm / s. Linear expansion due to swelling of deoxygenated component (ratio of increase)
Is a test piece (about 5 cm in length, 2
mm or less) and immersed in toluene (special grade, about 100 times the volume of the test piece) at 25 ° C for 1 day. Divided by the dimensions of The samples described below were all 6
Swelling equilibrium was reached within hours. The density of the deoxygenated component was measured at 25 ° C. in a pycnometer using ethanol (special grade) as a liquid for sinking the crosslinked product. The degree of cross-linking of the deoxygenated component is obtained by calculating the density ν of cross-linked chains (a partial chain sandwiched between two cross-linking points) by a volume change due to swelling, by the formula: ν = − (v + μv
2 + log e (1-v)) / (ρV o (v 1/3 −v /
2)) Estimated by calculating with + 2 / M (Junji Furukawa,
Shinzo Yamashita, Journal of the Rubber Society of Japan, 30,955 (1957)). here,
v: Fraction of volume before swelling to volume after swelling, linear expansion due to swelling (ratio of increase, measured as described above) is α, and v = 1 / (1 + α) 3 , μ: polymer (Here the crosslinked product) and the interaction parameters of the solvent (values for the individual target systems described below are, for example, RGBeaman, J. Poly
mer Sci., 9,470 (1952)), ρ; density of cross-linked product (measured as described above), V o ; molecular volume of solvent (107 cm 3 / mol in toluene at 25 ° C.), M: cross-linked before cross-linking Molecular weight of the product. From the ν obtained from this, the number of bridge points is ν
Is calculated as 1/2 of The number of carbon-carbon double bonds in the cross-linked product is partially used by the cross-linking reaction (however, in general, not all of the cross-linking reaction components are derived from the same bond). The calculation was performed assuming that the number was obtained by subtracting the number of crosslinking points from the number of bonds. The heat resistance of the deoxygenation component is as follows: Place the powder or granules on a metal plate heated to a predetermined temperature for about 30 seconds (for a long time, there is deformation or discoloration due to oxidation), and observe the flow, deformation or mutual adhesion. Observed and judged. The packaging material has an air permeability of about 2 × 10
-4 [cm 3 / cm 2 / h / Pa] laminated with perforated polyethylene film and paper, adhesive on one side (before attaching to other things, this adhesive side is Polyethylene film with film), about 1mm thick
And a sheet of foamed polyethylene having a thickness of about 0.5 mm was used in combination. The oxygen absorption performance of the oxygen absorber is measured by placing the oxygen absorber of each form and a predetermined amount of air in a transparent oxygen-barrier bag containing a nylon layer coated with polyvinylidene chloride, and measuring the oxygen concentration at 25 ° C. The change over time was tracked by a gas chromatograph. The time required for the oxygen concentration to reach 0.1% by volume was defined as the deoxidation time.
Here, since the change with time of the oxygen concentration monotonously decreases, it is sufficient to express the oxygen absorption performance by this deoxidation time.
The odor was judged sensorially by smelling the gas inside the bag.

【0032】実施例1 ブタジエンオリゴマー(Polyoil 130 );93重量部、
パーブチルP;7重量部、ステアリン酸鉄(III) ;1重
量部、ステアリン酸モノグリセリンエステル;1重量部
を60℃で均一に混合した後、窒素置換した容器中で1
80℃、30分加熱して、架橋物を得た。これを室温ま
で冷却してから取り出し、一部を測定用の試料として、
他を回転刃型の粉砕機で粉砕して最大粒径300μm 、
平均粒径180μm の粉状とした。架橋物が脆いため、
粉砕は極めて容易であった。各種測定より、架橋高分子
の曲げ弾性率は2.8MPa 、曲げ強度は1.0MPa、比
重は0.95g/cm3 、トルエン浸漬時の膨潤による線膨
張は32%であった。μ=0.37を用いてν=0.0
019mol/g 、架橋点の数は0.0010mol/g と算出
された。また、架橋物の炭素−炭素二重結合の数は、
0.0185×(93/102)−0.0010=0.
0159mol/g と算出された。また、耐熱性は150℃
以上であった。この粉状の架橋高分子1g と活性炭0.
1g を、有孔ポリエチレンフィルムと紙とを積層した包
材で作った袋に入れ、その包材の周囲を熱シールして、
脱酸素剤包装体を作成した。包材の熱シール部以外の面
積は40cm2 であった。この脱酸素剤包装体と300cm
3 の空気を、酸素バリヤ性の袋に入れて密封し、25℃
で放置した。脱酸素時間は2.9日であった。また、臭
気は殆ど感じられなかった。
Example 1 Butadiene oligomer (Polyoil 130): 93 parts by weight
7 parts by weight of perbutyl P, 1 part by weight of iron (III) stearate, 1 part by weight of monoglycerin stearate; 1 part by weight were uniformly mixed at 60 ° C., and then mixed in a vessel purged with nitrogen.
The mixture was heated at 80 ° C. for 30 minutes to obtain a crosslinked product. After cooling it down to room temperature, take it out, and use a part of it as a sample for measurement.
Others are pulverized by a rotary blade type pulverizer, and the maximum particle size is 300 μm,
A powder having an average particle size of 180 μm was obtained. Because the crosslinked product is brittle,
Grinding was very easy. From various measurements, the flexural modulus of the crosslinked polymer was 2.8 MPa, the flexural strength was 1.0 MPa, the specific gravity was 0.95 g / cm 3 , and the linear expansion due to swelling when immersed in toluene was 32%. Using μ = 0.37, ν = 0.0
The calculated value was 019 mol / g, and the number of crosslinking points was 0.0010 mol / g. The number of carbon-carbon double bonds in the crosslinked product is
0.0185 × (93/102) −0.0010 = 0.
It was calculated as 0159 mol / g. Heat resistance is 150 ° C
That was all. 1 g of this powdery crosslinked polymer and 0.
1 g is put in a bag made of a packaging material in which a perforated polyethylene film and paper are laminated, and the periphery of the packaging material is heat-sealed.
An oxygen absorber package was prepared. The area of the packaging material other than the heat-sealed portion was 40 cm 2 . This oxygen absorber package and 300cm
3 air is sealed in an oxygen barrier bag,
Left. The deoxygenation time was 2.9 days. Also, almost no odor was felt.

【0033】実施例2 実施例1と同じ粉状の架橋高分子35wt%、活性炭2wt
%、ポリプロピレン(FG3D)63wt%を200℃で加熱
混合し、成形後に冷却して、厚さ2mmのシートとした。
このシートを120℃に加熱し、1軸方向に約6倍に延
伸して、連続微多孔質のシートとした。延伸前後の寸法
変化から求めた、延伸微多孔化後のシートの空隙率は
0.45であった。この延伸シートから、面積10cm2
の小片を5枚切り出し(合計で約3g )、5枚まとめ
て、実施例1と同じ包材で作った袋に入れて周囲を熱シ
ールし、脱酸素剤包装体を作成した。実施例1と同様に
して測定したところ、脱酸素時間は3.1日であった。
また、臭気は殆ど感じられなかった。
Example 2 The same powdery crosslinked polymer as in Example 1 was 35% by weight and activated carbon was 2% by weight.
% And polypropylene (FG3D) 63 wt% were heated and mixed at 200 ° C., molded, and cooled to obtain a sheet having a thickness of 2 mm.
This sheet was heated to 120 ° C. and stretched about 6 times in one axis direction to obtain a continuous microporous sheet. The porosity of the sheet after microporous stretching was 0.45, as determined from the dimensional change before and after stretching. From this stretched sheet, an area of 10 cm 2
Were cut out into 5 pieces (about 3 g in total), put together in a bag made of the same packaging material as in Example 1, and heat-sealed the surroundings to prepare a package of oxygen scavenger. When measured in the same manner as in Example 1, the deoxygenation time was 3.1 days.
Also, almost no odor was felt.

【0034】実施例3 有孔ポリエチレンフィルムと紙とを積層した包材と、片
面に粘着剤のついたポリエチレンフィルムの包材とを、
両方のポリエチレン側が向かい合うように用い、それら
の間に実施例2と同じ小片2枚を挟んでから、包材の周
囲を熱シールして、ラベル型の脱酸素剤包装体を作成し
た。空気量を100cm3 とした以外は実施例1と同様に
して測定したところ、脱酸素時間は3.0日であった。
また、臭気は殆ど感じられなかった。
Example 3 A packaging material obtained by laminating a perforated polyethylene film and paper and a polyethylene film packaging material having an adhesive on one side were
The two sides of the polyethylene were used to face each other, two small pieces same as those in Example 2 were sandwiched between them, and the periphery of the packaging material was heat-sealed to prepare a label-type oxygen absorber package. The measurement was performed in the same manner as in Example 1 except that the air amount was changed to 100 cm 3, and the deoxidation time was 3.0 days.
Also, almost no odor was felt.

【0035】実施例4 有孔ポリエチレンフィルムと紙とを積層した包材と、厚
さ約1mmの紙にポリエチレンフィルムを積層した包材と
を、両方のポリエチレン側が向かい合うように用い、そ
れらの間に実施例2と同じ小片2枚を挟んでから、包材
の周囲を熱シールして、カード型の脱酸素剤包装体を作
成した。実施例3と同様にして測定したところ、脱酸素
時間は3.0日であった。また、臭気は殆ど感じられな
かった。
Example 4 A packaging material obtained by laminating a perforated polyethylene film and paper and a packaging material obtained by laminating a polyethylene film on paper having a thickness of about 1 mm were used so that both polyethylene sides faced each other. After sandwiching the same two small pieces as in Example 2, the periphery of the packaging material was heat-sealed to prepare a card-type oxygen absorber package. When measured in the same manner as in Example 3, the deoxygenation time was 3.0 days. Also, almost no odor was felt.

【0036】実施例5 有孔ポリエチレンフィルムと紙とを積層した包材と、厚
さ約0.5mmの発泡ポリエチレンのシートとを、前者の
ポリエチレン側が後者と向かい合うように用い、それら
の間に実施例2と同じ小片2枚を挟んでから、包材の周
囲を熱シールして、パッキング型の脱酸素剤包装体を作
成した。実施例3と同様にして測定したところ、脱酸素
時間は3.0日であった。また、臭気は殆ど感じられな
かった。
Example 5 A packaging material in which a perforated polyethylene film and paper were laminated, and a foamed polyethylene sheet having a thickness of about 0.5 mm were used so that the former polyethylene side faced the latter, and was used between them. After sandwiching the same two small pieces as in Example 2, the periphery of the packaging material was heat-sealed to prepare a packing type oxygen-absorbing agent package. When measured in the same manner as in Example 3, the deoxygenation time was 3.0 days. Also, almost no odor was felt.

【0037】比較例1 実施例1と同じ粉状の架橋高分子1g を包材に入れず
に、空気300cm3 と共に、酸素バリヤ性の袋に入れ
た。当然のことながら、袋の内部は表面に粉が少し付着
した状態となり、脱酸素の対象となる各種物品と共に用
いることは困難であった。
Comparative Example 1 1 g of the same powdery crosslinked polymer as in Example 1 was put in an oxygen barrier bag together with 300 cm 3 of air without putting it in a packaging material. As a matter of course, the inside of the bag had a little powder attached to the surface, and it was difficult to use the bag together with various articles to be deoxidized.

【0038】比較例2 平均粒径約50μm の鉄粉に、塩化カルシウム(鉄粉1
00重量部に対して2重量部)を水溶液で噴霧、乾燥さ
せたものを脱酸素成分として、架橋高分子の替わりに用
いた以外は実施例1と同様にして脱酸素剤包装体を作成
し、脱酸素時間を測定した。この脱酸素成分は乾燥状態
では機能しないため、15日後でも脱酸素していなかっ
た。
Comparative Example 2 Calcium chloride (iron powder 1) was added to iron powder having an average particle size of about 50 μm.
(2 parts by weight with respect to 00 parts by weight) was sprayed and dried with an aqueous solution, and as an oxygen-absorbing component, an oxygen-absorbing agent package was prepared in the same manner as in Example 1 except that the crosslinked polymer was used instead. The deoxidation time was measured. Since this deoxidized component did not function in a dry state, it was not deoxidized even after 15 days.

【0039】[0039]

【発明の効果】本発明の脱酸素剤包装体は、乾燥状態か
ら高湿度状態までの広い湿度範囲において使用可能であ
り、酸素吸収速度が高いだけでなく、取扱いも容易であ
る。この脱酸素剤包装体は、食品、医薬品、金属製品や
電子製品などの、酸素の影響を受けて変質し易い各種物
品の酸化を防止して長期に保存する目的に用いることが
できる。
The oxygen scavenger package of the present invention can be used in a wide humidity range from a dry state to a high humidity state, and has not only a high oxygen absorption rate but also easy handling. This oxygen scavenger package can be used for the purpose of preventing oxidation of various articles such as foods, medicines, metal products, and electronic products which are easily deteriorated under the influence of oxygen and preserving them for a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】脱酸素成分を含む各種成分を、通気性の包材か
らなる袋に入れて脱酸素剤包装体とした形態の断面図
FIG. 1 is a cross-sectional view of a form in which various components including an oxygen-absorbing component are put into a bag made of a breathable packaging material to form an oxygen-absorbing agent package.

【図2】脱酸素成分を含む各種成分を熱可塑性樹脂に練
り込んで延伸し、連続微多孔化した小片を、通気性の包
材からなる袋に入れて脱酸素剤包装体とした形態の断面
FIG. 2 shows a form in which various components including a deoxidizing component are kneaded into a thermoplastic resin and stretched, and a continuous microporous small piece is placed in a bag made of a breathable packaging material to form a package of an oxygen absorbing agent. Sectional view

【図3】脱酸素成分を含む各種成分を熱可塑性樹脂に練
り込んで延伸し、連続微多孔化した小片を、その外側の
一部に粘着性を付与した部分を加えた通気性の包材に入
れて、ラベル型の脱酸素剤包装体とした形態の断面図
FIG. 3 is a breathable packaging material obtained by kneading various components including a deoxygenating component into a thermoplastic resin, stretching the resultant, and then forming a continuous microporous small piece to which an adhesive portion is added to an outer part thereof. Sectional view of the form in which it is put into a container to form a label-type oxygen absorber package

【図4】脱酸素成分を含む各種成分を熱可塑性樹脂に練
り込んで延伸し、連続微多孔化した小片を、その一部に
強固な基材または柔軟な素材を用いた通気性の包材に入
れて、カード型またはパッキング型の脱酸素剤包装体と
した形態の断面図
FIG. 4 is a gas-permeable packaging material in which various components including a deoxygenating component are kneaded into a thermoplastic resin, stretched, and continuously made microporous. Sectional view of the form of a card type or packing type oxygen absorber package

【符号の説明】[Explanation of symbols]

1 脱酸素成分を含む各種成分 2 通気性のフィルムからなる包材(単層または多層) 3 脱酸素成分を含む各種成分を熱可塑性樹脂に練り込
んで延伸微多孔化した小片 4 片側の表面(ここでは図の下側)に粘着性のある包
材(単層または多層) 5 強固な基材または柔軟な基材(単層または多層)
DESCRIPTION OF SYMBOLS 1 Various components containing a deoxidizing component 2 Wrapping material (single layer or multilayer) made of a gas-permeable film 3 Small components obtained by kneading various components containing a deoxidizing component into a thermoplastic resin and making them microporous 4 Surface of one side ( Here is the sticky packaging material (single or multi-layer) on the lower side of the figure. 5 Strong or flexible substrate (single or multi-layer)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 関 高宏 東京都葛飾区新宿6丁目1番1号 三菱瓦 斯化学株式会社東京研究所 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Takahiro Seki 6-1-1 Shinjuku, Katsushika-ku, Tokyo Tokyo Research Laboratory Mitsubishi Gas Chemical Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 架橋高分子1g 当たり0.001〜0.
025mol の炭素−炭素不飽和結合と0.0001〜
0.02mol の架橋点とを含有する、ジエンの重合体又
はジエンと他の不飽和化合物との共重合体を部分架橋さ
せた架橋高分子からなる平均粒径が0.01〜5mmの粉
状又は粒状の脱酸素成分を、一部又は全部が通気性の包
材で被覆してなる脱酸素剤包装体。
(1) 0.001 to 0.1 / g / g of crosslinked polymer.
025 mol of carbon-carbon unsaturated bonds and 0.0001 to
A powdery polymer having an average particle size of 0.01 to 5 mm, comprising a crosslinked polymer partially crosslinked with a diene polymer or a copolymer of a diene and another unsaturated compound, containing 0.02 mol of crosslinking points; Alternatively, an oxygen-absorbing agent package obtained by partially or entirely covering a granular oxygen-absorbing component with a gas-permeable packaging material.
【請求項2】 架橋高分子1g 当たり0.001〜0.
025mol の炭素−炭素不飽和結合と0.0001〜
0.02mol の架橋点とを含有する、ジエンの重合体又
はジエンと他の不飽和化合物との共重合体を部分架橋さ
せた架橋高分子からなる平均粒径が0.01〜5mmの粉
状又は粒状の脱酸素成分を、熱可塑性樹脂中に分散させ
てからシート又はフィルムに成形し、このシート又はフ
ィルムの小片を一部又は全部が通気性の包材で被覆して
なる脱酸素剤包装体。
2. The amount of 0.001 to 0.1 per g of the crosslinked polymer.
025 mol of carbon-carbon unsaturated bonds and 0.0001 to
A powdery polymer having an average particle size of 0.01 to 5 mm, comprising a crosslinked polymer partially crosslinked with a diene polymer or a copolymer of a diene and another unsaturated compound, containing 0.02 mol of crosslinking points; Alternatively, an oxygen-absorbing agent package obtained by dispersing a granular oxygen-absorbing component in a thermoplastic resin and then forming a sheet or film, and partially or entirely covering a small piece of the sheet or film with a gas-permeable packaging material. body.
【請求項3】 架橋高分子1g 当たり0.001〜0.
025mol の炭素−炭素不飽和結合と0.0001〜
0.02mol の架橋点とを含有する、ジエンの重合体又
はジエンと他の不飽和化合物との共重合体を部分架橋さ
せた架橋高分子からなる平均粒径が0.01〜5mmの粉
状又は粒状の脱酸素成分を、熱可塑性樹脂中に分散させ
てからシート又はフィルムに成形し、延伸して連続微多
孔化されたシート又はフィルムの小片を一部又は全部が
通気性の包材で被覆してなる脱酸素剤包装体。
3. The amount of 0.001 to 0.1 g / g of the crosslinked polymer.
025 mol of carbon-carbon unsaturated bonds and 0.0001 to
A powdery polymer having an average particle size of 0.01 to 5 mm, comprising a crosslinked polymer partially crosslinked with a diene polymer or a copolymer of a diene and another unsaturated compound, containing 0.02 mol of crosslinking points; Alternatively, a granular deoxygenating component is dispersed in a thermoplastic resin, and then molded into a sheet or film, and a part or all of a small piece of the sheet or film that has been stretched and continuously made microporous is partially or entirely formed of a breathable packaging material. An oxygen scavenger package that is coated.
【請求項4】 架橋高分子が、酸化反応の触媒となる金
属または金属化合物と帯電を防止する化合物とのうち一
つ以上を含有することを特徴とする請求項1乃至3のい
ずれか1項に記載の脱酸素剤包装体。
4. The cross-linked polymer according to claim 1, wherein the cross-linked polymer contains at least one of a metal or a metal compound serving as a catalyst for an oxidation reaction and a compound for preventing electrification. The package for an oxygen scavenger according to item 1.
【請求項5】 架橋高分子が、25℃における曲げ弾性
率が0.1MPa 以上、曲げ強度が100MPa 以下、且つ
トルエンに1日浸漬して膨潤させた後の線膨張が50%
以下であることを特徴とする請求項1乃至3のいずれか
1項に記載の脱酸素剤包装体。
5. The crosslinked polymer has a flexural modulus at 25 ° C. of 0.1 MPa or more and a flexural strength of 100 MPa or less, and has a linear expansion of 50% after being swelled by immersion in toluene for 1 day.
The oxygen absorber package according to any one of claims 1 to 3, wherein:
【請求項6】 包材の通気性が、空気の透過率で5×1
-5〔cm3 /cm2 /h/Pa〕以上であることを特徴とす
る請求項1乃至3のいずれか1項に記載の脱酸素剤包装
体。
6. The air permeability of the packaging material is 5 × 1 in air permeability.
The oxygen-absorbing agent package according to any one of claims 1 to 3, wherein the oxygen-absorbing agent package is at least 0 -5 [cm 3 / cm 2 / h / Pa].
【請求項7】 請求項1乃至3のいずれか1項に記載の
脱酸素剤包装体の包材表面の一部に粘着性を付与してな
るラベル型の脱酸素剤包装体。
7. A label-type oxygen-absorbing agent package obtained by imparting adhesiveness to a part of the surface of the packaging material of the oxygen-absorbing agent package according to claim 1.
【請求項8】 請求項1乃至3のいずれか1項に記載の
脱酸素剤包装体の包材の一部に強固な基材を用いてなる
カード型の脱酸素剤包装体。
8. A card-type oxygen absorber package comprising a solid base material as a part of the packaging material for the oxygen absorber package according to claim 1.
【請求項9】 請求項1乃至3のいずれか1項に記載の
脱酸素剤包装体の包材の一部に柔軟な基材を用いてなる
パッキング型の脱酸素剤包装体。
9. A packing-type oxygen absorber package comprising a flexible base material as a part of the packaging material of the oxygen absorber package according to claim 1.
JP15286098A 1998-06-02 1998-06-02 Oxygen absorber package Expired - Fee Related JP4178334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15286098A JP4178334B2 (en) 1998-06-02 1998-06-02 Oxygen absorber package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15286098A JP4178334B2 (en) 1998-06-02 1998-06-02 Oxygen absorber package

Publications (2)

Publication Number Publication Date
JPH11347400A true JPH11347400A (en) 1999-12-21
JP4178334B2 JP4178334B2 (en) 2008-11-12

Family

ID=15549713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15286098A Expired - Fee Related JP4178334B2 (en) 1998-06-02 1998-06-02 Oxygen absorber package

Country Status (1)

Country Link
JP (1) JP4178334B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005313145A (en) * 2004-03-31 2005-11-10 Nippon Zeon Co Ltd Oxygen absorber
JP2007301205A (en) * 2006-05-12 2007-11-22 Ajinomoto Co Inc Vessel container filled with drug solution containing bicarbonate
JP2014014747A (en) * 2012-07-06 2014-01-30 Mitsubishi Gas Chemical Co Inc Oxygen absorbent composition
JP2021074690A (en) * 2019-11-12 2021-05-20 凸版印刷株式会社 Deoxidant package, and food package

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005313145A (en) * 2004-03-31 2005-11-10 Nippon Zeon Co Ltd Oxygen absorber
JP2007301205A (en) * 2006-05-12 2007-11-22 Ajinomoto Co Inc Vessel container filled with drug solution containing bicarbonate
EP1854492A3 (en) * 2006-05-12 2007-11-28 Ajinomoto Co., Inc. Reservoir assembly for container holding bicarbonate solution
JP2014014747A (en) * 2012-07-06 2014-01-30 Mitsubishi Gas Chemical Co Inc Oxygen absorbent composition
JP2021074690A (en) * 2019-11-12 2021-05-20 凸版印刷株式会社 Deoxidant package, and food package

Also Published As

Publication number Publication date
JP4178334B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
EP0918818B1 (en) Multi-component oxygen scavenging composition
JP3429773B2 (en) Multi-component oxygen scavenger system useful for film packaging
AU734311B2 (en) Oxygen-absorbing component, oxygen absorbent package and oxygen-absorbing multilayered body containing same
JP4243433B2 (en) Oxygen removal pack
JP4087707B2 (en) Sterilization method and method for initiating removal reaction in articles
JP4941292B2 (en) Oxygen absorber and oxygen-absorbing multilayer body
JP5446259B2 (en) Oxygen-absorbing resin composition, oxygen-absorbing barrier resin composition, oxygen-absorbing molded article, packaging material and packaging container comprising this molded article
JP5229412B2 (en) Oxygen-absorbing gas barrier multilayer structure
ES2296345T3 (en) METHOD AND COMPOSITIONS FOR IMPROVED OXYGEN ABSORPTION.
HU213185B (en) Method of scavenging oxygen process for preparing layer suitable scavenging oxygen and packaging oxygen sensitive products, composition and packaging articles for scavenging oxygen
EP0981590A1 (en) Photoinitiators and oxygen scavenging compositions
JP4178335B2 (en) Deoxidation component
JP2006181778A (en) Oxygen-absorbing multilayer film, packaging material and packaging container comprising the same
JP4178334B2 (en) Oxygen absorber package
WO2004018564A1 (en) Resin composition having oxygen-absorbing ability, layered product, and package
JPWO2006095640A1 (en) Powdered oxygen absorber and method for producing the same
AU2004270650A1 (en) Ionomeric oxygen scavenger compositions
JP4178333B2 (en) Deoxygenating monolayers and multilayers
EP2554604A1 (en) Resin composition
JP2019064633A (en) Laminate for liquid content packaging, packaging material for liquid content, and package for liquid content
JPH08283428A (en) Ethylene-vinyl acetate copolymer saponified product film and its production
WO1995004776A1 (en) Oxygen scavenging thermoplastics
JP2011084682A (en) Oxygen-absorbing resin composition
JP3104238B2 (en) anti-rust
TW386058B (en) Oxygen-absorbing component, oxygen absorbent package and oxygen-absorbing multilayered body containing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080812

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees