JPH11337284A - Heat exchanger - Google Patents
Heat exchangerInfo
- Publication number
- JPH11337284A JPH11337284A JP14137498A JP14137498A JPH11337284A JP H11337284 A JPH11337284 A JP H11337284A JP 14137498 A JP14137498 A JP 14137498A JP 14137498 A JP14137498 A JP 14137498A JP H11337284 A JPH11337284 A JP H11337284A
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- pair
- ribs
- flat
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/40—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
- F28F3/04—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明に係る熱交換器は、
ラジエータやコンデンサ等の各種熱交換器として、各種
流体同士の間で熱交換を行なう場合に利用できる。TECHNICAL FIELD The heat exchanger according to the present invention comprises:
It can be used as a heat exchanger such as a radiator or a condenser when performing heat exchange between various fluids.
【0002】[0002]
【従来の技術】各種熱交換器により、空気によって伝熱
管内を流れる流体を冷却したり、或は伝熱管内を流れる
流体により空気を冷却或は加温したりする事が広く行な
われている。又、各種熱交換器により伝熱管内を流れる
冷媒等の流体と伝熱管外を流れる空気等の流体との間で
熱交換を行なう際に、伝熱管の内、外面や伝熱フィン表
面等の境界層を破壊し、これら伝熱管や伝熱フィンと、
上記冷媒や空気等の流体との間での熱交換が効率良く行
なわれる様にする事も、広く行なわれている。2. Description of the Related Art A variety of heat exchangers are widely used to cool a fluid flowing in a heat transfer tube by air, or to cool or heat air by a fluid flowing in the heat transfer tube. . In addition, when performing heat exchange between a fluid such as a refrigerant flowing in the heat transfer tube and a fluid such as air flowing outside the heat transfer tube by various heat exchangers, the heat transfer fins and the like inside and outside the heat transfer tube. Destroying the boundary layer, these heat transfer tubes and heat transfer fins,
It has been widely practiced to efficiently perform heat exchange with the fluid such as the refrigerant or air.
【0003】例えば特開昭63−17393号公報に
は、伝熱面である扁平伝熱管の内面に、この扁平伝熱管
の内部に向かって突出する半球形や矩形等の各種形状の
突起(伝熱促進部)を多数形成する技術が記載されてい
る。これら各突起は、上記扁平伝熱管の内面に沿って流
れる冷媒等の流体を撹乱し、上記扁平伝熱管の内面とこ
の冷媒等の流体との間で熱交換が効率よく行なわれる様
にする。即ち、上記各突起は、上記扁平伝熱管の内面に
沿って流れる流体の流れを乱す事により、この扁平伝熱
管の内面の一部で、上記各突起の下流側に存在する部分
の境界層を破壊する様にしている。For example, Japanese Patent Application Laid-Open No. 63-17393 discloses that various shapes such as hemispherical and rectangular projections (transfers) projecting toward the inside of the flat heat transfer tube are provided on the inner surface of the flat heat transfer tube as a heat transfer surface. A technique for forming a large number of heat promoting portions is described. Each of these projections disturbs a fluid such as a refrigerant flowing along the inner surface of the flat heat transfer tube so that heat can be efficiently exchanged between the inner surface of the flat heat transfer tube and the fluid such as the refrigerant. That is, each of the protrusions disturbs the flow of the fluid flowing along the inner surface of the flat heat transfer tube, thereby forming a boundary layer of a part of the inner surface of the flat heat transfer tube, which is located downstream of each of the protrusions. I try to destroy it.
【0004】[0004]
【考案が解決しようとする課題】ところが、上記公報に
記載された各種形状の突起の場合には、これら各突起1
個分による流体の流れを乱す効果が小さく、必ずしも良
好な伝熱性向上の効果を得られなかった。本発明の熱交
換器は、上述の様な事情に鑑みて、伝熱面に設ける突起
の構造を工夫する事により、これら各突起による流体の
流れを乱す効果を大きくし、良好な熱交換性能を得られ
る様にすべく、発明したものである。However, in the case of the projections of various shapes described in the above publication, these projections 1
The effect of disturbing the flow of the fluid by the individual pieces was small, and the effect of improving the heat conductivity was not always obtained. The heat exchanger of the present invention, in consideration of the above-described circumstances, enhances the effect of disturbing the flow of the fluid due to each of the protrusions by devising the structure of the protrusions provided on the heat transfer surface, thereby improving the heat exchange performance. It was invented so that it could be obtained.
【0005】[0005]
【課題を解決するための手段】本発明の熱交換器は、上
述した従来の熱交換器と同様に、伝熱面に伝熱促進部を
設け、この伝熱促進部によって伝熱面に沿って流れる流
体の撹乱を図っている。特に、本発明の熱交換器に於い
ては、上記伝熱促進部は、それぞれが上記伝熱面から突
出する1対のリブにより構成しており、これら1対のリ
ブは、以下の〜の要件を満たす。 1対のリブは、上記伝熱面に沿って流れる流体の流
れ方向に亙り互いに0.5〜1.5ピッチずらせて配置
している。 1対のリブは、これら各リブの上流端縁を上記流体
の流れ方向と平行な線上に位置させた状態で、それぞれ
の中心軸を上記流体の流れ方向と平行な線を挟んで互い
に反対側に傾斜させており、これら各リブの中心軸と上
記流体の流れ方向と平行な線とのなす角を、それぞれ1
5〜75度としている。更に、上記伝熱促進部を、それ
ぞれが伝熱面である、扁平伝熱管を構成する互いに平行
な1対の平坦部の内面に設ける場合には、上記1対のリ
ブは、更に以下のの要件を満たす事が望ましい。 1対のリブは、上記各平坦部の内面からの突出量を
互いに等しくしており、これら各リブの突出量を、上記
両平坦部同士の間隔(扁平伝熱管の内側流路の断面高
さ)の20〜50%の大きさとしている。According to the heat exchanger of the present invention, a heat transfer promoting portion is provided on the heat transfer surface, and the heat transfer promoting portion is provided along the heat transfer surface, similarly to the above-described conventional heat exchanger. To disturb the flowing fluid. In particular, in the heat exchanger of the present invention, the heat transfer promoting section is constituted by a pair of ribs, each of which protrudes from the heat transfer surface. Meet requirements. The pair of ribs are arranged so as to be shifted from each other by 0.5 to 1.5 pitches in the flow direction of the fluid flowing along the heat transfer surface. The pair of ribs are arranged such that their upstream axes are located on a line parallel to the flow direction of the fluid, and their central axes are opposite to each other with respect to a line parallel to the flow direction of the fluid. The angle between the central axis of each rib and a line parallel to the flow direction of the fluid is set to 1
5 to 75 degrees. Further, when the heat transfer promoting portion is provided on an inner surface of a pair of parallel flat portions constituting a flat heat transfer tube, each of which is a heat transfer surface, the pair of ribs further includes the following: It is desirable to meet the requirements. The pair of ribs have the same amount of protrusion from the inner surface of each of the flat portions. The amount of protrusion of each of the ribs is determined by the distance between the two flat portions (the cross-sectional height of the inner flow path of the flat heat transfer tube). ) Is 20 to 50% of the size.
【0006】[0006]
【作用】上述の様に構成する本発明の熱交換器の場合、
伝熱面の一部で、伝熱促進部の下流側に存在する部分の
境界層を効率良く破壊できる。この為、この伝熱面とこ
の伝熱面を沿って流れる流体との間の伝熱効率を大きく
できる。従って、この伝熱面を含んで構成する熱交換器
の熱交換性能を高める事ができる。In the case of the heat exchanger of the present invention configured as described above,
The boundary layer of a part of the heat transfer surface existing downstream of the heat transfer promoting portion can be efficiently destroyed. Therefore, the heat transfer efficiency between the heat transfer surface and the fluid flowing along the heat transfer surface can be increased. Therefore, the heat exchange performance of the heat exchanger including the heat transfer surface can be improved.
【0007】[0007]
【発明の実施の形態】図1〜3は、本発明の実施の形態
の1例を示している。アルミニウム合金等、伝熱性の良
好な金属製の板材をプレス成形或はロール成形する事に
より形成した扁平伝熱管1は、互いに平行な1対の平坦
部2、2と、これら各平坦部2、2の幅方向(図1の左
右方向)両端縁同士を連続させる1対の連続部3、3と
を備える。又、それぞれが伝熱面である、上記1対の平
坦部2、2の内面には伝熱促進部4、4を、軸方向に亙
り多数設けている。これら各伝熱促進部4、4は、それ
ぞれが上記扁平伝熱管1の内部に向かって突出する、断
面矩形で長細の1対のリブ5、5により構成している。
尚、これら各リブ5、5の断面形状は、例えば、半円形
や半楕円形、更には三角形であっても良い。1 to 3 show an example of an embodiment of the present invention. A flat heat transfer tube 1 formed by press forming or roll forming a plate made of a metal having good heat conductivity, such as an aluminum alloy, has a pair of flat portions 2, 2 parallel to each other, and each flat portion 2, 2 in the width direction (the left-right direction in FIG. 1). A large number of heat transfer promoting portions 4 are provided on the inner surfaces of the pair of flat portions 2, each of which is a heat transfer surface, in the axial direction. Each of the heat transfer promoting portions 4, 4 is constituted by a pair of elongated ribs 5, 5 each having a rectangular cross section and protruding toward the inside of the flat heat transfer tube 1.
The cross-sectional shape of each of the ribs 5, 5 may be, for example, a semicircle, a semi-ellipse, or a triangle.
【0008】これら1対のリブ5、5は、図2に矢印α
で示す、上記扁平伝熱管1内を流通する流体の流れ方向
(扁平伝熱管1の軸方向)に亙り、互いにずらせて(オ
フセットして)配置している。図示の例の場合、このオ
フセット量を1ピッチ(後述する投影長さL)としてい
る。又、上記1対のリブ5、5は、これら各リブ5、5
の上流端縁{図2、3(A)の左端縁}を上記流れ方向
αと平行な上記伝熱促進部4の中心線β上に位置させた
状態で、それぞれの中心軸をこの中心線βを挟んで互い
に反対側に傾斜させている。図示の例の場合、上記各リ
ブ5、5の中心軸と上記中心線βとのなす角である、迎
え角θを、それぞれ30度としている。尚、上記投影長
さLとは、上記各リブ5、5を上記中心線β上に投影し
た長さであり、これら各リブ5、5の長さをL5 とした
場合に、L=L5 ・cos θとなる。尚、上記1対のリブ
5、5の迎え角θの大きさは、互いに異ならせても良
い。又、上記1対のリブ5、5は、上記扁平伝熱管1の
内面からの突出量hを互いに等しくしている。これら各
リブ5、5の突出量hは、上記1対の平坦部2、2の内
面同士の間隔(扁平伝熱管1の内側流路の断面高さ)W
の20〜50%とする。尚、上述の様な各リブ5、5
は、上記扁平伝熱管1をプレス成形或はロール成形する
のと同時に形成する他、この扁平伝熱管1を押し出し成
形した後、上記各リブ5、5をロール成形、或はプレス
成形により形成する事もできる。The pair of ribs 5, 5 are indicated by arrows α in FIG.
In the flow direction of the fluid flowing in the flat heat transfer tube 1 (in the axial direction of the flat heat transfer tube 1), they are displaced from each other (offset). In the illustrated example, this offset amount is one pitch (projection length L described later). Further, the pair of ribs 5, 5 are respectively
With the upstream edge {left edge of FIGS. 2 and 3 (A)} positioned on the center line β of the heat transfer promoting portion 4 parallel to the flow direction α, the respective center axes are aligned with this center line. They are inclined to the opposite sides with respect to β. In the illustrated example, the angle of attack θ, which is the angle between the central axis of each of the ribs 5 and 5 and the central line β, is set to 30 degrees. Note that the above-mentioned projection length L, and each rib 5, 5 is the length projected onto the central line beta, the length of each of these ribs 5, 5 in the case where the L 5, L = L 5 · cos θ. The magnitude of the angle of attack θ of the pair of ribs 5, 5 may be different from each other. In addition, the pair of ribs 5 and 5 make the protrusion amounts h from the inner surface of the flat heat transfer tube 1 equal to each other. The protrusion amount h of each of the ribs 5, 5 is determined by the distance between the inner surfaces of the pair of flat portions 2, 2 (the cross-sectional height of the inner flow passage of the flat heat transfer tube 1).
20% to 50%. The ribs 5, 5 as described above are used.
Is formed at the same time as the flat heat transfer tube 1 is formed by press forming or roll forming, and after the flat heat transfer tube 1 is extruded, the ribs 5 are formed by roll forming or press forming. You can do things.
【0009】上述の様に構成する扁平伝熱管1を組み込
んだ、本例の熱交換器の使用時、この扁平伝熱管1内に
冷媒等の流体を流通させると、上記1対の平坦部2、2
の内面に形成した多数の伝熱促進部4、4が、図3
(A)(B)に矢印で示す様に、これら1対の平坦部
2、2の内面に沿って流れる流体を撹乱させる。即ち、
これら1対の平坦部2、2の内面に沿って流れる流体
が、上記各伝熱促進部4、4を構成する1対のリブ5、
5を乗り越えると、これら1対のリブ5、5の下流側
{図2、3(A)の右側}に1対の渦が発生する。上述
した様に各伝熱促進部4、4を構成する1対のリブ5、
5は、これら各伝熱促進部4、4の中心線βに対して互
いに反対方向に傾斜させている。この為、これら1対の
リブ5、5の下流側に発生する1対の渦(の巻く方向)
は、図3(B)に示す様に、互いに逆向きとなる。When the heat exchanger of the present embodiment incorporating the flat heat transfer tube 1 constructed as described above is used, when a fluid such as a refrigerant flows through the flat heat transfer tube 1, the pair of flat portions 2 , 2
A large number of heat transfer promoting portions 4 and 4 formed on the inner surface of FIG.
(A) and (B), the fluid flowing along the inner surfaces of the pair of flat portions 2 and 2 is disturbed as indicated by arrows. That is,
Fluid flowing along the inner surfaces of the pair of flat portions 2, 2 forms a pair of ribs 5,
5, a pair of vortices is generated downstream of the pair of ribs 5, 5 (the right side in FIGS. 2 and 3A). As described above, a pair of ribs 5, which constitute each heat transfer promoting portion 4, 4,
5 are inclined in directions opposite to each other with respect to the center line β of each of the heat transfer promoting portions 4, 4. Therefore, a pair of vortices (winding direction) generated downstream of the pair of ribs 5, 5
Are opposite to each other as shown in FIG.
【0010】又、上述した様に各伝熱促進部4、4を構
成する1対のリブ5、5は、上記流体の流れ方向に亙り
互いにオフセットして配置している。この為、これら1
対のリブ5、5のうち、上流側{図2、3(A)の左
側}のリブ5の下流側に発生した渦が、同じく下流側の
リブ5の上流端縁に当たる。そして、この下流側のリブ
5部分で、上記上流側のリブ5により発生した渦と、こ
の下流側のリブ5により発生した逆向きの渦とが合流
し、この下流側のリブ5部分を含む上記伝熱促進部4、
4の下流側の広い範囲に強い渦を形成する。この結果、
これら互いに逆向きの1対の渦により、上記扁平伝熱管
1を構成する1対の平坦部2、2の内面の一部で、上記
各伝熱促進部4、4の下流側に存在する部分の境界層を
効率良く破壊できる。この為、上記扁平伝熱管1とこの
扁平伝熱管1内を流れる流体との間の伝熱効率を向上さ
せる事ができる。従って、この扁平伝熱管1を組み込ん
だ熱交換器の熱交換性能を高める事ができる。Further, as described above, the pair of ribs 5, 5 constituting each heat transfer promoting portion 4, 4 are arranged offset from each other in the flow direction of the fluid. Therefore, these 1
Of the pair of ribs 5, 5, the vortex generated on the downstream side of the rib 5 on the upstream side (left side in FIGS. 2 and 3A) hits the upstream edge of the rib 5 on the downstream side. The vortex generated by the upstream rib 5 and the reverse vortex generated by the downstream rib 5 merge at the downstream rib 5 and include the downstream rib 5. The heat transfer promoting section 4,
4. A strong vortex is formed in a wide area downstream of 4. As a result,
Due to the pair of vortices in opposite directions, a part of the inner surfaces of the pair of flat portions 2, 2 constituting the flat heat transfer tube 1, a portion existing downstream of the heat transfer promoting portions 4, 4 Can be efficiently destroyed. For this reason, the heat transfer efficiency between the flat heat transfer tube 1 and the fluid flowing in the flat heat transfer tube 1 can be improved. Accordingly, the heat exchange performance of the heat exchanger incorporating the flat heat transfer tube 1 can be improved.
【0011】尚、図示は省略するが、上記伝熱促進部
4、4を構成する1対のリブ5、5のオフセット量を0
にした場合には、これら各リブ5、5により発生した1
対の渦の合流位置が、これら各リブ5、5をオフセット
した場合の合流位置よりも下流側に移動する。この為、
この様に1対の渦の合流位置が下流側に移動した分、上
記1対の平坦部2、2の内面の一部で、上記伝熱促進部
4と上記合流位置との間部分の境界層を効率良く破壊す
る事ができなくなる。従って、上記伝熱促進部4、4
は、上述した本発明の様に、1対のリブ5、5を互いに
オフセットして構成するのが好ましい。Although not shown, the offset amount of the pair of ribs 5 constituting the heat transfer promoting portions 4 is set to 0.
In this case, 1 is generated by each of the ribs 5 and 5.
The merging position of the pair of vortices moves downstream from the merging position when the ribs 5 and 5 are offset. Because of this,
In this manner, the boundary between the heat transfer promoting portion 4 and the confluence position on a part of the inner surfaces of the pair of flat portions 2 and 2 corresponds to the movement of the confluence position of the pair of vortices to the downstream side. The layer cannot be destroyed efficiently. Therefore, the heat transfer promoting sections 4, 4
It is preferable that the pair of ribs 5, 5 be offset from each other as in the present invention described above.
【0012】尚、上述の様な伝熱促進部4、4は、熱交
換器を構成する各伝熱面のうち、上述した(扁平)伝熱
管の内面以外の部分に設けた場合であっても、これら各
伝熱面の境界層を効率良く破壊して、これら各伝熱面と
流体との間の伝熱効率を向上できる事は言う迄もない。
この様な伝熱面としては、例えば、上記伝熱管の外面、
或はプレートフィン、コルゲートフィン、インナーフィ
ン等の伝熱フィンの表面等が考えられる。The heat transfer promoting portions 4 and 4 as described above are provided on portions other than the inner surface of the (flat) heat transfer tube among the heat transfer surfaces constituting the heat exchanger. However, it goes without saying that the boundary layer between these heat transfer surfaces can be efficiently destroyed, and the heat transfer efficiency between each of the heat transfer surfaces and the fluid can be improved.
As such a heat transfer surface, for example, the outer surface of the heat transfer tube,
Alternatively, the surface of a heat transfer fin such as a plate fin, a corrugated fin, or an inner fin may be considered.
【0013】[0013]
【実施例】以下、本発明の効果を確認する為に、本発明
者が行なった実験に就いて説明する。実験では、伝熱促
進部4を構成する1対のリブ5、5のオフセット量及び
迎え角θのそれぞれの大きさが、伝熱面と流体との間の
伝熱効率に及ぼす影響に就いて調べた。尚、上述した実
施の形態の様に、伝熱促進部4を扁平伝熱管1(図1)
を構成する1対の平坦部2、2(図1)の内面に設ける
場合には、これら両平坦部2、2の内面同士の間隔Wに
対する上記1対のリブ5、5の突出量hの大きさ(割
合)も、上記伝熱効率を変化させる要因となる。この
為、実験では、上記間隔Wに対する上記突出量hの大き
さ(割合)が、伝熱面である扁平伝熱管の内面と流体と
の間の伝熱効率に及ぼす影響に就いても調べた。尚、上
記扁平伝熱管1は、上記1対の平坦部2、2の内面同士
の間隔Wが10mmであるものを使用した。EXAMPLES Hereinafter, experiments performed by the present inventors to confirm the effects of the present invention will be described. In the experiment, the effect of the offset amount of the pair of ribs 5 constituting the heat transfer promotion section 4 and the magnitude of the angle of attack θ on the heat transfer efficiency between the heat transfer surface and the fluid was examined. Was. Note that, as in the above-described embodiment, the heat transfer promoting section 4 is connected to the flat heat transfer tube 1 (FIG. 1).
Is provided on the inner surfaces of the pair of flat portions 2 and 2 (FIG. 1), the protrusion amount h of the pair of ribs 5 and 5 with respect to the interval W between the inner surfaces of the flat portions 2 and 2. The size (ratio) is also a factor that changes the heat transfer efficiency. For this reason, in the experiment, the effect of the magnitude (ratio) of the protrusion amount h with respect to the space W on the heat transfer efficiency between the fluid and the inner surface of the flat heat transfer tube as the heat transfer surface was also examined. The flat heat transfer tube 1 used had a distance W between the inner surfaces of the pair of flat portions 2 and 10 of 10 mm.
【0014】先ず、上記1対の平坦部2、2のうち、一
方の平坦部2の内面に、伝熱促進部4を1個だけ設け
た。この伝熱促進部4は、上記1対のリブ5、5を、オ
フセット量を1ピッチ(投影長さL×1)に、迎え角θ
を30度に、突出量hを2mm(上記平坦部2、2の内面
同士の間隔Wの20%の大きさ)に、それぞれ設定して
構成した。そして、周囲よりも高温の平坦部2の内面に
沿って低温の空気を、上記伝熱促進部4に向けて送り、
この平坦部2の表面温度を、サーモグラフィーで測定し
た。すると上記低温の空気のレイノルズ数が1500の
場合(層流の場合)に、図4(A)に示す様な冷却部
が、この平坦部2の内面の一部で、伝熱促進部4の下流
側部分に現われた。この図4(A)に示した冷却部に於
いて、斜格子で表わしたa部は、特に温度が低くなって
いる部分を、このa部の外側に存在し、斜線で表わした
b部は、比較的温度が低くなっている部分を、それぞれ
表わしている。又、上記伝熱促進部4を、上記1対のリ
ブ5、5の突出量hのみを3mm(上記間隔Wの30%の
大きさ)に変更して構成した場合には、同図(B)に示
す様に、上記伝熱促進部4の下流側部分に、より広範囲
な冷却部が現れた。First, only one heat transfer promoting portion 4 is provided on the inner surface of one of the pair of flat portions 2, 2. The heat transfer promoting unit 4 sets the pair of ribs 5 and 5 at an offset amount of one pitch (projected length L × 1) and sets the angle of attack θ
Is set to 30 degrees, and the protrusion amount h is set to 2 mm (20% of the interval W between the inner surfaces of the flat portions 2 and 2). Then, low-temperature air is sent toward the heat transfer promoting section 4 along the inner surface of the flat section 2 having a higher temperature than the surrounding area,
The surface temperature of the flat portion 2 was measured by thermography. Then, when the Reynolds number of the low-temperature air is 1500 (in the case of laminar flow), a cooling part as shown in FIG. Appeared in the downstream part. In the cooling part shown in FIG. 4A, the part a represented by the oblique lattice has a particularly low temperature portion outside the part a, and the part b represented by the oblique line is , Portions where the temperature is relatively low are shown. In the case where the heat transfer promoting portion 4 is configured by changing only the protrusion amount h of the pair of ribs 5 and 5 to 3 mm (a size of 30% of the interval W), FIG. As shown in ()), a wider-range cooling section appeared in the downstream portion of the heat transfer promoting section 4.
【0015】この様な測定を、上記1対のリブ5、5の
突出量hのみを1〜5mm(上記間隔Wの10〜50%の
大きさ)の間で、1mm刻みで変えて行ない、この突出量
hと放熱量(冷却部の面積と低下温度との積)との関係
を求めた所、図5に実線P1で示す様な結果が得られ
た。尚、この図5に示したグラフの縦軸で、放熱量比が
1の場合とは、上記冷却部の放熱量が、上記平坦部2の
内面に伝熱促進部4を設けていない場合に於ける、上記
平坦部2の放熱量と等しい事を意味する。この図5に示
す様に、上記冷却部の放熱量は、上記突出量hが上記間
隔Wの20%の大きさを越えた辺りから急激に上昇す
る。従って、上記突出量hの大きさは、上記間隔Wの2
0〜50%(更に好ましくは30〜50%)の範囲で、
上記平坦部2と流体との間の熱交換を良好にして、この
平坦部2の温度を十分に低下させる事ができる。Such a measurement is carried out by changing only the protrusion amount h of the pair of ribs 5, 5 between 1 and 5 mm (10 to 50% of the interval W) in increments of 1 mm. where the obtained relation between the heat radiation amount the amount of projection h (the product of the area of the cooling section with reduced temperature), such results are shown by a solid line P 1 is obtained in FIG. The case where the heat radiation amount ratio is 1 on the vertical axis of the graph shown in FIG. 5 means that the heat radiation amount of the cooling section is not provided with the heat transfer promoting section 4 on the inner surface of the flat section 2. Means the same as the heat radiation amount of the flat portion 2. As shown in FIG. 5, the heat radiation amount of the cooling section sharply increases when the protrusion amount h exceeds the size of 20% of the interval W. Therefore, the size of the protrusion amount h is 2
In the range of 0 to 50% (more preferably 30 to 50%),
The heat exchange between the flat portion 2 and the fluid is improved, and the temperature of the flat portion 2 can be sufficiently reduced.
【0016】尚、上記突出量hの大きさの上限値を上記
間隔Wの50%とした理由は、この突出量hの大きさを
これ以上大きくすると、前記扁平伝熱管1内を流れる流
体の抵抗が大きくなり、かえってこれら扁平伝熱管1と
流体との間の伝熱性能が低下する為である。又、図5の
破線Q1 は、前記低温の空気のレイノルズ数を700
0とした場合(乱流の場合)の測定結果を示している。
この図5から明らかな通り、上記乱流の場合も、上記層
流の場合程の大きな効果は得られないが、上記突出量h
の大きさが上記間隔Wの20〜50%(更に好ましくは
30〜50%)の範囲で、上記平坦部2と流体との間の
熱交換を良好にして、この平坦部2の温度を十分に低下
させる事ができる。The reason why the upper limit of the amount of protrusion h is set to 50% of the distance W is that if the amount of protrusion h is further increased, the flow rate of the fluid flowing through the flat heat transfer tube 1 will increase. This is because the resistance is increased and the heat transfer performance between the flat heat transfer tube 1 and the fluid is reduced. Also, the dashed line to Q 1 5, the Reynolds number of the cold air 700
It shows the measurement results when 0 (turbulent flow).
As apparent from FIG. 5, even in the case of the turbulent flow, the effect is not so large as in the case of the laminar flow, but the protrusion amount h
In the range of 20 to 50% (more preferably 30 to 50%) of the interval W, the heat exchange between the flat portion 2 and the fluid is improved, and the temperature of the flat portion 2 is sufficiently increased. Can be reduced.
【0017】次に、前記迎え角θと上記冷却部の放熱量
との関係に就いて調べた。即ち、上述と同様の実験を、
伝熱促進部4を構成する1対のリブ5、5のオフセット
量及び突出量hを一定に保持しつつ、上記迎え角θのみ
を変えて行なった。先ず、この様な実験を、1対のリブ
5、5の迎え角θの大きさを互いに等しくしつつ、この
迎え角θを15〜90度まで15度刻みで変えて行なっ
た所、図6に示す様な結果が得られた。この図6から明
らかな通り、流体(空気)の流れが層流状態の場合(実
線P2 )には、上記迎え角θが15〜75度の範囲で、
冷却部の放熱量を十分に大きくできる事が分かった。
又、上記流体の流れが乱流状態の場合(破線Q2 )も、
上記層流の場合程顕著には示されないが、上記迎え角θ
が15〜75度の範囲で、冷却部の放熱量を大きくでき
る事が分かった。尚、図示は省略するが、上述の様な実
験を、上記1対のリブ5、5の迎え角θを互いに異なら
せて行なった所、やはり、上記各リブ5、5の迎え角θ
が15〜75度の範囲で、冷却部の放熱量を大きくでき
る事が分かった。Next, the relationship between the angle of attack θ and the amount of heat released from the cooling section was examined. That is, the same experiment as above was performed.
The heat transfer was promoted by changing only the angle of attack θ while keeping the offset amount and the protrusion amount h of the pair of ribs 5 constituting the heat transfer promoting section 4 constant. First, such an experiment was carried out by changing the angle of attack θ from 15 to 90 degrees in increments of 15 degrees while equalizing the angles of attack θ of the pair of ribs 5, 5. The result as shown in FIG. As is apparent from FIG. 6, when the flow of the fluid (air) is in a laminar flow state (solid line P 2 ), when the angle of attack θ is in the range of 15 to 75 degrees,
It has been found that the heat radiation amount of the cooling unit can be sufficiently increased.
Also, when the flow of the fluid is in a turbulent state (broken line Q 2 ),
Although not as pronounced as in the case of the laminar flow, the angle of attack θ
It was found that the heat radiation amount of the cooling unit could be increased in the range of 15 to 75 degrees. Although not shown, the above-described experiment was performed by setting the angle of attack θ of the pair of ribs 5 and 5 different from each other.
It was found that the heat radiation amount of the cooling unit could be increased in the range of 15 to 75 degrees.
【0018】更に、前記オフセット量と上記冷却部の放
熱量との関係に就いて調べた。即ち、上述と同様の実験
を、伝熱促進部4を構成する1対のリブ5、5の迎え角
θ及び突出量hを一定に保持し、オフセット量のみを
0.5〜1.5ピッチ(投影長さL×0.5〜1.5)
まで、0.5ピッチ刻みで変えて行なった所、図7に示
す様な結果が得られた。この図7に示す様に、上記流体
の流れが層流状態の場合(実線P3 )には、上記オフセ
ット量が1〜1.5ピッチの範囲で、冷却部の放熱量を
十分に大きくできる事が分かった。一方、上記流体の流
れが乱流状態の場合(破線Q3 )には、上記オフセット
量が0.5〜1.5ピッチの範囲で、冷却部の放熱量を
十分に大きくできる事が分かった。Further, the relationship between the offset amount and the heat radiation amount of the cooling section was examined. That is, the same experiment as described above was carried out except that the angle of attack θ and the protrusion amount h of the pair of ribs 5, 5 constituting the heat transfer promoting unit 4 were kept constant, and only the offset amount was 0.5 to 1.5 pitch (Projection length L × 0.5-1.5)
Up to 0.5 pitch increments, the results shown in FIG. 7 were obtained. As shown in FIG. 7, when the flow of the fluid is in a laminar flow state (solid line P 3 ), the heat radiation amount of the cooling unit can be sufficiently increased when the offset amount is in the range of 1 to 1.5 pitches. I understood that. On the other hand, when the flow of the fluid is in a turbulent state (broken line Q 3 ), it has been found that the heat radiation amount of the cooling unit can be sufficiently increased when the offset amount is in the range of 0.5 to 1.5 pitches. .
【0019】次に、図8は、本発明の熱交換器に組み込
む扁平伝熱管と従来の扁平伝熱管との性能を比較する為
に、本発明者が行なった実験の結果を示している。この
様な解析では、本発明を構成する伝熱促進部と従来の各
種形状の突起とのそれぞれを、それぞれの内面に同様に
配置した複数の扁平伝熱管に就いて、これら各扁平伝熱
管とこれら各扁平伝熱管の内部を流れる流体との間の伝
熱効率が、上記扁平伝熱管の表面が単なる平坦面にある
場合に比較して向上する割合と、圧力損失が増加する割
合とを解析した。尚、本解析では、上記各扁平伝熱管
は、この扁平伝熱管を構成する1対の平坦部の内面同士
の間隔Wが10mmであるとした。又、上記伝熱促進部
は、1対のリブを、オフセット量を1ピッチに、迎え角
θを30度に、突出量hを3mm(上記間隔Wの30%の
大きさ)に、それぞれ設定して構成した。Next, FIG. 8 shows the results of an experiment conducted by the present inventor to compare the performance of the flat heat transfer tube incorporated in the heat exchanger of the present invention with that of the conventional flat heat transfer tube. In such an analysis, a plurality of flat heat transfer tubes in which the heat transfer accelerating portion and the conventional projections of various shapes constituting the present invention are similarly arranged on the respective inner surfaces are described. The heat transfer efficiency between the fluid flowing inside each flat heat transfer tube and the rate at which the surface of the flat heat transfer tube is improved compared to the case where the surface of the flat heat transfer tube is merely a flat surface, and the rate at which the pressure loss increases are analyzed. . In this analysis, each flat heat transfer tube is assumed to have a distance W between inner surfaces of a pair of flat portions constituting the flat heat transfer tube of 10 mm. Further, the heat transfer promoting section sets a pair of ribs with an offset amount of one pitch, an angle of attack θ of 30 degrees, and a protrusion amount h of 3 mm (30% of the interval W). Was configured.
【0020】又、上記図8中、破線aで囲んだ各点は、
流体(空気)のレイノルズ数を1500とした場合(層
流の場合)の解析結果を、鎖線bで囲んだ各点は、上記
流体のレイノルズ数を7000とした場合(乱流の場
合)の解析結果を、それぞれ示している。先ず、上記流
体の流れが層流状態の場合には、図8中に点Pで示す様
に、本発明の扁平伝熱管と流体と間の伝熱効率の増加率
(内面に突起等を設けていない扁平伝熱管と流体との間
の伝熱効率に対する増加率)は、同図中に丸や三角や四
角等の点で示した従来の何れの扁平伝熱管の場合の伝熱
効率の増加率よりも、少なくとも60%以上大きくな
り、圧力損失の増加率はそれ程は大きくならない事が分
かった。又、上記流体の流れが乱流状態の場合でも、図
8中に点Qで示す様に、本発明の扁平伝熱管と流体と間
の伝熱効率の増加率は、同図中に丸や三角や四角等の点
で示した従来の何れの扁平伝熱管の場合の伝熱効率の増
加率と比べても、トップレベルにある事が分かった。In FIG. 8, each point surrounded by a broken line a
The analysis results when the Reynolds number of the fluid (air) is 1500 (in the case of laminar flow), and the points surrounded by the chain line b are the analysis in the case where the Reynolds number of the fluid is 7000 (in the case of turbulent flow). The results are shown respectively. First, when the flow of the fluid is laminar, as shown by a point P in FIG. 8, the rate of increase in the heat transfer efficiency between the flat heat transfer tube of the present invention and the fluid (protrusions and the like are provided on the inner surface). The rate of increase in the heat transfer efficiency between the flat heat transfer tube and the fluid) is smaller than the rate of increase in the heat transfer efficiency of any of the conventional flat heat transfer tubes indicated by dots such as circles, triangles, and squares in FIG. At least 60% or more, and it was found that the rate of increase of the pressure loss was not so large. Further, even when the flow of the fluid is in a turbulent state, as shown by a point Q in FIG. 8, the rate of increase in the heat transfer efficiency between the flat heat transfer tube and the fluid of the present invention is indicated by a circle or a triangle in the same figure. In comparison with the conventional rate of increase in heat transfer efficiency of any of the flat heat transfer tubes indicated by points such as squares and squares, it was found that the heat transfer efficiency was at the top level.
【0021】[0021]
【発明の効果】本発明の熱交換器は、以上に述べた通り
構成され作用する為、伝熱面と流体との間の熱交換を効
果的に行なって、熱交換器の性能を向上させる事ができ
る。Since the heat exchanger of the present invention is constructed and operates as described above, heat exchange between the heat transfer surface and the fluid is effectively performed to improve the performance of the heat exchanger. Can do things.
【図1】本発明の実施の形態の1例を示す、扁平伝熱管
の斜視図。FIG. 1 is a perspective view of a flat heat transfer tube, showing an example of an embodiment of the present invention.
【図2】伝熱促進部の斜視図。FIG. 2 is a perspective view of a heat transfer promoting unit.
【図3】伝熱促進部により撹乱される流体の状態を示し
ており、(A)は、斜視図。(B)は、(A)のX矢視
図。FIG. 3 shows a state of a fluid disturbed by a heat transfer promoting unit, and FIG. 3 (A) is a perspective view. (B) is an arrow X view of (A).
【図4】伝熱促進部により得られる冷却部を示す平面
図。FIG. 4 is a plan view showing a cooling unit obtained by a heat transfer promoting unit.
【図5】1対のリブの突出量と放熱量との関係を示す線
図。FIG. 5 is a diagram showing the relationship between the amount of protrusion of a pair of ribs and the amount of heat radiation.
【図6】1対のリブの迎え角と放熱量との関係を示す線
図。FIG. 6 is a diagram showing a relationship between an angle of attack of a pair of ribs and a heat radiation amount.
【図7】1対のリブ同士のオフセット量と放熱量との関
係を示す線図。FIG. 7 is a diagram showing the relationship between the amount of offset between a pair of ribs and the amount of heat radiation.
【図8】本発明と従来構造との性能を比較する為に行な
った実験の結果を示す図。FIG. 8 is a diagram showing the results of an experiment performed to compare the performance of the present invention with a conventional structure.
1 扁平伝熱管 2 平坦部 3 連続部 4 伝熱促進部 5 リブ DESCRIPTION OF SYMBOLS 1 Flat heat transfer tube 2 Flat part 3 Continuous part 4 Heat transfer promotion part 5 Rib
Claims (2)
進部によって伝熱面に沿って流れる流体の撹乱を図った
熱交換器に於いて、上記伝熱促進部は、それぞれが上記
伝熱面から突出する1対のリブにより構成しており、こ
れら1対のリブは、以下の〜の要件を満たす事を特
徴とする熱交換器。 1対のリブは、上記伝熱面に沿って流れる流体の流
れ方向に亙り互いに0.5〜1.5ピッチずらせて配置
している。 1対のリブは、これら各リブの上流端縁を上記流体
の流れ方向と平行な線上に位置させた状態で、それぞれ
の中心軸を上記流体の流れ方向と平行な線を挟んで互い
に反対側に傾斜させており、これら各リブの中心軸と上
記流体の流れ方向と平行な線とのなす角を、それぞれ1
5〜75度としている。In a heat exchanger in which a heat transfer promoting portion is provided on a heat transfer surface and a fluid flowing along the heat transfer surface is disturbed by the heat transfer promoting portion, each of the heat transfer promoting portions includes Are constituted by a pair of ribs protruding from the heat transfer surface, and the pair of ribs satisfy the following requirements (1) to (4). The pair of ribs are arranged so as to be shifted from each other by 0.5 to 1.5 pitches in the flow direction of the fluid flowing along the heat transfer surface. The pair of ribs are arranged such that their upstream axes are located on a line parallel to the flow direction of the fluid, and their central axes are opposite to each other with respect to a line parallel to the flow direction of the fluid. The angle between the central axis of each rib and a line parallel to the flow direction of the fluid is set to 1
5 to 75 degrees.
れており、各リブの高さは、この扁平伝熱管の内側流路
の断面高さの20〜50%である、請求項1に記載した
熱交換器。2. The heat transfer promoting portion is provided on the inner surface of the flat heat transfer tube, and the height of each rib is 20 to 50% of the cross-sectional height of the inner flow passage of the flat heat transfer tube. 2. The heat exchanger according to 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14137498A JP3957021B2 (en) | 1998-05-22 | 1998-05-22 | Heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14137498A JP3957021B2 (en) | 1998-05-22 | 1998-05-22 | Heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11337284A true JPH11337284A (en) | 1999-12-10 |
JP3957021B2 JP3957021B2 (en) | 2007-08-08 |
Family
ID=15290519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14137498A Expired - Fee Related JP3957021B2 (en) | 1998-05-22 | 1998-05-22 | Heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3957021B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002250572A (en) * | 2001-02-22 | 2002-09-06 | Komatsu Electronics Inc | Heat exchanger |
WO2002097352A1 (en) * | 2001-05-25 | 2002-12-05 | Maruyasu Industries Co., Ltd. | Multitubular heat exchanger |
JP2007510122A (en) * | 2003-10-28 | 2007-04-19 | ベール ゲーエムベーハー ウント コー カーゲー | Heat exchanger flow passage and heat exchanger having such a flow passage |
JP2007333254A (en) * | 2006-06-13 | 2007-12-27 | Calsonic Kansei Corp | Tube for heat-exchanger |
JP2015010749A (en) * | 2013-06-28 | 2015-01-19 | 株式会社日立製作所 | Heat transfer device |
CN109595965A (en) * | 2018-12-28 | 2019-04-09 | 江苏利柏特股份有限公司 | Plate type heat exchanger is used in module production |
-
1998
- 1998-05-22 JP JP14137498A patent/JP3957021B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002250572A (en) * | 2001-02-22 | 2002-09-06 | Komatsu Electronics Inc | Heat exchanger |
WO2002097352A1 (en) * | 2001-05-25 | 2002-12-05 | Maruyasu Industries Co., Ltd. | Multitubular heat exchanger |
US7055586B2 (en) | 2001-05-25 | 2006-06-06 | Maruyasu Industries Co., Ltd. | Multitubular heat exchanger |
JP2007510122A (en) * | 2003-10-28 | 2007-04-19 | ベール ゲーエムベーハー ウント コー カーゲー | Heat exchanger flow passage and heat exchanger having such a flow passage |
EP2267393A2 (en) * | 2003-10-28 | 2010-12-29 | Behr GmbH & Co. KG | Flow channel for heat exchanger and heat exchanger provided with such flow channel |
EP2267393A3 (en) * | 2003-10-28 | 2012-07-04 | Behr GmbH & Co. KG | Flow channel for heat exchanger and heat exchanger provided with such flow channel |
JP2007333254A (en) * | 2006-06-13 | 2007-12-27 | Calsonic Kansei Corp | Tube for heat-exchanger |
JP2015010749A (en) * | 2013-06-28 | 2015-01-19 | 株式会社日立製作所 | Heat transfer device |
CN109595965A (en) * | 2018-12-28 | 2019-04-09 | 江苏利柏特股份有限公司 | Plate type heat exchanger is used in module production |
CN109595965B (en) * | 2018-12-28 | 2024-02-23 | 江苏利柏特股份有限公司 | Plate heat exchange device for module production |
Also Published As
Publication number | Publication date |
---|---|
JP3957021B2 (en) | 2007-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4705105A (en) | Locally inverted fin for an air conditioner | |
US6401809B1 (en) | Continuous combination fin for a heat exchanger | |
MXPA05002150A (en) | Heat exchanger fin having canted lances. | |
JPH0670555B2 (en) | Fin tube heat exchanger | |
US11561014B2 (en) | Air conditioner including a heat exchanger | |
JP4073850B2 (en) | Heat exchanger | |
US5170842A (en) | Fin-tube type heat exchanger | |
US3515207A (en) | Fin configuration for fin and tube heat exchanger | |
CN108592654A (en) | Heat exchanger and heat transmission equipment | |
JP3957021B2 (en) | Heat exchanger | |
KR870010373A (en) | Electric heating fin | |
JP2001174181A (en) | Fin-and-tube heat exchanger and air conditioner equipped with the same | |
JP2009270792A (en) | Heat exchanger | |
US5353866A (en) | Heat transfer fins and heat exchanger | |
US4402362A (en) | Plate heat exchanger | |
JPS633183A (en) | Finned heat exchanger | |
JPH10267578A (en) | Heating tube, and heat-exchanger using the same | |
KR20030020563A (en) | Louver fin for heat exchanger | |
JPS633185A (en) | Finned heat exchanger | |
JP2008064457A (en) | Heat exchanger | |
JP2005308311A (en) | Fin tube | |
JP7374066B2 (en) | Heat exchanger fins and heat exchangers equipped with the same | |
WO2022049886A1 (en) | Corrugated fin-type heat exchanger | |
JP2005140454A (en) | Heat exchanger | |
KR200365862Y1 (en) | Louver fin for heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070116 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070314 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070501 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070501 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100518 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100518 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110518 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130518 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130518 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140518 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |