[go: up one dir, main page]

JPH11344236A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH11344236A
JPH11344236A JP11098168A JP9816899A JPH11344236A JP H11344236 A JPH11344236 A JP H11344236A JP 11098168 A JP11098168 A JP 11098168A JP 9816899 A JP9816899 A JP 9816899A JP H11344236 A JPH11344236 A JP H11344236A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
temperature
low
indoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11098168A
Other languages
Japanese (ja)
Inventor
Doen Kin
度淵 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JPH11344236A publication Critical patent/JPH11344236A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/124Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and being formed of pins

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

(57)【要約】 【課題】 冷気の発生なしに湿気を除去して室内温度を
所定温度に保持しつつ除湿効率を向上させた空気調和機
を提供する。 【解決手段】 冷房・暖房運転切換え可能な2台の室外
機を、1台の室内機に接続し、この室内機において、複
数の平板フィン92の前側92aに、暖房運転されてい
る第1の冷媒管93を配置し、後側92bに冷房運転さ
れている第2の冷媒管94を配置し、前側92aと後側
92bとの間にはスリット92c(ギャップ)を形成し
て、第1の冷媒管93と第2の冷媒管94との間の固体
熱伝導が最小となるようにした。
(57) [Problem] To provide an air conditioner in which dehumidification is improved without generating cool air and the dehumidification efficiency is improved while maintaining a room temperature at a predetermined temperature. SOLUTION: Two outdoor units capable of switching between cooling and heating operations are connected to one indoor unit, and in this indoor unit, a first heating operation is performed on front sides 92a of a plurality of flat plate fins 92. A refrigerant pipe 93 is disposed, a second refrigerant pipe 94 that is performing a cooling operation is disposed on a rear side 92b, and a slit 92c (gap) is formed between the front side 92a and the rear side 92b to form a first refrigerant pipe. The solid heat conduction between the refrigerant pipe 93 and the second refrigerant pipe 94 was minimized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、室内機内に2つの
室内熱交換器を並列に設けるとともに、1台の室内機を
2台の室外機にそれぞれ異なる冷媒パスラインで連結し
て冷房および暖房運転を行うヒートポンプ方式の空気調
和機に係り、より詳しくは、冷気の発生なしに湿気を除
去しつつ室内温度を所定温度たとえば、23〜25℃に
保持して除湿効率を向上させた空気調和機に関する。
The present invention relates to cooling and heating by providing two indoor heat exchangers in an indoor unit in parallel and connecting one indoor unit to two outdoor units via different refrigerant path lines. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump type air conditioner that performs an operation, and more specifically, an air conditioner that improves dehumidifying efficiency by maintaining indoor temperature at a predetermined temperature, for example, 23 to 25 ° C. while removing moisture without generating cool air. About.

【0002】[0002]

【従来の技術】一般に、空気調和機は機能なりユニット
の構成によって多種に仕分けられるのであるが、機能面
では冷房専用、冷房および除湿専用、冷房および暖房兼
用とに分類されることができ、ユニットの構成面では冷
房と放熱機能を一体化して窓などに設けられる一体型
と、室内側には冷却装置を、室外側には放熱および圧縮
装置をそれぞれ分離させて設けられる分離型とに仕分け
られる。
2. Description of the Related Art In general, air conditioners are classified into various types according to functions and unit configurations. However, in terms of functions, air conditioners can be classified into cooling only, cooling and dehumidification only, and cooling and heating. In terms of the configuration, the cooling and heat dissipation functions are integrated into one unit, such as a window, and the cooling unit is installed indoors, and the heat dissipation and compression units are installed separately outside the room. .

【0003】前記分離型空気調和機には、一つの室外機
圧縮2つ、四方弁二つに2台以上の室内機を連結して多
数の室内空間をそれぞれ空気調和させるマルチ型も含ま
れる。
The separation type air conditioners include a multi-type air conditioner in which two outdoor units are compressed and two or more four-way valves are connected to two or more indoor units to air-condition a plurality of indoor spaces.

【0004】かかる従来の分離型空気調和機は、図1に
示すように、室内に設けられる室内機100と、室外側
に設けられる室外機110とが一つのシステムで作動
し、必要によっては暖房運転および冷房運転となりう
る。
As shown in FIG. 1, in such a conventional separation type air conditioner, an indoor unit 100 provided indoors and an outdoor unit 110 provided outdoors are operated by one system, and if necessary, heating is performed. It can be an operation and a cooling operation.

【0005】前記室外機110には、冷媒を高温高圧の
気体状態に圧縮させる圧縮機120と、前記圧縮機12
0で高温高圧に圧縮された気体冷媒を室外側ファン13
1により送風される空気に熱交換し常温高圧の液相冷媒
に冷却凝縮させる室外側熱交換器130と、前記室外側
熱交換器130で凝縮された常温高圧の液相冷媒を蒸発
しやすい低温低圧の霧状冷媒に減圧膨張させる毛細管1
35が設けられており、前記室内機100には前記毛細
管135を通過した低温低圧の霧状冷媒を室内ファン1
41により送風される空気に熱交換して蒸発させつつ低
温低圧の完全気体状態の冷媒ガスに変換させる室内熱交
換器140が設けられている。
[0005] The outdoor unit 110 includes a compressor 120 for compressing a refrigerant into a high-temperature and high-pressure gas state, and a compressor 12 for compressing the refrigerant.
The gas refrigerant compressed to a high temperature and a high pressure at 0
An outdoor heat exchanger 130 that exchanges heat with the air blown by 1 and cools and condenses it into a normal-temperature and high-pressure liquid-phase refrigerant, and a low-temperature that easily vaporizes the normal-temperature and high-pressure liquid-phase refrigerant condensed in the outdoor heat exchanger 130. Capillary tube 1 for decompressing and expanding into low-pressure mist refrigerant
The indoor unit 100 is provided with a low-temperature and low-pressure mist-like refrigerant that has passed through the capillary tube 135.
An indoor heat exchanger 140 is provided for exchanging heat with the air blown by 41 and evaporating it while converting it into a low-temperature, low-pressure refrigerant gas in a completely gaseous state.

【0006】上述のように構成された空気調和機におい
て、冷房および除湿運転時の冷媒サイクルは同一であ
り、図1の実線矢印方向へ冷媒サイクルが行われる。
In the air conditioner configured as described above, the refrigerant cycle during the cooling and dehumidifying operations is the same, and the refrigerant cycle is performed in the direction of the solid line arrow in FIG.

【0007】まず、室外機110の圧縮機120から吐
出された高温高圧の気体冷媒が室外側熱交換器130に
流入されると、前記室外側熱交換器130では高温高圧
に圧縮された気体冷媒を室外側ファン131により送風
される空気に熱交換して強制冷却させて凝縮させ、前記
室外側熱交換器130で凝縮された常温高圧の液相冷媒
は毛細管135に流入する。
First, when a high-temperature and high-pressure gas refrigerant discharged from the compressor 120 of the outdoor unit 110 flows into the outdoor heat exchanger 130, the gas refrigerant compressed to a high temperature and high pressure is discharged in the outdoor heat exchanger 130. Is exchanged with the air blown by the outdoor fan 131 to be forcibly cooled and condensed, and the room-temperature and high-pressure liquid-phase refrigerant condensed by the outdoor heat exchanger 130 flows into the capillary 135.

【0008】前記毛細管135に流入された常温高圧の
液相冷媒は、蒸発しやすい低温低圧の霧状冷媒に膨張さ
れて室内機100内に設けられた室内熱交換器140に
流入され、前記室内熱交換器140では冷媒が蒸発して
気化する際、室内ファン141により送風される空気か
ら奪熱して室内空気を冷却させてから、その冷却された
空気(冷風)を室内に吐出して冷房または除湿運転を行
い、前記室内熱交換器140で冷却された低温低圧の気
体冷媒は冷媒ガスに変換されて上述の冷媒サイクルを繰
返す。
The liquid refrigerant at normal temperature and high pressure which has flowed into the capillary tube 135 is expanded into a low-temperature and low-pressure mist-like refrigerant which is easy to evaporate, and flows into the indoor heat exchanger 140 provided in the indoor unit 100, where the indoor heat exchanger 140 is provided. When the refrigerant evaporates and evaporates in the heat exchanger 140, the heat is removed from the air blown by the indoor fan 141 to cool the indoor air, and then the cooled air (cold air) is discharged into the room to perform cooling or cooling. The dehumidifying operation is performed, and the low-temperature and low-pressure gas refrigerant cooled in the indoor heat exchanger 140 is converted into a refrigerant gas, and the above-described refrigerant cycle is repeated.

【0009】この際、室内機100が冷房運転であれば
室内ファン141をユーザーの設定した風量によって駆
動させて冷房運転を行い、室内機100が除湿運転であ
れば室内ファン141を最低風量に低めて除湿運転を行
う。
At this time, when the indoor unit 100 is in the cooling operation, the indoor fan 141 is driven by the air volume set by the user to perform the cooling operation, and when the indoor unit 100 is in the dehumidifying operation, the indoor fan 141 is reduced to the minimum air volume. To perform dehumidification operation.

【0010】[0010]

【発明が解決しようとする課題】ところで、上記のごと
く構成された空気調和機の除湿運転方式によれば、梅雨
期などに室内温度は適正であるか、あるいは低い状態で
湿気が多いため、除湿運転を行う場合、冷房運転と同様
な冷媒サイクルで室内の風量のみを低めて運転を行うよ
うになるが、この際、室内熱交換器140で熱交換され
た冷気が吐出されるため、実際の室内温度が下げられて
寒さを感じるようになるのはもとより、室内熱交換器1
40の温度が低すぎて除湿効率を顕著に低下させるとい
う問題点があった。
However, according to the dehumidifying operation method of the air conditioner configured as described above, the room temperature is appropriate during the rainy season or the like, or since the humidity is high in a low state, the dehumidifying operation is performed. When the operation is performed, the operation is performed by reducing only the indoor air volume in the same refrigerant cycle as the cooling operation, but at this time, since the cold air exchanged in the indoor heat exchanger 140 is discharged, the actual operation is performed. The indoor temperature exchanger 1
There was a problem that the temperature of 40 was too low and the dehumidifying efficiency was significantly reduced.

【0011】さらに、除湿運転はユーザーが任意に設定
して室内温度を高めることができないため、別に電気ヒ
ータを設けて無冷気除湿運転を実現してきた。
Further, since the user cannot arbitrarily set the dehumidifying operation to raise the room temperature, a separate electric heater is provided to realize the non-cooled air dehumidifying operation.

【0012】そこで本発明は、上記種々の問題点を解決
するためになされたものであって、本発明の目的は、1
台の室内熱交換器にそれぞれ異なる冷媒パスラインで冷
房運転および暖房運転を行う2台の室外機をそれぞれ連
結させることにより、一方の室外機の冷房運転によって
室内熱交換器の後側を通過する低温低圧の冷媒により形
成された空気(冷風)が、他方の室外機の暖房運転によ
って室内熱交換器の前側を通過する高温高圧の冷媒によ
り形成された空気(温風)と適切に混合されて吐出され
ることにより、冷気の発生なしに湿気を除去して室内温
度を所定温度に保持しつつ除湿効率を向上させた空気調
和機を提供することにある。
The present invention has been made in order to solve the above-mentioned various problems, and an object of the present invention is to provide:
By connecting two outdoor units performing cooling operation and heating operation with different refrigerant path lines to two indoor heat exchangers respectively, one outdoor unit passes behind the indoor heat exchanger by cooling operation. The air (cold air) formed by the low-temperature and low-pressure refrigerant is appropriately mixed with the air (warm air) formed by the high-temperature and high-pressure refrigerant passing the front side of the indoor heat exchanger by the heating operation of the other outdoor unit. It is an object of the present invention to provide an air conditioner that discharges moisture without generating cool air, removes moisture, maintains room temperature at a predetermined temperature, and improves dehumidification efficiency.

【0013】本発明のまた別の目的は、除湿運転時に室
内機内に設けられた1台の室内熱交換器の前側に高温高
圧の冷媒が流れ、後側に低温低圧の冷媒が流れる際、空
気による熱接触は緊密に行われるが、相互の連結部分を
通じた伝熱は最小化されるように室内熱交換器を一工程
により一体に製造して加工費および工程数を減少できる
空気調和機を提供することにある。
Another object of the present invention is to provide a high-temperature, high-pressure refrigerant flowing in front of a single indoor heat exchanger provided in an indoor unit and a low-temperature, low-pressure refrigerant flowing in the rear side during dehumidifying operation. The air conditioner which can reduce the processing cost and the number of processes by integrally manufacturing the indoor heat exchanger in one process so that the heat transfer through To provide.

【0014】[0014]

【課題を解決するための手段】上述のような目的を達成
するためになされた本発明による空気調和機は、室内機
に設けられた室内熱交換器と、前記室内熱交換器から独
立された冷媒パスラインに連結されて暖房運転時に高温
高圧の冷媒を循環供給する第1の室外機と、前記室内熱
交換器から独立された冷媒パスラインに連結されて冷房
運転時に低温低圧の冷媒を循環供給する第2の室外機と
を備えた空気調和機において、前記室内熱交換器は前記
第1・2の室外機のそれぞれに異なる冷媒パスラインが
配設されて暖房または冷房運転中に一つに同時に切換え
られる際、あるいはそれぞれ暖房および冷房運転に切換
えられて除湿運転される際、共用として使用されるよう
に一つに一体化されつつ相互異なる領域に仕分けられる
所定位置に部分的にギャップが形成されたことを特徴と
する。
SUMMARY OF THE INVENTION An air conditioner according to the present invention, which has been made to achieve the above object, has an indoor heat exchanger provided in an indoor unit, and is independent of the indoor heat exchanger. A first outdoor unit that is connected to a refrigerant path line and circulates high-temperature and high-pressure refrigerant during heating operation, and that is connected to a refrigerant path line that is independent of the indoor heat exchanger and circulates low-temperature and low-pressure refrigerant during cooling operation In the air conditioner provided with a second outdoor unit to be supplied, the indoor heat exchanger is provided with a different refrigerant path line for each of the first and second outdoor units, and one of the indoor heat exchangers is provided during heating or cooling operation. At the same time, or at the time of dehumidifying operation by switching to heating and cooling operations, respectively, is partially integrated into a predetermined position that is integrated into one so as to be used for common use and sorted into different areas. Characterized in that the gap is formed.

【0015】[0015]

【発明の実施の形態】以下、本発明による一実施形態に
ついて添付図2・3に沿って詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment according to the present invention will be described below in detail with reference to FIGS.

【0016】図2は、本発明による空気調和機の冷媒サ
イクル図であって、室内に設けられる1台の室内機10
と、室外側に設けられる第1・2の2台の室外機20・
21が一つのシステムで作動し、必要によって冷暖房運
転を行える。
FIG. 2 is a refrigerant cycle diagram of the air conditioner according to the present invention, and shows one indoor unit 10 provided indoors.
And the first and second two outdoor units 20.
21 is operated by one system, and can perform a cooling / heating operation as needed.

【0017】前記第1・2の室外機20・21には、冷
媒を高温高圧の気体状態にそれぞれ圧縮させる第1・2
の圧縮機30・31と、運転条件冷房または暖房にした
がって前記第1・2の圧縮機30・31で高温高圧に圧
縮された気体冷媒の流れをそれぞれ変換させる第1・2
の四方弁40・41と、冷房運転時に前記第1・2の圧
縮機30・31で高温高圧に圧縮された気体冷媒を低温
高圧の液相冷媒にそれぞれ冷却凝縮させる第1・2の室
外側熱交換器50・51と、前記第1・2の室外側熱交
換器50・51で熱交換が円滑になるように室外側の空
気を吸入して前記第1・2の室外側熱交換器50・51
にそれぞれ送風する第1・2の室外側ファン50a・5
1aと、前記室内機10に連結されて前記第1・2の室
外側熱交換器50・51で冷却凝縮された低温高圧の液
相冷媒を蒸発しやすい低温低圧の霧状冷媒にそれぞれ減
圧膨張させる第1・2の毛細管60・61と、暖房運転
時に後述する室内熱交換器で液化された冷媒を前記第1
・2の毛細管60・61とともに蒸発しやすい低温低圧
の霧状冷媒にそれぞれ減圧膨張させる第1・2の暖房用
毛細管70・71と、冷房運転時にのみ冷媒が通過する
ように冷媒を一方向へのみそれぞれ流す第1・2の一方
向弁80・81とが設けられている。
The first and second outdoor units 20 and 21 are respectively provided with first and second outdoor units 20 and 21 for compressing the refrigerant into a high-temperature and high-pressure gas state.
The first and second compressors 30 and 31 convert the flow of the gas refrigerant compressed to a high temperature and a high pressure by the first and second compressors 30 and 31 according to the cooling condition or the heating condition, respectively.
The four-way valves 40 and 41, and the first and second outdoor sides for cooling and condensing a gas refrigerant compressed to a high-temperature and high-pressure by the first and second compressors 30 and 31 into a low-temperature and high-pressure liquid-phase refrigerant during the cooling operation, respectively. The first and second outdoor heat exchangers by sucking outdoor air so as to facilitate heat exchange between the heat exchangers 50 and 51 and the first and second outdoor heat exchangers 50 and 51; 50 ・ 51
1st and 2nd outdoor fans 50a and 5 that blow air to
1a and the low-temperature and high-pressure liquid-phase refrigerant connected to the indoor unit 10 and cooled and condensed in the first and second outdoor-side heat exchangers 50 and 51 are decompressed and expanded into low-temperature and low-pressure mist-like refrigerants that are easy to evaporate. The first and second capillaries 60 and 61 to be cooled and the refrigerant liquefied by an indoor heat exchanger to be described later during the heating operation are transferred to the first and second capillaries.
The first and second heating capillary tubes 70 and 71, which decompress and expand into low-temperature and low-pressure mist refrigerant that easily evaporates together with the second capillary tubes 60 and 61, and the refrigerant in one direction so that the refrigerant passes only during cooling operation. There are provided first and second one-way valves 80 and 81 which respectively flow only.

【0018】一方、前記室内機10には、冷房運転時に
前記第1・2の毛細管60・61を通過した低温低圧の
霧状冷媒を蒸発させつつ低温低圧の完全気体状態の冷媒
ガスにそれぞれ変換させる室内熱交換器90と、前記室
内熱交換器90で熱交換が円滑になるように室内の空気
を循環させる室内ファン90aとが設けられている。
On the other hand, the indoor unit 10 converts the low-temperature and low-pressure mist refrigerant passing through the first and second capillaries 60 and 61 into a low-temperature and low-pressure completely gaseous refrigerant gas during the cooling operation. An indoor heat exchanger 90 is provided, and an indoor fan 90a that circulates indoor air so that heat exchange in the indoor heat exchanger 90 is smooth.

【0019】すなわち、前記室内熱交換器90は、図3
に示すように、左右所定間隔を保持する二つの端板91
と、前記端板91の間に気流が通過しつつ伝熱されるよ
うに所定間隔で平行に配列されたアルミニウムまたはア
ルミニウム合金材質の複数の平板フィン92と、前記第
1・2の室外機20・21から流れる冷媒が前記複数の
平板フィン92に熱伝導されるように前記端板91と複
数の平板フィン92の前側および後側にそれぞれ異なる
冷媒パスラインを形成するように、直交される上下千鳥
状方向へ挿入された複数の第1・2の冷媒管93・94
と、前記二つの端板91の外部に突出された前記複数の
第1・2の冷媒管93・94の二本を一対としてそれら
の端部を連結する複数のリターンバンド管95とから構
成されている。
That is, the indoor heat exchanger 90 shown in FIG.
As shown in FIG.
A plurality of flat plate fins 92 made of aluminum or aluminum alloy material arranged in parallel at a predetermined interval so that heat is transmitted while an air flow passes between the end plates 91; The staggered upper and lower staggers are formed such that different refrigerant path lines are formed on the front side and the rear side of the end plate 91 and the plurality of flat plate fins 92 so that the refrigerant flowing from the heat sink 21 is thermally conducted to the plurality of flat plate fins 92. First and second refrigerant pipes 93 and 94 inserted in the shape direction
And a plurality of return band pipes 95 connecting the ends of the two first and second refrigerant pipes 93 and 94 as a pair and projecting to the outside of the two end plates 91. ing.

【0020】この際、前記複数の平板フィン92の中央
には、図4に示すように、その前側92aと後側92b
に暖房運転と冷房運転に必要なそれぞれ異なる冷媒パス
ラインが設けられて除湿運転される場合、前側92aに
設けられた複数の第1の冷媒管93を通過する高温高圧
の気体冷媒により発生される温熱と後側92bに設けら
れた複数の第2の冷媒管94を通過する低温低圧の霧状
冷媒により発生される冷熱が平板フィン92を通して伝
熱されるのを最小化させるように複数のスリット92c
が形成されている。
At this time, as shown in FIG. 4, a front side 92a and a rear side 92b
When the dehumidifying operation is performed by providing different refrigerant pass lines required for the heating operation and the cooling operation, the gas is generated by the high-temperature and high-pressure gas refrigerant passing through the plurality of first refrigerant pipes 93 provided on the front side 92a. A plurality of slits 92c are provided so as to minimize the transfer of the heat generated by the low-temperature and low-pressure mist refrigerant passing through the plurality of second refrigerant pipes 94 provided on the rear side 92b.
Are formed.

【0021】次に、かように構成された本発明による作
用および効果について説明する。
Next, the operation and effect of the present invention thus configured will be described.

【0022】空気調和機に電圧を印加することによって
第1・2の圧縮機30・31と第1・2の室外側ファン
50a・51aがオンになると、第1・2の室外機20
・21の第1・2の圧縮機30・31から高温高圧の気
体冷媒が第1・2の四方弁40・41を通じて第1・2
の室外側熱交換器50・51に流入され、前記第1・2
の室外側熱交換器50・51では高温高圧に圧縮された
気体冷媒を第1・2の室外側ファン50a・51aによ
り送風される空気に熱交換して強制冷却させて凝縮さ
せ、前記第1・2の室外側熱交換器50・51で凝縮さ
れた低温高圧の液相冷媒は第1・2の一方向弁80・8
1をへて第1・2の毛細管60・61に流入する。
When the first and second compressors 30 and 31 and the first and second outdoor fans 50a and 51a are turned on by applying voltage to the air conditioner, the first and second outdoor units 20 and 51a are turned on.
The high-temperature and high-pressure gas refrigerant from the first and second compressors 30 and 31 is passed through the first and second four-way valves 40 and 41 to the first and second compressors 30 and 31.
Into the outdoor heat exchangers 50 and 51 of the first and second heat exchangers.
In the outdoor heat exchangers 50 and 51, the gas refrigerant compressed to a high temperature and a high pressure is exchanged with the air blown by the first and second outdoor fans 50a and 51a to be forcibly cooled and condensed. The low-temperature and high-pressure liquid-phase refrigerant condensed in the second outdoor heat exchangers 50 and 51 is supplied to the first and second one-way valves 80 and 8.
1 and flow into the first and second capillary tubes 60 and 61.

【0023】さらに、第1・2の毛細管60・61に流
入された低温高圧の液相冷媒は、蒸発しやすい低温低圧
の霧状冷媒に膨張されて室内機10内に設けられた室内
熱交換器90の前側端と後側端にそれぞれ異なる冷媒パ
スラインを伝ってそれぞれ流入され、前記室内熱交換器
90では第1・2の毛細管60・61を通して減圧され
た低温低圧の霧状冷媒が多数個の伝熱管(図示なし)を
通過しつつ蒸発して気化する際、室内ファン90aによ
り送風される空気から奪熱して室内空気を冷却させてか
ら、その冷却された空気(冷風)を室内に吐出する冷房
運転を行う。
Further, the low-temperature and high-pressure liquid-phase refrigerant flowing into the first and second capillary tubes 60 and 61 is expanded into a low-temperature and low-pressure mist-like refrigerant that is easily evaporated, and the indoor heat exchange provided in the indoor unit 10 is performed. A large number of low-temperature and low-pressure atomized refrigerants are introduced into the front end and the rear end of the heat exchanger 90 along different refrigerant path lines, respectively, and depressurized through the first and second capillary tubes 60 and 61 in the indoor heat exchanger 90. When evaporating and vaporizing while passing through individual heat transfer tubes (not shown), heat is taken from the air blown by the indoor fan 90a to cool the indoor air, and then the cooled air (cool air) is introduced into the room. A cooling operation for discharging is performed.

【0024】この際、室内熱交換器90で冷却された低
温低圧の気体冷媒は、第1・2の四方弁40・41を通
して再度第1・2の圧縮機30・31に流入されること
により、第1・2の圧縮機30・31の圧縮作用により
高温高圧の冷媒ガスに変換されて図2の実線矢印方向へ
沿って冷媒サイクルを繰返しつつ第1・2の室外機20
・21は室内冷房を行う。
At this time, the low-temperature and low-pressure gaseous refrigerant cooled by the indoor heat exchanger 90 flows into the first and second compressors 30 and 31 again through the first and second four-way valves 40 and 41. The first and second outdoor units 20 are converted into a high-temperature and high-pressure refrigerant gas by the compression action of the first and second compressors 30 and 31 and repeat the refrigerant cycle along the solid arrow direction in FIG.
・ 21 performs indoor cooling.

【0025】一方、冷房運転時に除湿運転信号が入力さ
れると、第1の室外機20は図2の点線矢印方向へ沿っ
て冷媒が第1の圧縮機30→第1の四方弁40→室内熱
交換器90の一側→第1の毛細管60→第1の暖房用毛
細管70→第1の室外側熱交換器50→第1の四方弁4
0→第1の圧縮機30の順に循環される冷媒サイクルを
形成する。
On the other hand, when the dehumidifying operation signal is input during the cooling operation, the first outdoor unit 20 causes the refrigerant to flow along the dotted arrow direction in FIG. 2 from the first compressor 30 to the first four-way valve 40 to the indoor. One side of the heat exchanger 90 → the first capillary tube 60 → the first heating capillary tube 70 → the first outdoor heat exchanger 50 → the first four-way valve 4.
A refrigerant cycle that is circulated in the order of 0 → first compressor 30 is formed.

【0026】すなわち、第1の四方弁40は暖房運転に
切換り、第1の室外機20の第1の圧縮機30から吐出
された高温高圧の気体冷媒が第1の四方弁40を通して
室内機10内に設けられた室内熱交換器90の一側に流
入し、室内熱交換器90の一側では高温高圧の気体冷媒
の熱を、室内ファン90aから送風される空気により熱
交換して常温高圧の冷媒に冷却させることにより暖めら
れた空気(温風)を室内に吐出する暖房運転を行う。
That is, the first four-way valve 40 switches to the heating operation, and the high-temperature and high-pressure gaseous refrigerant discharged from the first compressor 30 of the first outdoor unit 20 passes through the first four-way valve 40 to the indoor unit. 10 flows into one side of the indoor heat exchanger 90 provided in the inside 10, and at one side of the indoor heat exchanger 90, heat of the high-temperature and high-pressure gas refrigerant is exchanged by air blown from the indoor fan 90 a to be at normal temperature. A heating operation for discharging air (warm air) warmed by cooling to a high-pressure refrigerant into a room is performed.

【0027】さらに、室内熱交換器90の一側で液化さ
れた冷媒は、第1の毛細管60および第1の暖房用毛細
管70を通して蒸発しやすい低温低圧の霧状冷媒に減圧
膨張されて第1の室外側熱交換器50に流入され、第1
の室外側熱交換器50では低温低圧の霧状冷媒を第1の
室外側ファン50aにより送風される空気に熱交換して
冷却し、前記第1の室外側熱交換器50で冷却された低
温低圧の気体冷媒は第1の四方弁40を通して再度第1
の圧縮機30に流入されて第1の圧縮機30の圧縮作用
により高温高圧の冷媒ガスに変換されることにより、第
1の室外機20は図2の点線矢印方向へ冷媒サイクルを
繰返し暖房運転を行う。
Further, the refrigerant liquefied on one side of the indoor heat exchanger 90 is decompressed and expanded into a low-temperature and low-pressure mist-like refrigerant which easily evaporates through the first capillary tube 60 and the first heating capillary tube 70, and the first refrigerant is vaporized. Into the outdoor heat exchanger 50 of the
In the outdoor heat exchanger 50, the low-temperature and low-pressure atomized refrigerant is cooled by exchanging heat with air blown by the first outdoor fan 50a, and is cooled by the first outdoor heat exchanger 50. The low-pressure gaseous refrigerant passes through the first four-way valve 40 again to the first
The first outdoor unit 20 repeats the refrigerant cycle in the direction indicated by the dotted line arrow in FIG. 2 by performing the heating operation by being converted into the high-temperature and high-pressure refrigerant gas by the compression action of the first compressor 30. I do.

【0028】この際、第2の室外機21の第2の四方弁
41は、冷房運転状態をそのまま保持するようになるた
め、第2の室外機21は図2の実線矢印方向へ冷媒サイ
クルを繰返し冷房運転を行う。
At this time, since the second four-way valve 41 of the second outdoor unit 21 keeps the cooling operation state as it is, the second outdoor unit 21 performs the refrigerant cycle in the direction of the solid line arrow in FIG. The cooling operation is performed repeatedly.

【0029】上述のように、冷房運転中に除湿運転に切
換えられて第1の室外機20が暖房運転を行い、第2の
室外機21が冷房運転を行うと、第1の圧縮機30から
吐出された高温高圧の気体冷媒は独立された冷媒パスラ
インを伝って室内機10内に設けられた室内熱交換器9
0の一側に流入され、第2の毛細管61を通して減圧さ
れた低温低圧の霧状冷媒は独立された冷媒パスラインを
伝って室内機10内に設けられた室内熱交換器90の他
側に流入される冷媒サイクルを繰返すようになる。
As described above, when the operation is switched to the dehumidifying operation during the cooling operation, the first outdoor unit 20 performs the heating operation, and the second outdoor unit 21 performs the cooling operation, the first compressor 30 starts operating. The discharged high-temperature and high-pressure gaseous refrigerant travels along an independent refrigerant path line and the indoor heat exchanger 9 provided in the indoor unit 10.
The low-temperature and low-pressure atomized refrigerant that has flowed into one side of the indoor unit 10 and decompressed through the second capillary tube 61 travels along an independent refrigerant path line to the other side of the indoor heat exchanger 90 provided in the indoor unit 10. The inflow refrigerant cycle is repeated.

【0030】この際、室内熱交換器90には、二つの端
板91の間に空気が通過されつつ伝熱されるように所定
間隔をおいて平行になるように複数の平板フィン92が
設けられており、これらの複数の平板フィン92の前側
92aと後側92bとの間の中央には複数のスリット9
2cが縦方向へ形成されているため、第1の室外機20
で高温高圧の気体冷媒が複数の第1の冷媒管93および
リターンバンド管95で形成された独立された冷媒パス
ラインを伝って平板フィン92の前側92aを通過しつ
つ発生された温熱と、第2の室外機21で低温低圧の霧
状冷媒が複数の第2の冷媒管94およびリターンバンド
管95で形成された独立された冷媒パスラインを伝って
平板フィン92の後側92bを通過しつつ発生された冷
熱との相互電熱は前記スリット92cによるギャップ
(GAP)により最小化される。
At this time, the indoor heat exchanger 90 is provided with a plurality of flat plate fins 92 at predetermined intervals so as to be parallel between the two end plates 91 so that the heat is transmitted while air is passed between the two end plates 91. In the center between the front side 92a and the rear side 92b of the plurality of flat fins 92, a plurality of slits 9 are provided.
2c is formed in the vertical direction, the first outdoor unit 20
The high-temperature and high-pressure gas refrigerant passes through the independent refrigerant pass line formed by the plurality of first refrigerant pipes 93 and the return band pipes 95, passes through the front side 92a of the flat plate fin 92, and generates heat. In the second outdoor unit 21, the low-temperature and low-pressure mist refrigerant passes through the rear side 92b of the flat plate fin 92 along an independent refrigerant path line formed by the plurality of second refrigerant pipes 94 and the return band pipes 95. Mutual electric heating with the generated cold is minimized by the gap (GAP) formed by the slit 92c.

【0031】すなわち、平板フィン92の前側92aと
後側92bは、一回の工程により一つの部材に加工され
ているが、それらの中央に形成された複数のスリット9
2cの幅にともなって所定間隔に離れている効果が得ら
れ、これらのスリット92cにより前側92aの独立さ
れた冷媒パスラインに伝って通過される高温高圧の気体
冷媒から発生される温熱が後側92bに伝熱されにくい
ようになるのはもとより、後側92bの独立された冷媒
パスラインに伝って通過される低温低圧の霧状冷媒から
発生される冷熱が前側92aに伝熱されにくいようにな
る。
That is, although the front side 92a and the rear side 92b of the flat plate fin 92 are processed into one member by one process, a plurality of slits 9 formed in the center thereof are formed.
With the width of 2c, the effect of being separated at a predetermined interval is obtained, and the heat generated from the high-temperature and high-pressure gaseous refrigerant passed through the independent refrigerant path line on the front side 92a by these slits 92c is generated on the rear side. The heat generated by the low-temperature and low-pressure atomized refrigerant that is transmitted through the independent refrigerant path line on the rear side 92b is not easily transmitted to the front side 92a. Become.

【0032】したがって、第2の室外機21の冷房運転
にしたがって室内熱交換器90の平板フィン92の後側
92bで熱交換されて通過される空気(冷風)は、第1
の室外機20の暖房運転にしたがって温熱を発散する室
内熱交換器90の平板フィン92の前側92aを通過す
る際、混合空気(冷風と温風が混合された中間温度の空
気)を形成するとともに、室内機10の吐出口に吐出さ
れることにより、冷風に含まれた湿気が除去されるのは
もとより所定温度を保持する除湿運転を行う。
Therefore, the air (cold air) which is exchanged and passed through the rear side 92b of the flat plate fins 92 of the indoor heat exchanger 90 in accordance with the cooling operation of the second outdoor unit 21 flows through the first outdoor unit.
When passing through the front side 92a of the flat fins 92 of the indoor heat exchanger 90 that dissipates heat in accordance with the heating operation of the outdoor unit 20, a mixed air (air at an intermediate temperature in which cold air and hot air are mixed) is formed. In addition, by being discharged to the discharge port of the indoor unit 10, the moisture contained in the cold air is removed, and the dehumidifying operation for maintaining the predetermined temperature is performed.

【0033】一方、第1・2の室外機20・21に暖房
運転信号が入力されると、図2の点線矢印方向へ沿って
冷媒が第1・2の圧縮機30・31→第1・2の四方弁
40・41→室内熱交換器90→第1・2の毛細管60
・61→第1・2の暖房用毛細管70・71→第1・2
の室外側熱交換器50・51→第1・2の四方弁40・
41→第1・2の圧縮機30・31の順に循環される冷
媒サイクルを形成する。
On the other hand, when a heating operation signal is input to the first and second outdoor units 20 and 21, the refrigerant is discharged along the first and second compressors 30 and 31 to the first and second compressors 30 and 31 in the direction of the dotted arrow in FIG. 2 four-way valve 40, 41 → indoor heat exchanger 90 → 1st, 2nd capillary tube 60
・ 61 → first and second heating capillary tubes 70 and 71 → first and second
Outdoor heat exchangers 50 and 51 → first and second four-way valves 40 and 51
A refrigerant cycle is circulated in the order of 41 → first and second compressors 30 and 31.

【0034】すなわち、第1・2の室外機20・21の
第1・2の圧縮機30・31から吐出された高温高圧の
気体冷媒が第1・2の四方弁40・41を通して室内機
10内に設けられた室内熱交換器90にそれぞれ異なる
冷媒パスラインを伝ってそれぞれ流入される場合、室内
熱交換器90では高温高圧の気体冷媒の熱を、室内ファ
ン90aから送風される空気により熱交換して常温高圧
の冷媒に冷却させることにより、室内熱交換器90を通
過する空気は暖められた空気(温風)を室内に吐出して
暖房運転を行う。
That is, the high-temperature and high-pressure gaseous refrigerant discharged from the first and second compressors 30 and 31 of the first and second outdoor units 20 and 21 passes through the first and second four-way valves 40 and 41 to the indoor unit 10. In the indoor heat exchanger 90, the heat of the high-temperature and high-pressure gaseous refrigerant is generated by the air blown from the indoor fan 90a. The air passing through the indoor heat exchanger 90 discharges warmed air (warm air) into the room to perform a heating operation by exchanging the refrigerant and cooling it to a normal-temperature high-pressure refrigerant.

【0035】さらに、室内熱交換器90で液化された冷
媒は、第1・2の毛細管60・61および第1・2の暖
房用毛細管70・71を通して蒸発しやすい低温低圧の
霧状冷媒に減圧膨張されて第1・2の室外側熱交換器5
0・51に流入され、第1・2の室外側熱交換器50・
51では低温低圧の霧状冷媒を第1・2の室外側ファン
50a・51aにより送風される空気に熱交換して冷却
し、前記第1・2の室外側熱交換器50・51で冷却さ
れた低温低圧の気体冷媒は第1・2の四方弁40・41
を通して再度第1・2の圧縮機30・31に流入されて
第1・2の圧縮機30・31の圧縮作用により高温高圧
の冷媒ガスに変換されることにより、第1・2の室外機
20・21は図2の点線矢印方向へ冷媒サイクルを繰返
し暖房運転を行う。
Further, the refrigerant liquefied in the indoor heat exchanger 90 is decompressed into a low-temperature low-pressure mist refrigerant which is easily evaporated through the first and second capillary tubes 60 and 61 and the first and second heating capillary tubes 70 and 71. Expanded first and second outdoor heat exchangers 5
0.51 and the first outdoor heat exchanger 50.
At 51, the low-temperature and low-pressure mist refrigerant is cooled by exchanging heat with air blown by the first and second outdoor fans 50a and 51a, and cooled by the first and second outdoor heat exchangers 50 and 51. The low-temperature and low-pressure gas refrigerant is supplied to the first and second four-way valves 40 and 41.
The refrigerant flows into the first and second compressors 30 and 31 again, and is converted into a high-temperature and high-pressure refrigerant gas by the compression action of the first and second compressors 30 and 31, so that the first and second outdoor units 20 and 31 are cooled. 21 performs the heating operation by repeating the refrigerant cycle in the direction of the dotted arrow in FIG.

【0036】[0036]

【発明の効果】上述のように、本発明による空気調和機
によれば、1台の室内機内に設けられた室内熱交換器に
それぞれ異なる冷媒パスラインにより第1・2の2台の
室外機が、それぞれ連結されるように構成して、冷房運
転および暖房運転をそれぞれ行う構造になっているた
め、第2の室外機の冷房運転にしたがって室内熱交換器
の後側で熱交換された空気(冷風)が第1の室外機の暖
房運転にしたがって室内熱交換器の前側で熱交換された
空気(温風)と混合されて混合空気(冷風と温風が混合
された中間温度の空気)を吐出するため、冷風に含まれ
た湿気を除去して除湿効率を高められるばかりか、所定
温度23〜25℃を保持する除湿運転を行うことがで
き、これにより夏季における洗濯物の乾燥機能はもとよ
り、冬季における湿気除去も可能であるという効果があ
る。
As described above, according to the air conditioner of the present invention, the first and second two outdoor units are connected to the indoor heat exchangers provided in one indoor unit by different refrigerant path lines. Are configured to be connected to each other to perform the cooling operation and the heating operation, respectively. Therefore, the air heat exchanged behind the indoor heat exchanger according to the cooling operation of the second outdoor unit is performed. (Cold air) is mixed with air (hot air) heat-exchanged on the front side of the indoor heat exchanger according to the heating operation of the first outdoor unit, and mixed air (intermediate temperature air in which cold air and hot air are mixed) In addition to removing the moisture contained in the cold air, the dehumidifying operation can be improved, and the dehumidifying operation of maintaining the predetermined temperature of 23 to 25 ° C. can be performed. Of course, moisture in winter There is an effect that removed by is also possible.

【0037】また、室内熱交換器の平板フィンは、除湿
運転時に暖房に必要な冷媒パスラインが通る前側と、冷
房に必要な冷媒パスラインが通る後側が一回の工程によ
り一体に加工されつつ、かつ相互に伝熱が最小化される
ようそれらの中央に複数のスリットが形成されているた
め、暖房と冷房用室内熱交換器を別途に製造する場合に
必要な加工費および工程数が低減できる効果もある。
Further, the flat fins of the indoor heat exchanger are integrally processed in a single step with the front side through which the refrigerant pass line required for heating passes and the rear side through which the refrigerant pass line necessary for cooling passes during the dehumidifying operation. In addition, multiple slits are formed at the center of each of them to minimize heat transfer to each other, which reduces the processing cost and the number of processes required when separately manufacturing indoor heat exchangers for heating and cooling. There is also an effect that can be done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 従来の空気調和機の冷媒サイクル図。FIG. 1 is a refrigerant cycle diagram of a conventional air conditioner.

【図2】 本発明による空気調和機の冷媒サイクル図。FIG. 2 is a refrigerant cycle diagram of the air conditioner according to the present invention.

【図3】 本発明の1台の室内熱交換器を示す分解斜視
図。
FIG. 3 is an exploded perspective view showing one indoor heat exchanger of the present invention.

【図4】 本発明による1台の室内熱交換器の平板フィ
ンを示す側面図である。
FIG. 4 is a side view showing flat fins of one indoor heat exchanger according to the present invention.

【符号の説明】[Explanation of symbols]

10 室内機 20・21 第1
・2の室外機 90 室内熱交換器 92 平板フィン 92a 前側 92b 後側 92c スリット
10 Indoor unit 20 ・ 21 First
2 outdoor unit 90 indoor heat exchanger 92 flat fin 92a front 92b rear 92c slit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 室内機に設けられた室内熱交換器と、前
記室内熱交換器から独立された冷媒パスラインに連結さ
れて暖房運転時に高温高圧の冷媒を循環供給する第1の
室外機と、前記室内熱交換器から独立された冷媒パスラ
インに連結されて冷房運転時に低温低圧の冷媒を循環供
給する第2の室外機とを備えた空気調和機において、 前記室内熱交換器は前記第1・2の室外機のそれぞれに
異なる冷媒パスラインが配設されて暖房または冷房運転
中に一つに同時に切換えられる際、あるいはそれぞれ暖
房および冷房運転に切換えられて除湿運転される際、共
用として使用されるように一つに一体化されつつ相互異
なる領域に仕分けられる所定位置に部分的にギャップが
形成されたことを特徴とする空気調和機。
1. An indoor heat exchanger provided in an indoor unit, and a first outdoor unit connected to a refrigerant path line independent of the indoor heat exchanger and circulating and supplying a high-temperature and high-pressure refrigerant during a heating operation. A second outdoor unit connected to a refrigerant path line independent of the indoor heat exchanger and supplying low-temperature and low-pressure refrigerant during cooling operation, wherein the indoor heat exchanger is When a different refrigerant path line is provided for each of the outdoor units 1.2 and is switched to one simultaneously during heating or cooling operation, or when each is switched to heating and cooling operation and dehumidification operation is performed, An air conditioner characterized in that a gap is partially formed at a predetermined position where it is integrated into one and divided into different areas for use.
【請求項2】 前記室内熱交換器の前側と後側に暖房運
転と冷房運転に必要なそれぞれ異なる冷媒パスラインが
それぞれ設けられて除湿運転される場合、前側の冷媒パ
スラインを通過する高温高圧の冷媒により発生される温
熱と後側の冷媒パスラインを通過する低温低圧の冷媒に
より発生される冷熱が相互に伝熱されるのを最小化する
ように、前記室内熱交換器の前側と後側間には、複数の
スリットが形成されたことを特徴とする請求項1に記載
の空気調和機。
2. In a case where different refrigerant path lines required for heating operation and cooling operation are provided on the front side and the rear side of the indoor heat exchanger, respectively, and the dehumidification operation is performed, a high-temperature and high-pressure passage through the front refrigerant path line is performed. The front and rear sides of the indoor heat exchanger so that the heat generated by the refrigerant and the cold generated by the low-temperature and low-pressure refrigerant passing through the rear refrigerant path line are minimized from being transferred to each other. The air conditioner according to claim 1, wherein a plurality of slits are formed between the slits.
【請求項3】 前記複数のスリットは、前記室内熱交換
器を構成する複数の平板フィンの前側と後側の間の中央
に上下方向へ所定間隔をおいてそれぞれ貫通されたこと
を特徴とする請求項2に記載の空気調和機。
3. The plurality of slits are respectively penetrated at predetermined intervals in the vertical direction at the center between the front side and the rear side of the plurality of flat fins constituting the indoor heat exchanger. The air conditioner according to claim 2.
JP11098168A 1998-04-07 1999-04-05 Air conditioner Pending JPH11344236A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019980012306A KR19990079625A (en) 1998-04-07 1998-04-07 Dehumidifier of Air Conditioner
KR199812306 1998-04-07

Publications (1)

Publication Number Publication Date
JPH11344236A true JPH11344236A (en) 1999-12-14

Family

ID=19535956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11098168A Pending JPH11344236A (en) 1998-04-07 1999-04-05 Air conditioner

Country Status (4)

Country Link
JP (1) JPH11344236A (en)
KR (1) KR19990079625A (en)
CN (1) CN1232944A (en)
TW (1) TW376440B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101619877B (en) 2009-07-31 2011-08-17 王全龄 Coupled water tank type ultra-low temperature air source heat pump air conditioner
KR101188500B1 (en) 2005-02-25 2012-10-05 엘지전자 주식회사 Heat-exchanger between tubes
US11351759B2 (en) 2020-01-16 2022-06-07 Carrier Corporation Insulating panel for an insulated air-flow casing and insulated air-flow casing comprising such an insulating panel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11199476B2 (en) 2017-01-13 2021-12-14 Luna Innovations Incorporated Dissolvable nanofiber materials and specimen recovery kits including the same for high efficiency specimen recovery
US11215371B2 (en) 2018-07-17 2022-01-04 Hussmann Corporation Variable refrigerant flow (VRF) dehumidification system
WO2024158783A1 (en) * 2023-01-23 2024-08-02 Hussman Corporation Dehumidification system and heat exchanger for the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101188500B1 (en) 2005-02-25 2012-10-05 엘지전자 주식회사 Heat-exchanger between tubes
CN101619877B (en) 2009-07-31 2011-08-17 王全龄 Coupled water tank type ultra-low temperature air source heat pump air conditioner
US11351759B2 (en) 2020-01-16 2022-06-07 Carrier Corporation Insulating panel for an insulated air-flow casing and insulated air-flow casing comprising such an insulating panel

Also Published As

Publication number Publication date
CN1232944A (en) 1999-10-27
TW376440B (en) 1999-12-11
KR19990079625A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
JP3540530B2 (en) Air conditioner
JP2015081765A (en) Heat pump
TW200921030A (en) Economized vapor compression circuit
US20060277940A1 (en) Air conditioner
KR100697087B1 (en) Air-Condition
JPH10325630A (en) Air conditioner
CN112577213B (en) Thermal Management System
JPH11344236A (en) Air conditioner
JP2002228187A (en) Air-cooled heat pump type outside air treatment air conditioner
JPH109693A (en) Air conditioner
JPH0914698A (en) Outdoor machine of air conditioner
JPH0395331A (en) Dehumidifier
KR100225634B1 (en) Refrigerant amount control device of air conditioner
JPH11142015A (en) Engine-driven type refrigerating unit
JP2000320914A (en) Refrigeration equipment
JPH10196984A (en) Air conditioner
JPH055406Y2 (en)
KR100268266B1 (en) Cooling/heating apparatus of airconditioner
JP2504419B2 (en) Air conditioner
US20240151425A1 (en) Air-conditioner
JPS5862469A (en) Heat pump type refrigerator
KR100252654B1 (en) Structure of out-door heat exchanger for air conditioner
JPH11241836A (en) Air conditioner
KR100252655B1 (en) Heat exchanger pass line structure of air conditioner
JP3749193B2 (en) Air conditioner