[go: up one dir, main page]

JPH11328730A - Optical information recording medium and method of manufacturing the same - Google Patents

Optical information recording medium and method of manufacturing the same

Info

Publication number
JPH11328730A
JPH11328730A JP10139508A JP13950898A JPH11328730A JP H11328730 A JPH11328730 A JP H11328730A JP 10139508 A JP10139508 A JP 10139508A JP 13950898 A JP13950898 A JP 13950898A JP H11328730 A JPH11328730 A JP H11328730A
Authority
JP
Japan
Prior art keywords
layer
recording medium
optical information
information recording
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10139508A
Other languages
Japanese (ja)
Other versions
JP3692776B2 (en
Inventor
Natsuko Nobukuni
奈津子 信國
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP13950898A priority Critical patent/JP3692776B2/en
Publication of JPH11328730A publication Critical patent/JPH11328730A/en
Application granted granted Critical
Publication of JP3692776B2 publication Critical patent/JP3692776B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

(57)【要約】 【課題】 データ保存性に優れ、多数の繰り返し記録・
消去が可能であり、効率よく生産できる光学的情報記録
媒体を提供する。 【構成】 基板上に少なくとも記録層と保護層とを有し
てなり、光ビームを照射して記録層を加熱して記録を行
う媒体であって、該保護層が、カルコゲン化化合物、希
土類酸化物及び酸化亜鉛を含む3種以上の化合物からな
ることを特徴とする光学的情報記録用媒体。
(57) [Summary] [Problem] It is excellent in data preservation, and can record many repetitions.
Provided is an optical information recording medium that can be erased and can be efficiently produced. The present invention relates to a medium having at least a recording layer and a protective layer on a substrate, and performing recording by heating the recording layer by irradiating a light beam, wherein the protective layer is formed of a chalcogen compound, a rare earth oxide. An optical information recording medium comprising three or more compounds including a substance and zinc oxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はレーザー光などの光
ビームの照射により、高速かつ高密度に情報を記録、消
去、再生可能な光学的情報記録用媒体に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical information recording medium capable of recording, erasing, and reproducing information at high speed and high density by irradiating a light beam such as a laser beam.

【0002】[0002]

【従来の技術】近年、情報量の拡大、記録・再生の高密
度・高速化の要求に応える記録媒体として、レーザー光
線を利用して記録を行う光記録媒体が開発されている。
光記録媒体には、一度だけ記録が可能な追記型と、記録
消去が何度でも可能な書き換え型がある。書き換え型媒
体としては、光磁気効果を利用した光磁気ディスクなど
の光磁気記録媒体や、可逆的な結晶状態の変化を利用し
た相変化ディスクなどの相変化型媒体があげられる。相
変化型媒体は、外部磁界を必要とせず、レーザー光のパ
ワーを変化させるだけで、記録・消去が可能である。さ
らに、消去と再記録を単一ビームで同時に行う1ビーム
オーバーライトが可能であるという利点を有する。ま
た、不可逆な相変化、とくに、非晶質を結晶化させるこ
とでライトワンス型も実現できる。
2. Description of the Related Art In recent years, an optical recording medium that performs recording using a laser beam has been developed as a recording medium that meets the demands for increasing the amount of information and increasing the density and speed of recording and reproduction.
Optical recording media include a write-once type, which allows recording only once, and a rewritable type, which allows recording and erasing any number of times. Examples of the rewritable medium include a magneto-optical recording medium such as a magneto-optical disk utilizing a magneto-optical effect, and a phase-change medium such as a phase change disk utilizing a reversible change in crystalline state. The phase change type medium does not require an external magnetic field, and can perform recording / erasing only by changing the power of laser light. Furthermore, there is an advantage that one-beam overwriting in which erasing and re-recording are performed simultaneously with a single beam is possible. Further, a write-once type can be realized by crystallizing an irreversible phase change, particularly, an amorphous.

【0003】1ビームオーバーライト可能な相変化型記
録方式では、記録膜を非晶質化させることによって記録
ビットを形成し、結晶化させることによって消去を行う
場合が一般的である。このような相変化型記録方式に用
いられる記録層の材料としてはカルコゲン系合金薄膜を
用いることが多い。例えば、Ge−Te系、Ge−Te
−Sb系、In−Sb−Te系、Ge−Sn−Te系合
金薄膜等があげられる。また、書き換え型とほとんど同
じ材料や層構成により、追記型の相変化型媒体も実現で
きる。この場合、可逆性が無いという点でより長期にわ
たって情報を記録・保存でき、原理的にはほぼ半永久的
な保存が可能である。追記型として相変化型媒体を用い
た場合、孔あけ型と異なりビット周辺にリムと呼ばれる
盛り上がりが生じないため信号品質に優れ、また、記録
層の上部に空隙が不要なためエアーサンドイッチ構造に
する必要がないという利点がある。
In the phase change type recording system capable of one-beam overwriting, it is general that a recording bit is formed by amorphizing a recording film and erasing is performed by crystallization. As a material of a recording layer used in such a phase change recording method, a chalcogen-based alloy thin film is often used. For example, Ge-Te system, Ge-Te
-Sb-based, In-Sb-Te-based, Ge-Sn-Te-based alloy thin films and the like. Also, a write-once type phase change medium can be realized with almost the same material and layer configuration as the rewritable type. In this case, information can be recorded and stored for a longer period because there is no reversibility, and almost semi-permanent storage is possible in principle. When a phase-change type medium is used as a write-once type, unlike a perforated type, there is no ridge called a rim around the bit, so that the signal quality is excellent, and since an air gap is not required above the recording layer, an air sandwich structure is used. There is an advantage that there is no need.

【0004】相変化型媒体には、結晶と非晶質とで記録
するもの、異なる結晶状態により記録するもの等がある
が、通常用いられる書き換え型の相変化型媒体では、相
異なる結晶状態を実現するために、2つの異なるレーザ
ー光パワーを用いる。この方式を、非晶質状態を記録マ
ークとし、結晶状態を消去・初期状態とする場合を例に
とって説明する。
[0004] Phase-change media include those that record in a crystalline state and an amorphous state and those that record in a different crystalline state. In a normally used rewritable phase-change medium, different crystalline states are used. To achieve this, two different laser light powers are used. This method will be described by taking a case where the amorphous state is used as a recording mark and the crystalline state is used as an erased / initial state as an example.

【0005】結晶化は記録層の結晶化温度より十分高
く、融点よりは低い温度まで記録層を加熱することによ
ってなされる。この場合、結晶化が十分なされる程度に
冷却速度が遅くなるように、記録層を誘電体からなる保
護層ではさんだり、ビームの移動方向に長い楕円形ビー
ムを用いたりする。一方、非晶質化は記録層を融点より
高い温度まで加熱し、急冷することによって行う。この
場合、上記保護層は十分な冷却速度(過冷却速度)を得
るための放熱層としての機能も有する。
[0005] The crystallization is performed by heating the recording layer to a temperature sufficiently higher than the crystallization temperature of the recording layer and lower than the melting point. In this case, the recording layer is sandwiched by a protective layer made of a dielectric, and an elliptical beam long in the beam moving direction is used so that the cooling rate becomes slow enough to sufficiently crystallize. On the other hand, the amorphization is performed by heating the recording layer to a temperature higher than the melting point and rapidly cooling the recording layer. In this case, the protective layer also has a function as a heat radiation layer for obtaining a sufficient cooling rate (supercooling rate).

【0006】従って、保護層の材質は、レーザー光に対
して光学的に透明であること、融点・軟化点・分解温度
が高いこと、形成が容易であること、適度な熱伝導性を
有するなどの観点から選定される。さらに、上述のよう
な、加熱・冷却過程における記録層の溶融・相変化に伴
う体積変化による変形や、プラスチック基板への熱的ダ
メージを防いだり、湿気による記録層の劣化を防止する
ためにも、保護層は重要である。
Accordingly, the material of the protective layer is to be optically transparent to laser light, to have a high melting point, softening point, and decomposition temperature, to be easily formed, and to have a suitable thermal conductivity. Is selected from the viewpoint of Further, as described above, deformation due to volume change accompanying melting and phase change of the recording layer in the heating / cooling process, to prevent thermal damage to the plastic substrate, and to prevent deterioration of the recording layer due to moisture. , The protective layer is important.

【0007】このように、化学的に安定で、十分な耐熱
性と機械的強度とを有する保護層として、さまざまな検
討がされてきた。中でも、金属の酸化物や窒化物等の誘
電体は上記の点で保護層として適しており、一般的に使
用されている。しかしながら、これらの誘電体からなる
保護層とプラスチック基板とは熱膨張率や弾性的性質が
大きく異なるため、記録・消去を繰り返すうちに、基板
からはがれてピンホールやクラックを生じる原因となる
という問題がある。また、プラスチック基板は、湿度に
よって反りを生じやすいが、これによっても保護層と基
板との間に剥がれが生じることがある。
As described above, various studies have been made on a protective layer which is chemically stable and has sufficient heat resistance and mechanical strength. Above all, dielectrics such as metal oxides and nitrides are suitable as the protective layer in the above point and are generally used. However, since the protective layer made of these dielectrics and the plastic substrate have significantly different coefficients of thermal expansion and elastic properties, they repeatedly peel off from the substrate during repeated recording and erasure, causing pinholes and cracks. There is. Further, the plastic substrate is likely to be warped due to humidity, and this may also cause peeling between the protective layer and the substrate.

【0008】一方、新規な誘電体保護層として、ZnS
を主成分とし、SiO2 やY2 3等を混入させたもの
が提案されている。これらの複合化合物は純粋な酸化物
あるいは窒化物の誘電体に比べ、記録層としてよく使わ
れるGeTeSb等のカルコゲナイド系合金薄膜に対す
る密着性に優れている。このため繰り返しオーバーライ
トに対する耐久性に加え、加速試験における膜剥離が少
なく相変化媒体の信頼性をいっそう向上させている。
On the other hand, as a new dielectric protection layer, ZnS
The main component has been proposed in which SiO 2 , Y 2 O 3 or the like is mixed. These composite compounds have better adhesion to a chalcogenide-based alloy thin film such as GeTeSb, which is often used as a recording layer, than a pure oxide or nitride dielectric. Therefore, in addition to durability against repeated overwriting, film peeling in an accelerated test is small, and the reliability of the phase change medium is further improved.

【0009】[0009]

【発明が解決しようとする課題】従来、上記のような、
カルコゲナイド系元素を含む化合物であるZnS、Zn
Se、PbS、CdS等に酸化物、窒化物、弗化物、炭
化物等を混合させた複合膜からなる保護層については数
多くの提案がされている。しかし、これらの膜は比較的
硬度が低く(ヌープ硬度200程度)、繰り返しのオー
バーライトに伴い、塑性変形による微視的な変形が蓄積
し、その結果実質的に光学的膜厚が変化して反射率が低
下したりノイズが増加するという問題があった。さらに
上記複合膜において、一部の先行技術文献に於いて最適
な組成範囲が記載されているのみであり、その組成の混
合物を用いても、必ずしも元の純粋な化合物単体からな
る保護層よりすぐれた特性が得られる訳ではなかった。
これは、上記複合物の物性がそれを構成する化合物それ
ぞれとは異なるため、製造法その他による物性変化が予
測不可能であったためと考えられる。
Conventionally, as described above,
ZnS, Zn, which are compounds containing chalcogenide elements
Many proposals have been made for a protective layer composed of a composite film in which an oxide, a nitride, a fluoride, a carbide, or the like is mixed with Se, PbS, CdS, or the like. However, these films have relatively low hardness (Knoop hardness of about 200), and microscopic deformation due to plastic deformation accumulates with repeated overwriting, resulting in a substantial change in optical film thickness. There has been a problem that the reflectance decreases and noise increases. Furthermore, in the above composite film, only the optimum composition range is described in some prior art documents, and even if a mixture of the composition is used, it is not necessarily better than the original protective layer composed of a pure compound alone. Characteristics were not obtained.
This is presumably because the physical properties of the composite were different from those of the compounds constituting the composites, and thus the change in the physical properties due to the production method and the like was unpredictable.

【0010】例えば、上記複合膜からなる保護層を形成
するにあたりスパッタ法が広く用いられているが、複合
化合物ターゲットを用いる場合と、個々の化合物ターゲ
ットを用いて同時スパッタする場合とで得られる複合化
合物保護膜の物性は異なってくることがある。また、同
一の製造法でも、スパッタ時の圧力等により、物性が変
化することもある。こうした、保護膜の物性のばらつき
の存在するなかで、いかに光学的情報記録用媒体に適し
た複合化合物保護膜を見い出し、媒体の信頼性を改善す
るかが課題であった。
For example, a sputtering method is widely used in forming a protective layer composed of the above-mentioned composite film. However, a composite compound obtained when a composite compound target is used and when a simultaneous sputtering is performed using individual compound targets. The physical properties of the compound protective film may be different. Further, even with the same manufacturing method, physical properties may change due to pressure during sputtering and the like. In the presence of such variations in the physical properties of the protective film, it has been a problem how to find a composite compound protective film suitable for an optical information recording medium and improve the reliability of the medium.

【0011】[0011]

【課題を解決するための手段】本発明者らの検討によれ
ば、ZnS等の結晶性のカルコゲン化化合物は、VIb族
カルコゲン元素やVb族元素を通常主として含有する記
録層と密着性がよいので、剥離や物質移動による膜厚変
化を起こしにくいという特性を有すると共に、酸化物の
共有結合やフッ化物のイオン結合よりも柔軟性があるた
め、光照射による局所的且つ急激な熱ストレスを微視的
な塑性変形によって吸収することによってバースと欠陥
の成長を抑制できるという特性も有する。しかしなが
ら、このようなカルコゲン化化合物単独の使用では、結
晶粒界におけるクラック進展に対しては十分ではないこ
とが明らかとなった。また、ZnSとZnOとの複合
膜、ZnSと希土類酸化物との複合膜、ZnSと希土類
硫化物との複合物等の2種の化合物の複合膜も知られて
いるが、それらを混合した場合にどうなるかは、複合膜
の物性が個々の化合物の物性とは異なることが多いこと
から、明らかではない。
According to the study of the present inventors, a crystalline chalcogenide compound such as ZnS has good adhesion to a recording layer usually containing a group VIb chalcogen element or a group Vb element. Therefore, it has the property of not easily causing a change in film thickness due to separation or mass transfer, and is more flexible than the covalent bond of an oxide or the ionic bond of a fluoride. It also has the property that the growth of berths and defects can be suppressed by absorbing by visual plastic deformation. However, it has been found that the use of such a chalcogenated compound alone is not sufficient for crack propagation at the crystal grain boundaries. Further, a composite film of two kinds of compounds such as a composite film of ZnS and ZnO, a composite film of ZnS and a rare earth oxide, and a composite film of ZnS and a rare earth sulfide are also known. It is not clear since the physical properties of the composite membrane often differ from the physical properties of the individual compounds.

【0012】本発明は、上記問題点を改善するためにな
されたものであり、特定の3種以上の化合物を組み合わ
せたことにより、データ保存安定性にすぐれ、多数の繰
り返し記録・再生が可能な媒体を生産性よく製造可能と
したものである。本発明の要旨は、基板の上方に少なく
とも記録層と保護層とを有してなり、光ビームを照射し
て記録層を加熱して記録を行う媒体であって、該保護層
が、カルコゲン化化合物、希土類酸化物および酸化亜鉛
を含む3種以上の化合物からなることを特徴とする光学
的情報記録用媒体に存する。
The present invention has been made in order to solve the above-mentioned problems. By combining three or more specific compounds, data storage stability is excellent, and a large number of repeated recording / reproduction can be performed. The medium can be manufactured with high productivity. The gist of the present invention is a medium that has at least a recording layer and a protective layer above a substrate, and performs recording by heating the recording layer by irradiating a light beam, wherein the protective layer is formed of chalcogenide. An optical information recording medium comprising at least three compounds including a compound, a rare earth oxide and zinc oxide.

【0013】[0013]

【発明の実施の形態】本発明の光学的情報記録用媒体
は、基板の上方に少なくとも記録層と保護層とを有して
なり、光ビームを照射し記録層を加熱して記録を行う媒
体である。記録層の種類により加熱温度は異なり、光磁
気記録層であれば一般にキュリー点、相変化記録層の場
合は相変化を起こす温度まで、例えば融点近傍まで加熱
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An optical information recording medium according to the present invention has at least a recording layer and a protective layer above a substrate, and performs recording by irradiating a light beam to heat the recording layer. It is. The heating temperature varies depending on the type of the recording layer. In the case of a magneto-optical recording layer, the heating is generally performed to the Curie point, and in the case of the phase change recording layer, the heating is performed to a temperature at which a phase change occurs, for example, to the vicinity of the melting point.

【0014】保護層は、記録層を外環境から保護するほ
か、光学的、熱的に多くの役割を担っており、記録層の
片側あるいは両側、好ましくは両側(即ち、記録層の上
下それぞれ)に設けられる。その材料は、優れた光学特
性、適度な熱伝導性、化学的安定性のほか、高温域での
十分な耐熱性および機械的強度を備える必要がある。相
変化媒体においては、一般に加熱温度が高いため、特に
高温域での耐熱性および機械的強度が重要である。本発
明の媒体は、記録層と保護層とをそれぞれ一層以上有す
ることができ、またその他の層を有することもできる。
The protective layer not only protects the recording layer from the external environment, but also plays many roles optically and thermally. One side or both sides of the recording layer, preferably both sides (that is, above and below the recording layer). Is provided. The material must have excellent optical properties, moderate thermal conductivity and chemical stability, as well as sufficient heat resistance and mechanical strength at high temperatures. In a phase change medium, since the heating temperature is generally high, heat resistance and mechanical strength particularly in a high temperature range are important. The medium of the present invention can have one or more recording layers and one or more protective layers, and can also have other layers.

【0015】以下、本発明に好適に用いることができる
相変化媒体の構造の一例について説明する。相変化媒体
は、通常基板と基板の上方に設けた相変化型記録層と、
該記録層の少なくとも片方の面に設けた保護層とからな
る。好ましくは、図1に示すように、基板/下部保護層
/記録層/上部保護層/反射層の構成を有し、その上を
さらに好ましくは紫外線硬化性もしくは熱硬化性の樹脂
で被覆(保護コート層)された層構成を用いる。図1に
おいて、基板1には、ポリカーボネート系、アクリル
系、ポリオレフィン系などの透明樹脂、あるいはガラス
を用いることができる。なかでも、透明樹脂、殊にポリ
カーボネート樹脂はCDにおいて最も広く用いられてい
る実績もあり、安価でもあるので最も好ましい。また、
基板に接して保護層を設ける場合、保護層の剥離の抑制
の面でも好ましい。
Hereinafter, an example of the structure of a phase change medium that can be suitably used in the present invention will be described. The phase change medium usually includes a substrate and a phase change type recording layer provided above the substrate,
And a protective layer provided on at least one surface of the recording layer. Preferably, as shown in FIG. 1, it has a structure of a substrate / lower protective layer / recording layer / upper protective layer / reflective layer, and more preferably is coated (protected) with a UV-curable or thermosetting resin. (Coat layer). In FIG. 1, for the substrate 1, a transparent resin such as a polycarbonate-based resin, an acrylic-based resin, or a polyolefin-based resin, or glass can be used. Among them, transparent resins, especially polycarbonate resins, are the most widely used in CDs and are most preferable because they are inexpensive. Also,
The case where a protective layer is provided in contact with the substrate is also preferable in terms of suppressing peeling of the protective layer.

【0016】図1において、記録層3は相変化型の記録
層であり、その厚みは一般的には10nmから100n
mの範囲が好ましい。記録層の厚みが10nmより薄い
と十分なコントラストが得られ難く、また結晶化速度が
遅くなる傾向があり、短時間での記録消去が困難となり
やすい。一方100nmを越すとやはり光学的なコント
ラストが得にくくなり、また、クラックが生じやすくな
る。さらに、CDと互換性をとれるほど大きな記録前後
の反射率差すなわちコントラストを得るためには、実際
上10nm以上30nm以下が好ましい。10nm未満
では反射率が低くなりすぎ、30nmより厚いとコント
ラストが取りにくくなりかつ熱容量が大きくなり記録感
度が悪くなる傾向がある。
In FIG. 1, a recording layer 3 is a phase change type recording layer, and its thickness is generally 10 nm to 100 n.
The range of m is preferred. If the thickness of the recording layer is thinner than 10 nm, it is difficult to obtain a sufficient contrast, and the crystallization speed tends to be slow. On the other hand, if it exceeds 100 nm, it is still difficult to obtain optical contrast, and cracks are likely to occur. Further, in order to obtain a large difference in reflectance before and after recording, that is, a contrast so as to be compatible with a CD, it is practically preferable that the thickness be 10 nm or more and 30 nm or less. If the thickness is less than 10 nm, the reflectance is too low. If the thickness is more than 30 nm, contrast tends to be hardly obtained, and the heat capacity tends to be large, resulting in poor recording sensitivity.

【0017】記録層3としては、GeやSb、Te、I
n、Ag、Ga、Al、Sn、Zn等を含む各種の金属
の単体や合金が用いられる。その中でも、好ましくはG
eSbTeやInSbTe、AgSbTe、AgInS
bTeといった化合物が選ばれる。より好ましくは
{(Sb2 Te3 1-x (GeTe)x 1-y Sb
y (0.2≦x≦0.9、0≦y≦0.1)合金、およ
び該3元合金に10原子%以下のIn、Ga、Zn、S
n、Si、Cu、Au、Ag、Pd、Pt、Pb、C
r、Co、O、S、Se、Ta、Nb、Vのうち少なく
とも1種を含む合金薄膜があげられる。また、Sb70
30共晶点近傍のSbTe合金を主成分とし、20原子
%程度以下の元素Mを含む、MSbTe(但し、M=I
n、Ga、Zn、Ge、Sn、Si、Cu、Au、A
g、Pd、Pt、Pb、Cr、Co、O、S、Se、T
a、Nb、Vのうち少なくとも1種)合金も、高速での
オーバーライトが可能な材料であり好ましい。
As the recording layer 3, Ge, Sb, Te, I
A simple substance or an alloy of various metals including n, Ag, Ga, Al, Sn, Zn and the like is used. Among them, preferably G
eSbTe, InSbTe, AgSbTe, AgInS
A compound such as bTe is selected. More preferably, {(Sb 2 Te 3 ) 1-x (GeTe) x1-y Sb
y (0.2 ≦ x ≦ 0.9, 0 ≦ y ≦ 0.1) alloy and 10 atomic% or less of In, Ga, Zn, S
n, Si, Cu, Au, Ag, Pd, Pt, Pb, C
An alloy thin film containing at least one of r, Co, O, S, Se, Ta, Nb, and V can be given. In addition, Sb 70 T
a main component e 30 eutectic point near the SbTe alloy, comprising the following elements M about 20 atomic%, MSbTe (where, M = I
n, Ga, Zn, Ge, Sn, Si, Cu, Au, A
g, Pd, Pt, Pb, Cr, Co, O, S, Se, T
a, Nb, and V) are also materials that can be overwritten at high speed, and are thus preferable.

【0018】CD線速の少なくとも2倍速(2.4〜
2.8m/s)から8倍速(9.6m/s〜11.2m
/s)の範囲で、良好なオーバーライト可能な相変化媒
体の記録層について説明する。記録層組成は、使用する
最大高速で十分消去できるほど結晶化速度が速いのが好
ましい。上記{(Sb2 Te3 1-x (GeTe)x
1-y Sby (0.2≦x≦0.9、0≦y≦0.1)を
ベースとする合金記録層では、Sb2 Te3 −GeTe
を結んだ線上からはずれると結晶化速度が遅くなるの
で、この線上の組成でかつ、Ge2 Sb2 Te5 金属間
化合物組成近傍とすることで、10m/s以上でもオー
バーライト可能な媒体が得られる。一方、Sb70Te30
共晶点近傍の合金薄膜では、線速依存性は主成分である
SbとTeによって決まり、Sb/Te比が大きいほど
結晶化速度が速くなる傾向がある。すなわち、Sb70
30共晶点組成を基本として、Sb/Te比により線速
依存性が左右される。そのために、上記記録層の組成は
W (Sbz Te1-z 1-w (0≦w≦0.2、0.6
≦z≦0.8、M=In、Ga、Zn、Ge、Sn、S
i、Cu、Au、Ag、Pd、Pt、Pb、Cr、C
o、O、S、Se、Ta、Nb、Vのうち少なくとも1
種)とするのが好ましい。
At least twice as fast as the CD linear velocity (2.4 to
2.8m / s) to 8x speed (9.6m / s-11.2m)
/ S), a good overwriteable phase change medium
The body recording layer will be described. The recording layer composition used
It is preferable that the crystallization speed is fast enough to erase sufficiently at the maximum speed.
Good. The above {(SbTwoTeThree)1-x(GeTe)x
1-ySby(0.2 ≦ x ≦ 0.9, 0 ≦ y ≦ 0.1)
In the base alloy recording layer, SbTwoTeThree-GeTe
If you deviate from the line connecting
And the composition on this line and GeTwoSbTwoTeFiveBetween metal
By setting it near the compound composition, even at 10 m / s or more,
A bar writable medium is obtained. On the other hand, Sb70Te30
In alloy thin films near the eutectic point, linear velocity dependence is the main component
Determined by Sb and Te, the larger the Sb / Te ratio,
The crystallization rate tends to increase. That is, Sb70T
e30Based on the eutectic point composition, the linear velocity is determined by the Sb / Te ratio.
Dependency depends. Therefore, the composition of the recording layer is
MW(SbzTe1-z)1-w(0 ≦ w ≦ 0.2, 0.6
≦ z ≦ 0.8, M = In, Ga, Zn, Ge, Sn, S
i, Cu, Au, Ag, Pd, Pt, Pb, Cr, C
at least one of o, O, S, Se, Ta, Nb, and V
Species).

【0019】反射層5の材料としては、Au、Ag、A
lおよびそれらの合金等が使用されるが、放熱効果が高
い熱伝導率が高い物質が望ましい。膜厚としては、放熱
効果を高めるため、50nm以上の膜厚が望ましいが、
生産コストの点から1000nm以下であることが好ま
しい。本発明の記録媒体は、成膜後の状態は通常非晶質
である。そこで通常、作成された記録層全面を結晶化し
て、初期化された状態(未記録状態)とする。そして、
初期化された記録層を局所的に融点以上に加熱し、保護
層を介した急冷により再凝固させ非晶質である記録ビッ
トを形成する。消去は、記録層を結晶化温度以上融点直
下、場合によっては融点直上まで加熱して再結晶化せし
めることで達成する。融点以下の加熱では固相での再結
晶化であり、融点直上まで加熱した場合は、非晶質形成
のための臨界冷却速度を超えないよう徐冷して再結晶化
せしめる。徐冷は照射レーザー光のパターンを制御する
ことで実現できる。
As a material of the reflection layer 5, Au, Ag, A
1 and alloys thereof are used, but a substance having a high heat radiation effect and a high thermal conductivity is desirable. The thickness is preferably 50 nm or more in order to enhance the heat radiation effect.
The thickness is preferably 1000 nm or less from the viewpoint of production cost. The recording medium of the present invention is usually amorphous after film formation. Therefore, usually, the entire surface of the formed recording layer is crystallized to be in an initialized state (unrecorded state). And
The initialized recording layer is locally heated to a temperature equal to or higher than the melting point, and re-solidified by rapid cooling through the protective layer to form an amorphous recording bit. Erasing is accomplished by heating the recording layer to just above the crystallization temperature and just below the melting point, and in some cases, just above the melting point to cause recrystallization. Heating below the melting point is recrystallization in the solid phase. When heating to just above the melting point, recrystallization is performed by slow cooling so as not to exceed the critical cooling rate for forming an amorphous phase. Slow cooling can be realized by controlling the pattern of the irradiation laser beam.

【0020】初期化は、フラッシュランプアニールもし
くは100μm程度に集光したレーザー光で瞬間的に、
記録層を結晶化温度以上に加熱することで達成される。
初期化に要する時間を短縮し、確実に1回の光ビームの
照射で初期化するための一つの方法として溶融初期化が
有効である。上記のような層構成の場合、溶融したから
といって記録媒体がただちに破壊されるものではない。
例えば、直径10〜数百μm程度に集束した光ビーム
(ガスレーザーもしくは半導体レーザー)あるいは長軸
50−数百μm、短軸1−10μm程度の楕円状に集光
した光ビームを用いて局所的に加熱し、ビーム中心部に
限定して溶融させる。この時、ビーム周辺部も同時に加
熱されるため、溶融部が余熱されるため冷却速度が遅く
なり、良好な再結晶化が行われる。この方法を用いれ
ば、例えば、従来の固相結晶化に対して10分の1に初
期化時間を短縮でき、生産性が大幅に短縮できるととも
に、オーバーライト後の消去時における結晶性の変化を
防止できる。記録時の高温による変形を防止するため、
記録層と基板とに接して下部保護層2が設けられ、記録
層の反対側にはこれに接して上部保護層4が設けられる
ことが一般的である。保護層の材料としては、屈折率、
熱伝導率、化学的安定性、機械的強度、密着性等に留意
して決定される。
Initialization is performed instantaneously by flash lamp annealing or laser light focused to about 100 μm.
This is achieved by heating the recording layer above the crystallization temperature.
Melt initialization is effective as one method for shortening the time required for initialization and surely performing initialization by one light beam irradiation. In the case of the above-described layer configuration, the recording medium is not immediately destroyed just because it is melted.
For example, a light beam (gas laser or semiconductor laser) focused to a diameter of about 10 to several hundred μm or an elliptical light beam having a major axis of 50 to several hundred μm and a short axis of about 1 to 10 μm is locally used. And melted only at the center of the beam. At this time, the periphery of the beam is also heated at the same time, so that the melted portion is preheated, so that the cooling rate is reduced, and good recrystallization is performed. By using this method, for example, the initialization time can be reduced to one tenth of that of the conventional solid-phase crystallization, the productivity can be significantly reduced, and the change in crystallinity at the time of erasing after overwriting can be reduced. Can be prevented. To prevent deformation due to high temperature during recording,
In general, a lower protective layer 2 is provided in contact with the recording layer and the substrate, and an upper protective layer 4 is provided in contact with the opposite side of the recording layer. As the material of the protective layer, the refractive index,
It is determined in consideration of thermal conductivity, chemical stability, mechanical strength, adhesion, and the like.

【0021】本発明の特徴の1つは、保護層の材料とし
て前記特定の3種類以上の誘電体化合物を混合した複合
化合物を用いる点にある。保護層を複数設ける場合、そ
の少なくとも1つの層に前記特定の3種の化合物を含有
させればよいが、特に記録層の両側に保護層を設けた場
合、その両方が上記3種の化合物を有するのが発明の効
果が顕著であり好ましい。記録層は通常数百℃から10
00℃程度まで繰り返し加熱されることから、この3種
の化合物はその融点もしくは分解点が1000℃以上で
あるのが好ましい。また、記録再生に使用するレーザー
光波長(通常800−400nm程度)に対して実質的
に透明であるのが好ましい。なお、当然のことながら、
800−400nmすべてに対して透明である必要では
なく、そのなかで使用するレーザー光に対して透明であ
ればよい。実質的に透明であるとは、その波長に対する
複素屈折率の虚数部分である吸収係数が概ね0.5未満
であることを要する。
One of the features of the present invention is that a composite compound obtained by mixing the above-mentioned three or more kinds of dielectric compounds is used as a material of the protective layer. When a plurality of protective layers are provided, at least one of the layers may contain the above-mentioned three kinds of compounds. In particular, when protective layers are provided on both sides of the recording layer, both of the above-mentioned three kinds of compounds are used. It is preferred to have the effect of the invention is remarkable. The recording layer is usually several hundred degrees Celsius to 10
Since these compounds are repeatedly heated to about 00 ° C., these three compounds preferably have melting points or decomposition points of 1000 ° C. or higher. Further, it is preferable that the material is substantially transparent to a laser beam wavelength (usually about 800 to 400 nm) used for recording and reproduction. Of course,
It is not necessary to be transparent to all 800 to 400 nm, but it is sufficient if it is transparent to the laser beam used therein. Being substantially transparent requires that the absorption coefficient, which is the imaginary part of the complex refractive index for that wavelength, be less than about 0.5.

【0022】使用するカルコゲン化化合物としては、具
体的にはZnS、ZnSe等のカルコゲン化亜鉛、Cd
S、CdSe等のII−V族化合物、La2 3 、Ce2
3等の希土類硫化物、TaS2 、MgS、CaS等が
あげられる。これらは単独では結晶性の薄膜となる。カ
ルコゲン化亜鉛は化学的にも安定で、その中でも特にZ
nSは毒性も低く最も好ましい。しかもZnSはスパッ
タリングを行う際のスパッタリングレートが非常に高い
物質である。誘電体ターゲットにZnSを含有させる
と、させる前の物質に比べて成膜レートが向上する。
Examples of the chalcogenizing compound to be used include zinc chalcogenides such as ZnS and ZnSe, and Cd.
II-V compounds such as S and CdSe, La 2 S 3 , Ce 2
Rare earth sulfides such as S 3 , TaS 2 , MgS, CaS and the like can be mentioned. These alone become crystalline thin films. Zinc chalcogenides are chemically stable, and especially Z
nS has the lowest toxicity and is most preferable. Moreover, ZnS is a substance having a very high sputtering rate when performing sputtering. When ZnS is contained in the dielectric target, the film formation rate is improved as compared with the material before the ZnS is made.

【0023】また、本発明では酸化亜鉛も使用する。酸
化亜鉛ZnOは安定性に優れ、成膜レートを向上させる
のに役立つ。なお、酸化亜鉛は、上記カルコゲン化合物
とは区別される。さらにまた、希土類酸化物も使用す
る。希土類酸化物としては、La2 3 、CeO2 、P
rO2 、Nd2 3 、Sm2 3 、Eu2 3 、GdO
2 、Gd23 、Tb4 7 、Dy2 3 、Ho
2 3 、Er2 3 、Tm2 3 、Yb23 、Lu2
3 、Y2 3 等が用いられる。その中でも、好ましく
はCeO2、HfO2 、ZrO2 、Y2 3 等があげら
れる。このうち、CeO2 のCubic構造とZnSの
Cubic構造とはX線回拆において全く同じ位置に結
晶ピークが現れる。この2者を組み合わせた複合誘電体
は膜質が極めてなめらかになる。媒体とした際にも、繰
り返しオーバーライト特性が極めてよく、ノイズが生じ
にくい。ここに更にZnOを存在させることで成膜時の
スパッタリングレートがさらに向上する。このように、
3種類を複合化させることで単品では実現することがで
きなかった極めて良好なディスク特性と高成膜レートを
達成でき、生産性に優れた複合誘電体となり得たのであ
る。複合誘電体膜にはこの3種類の他に更に含有する物
質が存在することもあり得る。また、カルコゲン化化合
物、希土類酸化物はそれぞれ複数種を用いることもでき
る。
In the present invention, zinc oxide is also used. Zinc oxide ZnO has excellent stability and is useful for improving the film formation rate. Note that zinc oxide is distinguished from the chalcogen compound. Furthermore, a rare earth oxide is used. La 2 O 3 , CeO 2 , P
rO 2 , Nd 2 O 3 , Sm 2 O 3 , Eu 2 O 3 , GdO
2, Gd 2 O 3, Tb 4 O 7, Dy 2 O 3, Ho
2 O 3 , Er 2 O 3 , Tm 2 O 3 , Yb 2 O 3 , Lu 2
O 3 and Y 2 O 3 are used. Among them, CeO 2 , HfO 2 , ZrO 2 , Y 2 O 3 and the like are preferable. Among them, the crystal peaks appear at exactly the same position in the X-ray diffraction of the Cubic structure of CeO 2 and the Cubic structure of ZnS. The composite dielectric obtained by combining the two has an extremely smooth film quality. Even when used as a medium, the overwrite characteristics are extremely good, and noise hardly occurs. By further adding ZnO here, the sputtering rate during film formation is further improved. in this way,
By combining the three types, it was possible to achieve extremely good disk characteristics and a high deposition rate, which could not be realized by a single product, and to obtain a composite dielectric excellent in productivity. In the composite dielectric film, there may be a substance further contained in addition to these three types. In addition, a plurality of chalcogenide compounds and rare earth oxides may be used, respectively.

【0024】このような保護層を用いることにより、デ
ータ保存安定性に優れた、多数繰り返し記録・消去が行
える書換型媒体の実用に大いに貢献することが可能とな
る。保護層の組成範囲としては、ターゲットの粉体仕込
み時および成形されたターゲットの時点でのカルコゲン
化化合物、希土類酸化物および酸化亜鉛のモル比をそれ
ぞれa、bおよびcとするとき、0.1≦a≦0.9、
0.1≦b≦0.9、0.01≦c≦0.4(ただしa
+b+c=1)であることが望ましい。より好ましくは
ZnOを1mol%以上30mol%未満とする。
By using such a protective layer, it is possible to greatly contribute to the practical use of a rewritable medium having excellent data storage stability and capable of recording and erasing a large number of times. As the composition range of the protective layer, when the molar ratio of the chalcogenated compound, the rare earth oxide and the zinc oxide at the time of charging the powder of the target and at the time of the molded target is a, b and c, respectively, 0.1 ≦ a ≦ 0.9,
0.1 ≦ b ≦ 0.9, 0.01 ≦ c ≦ 0.4 (a
+ B + c = 1) is desirable. More preferably, the content of ZnO is 1 mol% or more and less than 30 mol%.

【0025】ZnSが少なすぎる場合には記録層材料と
の密着性に問題が生じるため望ましくなく、多すぎる場
合には膜が柔らかくなりすぎるため、物質移動を押さえ
きれない。また、酸化物が多すぎる場合には膜にクラッ
クが入り易くなることがあるため適量の範囲が必要とな
る。特に、ZnOの添加量には注意を要する。保護層の
膜厚としては、一般的には0.1−500nm程度があ
るのが、下部保護層としては50nm以上300nm以
下であることが望ましい。薄すぎる場合には、記録時の
熱による基板変形が押さえきれなくなる問題があり、厚
過ぎる場合には、膜にクラックが入りやすくなる問題が
あることおよび製造時に成膜時間がかかりすぎることか
ら、現実的でない。上部保護層に使用する場合には0.
1nm以上300nm以下であることが望ましい。
If the amount of ZnS is too small, there is a problem in the adhesion to the recording layer material, which is undesirable. If the amount is too large, the film becomes too soft, so that mass transfer cannot be suppressed. In addition, when the amount of the oxide is too large, the film may be easily cracked, so that an appropriate range is required. In particular, attention must be paid to the amount of ZnO added. The thickness of the protective layer is generally about 0.1 to 500 nm, but the thickness of the lower protective layer is preferably 50 nm or more and 300 nm or less. If it is too thin, there is a problem that the substrate deformation due to heat during recording cannot be suppressed, and if it is too thick, there is a problem that the film tends to crack and it takes too much filming time during manufacturing, Not realistic. If it is used for the upper protective layer, it is 0.
It is desirable that the thickness be 1 nm or more and 300 nm or less.

【0026】保護層の膜密度はバルク状態の80%以上
であることが機械的強度の面から望ましい(Thin
Solid Films,第278巻(1996年)、
74−81ページ)。混合物誘電体薄膜を用いる場合に
は、バルク密度として下式の理論密度を用いる。各成分
iのモル濃度をmi 、単独のバルク密度をρi としたと
き、
The film density of the protective layer is preferably 80% or more of the bulk state from the viewpoint of mechanical strength (Thin).
Solid Films, Vol. 278 (1996),
74-81). When a mixture dielectric thin film is used, the theoretical density of the following equation is used as the bulk density. When the molar concentration of each component i is m i , and the bulk density of a single component is ρ i ,

【0027】[0027]

【数1】 ρ=Σmi ρi (1)Ρ = Σm i ρ i (1)

【0028】なお、以上においては、図1に記載された
ような層構成の相変化型光学的情報記録用媒体を中心に
説明を行ってきたが、基板や記録層、反射層、保護層等
の組成について、他の層構成の場合にも適用可能であ
る。また、本発明の媒体の層構成は図1に記載されたよ
うなものに限定されるものではなく、さらに別の層構成
を採用したり、さらに別の層を各層の間や最外層に設け
ることも可能である。本発明の媒体を相変化型媒体とす
る場合、図1のように、基板上に、下保護層、記録層、
相変化記録層、上保護層および反射層を順次接する状態
で積層した構成をするのが好ましい。また、記録層とし
ては、相変化型以外の、例えば光磁気型の記録層とする
ことも可能である。
In the above description, the description has been made centering on the phase change type optical information recording medium having the layer structure as shown in FIG. 1, but the substrate, the recording layer, the reflective layer, the protective layer, etc. Is applicable to the case of another layer configuration. Further, the layer configuration of the medium of the present invention is not limited to the one described in FIG. 1, but another layer configuration may be adopted or another layer may be provided between each layer or the outermost layer. It is also possible. When the medium of the present invention is a phase change medium, as shown in FIG. 1, a lower protective layer, a recording layer,
It is preferable to adopt a configuration in which the phase change recording layer, the upper protective layer, and the reflective layer are sequentially stacked in a state of being in contact with each other. The recording layer may be a recording layer other than the phase change type, for example, a magneto-optical type.

【0029】本発明の媒体は、基板の上方に設けられる
保護層および記録層、必要に応じて反射層等の他の層を
スパッタリングによって積層することで製造することが
できる。この場合、それぞれの原料に当たるターゲット
を同一の真空チャンバー内に設置したインライン装置に
て各層を形成する方法が、各層間の酸化や汚染を防止す
る点で好ましい。本発明で規定する保護層を形成するた
めのターゲットとしては、上記3種の化合物それぞれか
らなる複数のターゲットを使用することも可能である
が、保護層を構成する複数の化合物を含有する複合化合
物からなるターゲットを使用する方法が、組成の制御の
面で好ましい。
The medium of the present invention can be produced by laminating other layers such as a protective layer and a recording layer provided above the substrate and, if necessary, a reflective layer by sputtering. In this case, a method in which each layer is formed by an in-line apparatus in which targets corresponding to the respective raw materials are installed in the same vacuum chamber is preferable from the viewpoint of preventing oxidation and contamination between the layers. As a target for forming the protective layer defined in the present invention, a plurality of targets each composed of the above three compounds can be used, but a composite compound containing a plurality of compounds constituting the protective layer The method of using a target consisting of is preferred in terms of controlling the composition.

【0030】[0030]

【実施例】実施例1 ZnS:ZnO:CeO2 =50:5:45のmol比
で混合した粉体を十分に撹拌した後、ホットプレス法に
より1150℃、20トンで加圧した状態で2時間放置
し焼結させた。これを十分に研磨後、CuプレートにI
nハンダで接着し保護層用の複合化合物ターゲットを作
成した。1.2mm厚の円盤状のポリカーボネート基板
上に下部保護層/記録層/上部保護層/反射層を順次ス
パッタリングにより積層し相変化型光ディスクを作成し
た。各層の厚みは、下部保護層110nm、記録層30
nm、上部保護層30nm、反射層100nmとした。
記録層はGe22.2Sb22.2Te55.6とし、反射層にはA
l合金を使用した。
EXAMPLE 1 A powder mixed in a molar ratio of ZnS: ZnO: CeO 2 = 50: 5: 45 was sufficiently stirred, and then heated under a pressure of 1150 ° C. and 20 tons by a hot press method. It was left for a time and sintered. After polishing this sufficiently, I
By bonding with n solder, a composite compound target for a protective layer was prepared. The lower protective layer / recording layer / upper protective layer / reflective layer were sequentially laminated on a 1.2 mm thick disc-shaped polycarbonate substrate by sputtering to produce a phase change optical disk. The thickness of each layer is 110 nm for the lower protective layer, 30
nm, the upper protective layer was 30 nm, and the reflective layer was 100 nm.
The recording layer was Ge 22.2 Sb 22.2 Te 55.6 , and the reflective layer was A
1 alloy was used.

【0031】上部および下部の保護層は、Arガスを5
0sccmで流し、圧力0.4Paの下、上記ターゲッ
トの高周波(13.56MHz)スパッタリングにより
成膜した。成膜レートは77Å/minであった。膜密
度は4.9g/cm3 であり、理論密度の82%であっ
た。JISヌープ硬度は614であり、膜応力は引っ張
りで2.78E+8dyn/cm2 であった。この膜の
光学定数はエリプソメータの測定により波長780nm
に対して2.2−0i、650nmに対して2.2−
0.05iであった。記録層および反射層は、Arガス
圧力0.7Paで直流スパッタリングにより成膜した。
さらに最上層に厚み約5umの紫外線硬化樹脂層を設け
た。
The upper and lower protective layers are made of Ar gas of 5
The film was formed at a flow rate of 0 sccm under a pressure of 0.4 Pa by high frequency (13.56 MHz) sputtering of the above target. The deposition rate was 77 ° / min. The film density was 4.9 g / cm 3 , 82% of the theoretical density. The JIS Knoop hardness was 614, and the film stress was 2.78E + 8 dyn / cm 2 by tensile. The optical constant of this film was 780 nm as measured by an ellipsometer.
2.2-0i for 650nm and 2.2- for 650nm
It was 0.05i. The recording layer and the reflective layer were formed by DC sputtering at an Ar gas pressure of 0.7 Pa.
Further, an ultraviolet curable resin layer having a thickness of about 5 μm was provided on the uppermost layer.

【0032】このディスクを波長810nmLDバルク
イレーザを用いて初期化すなわち記録層の結晶化処理を
行った後、以下の条件でディスクの動特性を評価した。
10m/sの線速度で回転させながら4MHz、dut
y50%のパルス光を用い、波長780nm条件で記録
パワー13mW、ベースパワー8.5mW、再生パワー
0.8mWで繰り返しオーバーライトを行い、C/N及
び消去比の測定を行った。その結果、10万回オーバー
ライトしてもノイズの上昇はみられなかった。このディ
スクを80℃85%RH高温高湿度条件下に500時間
放置したが、剥離なども生じず、ディスク特性が変化し
なかった。
After the disk was initialized using an LD bulk eraser having a wavelength of 810 nm, ie, the recording layer was crystallized, the dynamic characteristics of the disk were evaluated under the following conditions.
4MHz, dut while rotating at a linear velocity of 10m / s
Overwriting was repeatedly performed with a recording power of 13 mW, a base power of 8.5 mW, and a reproduction power of 0.8 mW under the condition of a wavelength of 780 nm using pulse light of y50%, and the C / N and the erasing ratio were measured. As a result, no increase in noise was observed even after overwriting 100,000 times. This disk was left under the conditions of 80 ° C., 85% RH, high temperature and high humidity for 500 hours, but no peeling or the like occurred and the disk characteristics did not change.

【0033】実施例2 ZnS:CeO2 :ZnO=45:45:10(mol
%)を混合した粉体を十分に撹拌した後、ホットプレス
法により1150℃、20トンで加圧した状態で2時間
放置し焼結させた。これを十分に研磨後、Cuプレート
にInハンダで接着し保護膜用の複合化合物ターゲット
を作成した。1.2mm厚の円盤状のポリカーボネート
基板上に下部保護層/記録層/上部保護層/反射層を順
次スパッタリングにより積層し相変化型光ディスクを作
成した。各層の厚みは、下部保護層110nm、記録層
30nm、上部保護層30nm、反射層100nmとし
た。記録層はGe22.2Sb22.2Te55.6とし、反射層に
はAl合金を使用した。
Example 2 ZnS: CeO 2 : ZnO = 45: 45: 10 (mol
%) Was sufficiently stirred and then left for 2 hours in a state of being pressurized at 1150 ° C. and 20 tons by a hot press method for sintering. After this was sufficiently polished, it was bonded to a Cu plate with In solder to prepare a composite compound target for a protective film. The lower protective layer / recording layer / upper protective layer / reflective layer were sequentially laminated on a 1.2 mm thick disc-shaped polycarbonate substrate by sputtering to produce a phase change optical disk. The thickness of each layer was 110 nm for the lower protective layer, 30 nm for the recording layer, 30 nm for the upper protective layer, and 100 nm for the reflective layer. The recording layer was Ge 22.2 Sb 22.2 Te 55.6 , and the reflective layer was an Al alloy.

【0034】上部および下部の保護層は、Arガスを5
0sccmで流し、圧力0.4Paの下、上記ターゲッ
トの高周波スパッタリング(13.56MHz)により
成膜した。成膜レートは73Å/minであった。膜密
度は5.4g/cm3 であり、理論密度の88%であっ
た。また、JISヌープ硬度は516であり、膜応力は
引っ張り応力で1.90E+9dyn/cm2 であっ
た。この膜の光学定数はエリプソメータの測定により波
長780nmにおいて2.3−0iであった。
The upper and lower protective layers are made of Ar gas of 5
A film was formed at a flow rate of 0 sccm under a pressure of 0.4 Pa by high-frequency sputtering (13.56 MHz) of the above target. The film formation rate was 73 ° / min. The film density was 5.4 g / cm 3 , 88% of the theoretical density. The JIS Knoop hardness was 516, and the film stress was 1.90E + 9 dyn / cm 2 in tensile stress. The optical constant of this film was 2.3-0i at a wavelength of 780 nm as measured by an ellipsometer.

【0035】記録層および反射層は、Arガス圧力0.
4Paで直流スパッタリングにより成膜した。さらに最
上層に厚み約5μmの紫外線硬化樹脂層を設けた。この
ディスクを波長810mmLDバルクイレーザを用いて
初期化すなわち記録層の結晶化処理を行った後、以下の
条件でディスクの動特性を評価した。ディスクを10m
/sの線速度で回転させながら4MHz、duty50
%のパルス光を用い、記録パワー13.0mW、ベース
パワー8.5mW、再生パワー0.8mWで繰り返しオ
ーバーライトを行い、C/N及び消去比の測定を行っ
た。105 回以後も再生信号に劣化はみられなかった。
The recording layer and the reflective layer are formed under an Ar gas pressure of 0.1.
The film was formed by DC sputtering at 4 Pa. Further, an ultraviolet curable resin layer having a thickness of about 5 μm was provided on the uppermost layer. The disk was initialized using an 810 mm LD bulk eraser, ie, the recording layer was crystallized, and the dynamic characteristics of the disk were evaluated under the following conditions. 10m disc
/ MHz while rotating at a linear speed of 4 MHz, duty 50
%, The overwriting was repeatedly performed at a recording power of 13.0 mW, a base power of 8.5 mW, and a reproduction power of 0.8 mW, and the C / N and the erasing ratio were measured. 10 5 times even after deterioration in the reproduction signal was observed.

【0036】比較例1 保護層の組成をZnSとSiO2 の複合化合物としたこ
と以外は実施例1と同様にして相変化型の記録媒体を製
造・評価した。即ち、ZnS:SiO2 =80:20
(mol%)を混合した粉体を十分に撹拌した後、ホッ
トプレス法により1200℃、20トンで加圧した状態
で2時間放置し焼結させた。これを十分に研磨後、Cu
プレートにInハンダで接着し保護膜用の複合化合物タ
ーゲットを作成した。
Comparative Example 1 A phase change type recording medium was manufactured and evaluated in the same manner as in Example 1 except that the composition of the protective layer was a composite compound of ZnS and SiO 2 . That is, ZnS: SiO 2 = 80: 20
(Mol%) was sufficiently stirred, and then left for 2 hours in a state of being pressurized at 1200 ° C. and 20 tons by a hot press method for sintering. After polishing this sufficiently, Cu
A composite compound target for a protective film was formed by bonding to the plate with In solder.

【0037】1.2mm厚の円盤状のポリカーボネート
基板上に下部保護層/記録層/上部保護層/反射層を順
次スパッタリングにより積層し相変化型光ディスクを作
成した。各層の厚みは、下部保護層160nm、記録層
30nm、上部保護層30nm、反射層100nmとし
た。記録層はGe22.2Sb22.2Te55.6とし、反射層に
はAl合金を使用した。
The lower protective layer / recording layer / upper protective layer / reflective layer were sequentially laminated on a 1.2 mm thick disc-shaped polycarbonate substrate by sputtering to produce a phase change optical disk. The thickness of each layer was 160 nm for the lower protective layer, 30 nm for the recording layer, 30 nm for the upper protective layer, and 100 nm for the reflective layer. The recording layer was Ge 22.2 Sb 22.2 Te 55.6 , and the reflective layer was an Al alloy.

【0038】上部および下部の保護層は、Arガスを5
0sccmで流し、圧力0.4Paの下、上記ターゲッ
トの高周波スパッタリング(13.56MHz)により
成膜した。膜密度は3.5g/cm3 であり、理論密度
の94%であった。また、JISヌープ硬度は280で
あり、膜応力は引っ張り応力で1.1E+9dyn/c
2 であった。この膜の光学定数はエリプソメータの測
定により波長780nmに対して2.1−0iであっ
た。なお、複合ターゲットとスパッタ膜との組成比はほ
ぼ一致していた。記録層および反射層は、Arガス圧力
0.4Paで直流スパッタリングにより成膜した。さら
に最上層に厚み約5μmの紫外線硬化樹脂層を設けた。
The upper and lower protective layers are made of Ar gas of 5
A film was formed at a flow rate of 0 sccm under a pressure of 0.4 Pa by high-frequency sputtering (13.56 MHz) of the above target. The film density was 3.5 g / cm 3 , 94% of the theoretical density. The JIS Knoop hardness is 280, and the film stress is 1.1E + 9dyn / c in tensile stress.
m 2 . The optical constant of this film was 2.1-0i at a wavelength of 780 nm as measured by an ellipsometer. The composition ratio of the composite target and the sputtered film was almost the same. The recording layer and the reflective layer were formed by DC sputtering at an Ar gas pressure of 0.4 Pa. Further, an ultraviolet curable resin layer having a thickness of about 5 μm was provided on the uppermost layer.

【0039】このディスクを波長810nmLDバルク
イレーザを用いて初期化すなわち記録層の結晶化処理を
行った後、以下の条件でディスクの動特性を評価した。
ディスクを10m/sの線速度で回転させながら4MH
z、duty50%のパルス光を用い、記録パワー1
4.5mW、ベースパワー7.5mW、再生パワー0.
8mWで繰返しオーバーライトを行い、C/Nおよび消
去比の測定を行ったところ、104 回以後再生信号振幅
が減少してしまった。また、10回程度のオーバーライ
トでノイズ上昇によるCN比の低下が始まった。CN比
の低下自体は3dB未満であったが、局所的なバースト
欠陥が多数発生した。
After the disk was initialized using an LD bulk eraser having a wavelength of 810 nm, that is, the recording layer was crystallized, the dynamic characteristics of the disk were evaluated under the following conditions.
4 MH while rotating the disk at a linear speed of 10 m / s
z, duty 50% pulse light, recording power 1
4.5 mW, base power 7.5 mW, reproduction power 0.
Perform repetitive overwriting at 8 mW, was measured for C / N and erase ratio, 10 4 times after reproduction signal amplitude has been reduced. In addition, about 10 times of overwriting, a decrease in the CN ratio due to an increase in noise started. Although the decrease of the CN ratio itself was less than 3 dB, many local burst defects occurred.

【0040】比較例2 保護層の組成をZnSとZnOの複合化合物としたこと
以外は実施例1と同様にして相変化型の記録媒体を製造
・評価した。即ち、ZnS:ZnO=50:50(mo
l%)を混合した粉体を十分に撹拌した後、ホットプレ
ス法により1200℃、20トンで加圧した状態で2時
間放置し焼結させた。これを十分に研磨後、Cuプレー
トにInハンダで接着し保護膜用の複合化合物ターゲッ
トを作成した。1.2mm厚の円盤状のポリカーボネー
ト基板上に下部保護層/記録層/上部保護層/反射層を
順次スパッタリングにより積層し相変化型光ディスクを
作成した。各層の厚みは、下部保護層110nm、記録
層30nm、上部保護層30nm、反射層100nmと
した。記録層はGe22.2Sb22.2Te55.6とし、反射層
にはAl合金を使用した。
Comparative Example 2 A phase change type recording medium was manufactured and evaluated in the same manner as in Example 1 except that the composition of the protective layer was a composite compound of ZnS and ZnO. That is, ZnS: ZnO = 50: 50 (mo
1%), and the mixture was sufficiently agitated, and then left for 2 hours in a state of being pressurized at 1200 ° C. and 20 tons by a hot press method to be sintered. After this was sufficiently polished, it was bonded to a Cu plate with In solder to prepare a composite compound target for a protective film. The lower protective layer / recording layer / upper protective layer / reflective layer were sequentially laminated on a 1.2 mm thick disc-shaped polycarbonate substrate by sputtering to produce a phase change optical disk. The thickness of each layer was 110 nm for the lower protective layer, 30 nm for the recording layer, 30 nm for the upper protective layer, and 100 nm for the reflective layer. The recording layer was Ge 22.2 Sb 22.2 Te 55.6 , and the reflective layer was an Al alloy.

【0041】上部および下部の保護層は、Arガスを5
0sccmで流し、圧力0.4Paの下、上記ターゲッ
トの高周波スパッタリング(13.56MHz)により
成膜した。膜密度は4.5g/cm3 であり、理論密度
の94%であった。また、JISヌープ硬度は534で
あり、膜応力は引っ張り応力で2.2E+9dyn/c
2 であった。この膜の光学定数はエリプソメータの測
定により波長780nmにおいて2.2−0iであっ
た。
For the upper and lower protective layers, Ar gas
A film was formed at a flow rate of 0 sccm under a pressure of 0.4 Pa by high-frequency sputtering (13.56 MHz) of the above target. The film density was 4.5 g / cm 3 , 94% of the theoretical density. The JIS Knoop hardness is 534, and the film stress is 2.2E + 9dyn / c in tensile stress.
m 2 . The optical constant of this film was 2.2-0i at a wavelength of 780 nm as measured by an ellipsometer.

【0042】記録層および反射層は、Arガス圧力0.
4Paで直流スパッタリングにより成膜した。さらに最
上層に厚み約5μmの紫外線硬化樹脂層を設けた。この
ディスクを波長810mmLDバルクイレーザを用いて
初期化すなわち記録層の結晶化処理を行った時点で、膜
にクラックが発生し、目視にて観察が可能な大きなヒビ
が膜に入った。たとえ、これが初期化方法の改善により
克服できたとしても、繰り返しオーバーライトによるク
ラックの発生、経時変化による剥離は避けられないと考
えられる。
The recording layer and the reflective layer are formed under an Ar gas pressure of 0.1.
The film was formed by DC sputtering at 4 Pa. Further, an ultraviolet curable resin layer having a thickness of about 5 μm was provided on the uppermost layer. When this disk was initialized using an 810 mm LD bulk eraser, that is, when the recording layer was crystallized, cracks occurred in the film, and large cracks that could be visually observed entered the film. Even if this can be overcome by improving the initialization method, it is considered that cracks due to repetitive overwriting and peeling due to aging are inevitable.

【0043】比較例3 保護層の組成をZnSとCeO2 との複合化合物とした
以外は実施例1と同様にして相変化型の記録媒体を製造
・評価した。即ち、ZnS:CeO2 =50:50(m
ol%)を混合した粉体を十分に撹拌した後、ホットプ
レス法により1150℃、20トンで加圧した状態で2
時間放置し焼結させた。これを十分に研磨後、Cuプレ
ートにInハンダで接着し保護膜用の複合化合物ターゲ
ットを作成した。1.2mm厚の円盤状のポリカーボネ
ート基板上に下部保護層/記録層/上部保護層/反射層
を順次スパッタリングにより積層し相変化型光ディスク
を作成した。各層の厚みは、下部保護層110nm、記
録層30nm、上部保護層30nm、反射層100nm
とした。記録層はGe22.2Sb22.2Te55.6とし、反射
層にはAl合金を使用した。
Comparative Example 3 A phase change type recording medium was manufactured and evaluated in the same manner as in Example 1 except that the composition of the protective layer was a composite compound of ZnS and CeO 2 . That is, ZnS: CeO 2 = 50: 50 (m
ol%) was sufficiently stirred, and then heated at 1150 ° C. and 20 tons under a hot press method.
It was left for a time and sintered. After this was sufficiently polished, it was bonded to a Cu plate with In solder to prepare a composite compound target for a protective film. The lower protective layer / recording layer / upper protective layer / reflective layer were sequentially laminated on a 1.2 mm thick disc-shaped polycarbonate substrate by sputtering to produce a phase change optical disk. The thickness of each layer is 110 nm for the lower protective layer, 30 nm for the recording layer, 30 nm for the upper protective layer, and 100 nm for the reflective layer.
And The recording layer was Ge 22.2 Sb 22.2 Te 55.6 , and the reflective layer was an Al alloy.

【0044】上部および下部の保護層は、Arガスを5
0sccmで流し、圧力0.4Paの下、上記ターゲッ
トの高周波スパッタリング(13.56MHz)により
成膜した。成膜レートは67Å/minと低かった。膜
密度は5.6g/cm3 であり、理論密度の93%であ
った。また、JISヌープ硬度は645であり、膜応力
は引っ張り応力で8.65E+8dyn/cm2 であっ
た。この膜の光学定数はエリプソメータの測定により波
長780nmにおいて2.3−0iであった。
For the upper and lower protective layers, Ar gas
A film was formed at a flow rate of 0 sccm under a pressure of 0.4 Pa by high-frequency sputtering (13.56 MHz) of the above target. The deposition rate was as low as 67 ° / min. The film density was 5.6 g / cm 3 , which was 93% of the theoretical density. The JIS Knoop hardness was 645, and the film stress was 8.65E + 8 dyn / cm 2 in tensile stress. The optical constant of this film was 2.3-0i at a wavelength of 780 nm as measured by an ellipsometer.

【0045】記録層および反射層は、Arガス圧力0.
4Paで直流スパッタリングにより成膜した。さらに最
上層に厚み約5μmの紫外線硬化樹脂層を設けた。この
ディスクを波長810mmLDバルクイレーザを用いて
初期化すなわち記録層の結晶化処理を行った後、以下の
条件でディスクの動特性を評価した。ディスクを10m
/sの線速度で回転させながら4MHz、duty50
%のパルス光を用い、記録パワー14.0mW、ベース
パワー8.5mW、再生パワー0.8mWで繰返しオー
バーライトを行い、C/N及び消去比の測定を行った。
105 回以後も再生信号に劣化はみられなかった。しか
しながら、上記のように成膜レートは小さく、生産性が
悪いことが判る。なお、数値的には形式上小さな成膜レ
ートのちがいがあっても、保護膜の厚さが100nm
(=1000Å)程度であり、多量の媒体を生産するの
で、その差はトータルでは極めて大きくなる。
The recording layer and the reflective layer were formed under an Ar gas pressure of 0.2.
The film was formed by DC sputtering at 4 Pa. Further, an ultraviolet curable resin layer having a thickness of about 5 μm was provided on the uppermost layer. The disk was initialized using an 810 mm LD bulk eraser, ie, the recording layer was crystallized, and the dynamic characteristics of the disk were evaluated under the following conditions. 10m disc
/ MHz while rotating at a linear speed of 4 MHz, duty 50
%, The overwriting was repeatedly performed at a recording power of 14.0 mW, a base power of 8.5 mW, and a reproduction power of 0.8 mW, and the C / N and the erasing ratio were measured.
10 5 times even after deterioration in the reproduction signal was observed. However, as described above, it can be seen that the film formation rate is small and the productivity is poor. In addition, even if the film formation rate is numerically small, the thickness of the protective film is 100 nm.
(= 1000 °), and a large amount of media is produced, so the difference is extremely large in total.

【0046】[0046]

【発明の効果】本発明の光学的情報記録用媒体は、デー
タ保存安定性に優れ、多数の繰り返し記録・消去を行う
ことができる。また、本発明の情報記録媒体は高いレー
トで製造することができる。
The optical information recording medium of the present invention has excellent data storage stability and can perform a large number of repeated recording / erasing operations. Further, the information recording medium of the present invention can be manufactured at a high rate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光学的情報記録用媒体の一例の模式的
断面図。
FIG. 1 is a schematic sectional view of an example of an optical information recording medium according to the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 下部保護層 3 相変化記録層 4 上部保護層 5 反射層 6 保護コート層 DESCRIPTION OF SYMBOLS 1 Substrate 2 Lower protective layer 3 Phase change recording layer 4 Upper protective layer 5 Reflective layer 6 Protective coat layer

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 基板の上方に少なくとも記録層と保護層
とを有してなり、光ビームを照射して記録層を加熱して
記録を行う媒体であって、該保護層が、カルコゲン化化
合物、希土類酸化物および酸化亜鉛を含む3種以上の化
合物からなることを特徴とする光学的情報記録用媒体。
1. A medium for recording by heating a recording layer by irradiating a light beam thereon, said recording medium comprising at least a recording layer and a protective layer above a substrate, wherein said protective layer is a chalcogenated compound. An optical information recording medium comprising three or more compounds including a rare earth oxide and zinc oxide.
【請求項2】 基板の上方に設けられた記録層の上下そ
れぞれに保護層が設けられ、該保護層の少なくとも1つ
が、カルコゲン化化合物、希土類酸化物および酸化亜鉛
を含む3種以上の化合物からなることを特徴とする光学
的情報記録用媒体。
2. A protective layer is provided above and below a recording layer provided above a substrate, and at least one of the protective layers is made of at least three compounds including a chalcogen compound, a rare earth oxide and zinc oxide. An optical information recording medium, comprising:
【請求項3】 記録層の上下に設けられた保護層が、そ
れぞれ、カルコゲン化化合物、希土類酸化物および酸化
亜鉛を含む3種以上の化合物からなる請求項2に記載の
光学的情報記録用媒体。
3. The optical information recording medium according to claim 2, wherein the protective layers provided above and below the recording layer are each composed of three or more compounds including a chalcogenated compound, a rare earth oxide and zinc oxide. .
【請求項4】 記録層が相変化記録層である請求項1乃
至3のいずれか1つに記載の光学的情報記録用媒体。
4. The optical information recording medium according to claim 1, wherein the recording layer is a phase change recording layer.
【請求項5】 基板の上方に、少なくとも下部保護層、
相変化記録層、上部保護層および反射層を順次有してな
る請求項1乃至4のいずれか1つに記載の光学的情報記
録用媒体。
5. At least a lower protective layer above the substrate,
The optical information recording medium according to any one of claims 1 to 4, further comprising a phase change recording layer, an upper protective layer, and a reflective layer.
【請求項6】 カルコゲン化化合物がカルコゲン化亜鉛
を含む請求項1乃至5のいずれか1つに記載の光学的情
報記録用媒体。
6. The optical information recording medium according to claim 1, wherein the chalcogenated compound contains zinc chalcogenide.
【請求項7】 カルコゲン化亜鉛が、ZnSを含む請求
項6に記載の光学的情報記録用媒体。
7. The optical information recording medium according to claim 6, wherein the zinc chalcogenide contains ZnS.
【請求項8】 希土類酸化物がCeO2 を含む請求項1
乃至7のいずれか1つに記載の光学的情報記録用媒体。
8. The method of claim 1, wherein the rare earth oxide includes CeO 2.
8. The optical information recording medium according to any one of items 1 to 7.
【請求項9】 保護層がスパッタリングで得られたもの
である請求項1乃至8のいずれか1つに記載の光学的情
報記録用媒体。
9. The optical information recording medium according to claim 1, wherein the protective layer is obtained by sputtering.
【請求項10】 スパッタリング用ターゲットにおける
カルコゲン化化合物、希土類酸化物および酸化亜鉛のモ
ル比をそれぞれa、bおよびcとするとき、a=0.1
−0.9、b=0.1−0.9、c=0.01−0.4
(ただしa+b+c=1)である請求項9に記載の光学
的情報記録用媒体。
10. When the molar ratio of a chalcogenide compound, a rare earth oxide and zinc oxide in a sputtering target is a, b and c, respectively, a = 0.1
-0.9, b = 0.1-0.9, c = 0.01-0.4
10. The optical information recording medium according to claim 9, wherein (a + b + c = 1).
【請求項11】 スパッタリング用ターゲットが、カル
コゲン化化合物、希土類酸化物および酸化亜鉛を含有す
る複合化合物ターゲットである請求項9又は10に記載
の光学的情報記録用媒体。
11. The optical information recording medium according to claim 9, wherein the sputtering target is a composite compound target containing a chalcogenated compound, a rare earth oxide, and zinc oxide.
【請求項12】 保護層の膜密度が、理論密度の80%
以上である請求項1乃至11のいずれか1つに記載の光
学的情報記録用媒体。
12. The film density of the protective layer is 80% of the theoretical density.
The optical information recording medium according to any one of claims 1 to 11, which is as described above.
【請求項13】 基板が透明樹脂からなる請求項1乃至
12のいずれか1つに記載の光学的情報記録用媒体。
13. The optical information recording medium according to claim 1, wherein the substrate is made of a transparent resin.
【請求項14】 透明樹脂が、ポリカーボネート樹脂を
含む請求項13に記載の光学的情報記録用媒体。
14. The optical information recording medium according to claim 13, wherein the transparent resin includes a polycarbonate resin.
【請求項15】 スパッタリングによって、基板の上方
に記録層および保護層を積層させる光学的情報記録用媒
体の製造方法であって、該保護層が、カルコゲン化化合
物、希土類酸化物および酸化亜鉛を含む3種以上の化合
物からなることを特徴とする光学的情報記録用媒体の製
造方法。
15. A method for producing an optical information recording medium comprising laminating a recording layer and a protective layer above a substrate by sputtering, wherein the protective layer contains a chalcogenide compound, a rare earth oxide and zinc oxide. A method for producing an optical information recording medium, comprising three or more compounds.
JP13950898A 1998-05-21 1998-05-21 Optical information recording medium and method for manufacturing the same Expired - Lifetime JP3692776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13950898A JP3692776B2 (en) 1998-05-21 1998-05-21 Optical information recording medium and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13950898A JP3692776B2 (en) 1998-05-21 1998-05-21 Optical information recording medium and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH11328730A true JPH11328730A (en) 1999-11-30
JP3692776B2 JP3692776B2 (en) 2005-09-07

Family

ID=15246938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13950898A Expired - Lifetime JP3692776B2 (en) 1998-05-21 1998-05-21 Optical information recording medium and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3692776B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044788A1 (en) * 2001-11-22 2003-05-30 Tdk Corporation Optical recording medium
WO2003069612A1 (en) * 2002-02-14 2003-08-21 Nikko Materials Company, Limited Sputtering target containing zinc sulfide as major component, optical recording medium on which phase change optical disk protective film containing zinc sulfide as major component is formed by using the target, and method for manufacturing the sputtering target
JP2008159242A (en) * 2007-11-30 2008-07-10 Nikko Kinzoku Kk Optical recording medium with phase-change type optical disk protective film composed essentially of zinc sulfide formed by using sputtering target composed essentially of zinc sulfide
JP2008303467A (en) * 2008-07-18 2008-12-18 Nikko Kinzoku Kk Sputtering target, and method for producing the same
CN116259336A (en) * 2020-05-21 2023-06-13 昭和电工株式会社 Magnetic recording medium and magnetic storage device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044788A1 (en) * 2001-11-22 2003-05-30 Tdk Corporation Optical recording medium
US6921568B2 (en) 2001-11-22 2005-07-26 Tdk Corporation Optical recording medium
JP5150999B2 (en) * 2001-11-22 2013-02-27 Tdk株式会社 Optical recording medium
WO2003069612A1 (en) * 2002-02-14 2003-08-21 Nikko Materials Company, Limited Sputtering target containing zinc sulfide as major component, optical recording medium on which phase change optical disk protective film containing zinc sulfide as major component is formed by using the target, and method for manufacturing the sputtering target
CN1296924C (en) * 2002-02-14 2007-01-24 日矿金属株式会社 Sputtering target containing zinc sulfide as major component, optical recording medium on which phase change optical disk protective film containing zinc sulfide as major component is formed by using
US7279211B2 (en) 2002-02-14 2007-10-09 Nippon Mining & Metals Co., Ltd. Sputtering target containing zinc sulfide as major component, optical recording medium on which phase change optical disk protective film containing zinc sulfide as major component is formed by using the target, and method for manufacturing the sputtering target
JP2008159242A (en) * 2007-11-30 2008-07-10 Nikko Kinzoku Kk Optical recording medium with phase-change type optical disk protective film composed essentially of zinc sulfide formed by using sputtering target composed essentially of zinc sulfide
JP2008303467A (en) * 2008-07-18 2008-12-18 Nikko Kinzoku Kk Sputtering target, and method for producing the same
CN116259336A (en) * 2020-05-21 2023-06-13 昭和电工株式会社 Magnetic recording medium and magnetic storage device

Also Published As

Publication number Publication date
JP3692776B2 (en) 2005-09-07

Similar Documents

Publication Publication Date Title
JP3584634B2 (en) Optical information recording medium
JP3419347B2 (en) Optical information recording medium, recording method, and method for manufacturing optical information recording medium
JP3692776B2 (en) Optical information recording medium and method for manufacturing the same
JP2850713B2 (en) Optical information recording medium
JP3379256B2 (en) Optical information recording medium
JP3444037B2 (en) Optical information recording medium
JPH11232698A (en) Optical information recording medium and method of manufacturing the same
JPH09282713A (en) Optical information recording medium
JP2003022570A (en) Optical recording medium and manufacturing method thereof
JP3246244B2 (en) Optical information recording medium
JP3246350B2 (en) Optical information recording medium
JP2967949B2 (en) Optical information recording medium
JP3365457B2 (en) Optical information recording medium
JP3365465B2 (en) Optical information recording medium
JP3601168B2 (en) Optical information recording medium
JP3869493B2 (en) Optical information recording medium and manufacturing method thereof
JP2967948B2 (en) Optical information recording medium
JP2003211849A (en) Optical recoding medium
JPH10112063A (en) Optical information recording medium
JP2903969B2 (en) Optical recording medium and recording / reproducing method using the same
JP4248645B2 (en) Optical information recording medium
JPH097225A (en) Optical information recording medium
JP2903970B2 (en) Optical recording medium and recording / reproducing method using the same
JP2000030296A (en) Optical information recording medium and method of manufacturing the same
JP2002046356A (en) Optical recording medium and spattering target therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050613

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080701

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5