JPH11323436A - Production of silicon steel sheet excellent in magnetic property - Google Patents
Production of silicon steel sheet excellent in magnetic propertyInfo
- Publication number
- JPH11323436A JPH11323436A JP10135241A JP13524198A JPH11323436A JP H11323436 A JPH11323436 A JP H11323436A JP 10135241 A JP10135241 A JP 10135241A JP 13524198 A JP13524198 A JP 13524198A JP H11323436 A JPH11323436 A JP H11323436A
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel
- rolling
- finish rolling
- annealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、低鉄損でかつ高
磁束密度を有する磁気特性に優れた電磁鋼板の製造方法
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a magnetic steel sheet having a low iron loss and a high magnetic flux density and having excellent magnetic properties.
【0002】[0002]
【従来の技術】従来の電磁鋼板において、鉄損を低くす
る場合には、固有抵抗を増加させるとともに渦電流損を
低下させる効果がある成分として知られているSiやAl等
の添加量を高める方法が広く用いられている。2. Description of the Related Art In a conventional magnetic steel sheet, in order to reduce iron loss, it is necessary to increase the amount of addition of Si, Al, etc., which are known as components having the effect of increasing the specific resistance and reducing the eddy current loss. The method is widely used.
【0003】しかし、鉄損低減のため、これらの合金成
分を添加すると、飽和磁束密度が減少するため、上記方
法では、低鉄損と高磁束密度の双方を満足させることは
難しかった。However, when these alloy components are added to reduce iron loss, the saturation magnetic flux density is reduced. Therefore, it is difficult to satisfy both low iron loss and high magnetic flux density by the above method.
【0004】また、これらの合金成分を添加せずに鉄損
を改善する方法としては、例えば、冷延・焼鈍板に数%
のスキンパス圧延を行い、ユーザーで打ち抜き加工をし
た後、ひずみ取り焼鈍を行う方法がある。As a method for improving iron loss without adding these alloy components, for example, several percents
After performing skin pass rolling of the above and punching work by a user, there is a method of performing strain relief annealing.
【0005】しかし、かかる従来法は、仕上げ熱間圧延
温度を800 ℃以上とし、捲取温度が低く、再結晶が十分
進行していない場合には、熱延板焼鈍を行った後75%以
上の冷間圧延を行い、さらに高温短時間焼鈍を施すこと
に加えて、さらに数%のスキンパス圧延を行う必要があ
るため、製造工程が複雑になり製造コスト増加の不利益
がある。However, in the conventional method, when the finishing hot rolling temperature is 800 ° C. or higher, and the winding temperature is low, and recrystallization is not sufficiently advanced, 75% or more after hot-rolled sheet annealing is performed. In addition to performing cold rolling and further performing high-temperature short-time annealing, it is necessary to further perform skin-pass rolling of several percent, so that the manufacturing process becomes complicated and there is a disadvantage of increasing the manufacturing cost.
【0006】また、製造工程を複雑にすることなく磁気
特性の改善を図った方法としては、特公平7−23509 号
公報に開示がある。上掲公報の記載によれば、Si量を1
%以下とし、熱間粗圧延から熱間仕上げ圧延までの熱間
圧延段階でフェライト粗大粒を圧延することによって、
鉄損と磁束密度の双方を改善できる旨が記載されてい
る。A method for improving the magnetic characteristics without complicating the manufacturing process is disclosed in Japanese Patent Publication No. Hei 7-23509. According to the above publication, the amount of Si is 1
% Or less, and by rolling coarse ferrite grains in the hot rolling stage from hot rough rolling to hot finishing rolling,
It states that both iron loss and magnetic flux density can be improved.
【0007】しかし、この方法は、Si含有量が1%以下
と少量であるため、熱間圧延段階でフェライト粗大粒を
圧延する上記製造条件を適用しても、鉄損を十分に低減
することはできず、また、この製造条件をSi含有量が1
%を超える鋼に適用しても、十分な磁気特性の改善効果
が得られないことが、本発明者らの検討によって明らか
になった。よって、この方法で製造した電磁鋼板は、現
状の地球環境及びエネルギー環境のために要求されてい
る低鉄損を満足することができなかった。However, in this method, since the Si content is as small as 1% or less, the iron loss can be sufficiently reduced even when the above-described production conditions for rolling coarse ferrite grains in the hot rolling step are applied. Cannot be performed, and the production conditions are set to a Si content of 1
It has been clarified by the inventors of the present invention that a sufficient effect of improving the magnetic properties cannot be obtained even when applied to steels exceeding 0.1%. Therefore, the magnetic steel sheet manufactured by this method cannot satisfy the low iron loss required for the current global environment and energy environment.
【0008】[0008]
【発明が解決しようとする課題】この発明の目的は、合
金元素、特にSi元素の含有量を1%超え4%以下の範囲
とし、かつ、熱間仕上げ圧延を適正条件の下で行うこと
により、低鉄損と高磁束密度の双方を満足させるととも
に、製造工程の簡素化によるコストの削減を図ることが
できる電磁鋼板の製造方法を提供することにある。SUMMARY OF THE INVENTION It is an object of the present invention to control the content of alloying elements, particularly Si elements, in a range of more than 1% to 4% and to perform hot finish rolling under appropriate conditions. Another object of the present invention is to provide a method of manufacturing an electromagnetic steel sheet that satisfies both low iron loss and high magnetic flux density and that can reduce costs by simplifying the manufacturing process.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するた
め、この発明は、重量%でC:0.005 %以下、Si:1%
超え4%以下、Mn:1.5 %以下、P:0.35%以下、S:
0.010 %以下、Al:2.0%以下、N:0.01%以下、O:
0.01%以下を含有する組成になる鋼スラブを、鋳造後、
又はさらに再加熱した後に熱間粗圧延を行い、下記
(1)に示す鋼組織とした後、直ちに下記(2)に示す
条件で仕上げ圧延を行ったのち、そのまま、又はさらに
焼鈍を経てから酸洗をした後、通常の冷間圧延と焼鈍と
を順次行うことを特徴とする磁気特性に優れた電磁鋼板
の製造方法を提供するものである。In order to achieve the above-mentioned object, the present invention relates to a method for producing a semiconductor device comprising:
Over 4%, Mn: 1.5% or less, P: 0.35% or less, S:
0.010% or less, Al: 2.0% or less, N: 0.01% or less, O:
After casting a steel slab with a composition containing 0.01% or less,
Or, after further reheating, hot rough rolling is performed to obtain a steel structure shown in the following (1), and then immediately finish rolling is performed under the conditions shown in the following (2), and then the steel structure is left as it is or after further annealing. An object of the present invention is to provide a method for producing an electrical steel sheet having excellent magnetic properties, characterized by sequentially performing ordinary cold rolling and annealing after washing.
【0010】記 (1)100 μm以下の粒径をもつ再結晶フェライト粒の
体積分率が20%以下であること。 (2)圧延温度を、共析変態を生じる組成を有する鋼に
ついてはAr1 変態点以下500 ℃以上の温度域、共析変態
を生じない組成を有する鋼については1100℃以下500 ℃
以上の温度域とし、圧下率を少なくとも30%とするこ
と。(1) The volume fraction of recrystallized ferrite grains having a grain size of 100 μm or less is 20% or less. (2) The rolling temperature is set to a temperature range of 500 ° C. or lower below the Ar 1 transformation point for steel having a composition that causes eutectoid transformation, and 1100 ° C. or lower to 500 ° C. for steel having a composition that does not cause eutectoid transformation.
Temperature range above and rolling reduction at least 30%.
【0011】尚、フェライト粒の径成長を有効に促進
し、仕上げ圧延前のフェライト再結晶粒を大きくしてよ
り一層の磁気特性の向上を図る必要がある場合には、鋼
スラブ中のC含有量を0.002 %以下にすることが好まし
く、また、磁気特性をより一層改善する必要がある場合
には、鋼スラブ中のP含有量を0.02%以上0.20%以下に
することが好ましく、特に、鋼スラブ中のC含有量を0.
002 %以下でかつP含有量を0.02%以上0.20%以下にす
ることがより好適である。When it is necessary to effectively promote the diameter growth of ferrite grains and increase the size of ferrite recrystallized grains before finish rolling to further improve the magnetic properties, the C content in the steel slab is required. The P content is preferably 0.002% or less, and when it is necessary to further improve the magnetic properties, the P content in the steel slab is preferably 0.02% or more and 0.20% or less. Reduce the C content in the slab to 0.
It is more preferable that the content of P is 002% or less and the P content is 0.02% or more and 0.20% or less.
【0012】[0012]
【発明の実施の形態】以下、この発明について具体的に
説明する。まず、この発明において、鋼スラブの成分組
成を上記範囲に限定した理由について述べる。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. First, the reason for limiting the composition of the steel slab to the above range in the present invention will be described.
【0013】C:0.005 wt%以下 C含有量は、鉄損改善の観点から少ない方が好ましく、
かつ時効による磁性劣化を生じないためには0.005wt %
以下にすることが好ましい。その上、この発明法のプロ
セスを用いた場合、C含有量が0.005wt %よりも多い
と、仕上げ圧延前の再結晶フェライト粒が細粒化し、粒
径 100μm以下の再結晶フェライト粒の体積分率が20%
を超えて磁気特性が劣化することから、この発明では、
C含有量の上限を 0.005wt%とした。特に、C含有量が
0.002wt%以下においては、フェライト粒の成長性が飛
躍的に改善され、仕上げ圧延直前のフェライト再結晶粒
径が粗大となり、製品板の磁気特性が大幅に改善される
ため、C含有量は0.002wt %以下にすることがより好適
である。C: 0.005 wt% or less C content is preferably small from the viewpoint of improving iron loss.
0.005wt% to prevent magnetic deterioration due to aging
It is preferable to set the following. In addition, when using the process of the present invention, if the C content is more than 0.005 wt%, the recrystallized ferrite grains before the finish rolling become finer, and the volume fraction of the recrystallized ferrite grains having a grain size of 100 μm or less is reduced. 20% rate
Since the magnetic properties deteriorate beyond
The upper limit of the C content was set to 0.005 wt%. In particular, the C content
At 0.002 wt% or less, the growth of ferrite grains is dramatically improved, the ferrite recrystallized grain size immediately before finish rolling becomes coarse, and the magnetic properties of the product sheet are greatly improved. More preferably, it is not more than wt%.
【0014】Si:1wt%超え4wt%以下 Siは鉄損改善の目的で添加するが、Si含有量が1wt%以
下だと、Si添加による鉄損改善効果が小さく、加えて、
この発明の製造プロセスによる鉄損改善の効果も十分に
得られないためSi含有量の下限は1wt%とした。また、
Si含有量が4wt%を超えると、Si添加によって磁束密度
がかなり小さくなるため、この発明の製造方法によって
磁束密度が高められても、従来法で製造された時の磁束
密度に対する優位差が顕著ではなくなるため、Si含有量
の上限は4%とした。Si: More than 1 wt% and not more than 4 wt% Si is added for the purpose of improving iron loss. If the Si content is 1 wt% or less, the effect of improving the iron loss by adding Si is small.
Since the effect of improving iron loss by the manufacturing process of the present invention cannot be sufficiently obtained, the lower limit of the Si content is set to 1 wt%. Also,
When the Si content exceeds 4 wt%, the magnetic flux density is considerably reduced by the addition of Si. Therefore, even if the magnetic flux density is increased by the manufacturing method of the present invention, the superior difference with respect to the magnetic flux density when manufactured by the conventional method is remarkable. Therefore, the upper limit of the Si content was set to 4%.
【0015】Mn:1.5wt %以下 Mnは磁性改善に効果があるが、1.5wt %を超えるとAr1
変態点が低下し、焼鈍時にフェライトーオーステナイト
変態が生じやすくなり、磁性の劣化が認められることか
ら、Mn含有量の上限は 1.5wt%とした。[0015] Mn: 1.5 wt% or less Mn is an effect on the magnetic improvement exceeds 1.5 wt% Ar 1
Since the transformation point is lowered, the ferrite-austenite transformation is likely to occur at the time of annealing, and magnetic deterioration is recognized, the upper limit of the Mn content is set to 1.5 wt%.
【0016】P:0.35wt%以下 Pは鉄損の改善効果があるが、0.35wt%を超えると加工
性が悪化し、熱延割れや打ち抜き性の劣化などが発生す
るおそれもあることから、P含有量の上限は0.35wt%と
した。尚、Pを添加することにより、仕上げ圧延直前に
おける鋼組織中に存在する微細なフェライト再結晶粒の
体積分率が小さくなり、磁気特性が飛躍的に改善される
が、この効果を有効に発揮できるのは、P含有量が0.02
wt%以上 0.2wt%以下の場合であるため、P含有量は0.
02wt%以上 0.2wt%以下にすることがより好適である。P: 0.35% by weight or less P has an effect of improving iron loss, but if it exceeds 0.35% by weight, workability is deteriorated, and hot rolling cracking and punching property may be deteriorated. The upper limit of the P content was 0.35 wt%. Incidentally, by adding P, the volume fraction of fine ferrite recrystallized grains existing in the steel structure immediately before the finish rolling is reduced, and the magnetic properties are dramatically improved, but this effect is effectively exhibited. What can be done is that the P content is 0.02
Since the case of not less than 0.2 wt% and not more than 0.2 wt%, the P content is 0.1 wt%.
It is more preferable that the content be 02 wt% or more and 0.2 wt% or less.
【0017】S:0.010wt %以下 SはMn等と結合しやすく、磁性向上に有害な MnS等の非
金属介在物を生成する原因となる成分であることから、
S含有量の上限は0.010wt %とした。S: not more than 0.010 wt% S is a component which is liable to bond to Mn and the like and is a cause of generating nonmetallic inclusions such as MnS which are harmful to the improvement of magnetism.
The upper limit of the S content was set to 0.010 wt%.
【0018】Al:2.0wt %以下 Alは、Siと同様、鉄損改善の目的で添加してもよいが、
添加量が多すぎると磁束密度が低下し、この発明による
効果が薄れるために、その含有量の上限を 2.0wt%とし
た。Al: 2.0 wt% or less Al may be added for the purpose of improving iron loss as in the case of Si.
If the addition amount is too large, the magnetic flux density decreases and the effect of the present invention is diminished. Therefore, the upper limit of the content is set to 2.0 wt%.
【0019】N及びO:いずれも0.01wt%以下 N及びOが、いずれも含有量が多くなると仕上げ圧延前
の再結晶フェライト粒が細粒化し、粒径100 μm以下の
再結晶フェライト粒の体積分率が20%を超えて磁気特性
が劣化することから、それらの含有量の上限はいずれも
0.01wt%とした。N and O: 0.01% by weight or less for both N and O When the content of both N and O increases, the recrystallized ferrite grains before finish rolling become finer and the volume of the recrystallized ferrite grains having a grain size of 100 μm or less. Since the magnetic properties deteriorate when the fraction exceeds 20%, the upper limit of their content is
0.01 wt%.
【0020】また、本発明者らは、オーステナイト−フ
ェライト共析変態を生じる組成を有する鋼について、Ar
1 変態点以下の温度域で行う圧延の前の粒径と圧延後の
再結晶集合粗織および製品板の集合組織の関係を詳細に
調べたところ、微細再結晶粒の体積分率をある値以下に
制限し、かつ仕上げ圧延温度とその圧下率を所定の範囲
に制御することにより、磁気特性にとって好ましいとさ
れる{100}<001>方位が強く発達した集合組織
をもつ製品板を製造できることを見いだした。Further, the present inventors have proposed that a steel having a composition that causes eutectoid transformation of austenite-ferrite should be made of Ar.
A detailed examination of the relationship between the grain size before rolling performed in the temperature range below the transformation point and the texture of the recrystallized texture after rolling and the texture of the product sheet revealed that the volume fraction of fine recrystallized grains was a certain value. By controlling the finish rolling temperature and the rolling reduction within a predetermined range, it is possible to manufacture a product sheet having a texture with a {100} <001> orientation which is considered to be preferable for magnetic properties and is strongly developed. Was found.
【0021】従来、粗大粒を圧延した場合に生成する再
結晶粒の方位は{110}方位が主体であると報告され
ているが、本発明者らはこのような粗大粒組織の材料の
微細粒体積分率と仕上げ圧延温度とその圧下率とが再結
晶集合組織に及ぼす影響を詳細に調ベたところ、ある特
定な条件範囲で粗大粒の仕上げ圧延を行うと、再結晶集
合組織の主方位が{015}<100>方位になること
を見いだし、この方位は、その後、冷延,焼鈍を行うこ
とにより、最終製品の集合組織が、磁気特性に特に有利
な{100}<001>方位を主方位とする集合組織に
なることを見出したのである。Conventionally, it has been reported that the orientation of recrystallized grains generated when rolling coarse grains is mainly in the {110} orientation. The effects of the grain volume fraction, the finish rolling temperature, and the rolling reduction on the recrystallization texture were examined in detail, and when the finish rolling of coarse grains was performed under a specific range of conditions, the main recrystallization texture was reduced. The orientation was found to be the {015} <100> orientation, which was then subjected to cold rolling and annealing to make the texture of the final product a {100} <001> orientation that is particularly advantageous for magnetic properties. It was found that the texture became the main orientation.
【0022】すなわち、Ar1 変態点以下で行う仕上げ圧
延直前の鋼中に存在する再結晶フェライト粒の粒径分布
が、その後の集合組織形成に大きな影響を与え、粒径が
100μm以下の再結晶フェライト粒の体積分率が20%以
下の組織を、適正な圧延温度及び圧下率の下で熱間仕上
げ圧延することによって、最終製品の磁性が顕著に向上
することを見出したのである。That is, the grain size distribution of the recrystallized ferrite grains present in the steel immediately before the finish rolling at or below the Ar 1 transformation point has a great effect on the subsequent texture formation, and
It has been found that the magnetism of the final product is significantly improved by subjecting a structure having a volume fraction of recrystallized ferrite grains of 100 μm or less to a volume fraction of 20% or less to hot finish rolling at an appropriate rolling temperature and rolling reduction. It is.
【0023】さらに、上記製造方法は、共析変態を生じ
ない組成を有するフェライト単相鋼についても、微細再
結晶粒の体積分率を、共析変態を生じる組成を有する鋼
と同様の範囲とし、かつ、仕上げ圧延温度とその圧下率
を所定範囲にすれば、上述した共析変態を生じる組成を
有する鋼と同様に最終製品の磁性が顕著に向上すること
ができることも見出した。[0023] Further, the above-mentioned production method also sets the volume fraction of fine recrystallized grains of the ferritic single phase steel having a composition that does not cause eutectoid transformation in the same range as the steel having a composition that causes eutectoid transformation. Also, it has been found that when the finish rolling temperature and the rolling reduction are within the predetermined ranges, the magnetism of the final product can be significantly improved as in the case of the steel having the composition causing the above-mentioned eutectoid transformation.
【0024】以上の知見から、この発明の製造方法は、
各組成成分の含有量を上記範囲に調整した鋼スラブを、
鋳造後、又はさらに再加熱した後に熱間粗圧延を行い、
仕上げ圧延を行ったのち、そのまま、又はさらに焼鈍を
経てから酸洗をした後、通常の冷間圧延と焼鈍とを順次
行うことにあり、特に、鋼スラブ中の成分組成を上記範
囲に限定するとともに、この鋼スラブを、仕上げ圧延直
前において所定の鋼組織にした後に、所定の圧延条件で
仕上げ圧延を行うことを主な特徴とする。From the above findings, the production method of the present invention
A steel slab in which the content of each component is adjusted to the above range,
After casting, or after further reheating, perform hot rough rolling,
After the finish rolling, as it is, or after pickling after further annealing, it is to sequentially perform normal cold rolling and annealing, particularly, the component composition in the steel slab is limited to the above range. The main feature of the present invention is that after the steel slab has a predetermined steel structure immediately before finish rolling, finish rolling is performed under predetermined rolling conditions.
【0025】ここで、「所定の鋼組織」とは、鋼中に存
在する100 μm以下の粒径をもつフェライト粒の体積分
率が20%以下であることを意味し、この体積分率は、具
体的には、光学顕微鏡を用いて各々の結晶粒径を測定す
ることにより決定される。Here, “predetermined steel structure” means that the volume fraction of ferrite grains having a grain size of 100 μm or less present in the steel is 20% or less, and this volume fraction is Specifically, it is determined by measuring each crystal grain size using an optical microscope.
【0026】また、「所定の圧延条件」とは、具体的に
は、オーステナイト−フェライト共析変態を生じる組成
を有する鋼については、仕上げ圧延時の圧延温度を、Ar
1 変態点以下500 ℃以上の温度域とし、また、前記共析
変態を生じない組成を有する鋼については1100℃以下50
0 ℃以上の温度域とし、そして、仕上げ圧延での圧下率
は、いずれの鋼においても、少なくとも30%とすること
を意味する。The “predetermined rolling conditions” specifically means that for steel having a composition that causes austenite-ferrite eutectoid transformation, the rolling temperature during finish rolling is defined as Ar
(1) A temperature range of 500 ° C. or lower below the transformation point, and 1100 ° C. or lower for steel having a composition that does not cause the eutectoid transformation.
It means that the temperature range is 0 ° C. or higher, and the rolling reduction in finish rolling is at least 30% in any steel.
【0027】そこで、以下にこの発明の特徴である仕上
げ圧延直前の鋼組織と、仕上げ圧延時の圧延条件の限定
理由を述べる。Therefore, the steel structure immediately before the finish rolling, which is a feature of the present invention, and the reasons for limiting the rolling conditions during the finish rolling will be described below.
【0028】(I)仕上げ圧延直前の鋼組織:100 μm
以下の粒径をもつフェライト粒の体積分率が20%以下で
あること 仕上げ圧延直前の鋼組織を、100 μm以下の粒径をもつ
フェライト粒の体積分率が20%以下になるようにするの
は、鋼中に100 μm以下の再結晶フェライト粒が体積分
率で20%よりも多く存在すると、製品としての電磁鋼板
の磁気特性が劣化するためである。(I) Steel structure immediately before finish rolling: 100 μm
The volume fraction of ferrite grains with the following grain size is 20% or less The steel structure just before finish rolling is adjusted so that the volume fraction of ferrite grains with a grain size of 100 μm or less is 20% or less. The reason is that if recrystallized ferrite grains of 100 μm or less are present in the steel in a volume fraction of more than 20%, the magnetic properties of the magnetic steel sheet as a product are deteriorated.
【0029】仕上げ圧延直前の鋼中に存在する粒径 100
μm以下の再結晶フェライト粒の体積分率を20%以下に
する手段としては、例えば、熱間粗圧延後、鋼板を適度
な温度で保持し再結晶処理を施しても良いし、また、一
度冷却してから再度適当な温度で加熱し再結晶させても
良い。The grain size existing in the steel immediately before the finish rolling is 100
As a means for reducing the volume fraction of the recrystallized ferrite grains of not more than 20 μm to 20% or less, for example, after hot rough rolling, the steel sheet may be held at an appropriate temperature and subjected to a recrystallization treatment. After cooling, it may be heated again at an appropriate temperature for recrystallization.
【0030】(II)所定の圧延条件 (a)仕上げ圧延における圧延温度:共析変態を生じる
組成を有する鋼についてはAr1 変態点以下500 ℃以上の
温度域、共析変態を生じない組成を有する鋼については
1100℃以下500 ℃以上の温度域(II) Predetermined rolling conditions (a) Rolling temperature in finish rolling: For a steel having a composition that causes eutectoid transformation, a temperature range of 500 ° C. or lower below the Ar 1 transformation point and a composition that does not cause eutectoid transformation. For steel having
Temperature range below 1100 ℃ and above 500 ℃
【0031】共析変態を生じる組成を有する鋼について
は、Ar1 変態点よりも仕上げ圧延温度が高いと、微細な
フェライト粒が多くなり製品の磁気特性が悪化し、ま
た、オーステナイト粒を圧延すると、その後の共析変態
によってフェライト粒が微細化し、仕上げ圧延中に微細
フェライト粒を圧延することによって製品の磁気特性が
劣化することから、その仕上げ圧延温度の上限はAr1 変
態点以下とした。With respect to steel having a composition that causes eutectoid transformation, if the finish rolling temperature is higher than the Ar 1 transformation point, fine ferrite grains increase to deteriorate the magnetic properties of the product. Since the ferrite grains are refined by the subsequent eutectoid transformation and the magnetic properties of the product are deteriorated by rolling the fine ferrite grains during the finish rolling, the upper limit of the finish rolling temperature is set to the Ar 1 transformation point or lower.
【0032】一方、共析変態を生じない組成を有する鋼
については、磁気特性の面からすれば特に仕上げ圧延温
度の上限を定めることを要しないが、仕上げ圧延温度は
1100℃よりも高くしても、製造コストの増加を招くだけ
であることから、その仕上げ圧延温度の上限は1100℃と
した。On the other hand, for steel having a composition that does not cause eutectoid transformation, it is not particularly necessary to set the upper limit of the finish rolling temperature from the viewpoint of magnetic properties.
Even if the temperature is higher than 1100 ° C., only the production cost is increased, so the upper limit of the finish rolling temperature is set to 1100 ° C.
【0033】また、仕上げ圧延温度の下限は、いずれの
鋼においても、500 ℃未満にすると圧延負荷が大きくな
りコストの増加が生じるので、仕上げ圧延温度の下限は
500℃とした。If the lower limit of the finish rolling temperature is less than 500 ° C. for any steel, the rolling load increases and the cost increases.
500 ° C.
【0034】(b)仕上げ圧延での圧下率:少なくとも
30% 仕上げ圧延での圧下率は、30%未満だと粗大フェライト
粒は圧延により壊されず、歪誘起で粒成長するので、圧
延前の集合組織を引きずり、この発明による磁気特性改
善の効果が発揮されないことから、仕上げ圧延での圧下
率の下限は30%とした。(B) Reduction rate in finish rolling: at least
If the rolling reduction in the 30% finish rolling is less than 30%, coarse ferrite grains are not broken by rolling and grow by strain induction, so the texture before rolling is dragged, and the effect of improving magnetic properties according to the present invention is exhibited. Therefore, the lower limit of the rolling reduction in finish rolling was set to 30%.
【0035】この発明法は、熱間圧延後、そのままの材
料を、直ちに冷延工程に送っても、同成分の材料を従来
のプロセスで製造した場合に比べて、鉄損特性を顕著に
向上させることができるが、これに熱延板焼鈍を行う
と、鉄損特性の向上はより一層顕著に現われるととも
に、磁束密度も向上する。According to the method of the present invention, even if the raw material is immediately sent to the cold rolling step after hot rolling, the iron loss characteristics are remarkably improved as compared with a case where a material of the same component is manufactured by a conventional process. However, when hot-rolled sheet annealing is performed on this, the improvement in iron loss characteristics appears more remarkably, and the magnetic flux density also increases.
【0036】以上の製造条件で圧延した熱延板を冷延、
焼鈍して製造した電磁鋼板は、特公平7−23509 号公報
に記載された方法で製造した従来の電磁鋼板に比べて、
低鉄損かつ高磁束密度にすることができ、優れた磁気特
性を有している。また、数%のスキンパス圧延を行いセ
ミプロセス材でひずみ取り焼鈍を行った時に近い低い鉄
損を有する電磁鋼板の提供が可能となる。The hot-rolled sheet rolled under the above manufacturing conditions is cold-rolled,
The magnetic steel sheet manufactured by annealing is compared with the conventional magnetic steel sheet manufactured by the method described in Japanese Patent Publication No. Hei 7-23509.
It has low iron loss and high magnetic flux density, and has excellent magnetic properties. In addition, it is possible to provide an electromagnetic steel sheet having low iron loss which is close to that obtained by performing skin pass rolling of several percent and performing strain relief annealing with a semi-process material.
【0037】上述したところは、この発明の実施形態の
一例を示したにすぎず、請求の範囲において種々の変更
を加えることができる。例えば、この発明では、上記構
成に加えて、さらに2〜10%のスキンパス圧延を行いセ
ミプロセス材として使用しひずみ取り焼鈍を行うことも
でき、これによって、より一層、磁束密度と鉄損の改善
効果が期待できる。The above is merely an example of the embodiment of the present invention, and various changes can be made within the scope of the claims. For example, in the present invention, in addition to the above configuration, it is possible to further perform skin pass rolling of 2 to 10% and use it as a semi-process material to perform strain relief annealing, thereby further improving magnetic flux density and iron loss. The effect can be expected.
【0038】[0038]
【実施例】表1に本発明例と比較例について、鋼中の化
学成分(%)、及び、熱間仕上げ圧延直前における粒径
100 μm以下の再結晶フェライト粒の体積分率(%)、
熱間仕上げ圧延における圧延温度(℃)及び圧下率
(%)の製造条件、並びにA r1変態点( ℃) を示す。こ
れらの材料は連続鋳造鋳片を1250℃から1000℃の範囲で
再加熱してから、粗圧延及び仕上げ圧延の連続熱間圧延
により板厚 2.5mmの熱延板に仕上げ、その後、冷間圧延
により 0.5mmの最終板厚に仕上げた。冷間圧延後の再結
晶処理は 800〜900 ℃×1分の連続焼鈍によって行っ
た。熱延板焼鈍した材料は 700〜1000℃×10分の連続焼
鈍を施した。このように製造した各供試鋼板について、
L,C両方向の鉄損W15/50及び磁束密度B50を測定
し、磁気特性を評価した。それらの評価結果を表1に示
す。EXAMPLES Table 1 shows the chemical composition (%) in steel and the grain size immediately before hot finish rolling for the inventive examples and comparative examples.
Volume fraction (%) of recrystallized ferrite grains of 100 μm or less,
The production conditions of the rolling temperature (° C.) and the rolling reduction (%) in hot finish rolling, and the Ar1 transformation point (° C.) are shown. For these materials, continuous cast slabs are reheated in the range of 1250 ° C to 1000 ° C, and then hot-rolled to a thickness of 2.5 mm by continuous hot rolling of rough rolling and finish rolling, followed by cold rolling. To a final thickness of 0.5 mm. The recrystallization treatment after the cold rolling was performed by continuous annealing at 800 to 900 ° C for 1 minute. The material annealed by hot rolling was subjected to continuous annealing at 700 to 1000 ° C for 10 minutes. About each test steel plate manufactured in this way,
L, measured C both iron loss W 15/50 and the magnetic flux density B 50, were evaluated the magnetic properties. Table 1 shows the evaluation results.
【0039】[0039]
【表1】 [Table 1]
【0040】表1の結果から、鋼No.1〜11はいずれも
Si量が1.17%であり、そのうち、本発明例であるNo.1
〜4及びNo.6〜8の鋼は、いずれもSi量が同じである
比較例であるNo.5およびNo.9〜11の鋼に比べて磁気
特性が優れていることがわかる。尚、比較例である、N
o.5の鋼は、仕上げ圧延における圧下率が本発明の適正
範囲よりも低く、No.9及びNo.10は、仕上げ圧延直前
における粒径が 100μm以下の再結晶フェライト粒の体
積分率が20%を超えており、No.11は仕上げ圧延温度が
Ar1変態点よりも高い場合である。From the results in Table 1, all of the steel Nos.
The amount of Si is 1.17%, of which No. 1 which is an example of the present invention.
It can be seen that the steels of Nos. 4 and 6 to 8 have superior magnetic properties as compared with the steels of Nos. 5 and 9 to 11 which are comparative examples having the same Si content. In addition, N which is a comparative example
The steel of No. 5 has a rolling reduction in finish rolling lower than the proper range of the present invention, and No. 9 and No. 10 have a volume fraction of recrystallized ferrite grains having a grain size of 100 μm or less immediately before finish rolling. No. 11 has a finish rolling temperature of over 20%
It is the case where it is higher than the A r1 transformation point.
【0041】また、比較例であるNo.12及びNo.13は、
Si量が本発明の適正範囲よりも少ない場合であり、No.
12はこの鋼スラブに本発明の製造条件を適用した場合で
あり、No.13は従来の製造条件を適用した場合である
が、これらを比較すると明らかなように、鋼スラブ中の
Si量が本発明の適正範囲外(1wt% 以下) である鋼につい
て、本発明の製造条件を適用しても、従来の製造条件を
適用した場合と比べて磁気特性の改善効果に差がほとん
ど認められず、よって、この発明の製造条件は、Si量が
1%を超える鋼に適用する事によってのみ、磁気特性の
改善効果を顕著に示すことが確認できる。The comparative examples No. 12 and No. 13 are as follows:
This is the case where the amount of Si is less than the proper range of the present invention.
No. 12 is a case where the manufacturing conditions of the present invention are applied to this steel slab, and No. 13 is a case where the conventional manufacturing conditions are applied.
Even if the production conditions of the present invention are applied to steel whose Si content is outside the appropriate range of the present invention (1 wt% or less), there is almost no difference in the effect of improving the magnetic properties as compared with the case where the conventional production conditions are applied. Therefore, it can be confirmed that the production conditions of the present invention show a remarkable effect of improving the magnetic properties only when applied to steel having a Si content of more than 1%.
【0042】No.14と15の鋼は、いずれもSi量が1.65%
と本発明の適正範囲内にあるが、比較例であるNo.15の
鋼は、仕上げ圧延直前における粒径が 100μm以下の再
結晶フェライト粒の体積分率が本発明の適正範囲を超え
ているため、No.14の鋼の方が、No.15の鋼に比べて磁
気特性に優れていることが確認できる。The steels of Nos. 14 and 15 each have a Si content of 1.65%.
The steel of No. 15 which is a comparative example has a volume fraction of recrystallized ferrite grains having a grain size of 100 μm or less immediately before finish rolling exceeds the appropriate range of the present invention. Therefore, it can be confirmed that the steel of No. 14 has better magnetic properties than the steel of No. 15.
【0043】No.16〜20は、いずれもフェライト単相鋼
であり、No.16と17は、いずれもSi量が1.85%と本発明
の適正範囲内にあるが、比較例であるNo.17の鋼は、仕
上げ圧延における圧下率が本発明の適正範囲よりも低い
ため、No.16の鋼の方が、No.17の鋼に比べて磁気特性
に優れていることが確認できる。Nos. 16 to 20 are all ferritic single-phase steels, and Nos. 16 and 17 each have a Si content of 1.85%, which is within the proper range of the present invention. Steel No. 17 has a lower rolling reduction in finish rolling than the proper range of the present invention, and thus it can be confirmed that steel No. 16 has better magnetic properties than steel No. 17.
【0044】本発明例であるNo.18〜20の鋼は、Si量が
それぞれ2.10% 、3.20% 、3.40% と高いため、特に鉄損
の改善効果が顕著であり、また、磁束密度についても、
Si量が0.82% と少ない比較例No.12及びNo.13の鋼と同
等レベルを維持しているのが確認できる。The steels of Nos. 18 to 20, which are examples of the present invention, have high Si contents of 2.10%, 3.20% and 3.40%, respectively, so that the effect of improving iron loss is particularly remarkable, and the magnetic flux density is also low. ,
It can be confirmed that the steel has the same level as the steels of Comparative Examples No. 12 and No. 13 in which the Si content is as small as 0.82%.
【0045】No.21からNo.24の鋼はいずれも本発明例
であり、No.21はC量を適正範囲内(0.005%) にした場
合、No.22はC量を好適範囲内(0.002%) にした場合、
No.23はP量を好適範囲内(0.130%)にした場合、そし
て、No.24はC量(0.002%) 及びP量(0.120%)の双方を
好適範囲内にした場合である。The steels of No. 21 to No. 24 are all examples of the present invention. When No. 21 has the C content within an appropriate range (0.005%), No. 22 has the C content within a suitable range (0.005%). 0.002%)
No. 23 is the case where the P content is within the preferred range (0.130%), and No. 24 is the case where both the C content (0.002%) and the P content (0.120%) are within the preferred range.
【0046】No.21とNo.22の鋼を比較すると、C量を
0.002%まで低減させたNo.22の鋼の磁気特性がより優
れていることが確認できる。また、No.21とNo.23の鋼
を比較すると、P量を好適範囲内としたNo.23の鋼の磁
気特性がより優れていることが確認できる。さらにNo.
22又はNo.23の鋼とNo.24との鋼を比較すると、C量及
びP量の双方を好適範囲内としたNo.24の鋼の方が、飛
躍的に磁気特性が向上していることが確認できる。When comparing the steels of No. 21 and No. 22, the amount of C was
It can be seen that the magnetic properties of No. 22 steel reduced to 0.002% are more excellent. Further, when comparing the steels of No. 21 and No. 23, it can be confirmed that the magnetic properties of the steel of No. 23 with the P content within the preferred range are more excellent. No.
When comparing the steel of No. 22 or No. 23 with the steel of No. 24, the steel of No. 24 in which both the C amount and the P amount are within the preferable ranges has dramatically improved magnetic properties. Can be confirmed.
【0047】[0047]
【発明の効果】この発明の製造方法によれば、磁束密度
を低下させることなく低鉄損の電磁鋼板を製造すること
が可能となると共に、従来セミプロセスでしか得られな
かったような優れた磁気特性を簡便に得ることができ、
コストの削減を図ることができるので、産業上有益であ
る。According to the manufacturing method of the present invention, it is possible to manufacture a magnetic steel sheet having a low iron loss without lowering the magnetic flux density, and it is possible to manufacture an excellent magnetic steel sheet which can be obtained only by a conventional semi-process. Magnetic properties can be obtained easily,
This is industrially advantageous because the cost can be reduced.
Claims (4)
え4%以下、Mn:1.5 %以下、P:0.35%以下、S:0.
010 %以下、Al:2.0 %以下、N:0.01%以下、O:0.
01%以下を含有する組成になる鋼スラブを、鋳造後、又
はさらに再加熱した後に熱間粗圧延を行い、下記(1)
に示す鋼組織とした後、直ちに下記(2)に示す条件で
仕上げ圧延を行ったのち、そのまま、又はさらに焼鈍を
経てから酸洗をした後、通常の冷間圧延と焼鈍とを順次
行うことを特徴とする磁気特性に優れた電磁鋼板の製造
方法。 記 (1)100 μm以下の粒径をもつ再結晶フェライト粒の
体積分率が20%以下であること。 (2)圧延温度を、共析変態を生じる組成を有する鋼に
ついてはAr1 変態点以下500 ℃以上の温度域、共析変態
を生じない組成を有する鋼については1100℃以下500 ℃
以上の温度域とし、圧下率を少なくとも30%とするこ
と。1. C .: 0.005% or less by weight, Si: more than 1% and 4% or less, Mn: 1.5% or less, P: 0.35% or less, S: 0.
010% or less, Al: 2.0% or less, N: 0.01% or less, O: 0.
After casting, or after further reheating, a steel slab having a composition containing not more than 01% is subjected to hot rough rolling to obtain the following (1)
Immediately after finish rolling under the conditions shown in the following (2) after the steel structure shown in (1), pickling is performed as it is or after further annealing, then normal cold rolling and annealing are sequentially performed. A method for producing an electromagnetic steel sheet having excellent magnetic properties. (1) The volume fraction of recrystallized ferrite grains having a grain size of 100 μm or less is 20% or less. (2) The rolling temperature is set to a temperature range of 500 ° C. or lower below the Ar 1 transformation point for steel having a composition that causes eutectoid transformation, and 1100 ° C. or lower to 500 ° C. for steel having a composition that does not cause eutectoid transformation.
Temperature range above and rolling reduction at least 30%.
でC:0.002 %以下、Si:1%超え4%以下、Mn:1.5
%以下、P:0.35%以下、S:0.010 %以下、Al:2.0
%以下、N:0.01%以下、O:0.01%以下を含有する組
成になることを特徴とする磁気特性に優れた電磁鋼板の
製造方法。2. The steel slab according to claim 1, wherein:
C: 0.002% or less, Si: more than 1% and 4% or less, Mn: 1.5
%, P: 0.35% or less, S: 0.010% or less, Al: 2.0
% Or less, N: 0.01% or less, and O: 0.01% or less.
でC:0.005 %以下、Si:1%超え4%以下、Mn:1.5
%以下、P:0.02%以上0.20%以下、S:0.010 %以
下、Al:2.0 %以下、N:0.01%以下、O:0.01%以下
を含有する組成になることを特徴とする磁気特性に優れ
た電磁鋼板の製造方法。3. The steel slab according to claim 1, wherein
C: 0.005% or less, Si: more than 1% and 4% or less, Mn: 1.5
%, P: 0.02% to 0.20%, S: 0.010% or less, Al: 2.0% or less, N: 0.01% or less, O: 0.01% or less Manufacturing method of electrical steel sheet.
でC:0.002 %以下、Si:1%超え4%以下、Mn:1.5
%以下、P:0.02%以上0.20%以下、S:0.010 %以
下、Al:2.0 %以下、N:0.01%以下、O:0.01%以下
を含有する組成になることを特徴とする磁気特性に優れ
た電磁鋼板の製造方法。4. The steel slab according to claim 1, wherein:
C: 0.002% or less, Si: more than 1% and 4% or less, Mn: 1.5
%, P: 0.02% to 0.20%, S: 0.010% or less, Al: 2.0% or less, N: 0.01% or less, O: 0.01% or less Manufacturing method of electrical steel sheet.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10135241A JPH11323436A (en) | 1998-05-18 | 1998-05-18 | Production of silicon steel sheet excellent in magnetic property |
TW088107998A TW476790B (en) | 1998-05-18 | 1999-05-17 | Electrical sheet of excellent magnetic characteristics and its manufacturing method |
US09/462,296 US6322639B1 (en) | 1998-05-18 | 1999-05-18 | Magnetic steel sheet having excellent magnetic properties and method of producing the same |
KR10-2000-7000532A KR100484989B1 (en) | 1998-05-18 | 1999-05-18 | Electrical sheet of excellent magnetic characteristics and method of manufacturing the same |
CN99801171A CN1094523C (en) | 1998-05-18 | 1999-05-18 | Electrical sheet of excellent magnetic characteristics and method of mfg. same |
PCT/JP1999/002585 WO1999060182A1 (en) | 1998-05-18 | 1999-05-18 | Electrical sheet of excellent magnetic characteristics and method of manufacturing the same |
EP99919645A EP1001042A4 (en) | 1998-05-18 | 1999-05-18 | Electrical sheet of excellent magnetic characteristics and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10135241A JPH11323436A (en) | 1998-05-18 | 1998-05-18 | Production of silicon steel sheet excellent in magnetic property |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11323436A true JPH11323436A (en) | 1999-11-26 |
Family
ID=15147121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10135241A Withdrawn JPH11323436A (en) | 1998-05-18 | 1998-05-18 | Production of silicon steel sheet excellent in magnetic property |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11323436A (en) |
-
1998
- 1998-05-18 JP JP10135241A patent/JPH11323436A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0713262B2 (en) | Method for producing silicon iron plate having excellent soft magnetic characteristics | |
JP3392664B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss | |
JPH059666A (en) | Grain-oriented electrical steel sheet and method for manufacturing the same | |
JP3357602B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties | |
JPH0978129A (en) | Production of nonortiented silicon steel sheet extremely excellent in magnetic property in all orientation | |
JPH055126A (en) | Non-oriented electrical steel sheet manufacturing method | |
JP2014208895A (en) | Method of producing grain oriented electrical steel | |
JP2002294417A (en) | Non-oriented electromagnetic steel sheet superior in fatigue characteristics | |
JPH1161257A (en) | Production of non-oriented silicon steel sheet having low iron loss and low magnetic anisotropy | |
JP2970436B2 (en) | Manufacturing method of full process non-oriented electrical steel sheet | |
JP3533655B2 (en) | Method for producing low-grade electrical steel sheet with small magnetic anisotropy and low-grade electrical steel sheet with small magnetic anisotropy | |
JPH11323436A (en) | Production of silicon steel sheet excellent in magnetic property | |
JP2003105508A (en) | Non-oriented electrical steel sheet with excellent workability and method for producing the same | |
JP2000017330A (en) | Production of nonoriented silicon steel sheet low in iron loss | |
JPH10317060A (en) | Production of grain oriented silicon steel sheet excellent in magnetic property | |
JP2760208B2 (en) | Method for producing silicon steel sheet having high magnetic flux density | |
JPH0657332A (en) | Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss | |
JP2001158948A (en) | Nonoriented silicon steel sheet low in core loss and producing method therefor | |
JPS5980726A (en) | Production of high strength cold rolled steel sheet having excellent deep drawability and small plate anisotropy | |
JPH11158589A (en) | Nonoriented silicon steel sheet excellent in magnetic property after stress relieving annealing and its production | |
JP2025501642A (en) | Improved method for producing chromium-containing high permeability grain oriented electrical steels. | |
JP3020810B2 (en) | Manufacturing method of grain-oriented silicon steel sheet with good magnetic properties | |
JP3531779B2 (en) | Method for producing low-grade electrical steel sheet with small magnetic anisotropy and low-grade electrical steel sheet with small magnetic anisotropy | |
JPH11124627A (en) | Production of grain oriented silicon steel sheet excellent in magnetic property | |
JP2000129353A (en) | Production of grain oriented silicon steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20050304 |