JPH11323162A - Insulating composition - Google Patents
Insulating compositionInfo
- Publication number
- JPH11323162A JPH11323162A JP11069543A JP6954399A JPH11323162A JP H11323162 A JPH11323162 A JP H11323162A JP 11069543 A JP11069543 A JP 11069543A JP 6954399 A JP6954399 A JP 6954399A JP H11323162 A JPH11323162 A JP H11323162A
- Authority
- JP
- Japan
- Prior art keywords
- thermal conductivity
- resin
- insulating composition
- monomer
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Organic Insulating Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電気絶縁性でかつ
優れた熱伝導性を有する絶縁組成物に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating composition having electrical insulation and excellent thermal conductivity.
【0002】[0002]
【従来の技術】モーターや発電機から、プリント配線基
板やICチップに至るまでのほとんどの電気機器は、電
気を通すための導体と、絶縁材料とから構成される。近
年、これら電気機器の小型化が急速に進んでおり、絶縁
材料に求められる特性もかなり高いものになってきてい
る。なかでも、小型化に伴い高密度化された導体から発
生する発熱量は大きくなってきており、いかに熱を放散
させるかが重要な課題となっている。2. Description of the Related Art Most electric devices, from motors and generators to printed wiring boards and IC chips, are composed of a conductor for conducting electricity and an insulating material. In recent years, the miniaturization of these electric devices has been rapidly progressing, and the characteristics required for insulating materials have also become quite high. Above all, the amount of heat generated from high-density conductors has been increasing along with miniaturization, and how to dissipate heat has become an important issue.
【0003】従来、各種の電気機器の絶縁材料には、そ
の絶縁性能の高さや成型の容易さから、有機絶縁組成物
が広く使用されている。しかし、一般的に有機絶縁組成
物は熱伝導率が低く、前述の熱の放散を妨げている一要
因である。したがって、高熱伝導率を有する有機絶縁組
成物の必要性は非常に高い。Heretofore, organic insulating compositions have been widely used as insulating materials for various electric devices because of their high insulating performance and ease of molding. However, the organic insulating composition generally has a low thermal conductivity, which is one of the factors that hinder the heat dissipation. Therefore, the need for an organic insulating composition having high thermal conductivity is very high.
【0004】高熱伝導率を達成する方法として、電気絶
縁性を損なわない程度に導電性物質を用いる方法があ
る。例えば、特開昭67−2716号公報には、アルミニウム
に代表される軽金属粉末または非鉄金属粉末を樹脂に充
填した、熱伝導性,電気絶縁性の良好な熱可塑性プラス
チックが記載されている。また、特開昭63−175493号公
報には、ポリチオフェン等の電子共役系芳香族ポリマー
を絶縁材として用いたプリント配線基盤が記載されてい
る。これは、電子共役系芳香族ポリマーはドーパントと
組み合わせると導電性となるが、ドーパントを含まない
場合には絶縁体であるという性質を利用している。しか
しながら、これらの方法は、本質的には導電性である物
質を利用しているため、その有機絶縁組成物の絶縁破壊
電圧は極めて低いものとなっていた。[0004] As a method of achieving high thermal conductivity, there is a method of using a conductive substance to the extent that electrical insulation is not impaired. For example, Japanese Unexamined Patent Publication No. 67-2716 describes a thermoplastic plastic having good thermal conductivity and electrical insulation properties, in which a resin is filled with a light metal powder represented by aluminum or a non-ferrous metal powder. JP-A-63-175493 describes a printed wiring board using an electron conjugated aromatic polymer such as polythiophene as an insulating material. This utilizes the property that an electron conjugated aromatic polymer becomes conductive when combined with a dopant, but is an insulator when it does not contain a dopant. However, since these methods use a substance that is essentially conductive, the dielectric breakdown voltage of the organic insulating composition has been extremely low.
【0005】また、高熱伝導率を達成する別の方法とし
て、高熱伝導性の無機セラミックを有機絶縁組成物に充
填する方法がある。無機セラミックとしては、二酸化ケ
イ素,酸化アルミニウム,酸化マグネシウム,酸化ベリ
リウム,窒化ホウ素,窒化アルミニウム,窒化ケイ素,
炭化ケイ素,フッ化アルミニウム,フッ化カルシウム等
の例が知られている。電気絶縁性と高熱伝導性とをとも
に有する無機セラミックを充填することにより、高熱伝
導性を達成しつつ、絶縁破壊電圧を改善している。しか
しながら、有機絶縁組成物のモノマーに無機セラミック
を混合すると混合体の粘度は著しく増大するため、作業
性が極めて悪く、微細構造体を製造するのは困難であ
る。また、無機セラミックが充填された有機絶縁組成物
は強度が低下することも知られている。As another method for achieving high thermal conductivity, there is a method of filling an organic insulating composition with a high thermal conductive inorganic ceramic. As inorganic ceramics, silicon dioxide, aluminum oxide, magnesium oxide, beryllium oxide, boron nitride, aluminum nitride, silicon nitride,
Examples of silicon carbide, aluminum fluoride, calcium fluoride and the like are known. By filling an inorganic ceramic having both electric insulation and high thermal conductivity, the dielectric breakdown voltage is improved while achieving high thermal conductivity. However, when the inorganic ceramic is mixed with the monomer of the organic insulating composition, the viscosity of the mixture increases remarkably, so that the workability is extremely poor and it is difficult to produce a fine structure. It is also known that the strength of an organic insulating composition filled with an inorganic ceramic decreases.
【0006】さらに、これらの場合のような2種類以上
の材料が混合されている複合系有機絶縁組成物は、その
2種類以上の材料の界面での剥離が起きやすく、長期間
の使用によって絶縁破壊電圧等の急激な低下が考えられ
る。Further, in such a composite organic insulating composition in which two or more kinds of materials are mixed as in these cases, separation at the interface between the two or more kinds of materials is liable to occur, and the insulating property becomes long after long-term use. A sharp decrease in breakdown voltage or the like is conceivable.
【0007】特開昭61−296068号公報には、超高度に配
向したポリマー繊維を充填した高熱伝導性を有するプラ
スチックコンパウンドが記載されている。これは、POLY
MER,Vol.19,P155(1978)に記載されている
超高度に配向したポリマー繊維はその繊維軸方向に熱伝
導率が向上するという性質を利用している。しかしなが
ら、超高度に配向したポリマー繊維はその繊維軸に垂直
な方向には熱伝導率が低下するため、有機絶縁組成物中
にポリマー繊維をランダムに分散させても、熱伝導率は
それほど向上しない。有機絶縁組成物中にポリマー繊維
を一方向に配列させることにより、配列した方向には熱
伝導率の優れた有機絶縁組成物を得ることができるが、
それ以外の方向には熱伝導率は逆に低下してしまう。さ
らに、この場合も2種類の材料が混合されている複合系
絶縁組成物であり、前述の通りそれらの界面での剥離が
起きやすい。Japanese Unexamined Patent Publication (Kokai) No. 61-296068 describes a plastic compound having high thermal conductivity filled with ultra-highly oriented polymer fibers. This is POLY
The super-highly oriented polymer fiber described in MER, Vol. 19, P155 (1978) utilizes the property that the thermal conductivity is improved in the fiber axis direction. However, ultra-highly oriented polymer fibers have low thermal conductivity in the direction perpendicular to the fiber axis, so even if polymer fibers are randomly dispersed in the organic insulating composition, the thermal conductivity does not improve much. . By arranging the polymer fibers in one direction in the organic insulating composition, an organic insulating composition having excellent thermal conductivity can be obtained in the arranged direction,
In other directions, the thermal conductivity decreases. Further, also in this case, the composite insulating composition is a mixture of two types of materials, and peeling at the interface between them is likely to occur as described above.
【0008】単一系有機絶縁組成物で高熱伝導率を達成
する方法として、配向した分子鎖方向の熱伝導率が高い
ことを利用した方法が知られている。特開平1−149303
号公報,特開平2−5307 号公報,特開平2−28352号公
報,特開平2−127438 号公報に、静電圧を印加した状態
でのポリオキシメチレンやポリイミドのような有機絶縁
組成物の作製方法が記載されている。また、特開昭63−
264828号公報には、ポリプロピレンやポリエチレン等の
分子鎖が配列したシートを配列方向が重なるように積層
後固着した積層物を、配向方向に垂直な方向に薄切りす
ることで垂直方向に分子鎖が配列した有機絶縁組成物が
記載されている。これは、分子鎖をある一方向に配列さ
せ、その分子鎖方向の熱伝導率が高いことを利用してい
るため、それ以外の方向の熱伝導率は低い有機絶縁組成
物となっている。As a method for achieving high thermal conductivity with a single organic insulating composition, there is known a method utilizing high thermal conductivity in the direction of oriented molecular chains. JP-A-1-149303
Of Japanese Patent Application Laid-Open Nos. JP-A-2-5307, JP-A-2-28352, and JP-A-2-127438, in which an organic insulating composition such as polyoxymethylene or polyimide is applied while an electrostatic voltage is applied. A method is described. Also, JP-A-63-
Japanese Patent No. 264828 discloses that a sheet in which molecular chains of polypropylene, polyethylene, etc. are arranged is laminated so that the arrangement direction is overlapped and then fixed, and a laminated product is sliced in a direction perpendicular to the orientation direction so that the molecular chains are arranged in the vertical direction. Described organic insulating compositions. This is an organic insulating composition in which the molecular chains are arranged in one direction and the thermal conductivity in the direction of the molecular chains is high, and the thermal conductivity in the other directions is low.
【0009】また、ADVANCED MATERIALS,Vol.5,P1
07(1993)、及びドイツ国特許出願公開第422699
4 号公報には、メソゲン基を有するジアクリレート等の
モノマーをある一方向に配向させた後に架橋反応させた
材料が記載されている。これらのものも、分子鎖をある
一方向に配列させ、その分子鎖方向の熱伝導率が高いこ
とを利用しているため、それ以外の方向の熱伝導率は低
い有機絶縁組成物となっている。Further, ADVANCED MATERIALS, Vol. 5, P1
07 (1993), and German Patent Application Publication No. 422699.
No. 4 describes a material in which a monomer such as diacrylate having a mesogen group is oriented in one direction and then subjected to a crosslinking reaction. These materials also use the fact that the molecular chains are arranged in one direction and that the thermal conductivity in the direction of the molecular chain is high, so that the thermal conductivity in other directions is a low organic insulating composition. I have.
【0010】また、特開平9−118673 号公報は、架橋で
き、かつ、ポリマー構造物を形成し得る屈曲鎖部で連結
された2個のメソゲンを持つ液晶ツインエポキシモノマ
ーを用いた液晶熱硬化性ポリマーを記載する。Japanese Patent Application Laid-Open No. 9-118673 discloses a liquid crystal thermosetting using a liquid crystal twin epoxy monomer having two mesogens which can be cross-linked and are connected by a bent chain portion capable of forming a polymer structure. Describe the polymer.
【0011】また、単一系有機絶縁組成物でかつ空間的
ないずれの方向においても高熱伝導率を達成する方法と
して、有機絶縁組成物を単結晶化する方法が考えられ
る。しかしながら、実際には有機絶縁組成物を単結晶化
することは極めて難しい。As a method for achieving high thermal conductivity in any spatial direction with a single organic insulating composition, a method of single-crystallizing the organic insulating composition is considered. However, in practice, it is extremely difficult to single crystallize the organic insulating composition.
【0012】[0012]
【発明が解決しようとする課題】本発明は、電気絶縁性
でかつ優れた熱伝導性を有する絶縁組成物を提供するこ
とを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to provide an insulating composition which is electrically insulating and has excellent thermal conductivity.
【0013】[0013]
【課題を解決するための手段】本発明者らは、絶縁組成
物の熱伝導率が一般的に低い原因が、絶縁組成物中に存
在する欠陥であることを解明した。そして、絶縁組成物
がメソゲン基を有するモノマーを含む樹脂組成物を重合
させた液晶性樹脂を必須成分として含むことで、絶縁組
成物中の欠陥が減少し、0.4W/mK 以上の熱伝導率
を有する絶縁組成物になることを見出した。そして、こ
の絶縁組成物は、互いにほぼ垂直な二方向以上の方向に
おいて、0.4W/mK 以上の熱伝導率を有する絶縁組
成物になることを見出した。Means for Solving the Problems The present inventors have clarified that the cause of the low thermal conductivity of an insulating composition is generally a defect existing in the insulating composition. In addition, since the insulating composition contains, as an essential component, a liquid crystalline resin obtained by polymerizing a resin composition containing a monomer having a mesogen group, defects in the insulating composition are reduced, and a heat conduction of 0.4 W / mK or more. Has been found to be an insulating composition having a high ratio. Then, it has been found that this insulating composition becomes an insulating composition having a thermal conductivity of 0.4 W / mK or more in two or more directions substantially perpendicular to each other.
【0014】本発明の特徴は次の通りである。The features of the present invention are as follows.
【0015】メソゲン基を有するモノマーを含む樹脂組
成物を重合させた液晶性樹脂を必須成分として含む絶縁
組成物であって、互いにほぼ垂直な二方向の熱伝導率が
それぞれ0.4W/mK 以上であることを特徴とする。An insulating composition containing, as an essential component, a liquid crystalline resin obtained by polymerizing a resin composition containing a monomer having a mesogen group, and having a thermal conductivity of at least 0.4 W / mK in two directions substantially perpendicular to each other. It is characterized by being.
【0016】モノマーが、エポキシ基を有することが好
ましい。It is preferable that the monomer has an epoxy group.
【0017】モノマーは、下記(化1)に示されるメソ
ゲン基を分子内に有することが好ましい。The monomer preferably has a mesogen group represented by the following formula (1) in the molecule.
【0018】[0018]
【化1】 Embedded image
【0019】メソゲン基を有するモノマーを含む樹脂組
成物の重合は、必要に応じて、(A)電界中で行う、
(B)磁界中で行う、(C)電磁波を照射しながら行
う、または(A)〜(C)を組み合わせて行うことがで
きる。The polymerization of the resin composition containing a monomer having a mesogen group may be carried out, if necessary, in (A) an electric field.
(B) can be performed in a magnetic field, (C) can be performed while irradiating an electromagnetic wave, or can be performed in combination of (A) to (C).
【0020】樹脂組成物を重合させた後に延伸または圧
延またはラビングを行ってもよい。これら重合環境又は
重合後処理によって、モノマー分子鎖をある方向に優先
的に向けることが可能であり、その方向により優れた熱
伝導率が達成できる。しかも、液晶性樹脂を必須成分と
して含むため、それ以外の方向の熱伝導率も優れてい
る。After polymerizing the resin composition, stretching, rolling or rubbing may be performed. By the polymerization environment or the post-polymerization treatment, the monomer molecular chains can be preferentially oriented in a certain direction, and a superior thermal conductivity can be achieved in that direction. Moreover, since the liquid crystal resin is contained as an essential component, the thermal conductivity in other directions is excellent.
【0021】なお、延伸には、例えば、回転速度の違う
2つ以上のロールを有する縦延伸機を用いることができ
る。シート状の絶縁組成物を縦延伸機の低速度ロール,
高速度ロールの順にとおすことで、その速度の倍率比で
延伸されたシートを製造することができる。このとき、
延伸方向に分子鎖は配向しやすい。For stretching, for example, a longitudinal stretching machine having two or more rolls having different rotation speeds can be used. The sheet-like insulating composition is rolled on a low-speed roll of a longitudinal stretching machine,
By passing the rolls in the order of the high-speed roll, a sheet stretched at a ratio of the speed can be manufactured. At this time,
The molecular chains are easily oriented in the stretching direction.
【0022】また、圧延には、例えば、2本以上のロー
ルを有するカレンダを用いることができる。粉末・塊状
・シート状の絶縁組成物をカレンダのロール間に挟み加
熱圧縮することで、ロール間間隙に圧延されたシートを
製造することができる。このとき、圧延方向に分子鎖は
配向しやすい。For rolling, for example, a calendar having two or more rolls can be used. The sheet rolled into the gap between the rolls can be manufactured by sandwiching the insulating composition in the form of a powder, a lump, or a sheet between rolls of a calendar and heating and compressing the same. At this time, the molecular chains are easily oriented in the rolling direction.
【0023】絶縁組成物は、必要に応じて、無機セラミ
ックを含んでも良い。The insulating composition may include an inorganic ceramic, if necessary.
【0024】絶縁組成物に含まれても良い無機セラミッ
クは、好ましくは、1W/mK以上の熱伝導率を有する
ものが良く、具体的には、二酸化ケイ素,酸化アルミニ
ウム,酸化マグネシウム,酸化ベリリウム,窒化ホウ
素,窒化アルミニウム,窒化ケイ素,炭化ケイ素,フッ
化アルミニウム、またはフッ化カルシウムから選択され
る。これらのうち、一種又は二種以上を混合して用いて
も良い。さらに好ましくは、10W/mK以上の熱伝導
率を有する無機セラミックであり、具体的には、酸化ア
ルミニウム,酸化マグネシウム,窒化ホウ素,窒化アル
ミニウム,窒化ケイ素,炭化ケイ素,フッ化アルミニウ
ムから選択される。これらのうち、一種又は二種以上を
混合して用いても良い。その中でも、1016Ωcm以上の
体積抵抗率を有する、酸化アルミニウムがより好まし
い。The inorganic ceramic which may be included in the insulating composition preferably has a thermal conductivity of 1 W / mK or more, and specifically includes silicon dioxide, aluminum oxide, magnesium oxide, beryllium oxide, It is selected from boron nitride, aluminum nitride, silicon nitride, silicon carbide, aluminum fluoride, or calcium fluoride. Among these, one kind or a mixture of two or more kinds may be used. More preferably, it is an inorganic ceramic having a thermal conductivity of 10 W / mK or more, and specifically, selected from aluminum oxide, magnesium oxide, boron nitride, aluminum nitride, silicon nitride, silicon carbide, and aluminum fluoride. Among these, one kind or a mixture of two or more kinds may be used. Among them, aluminum oxide having a volume resistivity of 10 16 Ωcm or more is more preferable.
【0025】絶縁組成物の製造は、メソゲン基を有する
モノマーを含む樹脂組成物が重合開始時に部分的にメソ
ゲン基を中心に秩序を持って配列した状態になる条件下
で樹脂組成物を加熱することが好ましい。In the production of the insulating composition, the resin composition containing a monomer having a mesogen group is heated under a condition that the resin composition is partially and orderly arranged around the mesogen group at the start of polymerization. Is preferred.
【0026】本発明における液晶性樹脂とは、メソゲン
基を有するモノマーを含む樹脂組成物が少なくとも重合
反応の途中で部分的にメソゲン基を中心に秩序を持って
配列した状態になる条件で、メソゲン基を有するモノマ
ーを含む樹脂組成物を重合したもので、部分的にメソゲ
ン基を中心に秩序を持って配列したまま固化したものを
指す。液晶性樹脂であることは、偏光顕微鏡あるいはX
線回折によって確認することができる。The liquid crystalline resin in the present invention is defined as a mesogenic resin under the condition that a resin composition containing a monomer having a mesogenic group is at least partially arranged in an ordered manner around the mesogenic group during the polymerization reaction. It refers to a polymerized resin composition containing a monomer having a group, which is solidified while being arranged in an order around a mesogen group. A liquid crystalline resin can be obtained by using a polarizing microscope or X-ray.
It can be confirmed by line diffraction.
【0027】本発明における絶縁組成物としては、メソ
ゲン基を有するモノマーを重合することで得られる、一
般に絶縁の用途で利用することができるポリマー,樹脂
が好ましい。即ち、例えば、ポリアミド,ポリエステ
ル,ポリカーボネート,ポリスルホン、ポリイミド,ポ
リベンズイミダゾール,ポリウレタン樹脂,エポキシ樹
脂,アクリル樹脂,メタクリル樹脂,不飽和ポリエステ
ル樹脂などが挙げられる。特に、高強度である熱硬化性
樹脂、即ち、ポリウレタン樹脂,エポキシ樹脂,アクリ
ル樹脂,メタクリル樹脂,不飽和ポリエステル樹脂が好
ましい。さらに、成型の容易さ,絶縁性の高さから、エ
ポキシ樹脂が特に好ましい。The insulating composition in the present invention is preferably a polymer or resin which is obtained by polymerizing a monomer having a mesogen group and which can be generally used for insulation. That is, examples thereof include polyamide, polyester, polycarbonate, polysulfone, polyimide, polybenzimidazole, polyurethane resin, epoxy resin, acrylic resin, methacrylic resin, and unsaturated polyester resin. In particular, a high-strength thermosetting resin, that is, a polyurethane resin, an epoxy resin, an acrylic resin, a methacrylic resin, or an unsaturated polyester resin is preferable. Further, an epoxy resin is particularly preferred because of its ease of molding and high insulating properties.
【0028】本発明におけるメソゲン基とは、液晶を発
現する官能基のことである。具体的には、下記(化3)
に示されるものである。The mesogenic group in the present invention is a functional group that develops a liquid crystal. Specifically, the following (Formula 3)
It is shown in.
【0029】[0029]
【化3】 Embedded image
【0030】好ましくは、加水分解のおきにくい、下記
(化1)に示されるものが良い。Preferably, the one shown in the following (Chemical Formula 1) which is hardly hydrolyzed is preferable.
【0031】[0031]
【化1】 Embedded image
【0032】これらの場合、水に強く長期の信頼性に優
れ、屋外で使用できるため、用途が広がる。In these cases, since they are resistant to water and have excellent long-term reliability and can be used outdoors, their applications are widened.
【0033】本発明の絶縁組成物は、メソゲン基を有す
るモノマーを含む樹脂組成物が重合開始前に部分的にメ
ソゲン基を中心に秩序を持って配列した状態にならなく
ても良いが、少なくとも重合反応の途中で部分的にメソ
ゲン基を中心に秩序を持って配列した状態になる条件で
重合することが必要である。メソゲン基を有するモノマ
ーを含む樹脂組成物が少なくとも重合開始時に部分的に
メソゲン基を中心に秩序を持って配列した状態になる条
件下で加熱により製造する方法が好ましい。The insulating composition of the present invention does not require that the resin composition containing a monomer having a mesogenic group be partially and orderly arranged around the mesogenic group before the initiation of polymerization. During the polymerization reaction, it is necessary to carry out the polymerization under the condition that the mesogen group is partially and orderly arranged around the mesogen group. A method is preferred in which the resin composition containing a monomer having a mesogen group is heated to produce a state in which the resin composition is arranged with order around the mesogen group at least at the start of polymerization.
【0034】このような本発明の絶縁組成物は、メソゲ
ン基を有するモノマーを含む樹脂組成物を重合させた液
晶性樹脂を必須成分として含む絶縁組成物とすること
で、互いにほぼ垂直な二方向において優れた熱伝導性を
示すようになり、電気機器の導体から発生する熱の放散
性を向上させることができる。そして、電気機器は、本
発明による絶縁組成物を用いることで、熱の放散性が向
上し小型化が可能となる。Such an insulating composition of the present invention can be formed into an insulating composition containing, as an essential component, a liquid crystal resin obtained by polymerizing a resin composition containing a monomer having a mesogen group, so that two directions substantially perpendicular to each other are formed. In this case, excellent heat conductivity is exhibited, and the heat dissipation of the heat generated from the conductor of the electric device can be improved. In addition, by using the insulating composition according to the present invention, the heat dissipation of the electric device is improved, and the size of the electric device can be reduced.
【0035】また、(化3)に示したメソゲン基を有す
るモノマーをある一方向に配向させた後に架橋反応させ
た材料が水に弱く長期の信頼性に劣っている原因は、メ
ソゲン基中に含まれるカルボキシ基が加水分解するため
であることを解明し、カルボキシ基のないメソゲン基を
分子内に有したモノマーを用いることで長期の信頼性が
確保できることを見出した。The reason why the material obtained by aligning the monomer having a mesogen group shown in Chemical Formula 1 in one direction and then performing a cross-linking reaction is susceptible to water and has poor long-term reliability is that the mesogen group contains It was clarified that the contained carboxy group was hydrolyzed, and it was found that long-term reliability could be ensured by using a monomer having a mesogen group having no carboxy group in the molecule.
【0036】また、本発明の一つは、前述の(化1)に
示されるメソゲン基を有するモノマーを含む樹脂組成物
を重合させた液晶性樹脂を必須成分として含む絶縁組成
物であって、熱伝導率が0.4W/mK 以上であること
を特徴とする。Another aspect of the present invention is an insulating composition containing, as an essential component, a liquid crystal resin obtained by polymerizing a resin composition containing a monomer having a mesogen group represented by the above formula (1). The thermal conductivity is not less than 0.4 W / mK.
【0037】この絶縁組成物は、電気を通すための導体
と絶縁材料とを有する電気機器の絶縁材料の全部あるい
は一部に使用されるものである。この電気機器に使用さ
れる導体は電気が通るため発熱し、本発明に使用される
絶縁組成物は、こうした発熱する物品に使用されるもの
である。したがって、熱によって容易に変形することの
ない、熱によって重合する熱硬化性の樹脂組成物である
必要がある。This insulating composition is used for all or a part of an insulating material of an electric device having a conductor for conducting electricity and an insulating material. The conductor used in the electric device generates heat due to the passage of electricity, and the insulating composition used in the present invention is used for such a heat-generating article. Therefore, it is necessary that the thermosetting resin composition be polymerized by heat without being easily deformed by heat.
【0038】なお、この場合においても、モノマーはエ
ポキシ基を有することが好ましい。また、この場合にお
いても、前述の重合環境や重合後処理を施しても良く、
前述の無機セラミックを含めても良い。In this case also, the monomer preferably has an epoxy group. Also in this case, the above-described polymerization environment or post-polymerization treatment may be performed,
The aforementioned inorganic ceramics may be included.
【0039】また、この場合における絶縁組成物として
も、前述のものが挙げられる。Further, as the insulating composition in this case, those described above can also be used.
【0040】この場合におけるメソゲン基とは、カルボ
キシル基のない液晶を発現する官能基のことである。具
体的には、前述の(化1)に示されるものである。In this case, the mesogenic group is a functional group which exhibits a liquid crystal without a carboxyl group. Specifically, it is shown in the above (Chemical Formula 1).
【0041】この場合においては、カルボキシル基が存
在しないため加水分解が起りにくく、長期の信頼性に優
れている。In this case, since there is no carboxyl group, hydrolysis hardly occurs, and excellent long-term reliability is obtained.
【0042】このような本発明の絶縁組成物は、カルボ
キシル基のないメソゲン基を有するモノマーを含む樹脂
組成物を重合させた液晶性樹脂を必須成分として含む構
成とすることで、優れた熱伝導性を示すようになり、電
気機器の導体から発生する熱の放散性を向上させること
ができるだけでなく、カルボキシル基がないため、長期
の信頼性に優れている。そして、電気機器は、本発明に
よる絶縁組成物を用いることで、熱の放散性が向上し小
型化が可能となり、過酷な環境における使用も可能とな
る。Such an insulating composition of the present invention has an excellent heat conduction property by comprising, as an essential component, a liquid crystal resin obtained by polymerizing a resin composition containing a monomer having a mesogen group without a carboxyl group. Not only can improve the heat dissipation of the heat generated from the conductors of the electrical equipment, but also have excellent long-term reliability because there is no carboxyl group. By using the insulating composition according to the present invention, heat dissipation can be improved, the size of the electric device can be reduced, and the electric device can be used in a severe environment.
【0043】また、本発明の一つは、下記(化2)に示
される反応基の少なくとも一つの反応基かつメソゲン基
を有するモノマーを含む樹脂組成物を重合させた液晶性
樹脂を必須成分として含む絶縁組成物であることを特徴
とする。好ましくは熱伝導率が0.4W/mK 以上であ
ることがよい。Another aspect of the present invention is to provide, as an essential component, a liquid crystalline resin obtained by polymerizing a resin composition containing a monomer having at least one reactive group represented by the following chemical formula (2) and a mesogen group. Characterized by including an insulating composition. Preferably, the thermal conductivity is 0.4 W / mK or more.
【0044】[0044]
【化2】 Embedded image
【0045】モノマーは、前述の(化1)に示されるメ
ソゲン基を分子内に有することが好ましい。The monomer preferably has a mesogen group represented by the above formula (1) in the molecule.
【0046】また、この場合においても、前述の重合環
境や重合後処理を施しても良く、前述の無機セラミック
を含めても良い。Also in this case, the above-mentioned polymerization environment and post-polymerization treatment may be performed, and the above-mentioned inorganic ceramic may be included.
【0047】また、この場合における絶縁組成物として
も前述のものが挙げられる。例えば、ポリアミド,ポリ
エステル,ポリカーボネート,ポリスルホン,ポリイミ
ド,ポリベンズイミダゾール,ポリウレタン樹脂,エポ
キシ樹脂,アクリル樹脂,メタクリル樹脂,不飽和ポリ
エステル樹脂などが挙げられる。特に、高強度である熱
硬化性樹脂、即ち、ポリウレタン樹脂,エポキシ樹脂,
アクリル樹脂,メタクリル樹脂,不飽和ポリエステル樹
脂が好ましい。さらに、成型の容易さ,絶縁性の高さか
ら、エポキシ樹脂が特に好ましい。In this case, the above-mentioned insulating composition can also be used. Examples include polyamide, polyester, polycarbonate, polysulfone, polyimide, polybenzimidazole, polyurethane resin, epoxy resin, acrylic resin, methacrylic resin, unsaturated polyester resin, and the like. In particular, high-strength thermosetting resins, ie, polyurethane resins, epoxy resins,
Acrylic resins, methacrylic resins, and unsaturated polyester resins are preferred. Further, an epoxy resin is particularly preferred because of its ease of molding and high insulating properties.
【0048】本発明におけるモノマーが有する反応基と
しては、The reactive group of the monomer in the present invention includes:
【0049】[0049]
【化2】 Embedded image
【0050】に示される反応基であることが好ましい。Preferably, the reactive group is
【0051】本発明におけるメソゲン基としても、前述
の(化3)に示す液晶を発現する官能基であることが好
ましく、さらに好ましくは、加水分解の起きにくい前述
の(化1)に示すものがよい。The mesogen group in the present invention is also preferably a functional group which expresses the liquid crystal shown in the above (Chemical Formula 3), and more preferably, the mesogenic group shown in the above (Chemical Formula 1) which hardly causes hydrolysis. Good.
【0052】本発明における高熱伝導性達成の理論は、
以下のようなものである。The theory of achieving high thermal conductivity in the present invention is as follows:
It is as follows.
【0053】物質の熱伝導には、電子伝導とフォノン伝
導があるが、絶縁体の熱伝導は主としてフォノンによる
ものであり、その熱伝導率は、材料中の欠陥でのフォノ
ンの静的散乱や、分子振動や格子振動の非調和性による
フォノン同士の衝突による動的散乱(umklapp process)
により低下する。通常の絶縁組成物(高分子)は、材料
中の欠陥が多く分子や格子振動の非調和性も大きいた
め、一般的に熱伝導率が小さい。The heat conduction of a substance includes electron conduction and phonon conduction. The heat conduction of an insulator is mainly caused by phonons, and its thermal conductivity is determined by the static scattering of phonons due to defects in the material and the phonon. Scattering by collision of phonons due to anharmonicity of molecular and lattice vibrations (umklapp process)
To be reduced. An ordinary insulating composition (polymer) generally has a low thermal conductivity because it has many defects in the material and a large inharmonicity of molecules and lattice vibration.
【0054】従来技術として、絶縁組成物(高分子)の
熱伝導率を増大する方法としては、電子伝導による寄与
を用いるため、導電性高分子を用いる方法がある。しか
し、当然のことがら、絶縁性が低下し、絶縁材料として
は用いられない。As a conventional technique, as a method for increasing the thermal conductivity of the insulating composition (polymer), there is a method using a conductive polymer because the contribution by electron conduction is used. However, as a matter of course, the insulating property is deteriorated, and it is not used as an insulating material.
【0055】また、他の方法としては、高分子の主鎖方
向の熱伝導性が大きいことを利用する方法がある。高分
子の主鎖方向は、強い共役結合で結び付けられているた
め、主鎖方向の振動(フォノン)の非調和性が小さく、
また、フォノンの静的散乱を引き起こす欠陥等も分子間
方向(主鎖と直角方向)に比べてはるかに小さい。即
ち、主鎖方向は、分子間方向に比べ、フォノンの動的及
び静的散乱は、両者とも小さく、従って、熱伝導率は大
きい。この方法は、主鎖を所望の方向に配向させ、配向
方向に増大した熱伝導率を利用するものである。主鎖を
配向させる方法としては、延伸する方法,電場による方
法,ラビングによる方法等があげられる。ところが、従
来の方法に於いては、配向方向の熱伝導率は増大する
が、これと直角の方向の熱伝導率はむしろ減少する。絶
縁材料として利用するとき、熱伝導率を増大させたい方
向としては、高分子絶縁体フィルムの膜厚方向である場
合が圧倒的であり、従来技術である、高分子主鎖の配向
により高分子絶縁体フィルムの膜厚方向の熱伝導率を増
大することは極めて難しい。As another method, there is a method utilizing the fact that the thermal conductivity of the polymer in the main chain direction is large. Since the main chain direction of the polymer is linked by strong conjugate bonds, the anharmonicity of vibration (phonon) in the main chain direction is small,
Defects and the like that cause static scattering of phonons are much smaller than in the intermolecular direction (perpendicular to the main chain). That is, in the main chain direction, both dynamic and static scattering of phonons are smaller than in the intermolecular direction, and therefore, the thermal conductivity is larger. In this method, the main chain is oriented in a desired direction, and the increased thermal conductivity in the orientation direction is used. Examples of a method for orienting the main chain include a stretching method, a method using an electric field, a method using rubbing, and the like. However, in the conventional method, the thermal conductivity in the orientation direction increases, but the thermal conductivity in the direction perpendicular to the orientation decreases. When used as an insulating material, the direction in which the thermal conductivity is desired to be increased is overwhelming in the direction of the thickness of the polymer insulating film. It is extremely difficult to increase the thermal conductivity in the thickness direction of the insulator film.
【0056】本発明では、物質の秩序性が増大すれば、
分子鎖間方向の熱伝導率も増大させることができること
に着目した。即ち、秩序性の増大により、振動の非調和
性は減少し、また、フォノンの静的散乱の原因となる欠
陥を減少させることができる。物質の秩序性を最も増大
させる方法としては、完全結晶を利用することであるが
(ダイヤモンドの熱伝導率が非常に大きいのは、この一
例)、しかしながら、高分子絶縁体の完全結晶を絶縁材
料として適用することは実際上不可能である。そこで、
本発明においては、結晶についで高い秩序性を有する液
晶状態に着目した。具体的には、本発明のメソゲン基を
有するモノマーを含む樹脂組成物を重合させた液晶性樹
脂を必須成分として含む絶縁組成物は、分子鎖方向のみ
ならず、分子鎖間方向においても欠陥が少なく、かつ、
振動の非調和性も小さく、従って、従来の有機高分子絶
縁材料に比べて、特定の配向方向に囚われることなく、
大きな熱伝導性を有する。In the present invention, if the order of a substance increases,
We focused on the fact that the thermal conductivity in the direction between molecular chains can also be increased. That is, due to the increase in the order, the anharmonicity of the vibration is reduced, and the defects causing static scattering of phonons can be reduced. One of the methods for maximizing the order of the material is to use perfect crystals (one example of this is that diamond has a very high thermal conductivity). It is practically impossible to apply as. Therefore,
In the present invention, attention has been paid to a liquid crystal state having a high order following the crystal. Specifically, the insulating composition containing, as an essential component, a liquid crystalline resin obtained by polymerizing the resin composition containing a monomer having a mesogen group of the present invention has defects not only in the molecular chain direction but also in the intermolecular direction. Less and
Vibration anharmonicity is also small, and therefore, compared to conventional organic polymer insulating materials,
Has great thermal conductivity.
【0057】また、本発明における液晶を発現する官能
基であるメソゲン基としては、合成の容易さから、下記
(化4)に示したものが最も好ましく、加水分解による
劣化が起きにくいという観点から前述の(化1)に示し
たものが好ましい。ただし、液晶を発現する官能基であ
る点を考えると、前述の(化3)に示したものでも本発
明は達成可能である。In the present invention, the mesogen group which is a functional group that expresses a liquid crystal is most preferably the one shown in the following (Formula 4) from the viewpoint of easiness of synthesis, and from the viewpoint that deterioration due to hydrolysis hardly occurs. Those shown in the above (Chemical Formula 1) are preferable. However, in view of the fact that it is a functional group that expresses a liquid crystal, the present invention can be achieved even with the above-mentioned (Formula 3).
【0058】[0058]
【化4】 Embedded image
【0059】なお、液晶とは、固体と液体との中間のあ
る温度の範囲内で秩序を持って配列するという性質のも
のである。Note that the liquid crystal has a property of being arranged with order within a certain temperature range between a solid and a liquid.
【0060】[0060]
【発明の実施の形態】以下、本発明の実施例を示し、本
発明について具体的に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be shown, and the present invention will be specifically described.
【0061】(実施例1)4,4′−ビフェノールジグ
リシジルエーテル270gと、4,4′−ジアミノジフ
ェニルベンゾエート200gを混合したエポキシ樹脂組
成物を金型に流し込み、150℃にて10時間硬化後、
200℃で5時間加熱硬化することで、厚さ1mmのエポ
キシ樹脂板を得た。Example 1 An epoxy resin composition obtained by mixing 270 g of 4,4'-biphenol diglycidyl ether and 200 g of 4,4'-diaminodiphenylbenzoate was poured into a mold and cured at 150 ° C. for 10 hours. ,
By heating and curing at 200 ° C. for 5 hours, an epoxy resin plate having a thickness of 1 mm was obtained.
【0062】このエポキシ樹脂板を厚さ0.5mm に切断
後研磨し、偏光顕微鏡で観察したところ、シュリーレン
組織が観察され、液晶性樹脂であることが確認できた。The epoxy resin plate was cut to a thickness of 0.5 mm, polished, and observed with a polarizing microscope. As a result, a schlieren structure was observed, confirming that the epoxy resin plate was a liquid crystalline resin.
【0063】上記のエポキシ樹脂板の厚さ方向及び、面
内方向の熱伝導率を測定した。なお、熱伝導率は、レー
ザーフラッシュ法により求められる厚さ方向,面内方向
の熱拡散率と比熱容量、及び試料の密度から算出したも
のであり、測定は室温で行った。厚さ方向の熱伝導率は
0.43W/mK、面内方向の熱伝導率は0.44W/m
Kと高く、優れた熱伝導性を有していた。The thermal conductivity in the thickness direction and the in-plane direction of the epoxy resin plate was measured. The thermal conductivity was calculated from the thermal diffusivity and specific heat capacity in the thickness direction and the in-plane direction determined by the laser flash method, and the density of the sample, and the measurement was performed at room temperature. The thermal conductivity in the thickness direction is 0.43 W / mK, and the thermal conductivity in the in-plane direction is 0.44 W / mK.
K was high and had excellent thermal conductivity.
【0064】なお、熱伝導率は、以下の式で算出でき
る。The thermal conductivity can be calculated by the following equation.
【0065】 (熱伝導率)=(熱拡散率)×(体積比熱)×(密度) 熱拡散率は、レーザーフラッシュ法により、面内方向,
厚さ方向のいずれも測定でき、(体積比熱)×(密度)
もレーザーフラッシュ法により測定できる。レーザーフ
ラッシュ法とは、試料表面にレーザーパルスを照射し、
裏面の温度履歴より熱定数を測定する方法である。試料
裏面の最高温度上昇幅より(体積比熱)×(密度)が求
められ、試料裏面での温度が最高温度上昇幅の1/2上
昇する時間より熱拡散率が求められる。検出点は、厚さ
方向は、レーザー照射範囲内の裏面、面内方向はレーザ
ー照射範囲外の裏面である。試料形状は、例えば、厚さ
方向は10φ×1mm、面内方向は3cm角×1mmである。(Thermal conductivity) = (Thermal diffusivity) × (Volume specific heat) × (Density) The thermal diffusivity is determined by the laser flash method in the in-plane direction,
Can be measured in any thickness direction, (Volume specific heat) x (Density)
Can also be measured by the laser flash method. The laser flash method irradiates the sample surface with a laser pulse,
This is a method of measuring the thermal constant from the temperature history on the back surface. (Volume specific heat) × (density) is determined from the maximum temperature rise width of the sample back surface, and the thermal diffusivity is determined from the time during which the temperature at the sample back surface increases by 1 / of the maximum temperature rise width. The detection points are the back surface within the laser irradiation range in the thickness direction, and the back surface outside the laser irradiation range in the in-plane direction. The sample shape is, for example, 10φ × 1 mm in the thickness direction and 3 cm × 1 mm in the in-plane direction.
【0066】また、加水分解性の評価として、上記エポ
キシ樹脂板、および上記エポキシ樹脂板を飽和水蒸気中
121℃で1日処理した後、引っ張り試験を行い、引っ
張り強度の低下率を算出した。引っ張り試験は室温にて
行い、引っ張り強度は3つのサンプルの平均値とした。
上記樹脂の場合、引っ張り強度の低下率は10%と小さ
く、長期の信頼性に優れていた。As an evaluation of the hydrolyzability, the epoxy resin plate and the epoxy resin plate were treated in saturated steam at 121 ° C. for one day, and then subjected to a tensile test to calculate the rate of decrease in tensile strength. The tensile test was performed at room temperature, and the tensile strength was an average value of three samples.
In the case of the above resin, the rate of decrease in tensile strength was as small as 10%, and the resin was excellent in long-term reliability.
【0067】ここで、本実施例におけるメソゲン基を有
するモノマーの重合反応中の変化について説明する。図
1に示すように、本発明におけるメソゲン基を有するモ
ノマー2は、分子内にメソゲン基1を有するが、重合開
始前には重合温度である150℃でメソゲン基を中心に秩
序を持って配列した状態となっていない(a)。しか
し、重合反応の途中に部分的にメソゲン基1を中心に秩
序を持って配列した状態になり(b)、その後重合反応
が進み固化する(c)。つまり、少なくとも重合反応の
途中で部分的にメソゲン基を中心に秩序を持って配列し
た状態になれば良い。Here, the change during the polymerization reaction of the monomer having a mesogen group in this example will be described. As shown in FIG. 1, the monomer 2 having a mesogen group in the present invention has a mesogen group 1 in the molecule, but before the start of polymerization, the monomer 2 has an orderly arrangement around the mesogen group at a polymerization temperature of 150 ° C. (A). However, in the course of the polymerization reaction, a partial arrangement is established around the mesogen group 1 with order (b), after which the polymerization reaction proceeds and solidifies (c). In other words, it is only necessary that at least part of the polymerization reaction be ordered with the mesogen group as the center.
【0068】(実施例2)4,4′−ビフェノールジグ
リシジルエーテル270gと、4,4′−ジアミノフェ
ニルベンゾエート200gを混合したエポキシ樹脂組成
物を金型に流し込み、厚さ方向に1kVの電圧をかけな
がら、150℃にて10時間硬化後、200℃で5時間加
熱硬化することで、厚さ1mmのエポキシ樹脂板を得た。
実施例1と同様に偏光顕微鏡観察により、このエポキシ
樹脂板は液晶性樹脂であることが確認できた。(Example 2) An epoxy resin composition obtained by mixing 270 g of 4,4'-biphenol diglycidyl ether and 200 g of 4,4'-diaminophenylbenzoate was poured into a mold, and a voltage of 1 kV was applied in the thickness direction. While being applied, the mixture was cured at 150 ° C. for 10 hours and then heated and cured at 200 ° C. for 5 hours to obtain a 1 mm thick epoxy resin plate.
Observation with a polarizing microscope in the same manner as in Example 1 confirmed that this epoxy resin plate was a liquid crystalline resin.
【0069】実施例1と同様の手法で、上記のエポキシ
樹脂板の厚さ方向及び、面内方向の熱伝導率を測定し
た。面内方向の熱伝導率は0.43W/mK と、電圧を
かけないで作製した実施例1とほぼ同じ値で高かった。
さらに、厚さ方向の熱伝導率は2.2W/mK とさらに
高かった。いずれの方向も優れた熱伝導性を有してい
た。In the same manner as in Example 1, the thermal conductivity in the thickness direction and the in-plane direction of the epoxy resin plate was measured. The thermal conductivity in the in-plane direction was 0.43 W / mK, which was almost the same value as in Example 1 manufactured without applying a voltage, and was high.
Further, the thermal conductivity in the thickness direction was even higher at 2.2 W / mK. Each direction had excellent thermal conductivity.
【0070】また、実施例1と同様の方法で上記エポキ
シ樹脂を飽和水蒸気中121℃で1日処理することによ
る、引っ張り強度の低下率は13%と小さく、長期の信
頼性に優れていた。Further, by treating the epoxy resin in saturated steam at 121 ° C. for 1 day in the same manner as in Example 1, the rate of decrease in tensile strength was as small as 13%, and the long-term reliability was excellent.
【0071】(実施例3)4,4′−ビス(3,4−エ
ポキシブテン−1−イロキシ)フェニルベンゾエート3
70gと、4,4′−ジアミノジフェニルメタン200
gを混合したエポキシ樹脂組成物を金型に流し込み、1
50℃にて10時間硬化後、200℃で5時間加熱硬化
することで、厚さ1mmのエポキシ樹脂板を得た。実施例
1と同様に偏光顕微鏡観察により、このエポキシ樹脂板
は液晶性樹脂であることが確認できた。Example 3 4,4'-Bis (3,4-epoxybutene-1-yloxy) phenylbenzoate 3
70 g and 4,4'-diaminodiphenylmethane 200
g of the epoxy resin composition mixed in a mold.
After curing at 50 ° C. for 10 hours, it was cured by heating at 200 ° C. for 5 hours to obtain an epoxy resin plate having a thickness of 1 mm. Observation with a polarizing microscope in the same manner as in Example 1 confirmed that this epoxy resin plate was a liquid crystalline resin.
【0072】実施例1と同様の手法で、上記のエポキシ
樹脂板の厚さ方向及び、面内方向の熱伝導率を測定し
た。厚さ方向の熱伝導率は0.44W/mK 、面内方向
の熱伝導率は0.46W/mK と高く、優れた熱伝導性
を有していた。In the same manner as in Example 1, the thermal conductivity in the thickness direction and in-plane direction of the epoxy resin plate was measured. The heat conductivity in the thickness direction was as high as 0.44 W / mK, and the heat conductivity in the in-plane direction was as high as 0.46 W / mK, indicating excellent heat conductivity.
【0073】また、実施例1と同様の方法で上記エポキ
シ樹脂を飽和水蒸気中121℃で1日処理することによ
る、引っ張り強度の低下率は45%であった。Further, the rate of decrease in tensile strength by treating the epoxy resin in saturated steam at 121 ° C. for 1 day in the same manner as in Example 1 was 45%.
【0074】(比較例1)ビスフェノールA−ジグリシ
ジルエーテルを用いて、実施例1に示した方法で、エポ
キシ樹脂板を作製した。Comparative Example 1 An epoxy resin plate was prepared in the same manner as in Example 1 except that bisphenol A-diglycidyl ether was used.
【0075】このエポキシ樹脂板を厚さ0.5mm に切断
後研磨し、偏光顕微鏡で観察したところ、液晶性樹脂に
由来する組織が観察されなかった。This epoxy resin plate was cut to a thickness of 0.5 mm, polished and observed with a polarizing microscope. As a result, no structure derived from the liquid crystalline resin was observed.
【0076】実施例1と同様の手法で、上記のエポキシ
樹脂板の厚さ方向及び、面内方向の熱伝導率を測定し
た。厚さ方向の熱伝導率は0.18W/mK 、面内方向
の熱伝導率は0.20W/mK と、熱伝導性が低かっ
た。In the same manner as in Example 1, the thermal conductivity in the thickness direction and the in-plane direction of the epoxy resin plate was measured. The thermal conductivity in the thickness direction was 0.18 W / mK, and the thermal conductivity in the in-plane direction was 0.20 W / mK, which was low.
【0077】また、実施例1と同様の方法で上記エポキ
シ樹脂を飽和水蒸気中121℃で1日処理することによ
る、引っ張り強度の低下率は11%であった。Further, the rate of decrease in tensile strength by treating the epoxy resin in saturated steam at 121 ° C. for 1 day in the same manner as in Example 1 was 11%.
【0078】(実施例4)4,4′−ジアミノ−α−メ
チルスチルベン100gとピロメット酸二無水物120
gおよびN,N′−ジメチルアセトアミド20ml中で
室温にて5時間反応させ、ポリアミド酸を合成した。そ
のポリアミド酸溶液をガラス上に塗布し120℃で2時
間乾燥させて、厚さ80μmのポリアミド酸フィルムを
得た。そのフィルムを300℃にて1時間熱処理するこ
とでポリイミド膜を得た。Example 4 100 g of 4,4'-diamino-α-methylstilbene and pyrometic dianhydride 120
g and N, N'-dimethylacetamide in 20 ml at room temperature for 5 hours to synthesize polyamic acid. The polyamic acid solution was applied on glass and dried at 120 ° C. for 2 hours to obtain a polyamic acid film having a thickness of 80 μm. The film was heat-treated at 300 ° C. for 1 hour to obtain a polyimide film.
【0079】このポリイミド膜を偏光顕微鏡で観察した
ところ、シュリーレン組織が観察され、液晶性樹脂であ
ることが確認できた。When this polyimide film was observed with a polarizing microscope, a schlieren structure was observed, and it was confirmed that the film was a liquid crystalline resin.
【0080】上記のポリイミド膜の面内における2方向
の熱伝導率を測定した。なお、熱伝導率は、光交流法に
より求められる面内における垂直な2方向の熱拡散率と
比熱容量、及び試料の密度から算出したものであり、測
定は室温で行った。熱伝導率は0.44W/mK,0.4
5W/mKと、優れた熱伝導性を有していた。The thermal conductivity in two directions in the plane of the polyimide film was measured. The thermal conductivity was calculated from the thermal diffusivity and specific heat capacity in two perpendicular directions in the plane determined by the photo-current method, and the density of the sample, and the measurement was performed at room temperature. Thermal conductivity is 0.44 W / mK, 0.4
It had an excellent thermal conductivity of 5 W / mK.
【0081】なお、光交流法は、薄膜の面内方向の熱伝
導率を測定できる方法である。光交流法は、試料表面の
一部分に断続的な光を照射し、試料裏面の光が照射され
ない領域の交流温度振幅および照射領域からの距離から
熱拡散率が求められる。試料形状は、例えば、10mm×
5mmである。The photo-current method is a method capable of measuring the thermal conductivity in the in-plane direction of a thin film. In the optical AC method, a part of the surface of a sample is irradiated with intermittent light, and the thermal diffusivity is determined from the AC temperature amplitude of a region on the back surface of the sample where light is not irradiated and the distance from the irradiated region. The sample shape is, for example, 10 mm x
5 mm.
【0082】また、実施例1と同様の方法で上記エポキ
シ樹脂を飽和水蒸気中121℃で1日処理することによ
る、引っ張り強度の低下率は5%と小さく、長期の信頼
性に優れていた。Further, by treating the epoxy resin in saturated steam at 121 ° C. for 1 day in the same manner as in Example 1, the rate of decrease in tensile strength was as small as 5%, and the long-term reliability was excellent.
【0083】(実施例5)4,4′−ジアミノフェニル
ベンゾエート100gとピロメット酸二無水物120g
を用い実施例4と同様の方法でポリイミド膜を得た。実
施例4と同様に偏光顕微鏡観察により、このポリイミド
膜は液晶性樹脂であることが確認できた。Example 5 100 g of 4,4'-diaminophenylbenzoate and 120 g of pyromethic dianhydride
And a polyimide film was obtained in the same manner as in Example 4. Observation by a polarizing microscope in the same manner as in Example 4 confirmed that this polyimide film was a liquid crystalline resin.
【0084】実施例4と同様の方法で、上記のポリイミ
ド膜の面内における2方向の熱伝導率を測定した。熱伝
導率は、0.44W/mK,0.46W/mKと高く、優
れた熱伝導性を有していた。In the same manner as in Example 4, the in-plane thermal conductivity of the polyimide film was measured in two directions. The thermal conductivity was as high as 0.44 W / mK and 0.46 W / mK, and had excellent thermal conductivity.
【0085】また、実施例1と同様の方法で上記エポキ
シ樹脂を飽和水蒸気中121℃で1日処理することによ
る、引っ張り強度の低下率は33%であった。Further, the rate of decrease in tensile strength by treating the epoxy resin in saturated steam at 121 ° C. for 1 day in the same manner as in Example 1 was 33%.
【0086】(比較例2)4,4′−ジアミノジフェニ
ルエーテル100gとピロメット酸二無水物120gを用
い実施例4と同様の方法でポリイミド膜を得た。Comparative Example 2 A polyimide film was obtained in the same manner as in Example 4 using 100 g of 4,4'-diaminodiphenyl ether and 120 g of pyromethic dianhydride.
【0087】このポリイミド膜を偏光顕微鏡で観察した
ところ、液晶性樹脂に由来する組織が観察されなかっ
た。When this polyimide film was observed with a polarizing microscope, no structure derived from the liquid crystalline resin was observed.
【0088】実施例4と同様の方法で、上記のポリイミ
ド膜の面内における2方向の熱伝導率を測定した。熱伝
導率は、0.15W/mK,0.17W/mKと、熱伝導
性が低かった。In the same manner as in Example 4, the in-plane thermal conductivity of the polyimide film was measured in two directions. The thermal conductivity was 0.15 W / mK, 0.17 W / mK, which was low.
【0089】また、実施例1と同様の方法で上記エポキ
シ樹脂を飽和水蒸気中121℃で1日処理することによ
る、引っ張り強度の低下率は5%であった。Further, by treating the epoxy resin in saturated steam at 121 ° C. for 1 day in the same manner as in Example 1, the rate of decrease in tensile strength was 5%.
【0090】(実施例6)図2に本発明の絶縁組成物を
使用した発電機コイルの一例を示す。この発電機コイル
は、導体10の対地絶縁層11として、絶縁組成物を使
用する。本発明の絶縁組成物をこの対地絶縁層11に使
用することにより、導体から発生する熱を効率的に放熱
することができ、容量アップを図ることができる。Example 6 FIG. 2 shows an example of a generator coil using the insulating composition of the present invention. This generator coil uses an insulating composition as the ground insulating layer 11 of the conductor 10. By using the insulating composition of the present invention for the ground insulating layer 11, heat generated from the conductor can be efficiently radiated, and the capacity can be increased.
【0091】(実施例7)図3に、本発明の絶縁組成物
を使用した半導体パッケージの一例を示す。この半導体
パッケージは、サーマルビア45が貫通しているプリン
ト基板43上にダイパット44が形成されている。そし
て、プリント基板43上には半田バンプ電極41が形成
されている。さらに、プリント基板43上であってダイ
パット44が形成されている面上に、配線パターン42
が形成され、ダイパット44上に形成されているベアチ
ップ31とAuワイヤ34にて接続している。こうして
形成された配線パターン42,ベアチップ31,Auワ
イヤ34,ダイパット44を封止する封止材32が形成
され、半導体パッケージが形成されている。こうした半
導体パッケージのサーマルビア45に本発明の絶縁組成
物を用いることによって軽量となり、また、ベアチップ
から発熱する熱を有効に逃がすことができる。なお、本
発明の絶縁組成物を封止材に用いることも有効である。Example 7 FIG. 3 shows an example of a semiconductor package using the insulating composition of the present invention. In this semiconductor package, a die pad 44 is formed on a printed circuit board 43 through which a thermal via 45 penetrates. The solder bump electrodes 41 are formed on the printed board 43. Further, a wiring pattern 42 is formed on the surface of the printed circuit board 43 on which the die pad 44 is formed.
Are formed, and are connected to the bare chip 31 formed on the die pad 44 by the Au wire 34. The sealing material 32 for sealing the wiring pattern 42, the bare chip 31, the Au wire 34, and the die pad 44 thus formed is formed, and a semiconductor package is formed. By using the insulating composition of the present invention for the thermal via 45 of such a semiconductor package, the weight can be reduced and the heat generated from the bare chip can be effectively released. Note that it is also effective to use the insulating composition of the present invention for a sealing material.
【0092】[0092]
【発明の効果】本発明によれば、電気絶縁性でかつ互い
に垂直な二方向以上の方向において優れた熱伝導性を有
する絶縁組成物を得ることができる。According to the present invention, it is possible to obtain an insulating composition which is electrically insulating and has excellent thermal conductivity in two or more directions perpendicular to each other.
【0093】また、本発明によれば、電気絶縁性でかつ
優れた熱伝導性を有し、長期にわたる信頼性を有する絶
縁組成物を得ることができる。Further, according to the present invention, it is possible to obtain an insulating composition having electrical insulation and excellent thermal conductivity, and having long-term reliability.
【0094】また、本発明によれば、電気絶縁性でかつ
優れた熱伝導性を示す絶縁組成物を得ることができる。Further, according to the present invention, it is possible to obtain an insulating composition which is electrically insulating and has excellent thermal conductivity.
【図1】本発明の絶縁組成物の一実施例のメソゲン基を
有するモノマーの重合反応中の変化の模式図である。FIG. 1 is a schematic diagram showing a change during a polymerization reaction of a monomer having a mesogenic group in one example of the insulating composition of the present invention.
【図2】本発明の絶縁組成物を使用した発電機コイルの
一実施例の模式斜視図である。FIG. 2 is a schematic perspective view of one embodiment of a generator coil using the insulating composition of the present invention.
【図3】本発明の絶縁組成物を使用した半導体パッケー
ジの一実施例の模式断面図である。FIG. 3 is a schematic cross-sectional view of one embodiment of a semiconductor package using the insulating composition of the present invention.
1…メソゲン基、2…メソゲン基を有するモノマー、1
0…導体、11…対地絶縁層、31…ベアチップ、32
…封止材、34…Auワイヤ、41…半田バンプ電極、
42…配線パターン、43…プリント基板、44…ダイ
パット、45…サーマルビア。1 ... mesogen group, 2 ... monomer having mesogen group, 1
0: conductor, 11: ground insulating layer, 31: bare chip, 32
... Sealant, 34 ... Au wire, 41 ... Solder bump electrode,
42: wiring pattern, 43: printed circuit board, 44: die pad, 45: thermal via.
Claims (6)
成物を重合させた液晶性樹脂を必須成分として含む絶縁
組成物であって、互いにほぼ垂直な二方向の熱伝導率が
それぞれ0.4W/mK以上であることを特徴とする絶
縁組成物。An insulating composition containing a liquid crystalline resin obtained by polymerizing a resin composition containing a monomer having a mesogen group as an essential component, and having a thermal conductivity of 0.4 W / in two directions substantially perpendicular to each other. An insulating composition having a mK or more.
を特徴とする請求項1の絶縁組成物。2. The insulating composition according to claim 1, wherein said monomer has an epoxy group.
メソゲン基を分子内に有することを特徴とする請求項1
の絶縁組成物。 【化1】 3. The monomer according to claim 1, wherein the monomer has a mesogen group represented by the following formula (1) in the molecule.
Insulating composition. Embedded image
って、前記組成物は熱伝導率が0.4W/mK以上の、メ
ソゲン基を有するモノマーを含む樹脂組成物を熱によっ
て重合した熱硬化性の液晶性樹脂を必須成分として含む
ことを特徴とする絶縁組成物。4. An insulating composition used for an article that generates heat, wherein the composition is a heat-polymerized resin composition containing a monomer having a mesogen group and having a thermal conductivity of 0.4 W / mK or more. An insulating composition comprising a curable liquid crystalline resin as an essential component.
って、下記(化1)に示されるメソゲン基を分子内に有
し、熱伝導率が0.4W/mK 以上であることを特徴と
する絶縁組成物。 【化1】 5. An insulating composition used for an article generating heat, which has a mesogen group shown in the following chemical formula (1) in a molecule and has a thermal conductivity of 0.4 W / mK or more. A characteristic insulating composition. Embedded image
って、前記組成物は下記(化2)に示される反応基の少
なくとも一つの反応基かつメソゲン基を有するモノマー
を含む樹脂組成物を重合させた液晶性樹脂を必須成分と
して含むことを特徴とする絶縁組成物。 【化2】 6. An insulating composition used for an article generating heat, wherein said composition comprises a monomer having at least one reactive group of a reactive group and a mesogen group represented by the following chemical formula (2). An insulating composition comprising, as an essential component, a liquid crystalline resin obtained by polymerizing a polymer. Embedded image
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11069543A JPH11323162A (en) | 1998-03-19 | 1999-03-16 | Insulating composition |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10-69778 | 1998-03-19 | ||
JP6977898 | 1998-03-19 | ||
JP11069543A JPH11323162A (en) | 1998-03-19 | 1999-03-16 | Insulating composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11323162A true JPH11323162A (en) | 1999-11-26 |
Family
ID=26410728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11069543A Pending JPH11323162A (en) | 1998-03-19 | 1999-03-16 | Insulating composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11323162A (en) |
Cited By (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6737299B1 (en) * | 1999-06-08 | 2004-05-18 | Micron Technology, Inc. | Thermally conductive adhesive tape for semiconductor devices and method for using the same |
JPWO2002094905A1 (en) * | 2001-05-18 | 2004-09-09 | 株式会社日立製作所 | Thermosetting resin cured product |
JP2004259949A (en) * | 2003-02-26 | 2004-09-16 | Polymatech Co Ltd | Thermally conductive reactive curing resin molding and its manufacturing method |
JP2005139298A (en) * | 2003-11-06 | 2005-06-02 | Polymatech Co Ltd | Anisotropic epoxy resin cured product and method for producing the same |
JP2006169425A (en) * | 2004-12-17 | 2006-06-29 | Sumitomo Chemical Co Ltd | Epoxy compound and epoxy resin cured product |
US7079405B2 (en) | 2002-07-11 | 2006-07-18 | Polymatech Co., Ltd. | Thermal conductive polymer molded article and method for producing the same |
WO2008059755A1 (en) | 2006-11-13 | 2008-05-22 | Nippon Steel Chemical Co., Ltd. | Crystalline resin cured product, crystalline resin composite body and method for producing the same |
US7425366B2 (en) | 2004-01-15 | 2008-09-16 | Kabushiki Kaisha Toshiba | Tape member or sheet member, and method of producing tape member or sheet member |
US7524557B2 (en) | 2002-07-04 | 2009-04-28 | Kabushiki Kaisha Toshiba | Highly heat conductive insulating member, method of manufacturing the same and electromagnetic device |
JP2009532557A (en) * | 2006-04-03 | 2009-09-10 | シーメンス エナジー インコーポレイテッド | Seeding resin to improve the crystallinity of polymer base structure |
JP2009203439A (en) * | 2008-02-29 | 2009-09-10 | Mitsubishi Electric Corp | Block copolymer, block copolymer composition and insulation sheet containing the same |
JP2009263640A (en) * | 2008-04-04 | 2009-11-12 | Sumitomo Chemical Co Ltd | Thermally conductive resin composition and use of the same |
JP2010007040A (en) * | 2008-05-29 | 2010-01-14 | Nippon Kayaku Co Ltd | Epoxy resin composition, prepreg and cured product |
JP2010018679A (en) * | 2008-07-09 | 2010-01-28 | Mitsubishi Electric Corp | Insulating composition and insulating sheet containing the same |
WO2011040416A1 (en) * | 2009-09-29 | 2011-04-07 | 日立化成工業株式会社 | Resin composition, resin sheet, and resin cured product and method for producing same |
KR101052853B1 (en) * | 2003-05-07 | 2011-07-29 | 폴리마테크 컴퍼니 리미티드 | Thermally Conductive Epoxy Resin Molded Product and Manufacturing Method Thereof |
JP4771939B2 (en) * | 2004-03-09 | 2011-09-14 | ポリマテック株式会社 | Polymer composite molded body, printed wiring board using the molded body, and production method thereof |
JP2011233608A (en) * | 2010-04-26 | 2011-11-17 | Kaneka Corp | Heat sink made of thermoplastic resin with high thermal conductivity |
JPWO2010050202A1 (en) * | 2008-10-30 | 2012-03-29 | 株式会社カネカ | High thermal conductivity thermoplastic resin composition and thermoplastic resin |
DE112011100378T5 (en) | 2010-01-29 | 2012-12-06 | Nippon Kayaku Kabushiki Kaisha | Phenolic compound, epoxy resin, epoxy resin composition, prepreg, and cured product thereof |
JP2013059966A (en) * | 2011-09-15 | 2013-04-04 | Ricoh Co Ltd | Liquid ejection head |
US8465666B2 (en) | 2009-02-25 | 2013-06-18 | Panasonic Corporation | Thermoconductive composition, heat dissipating plate, heat dissipating substrate and circuit module using thermoconductive composition, and process for production of thermoconductive composition |
KR20140058511A (en) | 2011-07-26 | 2014-05-14 | 닛뽄 가야쿠 가부시키가이샤 | Epoxy resin, epoxy resin composition, prepreg, and curing product of each |
JP2014167073A (en) * | 2013-02-28 | 2014-09-11 | Kansai Univ | Epoxy resin and epoxy resin compositions |
JP2014201610A (en) * | 2013-04-01 | 2014-10-27 | 日立化成株式会社 | Epoxy resin composition, heat-conductive material precursor, b-stage sheet, prepreg, laminate sheet, metallic substrate, and printed wiring board |
EP2871196A1 (en) | 2013-10-30 | 2015-05-13 | TDK Corporation | Resin composition, resin sheet, cured resin product and substrate |
WO2016024516A1 (en) * | 2014-08-11 | 2016-02-18 | 株式会社アイ.エス.テイ | Heat-transmitting modifier for elastomer, heat-transmission-modified crystalline elastomer, method for using crystalline polymer and precursor thereof, method for heat-transmission modification of elastomer, heater body, and heated body |
KR20160068728A (en) | 2013-10-09 | 2016-06-15 | 닛뽄 가야쿠 가부시키가이샤 | Phenolic resin, epoxy resin, epoxy resin composition, prepreg and cured product of said epoxy resin composition or prepreg |
KR20170026356A (en) | 2014-07-02 | 2017-03-08 | 디아이씨 가부시끼가이샤 | Epoxy resin composition for electronic material, cured product thereof and electronic member |
JP2018021180A (en) * | 2017-06-26 | 2018-02-08 | 日立化成株式会社 | Epoxy resin composition, heat conduction material precursor, b stage sheet, prepreg, heat conduction material, laminate, metal substrate and printed wiring board |
US9997274B2 (en) | 2014-05-15 | 2018-06-12 | Panasonic Intellectual Property Management Co., Ltd. | Insulating thermally conductive resin composition |
WO2018147425A1 (en) | 2017-02-09 | 2018-08-16 | 富士フイルム株式会社 | Curable composition, thermally conductive material, and device with thermally conductive layer |
KR20180099793A (en) | 2016-01-26 | 2018-09-05 | 후지필름 가부시키가이샤 | A resin composition including a surface-modified inorganic material, a thermally conductive material, and a device |
KR20180099794A (en) | 2016-01-26 | 2018-09-05 | 후지필름 가부시키가이샤 | Thermal conductive materials, resin compositions, and devices |
WO2019013343A1 (en) | 2017-07-14 | 2019-01-17 | 富士フイルム株式会社 | Surface-modified inorganic nitride, composition, thermally conductive material, device provided with thermally conductive layer |
WO2019013325A1 (en) | 2017-07-14 | 2019-01-17 | 富士フイルム株式会社 | Surface-modified inorganic nitride, composition, thermally conductive material, device provided with thermally conductive layer |
WO2019013299A1 (en) | 2017-07-14 | 2019-01-17 | 富士フイルム株式会社 | Thermally conductive material, device provided with thermally conductive layer, thermally conductive material formation composition, disc-shaped liquid crystal compound |
WO2019013323A1 (en) | 2017-07-14 | 2019-01-17 | 富士フイルム株式会社 | Surface-modified inorganic nitride, composition, thermally conductive material, device provided with thermally conductive layer |
WO2019013261A1 (en) | 2017-07-14 | 2019-01-17 | 富士フイルム株式会社 | Surface-modified inorganic nitride, composition, thermally conductive material, device provided with thermally conductive layer |
WO2019049911A1 (en) * | 2017-09-06 | 2019-03-14 | Jnc株式会社 | Composition for heat dissipating member, heat dissipating member, electronic device, and method for manufacturing heat dissipating member |
US10329403B2 (en) | 2015-04-28 | 2019-06-25 | Tdk Corporation | Resin composition, resin sheet, resin cured product, and resin substrate |
WO2019131332A1 (en) | 2017-12-27 | 2019-07-04 | 富士フイルム株式会社 | Composition, thermally conductive material, device having thermal conduction layer, and method of producing thermally conductive material |
WO2019182864A1 (en) | 2018-03-22 | 2019-09-26 | Momentive Performance Materials Inc. | Silicone polymer |
WO2020045560A1 (en) * | 2018-08-31 | 2020-03-05 | Jnc株式会社 | Composition, cured product, laminated body, and electronic device |
US10584228B2 (en) | 2015-05-22 | 2020-03-10 | Hitachi Chemical Company, Ltd. | Epoxy resin composition, thermally-conductive material precursor, B-stage sheet, prepreg, heat dissipation material, laminate, metal substrate, and printed circuit board |
WO2020067364A1 (en) | 2018-09-28 | 2020-04-02 | 富士フイルム株式会社 | Composition for forming heat conductive materials, heat conductive material, heat conductive sheet, device with heat conductive layer, and film |
US10633252B2 (en) | 2016-01-26 | 2020-04-28 | Fujifilm Corporation | Surface-modified inorganic substance, method for manufacturing same, resin composition, thermally conductive material, and device |
KR20200083305A (en) | 2018-12-28 | 2020-07-08 | 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 | Epoxy resin, epoxy resin composition and cured product |
WO2020153205A1 (en) | 2019-01-23 | 2020-07-30 | 富士フイルム株式会社 | Composition, thermally-conductive sheet, and device equipped with thermally-conductive layer |
KR20210018867A (en) | 2018-10-17 | 2021-02-18 | 도요보 가부시키가이샤 | Thermally conductive resin composition |
WO2021039732A1 (en) | 2019-08-26 | 2021-03-04 | 富士フイルム株式会社 | Composition for forming heat-conducting material, heat-conducting material, heat-conducting sheet, and device with heat-conducting layer |
US10941251B2 (en) | 2018-03-22 | 2021-03-09 | Momentive Performance Materials Inc. | Silicone polymer and composition comprising the same |
WO2021059806A1 (en) | 2019-09-27 | 2021-04-01 | 富士フイルム株式会社 | Composition for forming heat-conducting material, heat-conducting material, heat-conducting sheet, and device with heat-conducting layer |
US10968351B2 (en) | 2018-03-22 | 2021-04-06 | Momentive Performance Materials Inc. | Thermal conducting silicone polymer composition |
WO2021131669A1 (en) | 2019-12-26 | 2021-07-01 | 富士フイルム株式会社 | Boron nitride particles, composition for forming heat-conducting material, heat-conducting material, heat-conducting sheet, and device with heat-conducting layer |
WO2021157246A1 (en) | 2020-02-06 | 2021-08-12 | 富士フイルム株式会社 | Composition, thermally conductive material, thermally conductive sheet, and device with thermally conductive layer |
CN113646292A (en) * | 2019-03-29 | 2021-11-12 | Tdk株式会社 | Compound, resin composition, and polymerization product |
KR20220000829A (en) | 2020-06-26 | 2022-01-04 | 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 | Polyhydric hydroxy resin, method of producing same and epoxy resin composition containing same, and cured epoxy resin |
KR20220002107A (en) | 2020-06-30 | 2022-01-06 | 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 | Epoxy resin, epoxy resin composition and cured product |
JP2022035695A (en) * | 2020-08-21 | 2022-03-04 | 昭和電工マテリアルズ株式会社 | Composition containing methacrylate having mesogenic skeleton |
WO2022210431A1 (en) * | 2021-03-31 | 2022-10-06 | Tdk株式会社 | Resin cured product, resin composition, resin substrate, layered substrate, and resin sheet |
US11472925B2 (en) | 2018-03-22 | 2022-10-18 | Momentive Performance Materials Inc. | Silicone polymer |
KR20240103995A (en) | 2022-12-27 | 2024-07-04 | 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 | Vinyl resin, method for producing same, composition and cured product |
KR20240140085A (en) | 2022-02-04 | 2024-09-24 | 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 | Epoxy resin, epoxy resin composition and epoxy resin cured product |
KR20240151158A (en) | 2022-02-25 | 2024-10-17 | 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 | Epoxy resin, polyhydroxy resin, epoxy resin composition, and cured epoxy resin, and method for producing polyhydroxy resin |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0563114A (en) * | 1991-06-24 | 1993-03-12 | Sumitomo Bakelite Co Ltd | Resin composition for sealing semiconductor |
JPH0967426A (en) * | 1995-08-30 | 1997-03-11 | Mitsubishi Electric Corp | Epoxy resin composition and casting-molded insulator obtained from the same |
JPH09118673A (en) * | 1995-08-03 | 1997-05-06 | Cornell Res Found Inc | Liquid crystal epoxy monomer and liquid crystal epoxy resin |
JPH09227652A (en) * | 1996-02-23 | 1997-09-02 | Asahi Chiba Kk | Method for curing epoxy resin having excellent heat resistance and cured epoxy resin product |
JPH09255871A (en) * | 1996-03-26 | 1997-09-30 | Toyobo Co Ltd | Thermoplastic resin composition and its molding product |
JPH09302070A (en) * | 1996-05-20 | 1997-11-25 | Sumitomo Metal Ind Ltd | Thermosetting epoxy resin composition, its use and curing agent |
-
1999
- 1999-03-16 JP JP11069543A patent/JPH11323162A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0563114A (en) * | 1991-06-24 | 1993-03-12 | Sumitomo Bakelite Co Ltd | Resin composition for sealing semiconductor |
JPH09118673A (en) * | 1995-08-03 | 1997-05-06 | Cornell Res Found Inc | Liquid crystal epoxy monomer and liquid crystal epoxy resin |
JPH0967426A (en) * | 1995-08-30 | 1997-03-11 | Mitsubishi Electric Corp | Epoxy resin composition and casting-molded insulator obtained from the same |
JPH09227652A (en) * | 1996-02-23 | 1997-09-02 | Asahi Chiba Kk | Method for curing epoxy resin having excellent heat resistance and cured epoxy resin product |
JPH09255871A (en) * | 1996-03-26 | 1997-09-30 | Toyobo Co Ltd | Thermoplastic resin composition and its molding product |
JPH09302070A (en) * | 1996-05-20 | 1997-11-25 | Sumitomo Metal Ind Ltd | Thermosetting epoxy resin composition, its use and curing agent |
Cited By (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6737299B1 (en) * | 1999-06-08 | 2004-05-18 | Micron Technology, Inc. | Thermally conductive adhesive tape for semiconductor devices and method for using the same |
US7109288B2 (en) | 2001-05-18 | 2006-09-19 | Hitachi, Ltd. | Cured thermosetting resin product |
JPWO2002094905A1 (en) * | 2001-05-18 | 2004-09-09 | 株式会社日立製作所 | Thermosetting resin cured product |
US7524557B2 (en) | 2002-07-04 | 2009-04-28 | Kabushiki Kaisha Toshiba | Highly heat conductive insulating member, method of manufacturing the same and electromagnetic device |
US7079405B2 (en) | 2002-07-11 | 2006-07-18 | Polymatech Co., Ltd. | Thermal conductive polymer molded article and method for producing the same |
JP2004259949A (en) * | 2003-02-26 | 2004-09-16 | Polymatech Co Ltd | Thermally conductive reactive curing resin molding and its manufacturing method |
KR101052853B1 (en) * | 2003-05-07 | 2011-07-29 | 폴리마테크 컴퍼니 리미티드 | Thermally Conductive Epoxy Resin Molded Product and Manufacturing Method Thereof |
JP2005139298A (en) * | 2003-11-06 | 2005-06-02 | Polymatech Co Ltd | Anisotropic epoxy resin cured product and method for producing the same |
US7425366B2 (en) | 2004-01-15 | 2008-09-16 | Kabushiki Kaisha Toshiba | Tape member or sheet member, and method of producing tape member or sheet member |
JP4771939B2 (en) * | 2004-03-09 | 2011-09-14 | ポリマテック株式会社 | Polymer composite molded body, printed wiring board using the molded body, and production method thereof |
JP2006169425A (en) * | 2004-12-17 | 2006-06-29 | Sumitomo Chemical Co Ltd | Epoxy compound and epoxy resin cured product |
JP2009532557A (en) * | 2006-04-03 | 2009-09-10 | シーメンス エナジー インコーポレイテッド | Seeding resin to improve the crystallinity of polymer base structure |
WO2008059755A1 (en) | 2006-11-13 | 2008-05-22 | Nippon Steel Chemical Co., Ltd. | Crystalline resin cured product, crystalline resin composite body and method for producing the same |
US8546510B2 (en) | 2006-11-13 | 2013-10-01 | Nippon Steel & Sumikin Chemical Co., Ltd. | Crystalline resin cured product, crystalline resin composite material, and method for producing the same |
JP2009203439A (en) * | 2008-02-29 | 2009-09-10 | Mitsubishi Electric Corp | Block copolymer, block copolymer composition and insulation sheet containing the same |
JP2009263640A (en) * | 2008-04-04 | 2009-11-12 | Sumitomo Chemical Co Ltd | Thermally conductive resin composition and use of the same |
JP2010007040A (en) * | 2008-05-29 | 2010-01-14 | Nippon Kayaku Co Ltd | Epoxy resin composition, prepreg and cured product |
JP2010018679A (en) * | 2008-07-09 | 2010-01-28 | Mitsubishi Electric Corp | Insulating composition and insulating sheet containing the same |
JP5731199B2 (en) * | 2008-10-30 | 2015-06-10 | 株式会社カネカ | High thermal conductivity thermoplastic resin composition and molded article of thermoplastic resin |
JPWO2010050202A1 (en) * | 2008-10-30 | 2012-03-29 | 株式会社カネカ | High thermal conductivity thermoplastic resin composition and thermoplastic resin |
US8465666B2 (en) | 2009-02-25 | 2013-06-18 | Panasonic Corporation | Thermoconductive composition, heat dissipating plate, heat dissipating substrate and circuit module using thermoconductive composition, and process for production of thermoconductive composition |
WO2011040416A1 (en) * | 2009-09-29 | 2011-04-07 | 日立化成工業株式会社 | Resin composition, resin sheet, and resin cured product and method for producing same |
DE112011100378T5 (en) | 2010-01-29 | 2012-12-06 | Nippon Kayaku Kabushiki Kaisha | Phenolic compound, epoxy resin, epoxy resin composition, prepreg, and cured product thereof |
JP2011233608A (en) * | 2010-04-26 | 2011-11-17 | Kaneka Corp | Heat sink made of thermoplastic resin with high thermal conductivity |
KR20140058511A (en) | 2011-07-26 | 2014-05-14 | 닛뽄 가야쿠 가부시키가이샤 | Epoxy resin, epoxy resin composition, prepreg, and curing product of each |
JP2013059966A (en) * | 2011-09-15 | 2013-04-04 | Ricoh Co Ltd | Liquid ejection head |
JP2014167073A (en) * | 2013-02-28 | 2014-09-11 | Kansai Univ | Epoxy resin and epoxy resin compositions |
JP2014201610A (en) * | 2013-04-01 | 2014-10-27 | 日立化成株式会社 | Epoxy resin composition, heat-conductive material precursor, b-stage sheet, prepreg, laminate sheet, metallic substrate, and printed wiring board |
KR20160068728A (en) | 2013-10-09 | 2016-06-15 | 닛뽄 가야쿠 가부시키가이샤 | Phenolic resin, epoxy resin, epoxy resin composition, prepreg and cured product of said epoxy resin composition or prepreg |
EP2871196A1 (en) | 2013-10-30 | 2015-05-13 | TDK Corporation | Resin composition, resin sheet, cured resin product and substrate |
US9997274B2 (en) | 2014-05-15 | 2018-06-12 | Panasonic Intellectual Property Management Co., Ltd. | Insulating thermally conductive resin composition |
KR20170026356A (en) | 2014-07-02 | 2017-03-08 | 디아이씨 가부시끼가이샤 | Epoxy resin composition for electronic material, cured product thereof and electronic member |
WO2016024516A1 (en) * | 2014-08-11 | 2016-02-18 | 株式会社アイ.エス.テイ | Heat-transmitting modifier for elastomer, heat-transmission-modified crystalline elastomer, method for using crystalline polymer and precursor thereof, method for heat-transmission modification of elastomer, heater body, and heated body |
JPWO2016024516A1 (en) * | 2014-08-11 | 2017-04-27 | 株式会社アイ.エス.テイ | Elastomer thermal conductivity modifier, thermal conductivity modified liquid crystalline elastomer, method of using liquid crystalline polymer, elastomer thermal conductivity modification method, heating element and heated object |
US11391526B2 (en) | 2014-08-11 | 2022-07-19 | I.S.T Corporation | Heat-transmitting modifier for elastomer, heat-transmission-modified crystalline elastomer, method for using crystalline polymer and precursor thereof, method for heat-transmission modification of elastomer, heater body, and heated body |
US10329403B2 (en) | 2015-04-28 | 2019-06-25 | Tdk Corporation | Resin composition, resin sheet, resin cured product, and resin substrate |
US11840619B2 (en) | 2015-05-22 | 2023-12-12 | Resonac Corporation | Epoxy resin composition, thermally-conductive material precursor, B-stage sheet, prepreg, heat dissipation material, laminate, metal substrate, and printed circuit board |
US10584228B2 (en) | 2015-05-22 | 2020-03-10 | Hitachi Chemical Company, Ltd. | Epoxy resin composition, thermally-conductive material precursor, B-stage sheet, prepreg, heat dissipation material, laminate, metal substrate, and printed circuit board |
KR20180099794A (en) | 2016-01-26 | 2018-09-05 | 후지필름 가부시키가이샤 | Thermal conductive materials, resin compositions, and devices |
KR20180099793A (en) | 2016-01-26 | 2018-09-05 | 후지필름 가부시키가이샤 | A resin composition including a surface-modified inorganic material, a thermally conductive material, and a device |
US10774212B2 (en) | 2016-01-26 | 2020-09-15 | Fujifilm Corporation | Thermally conductive material, resin composition, and device |
US10752778B2 (en) | 2016-01-26 | 2020-08-25 | Fujifilm Corporation | Resin composition containing surface-modified inorganic substance, thermally conductive material, and device |
US10633252B2 (en) | 2016-01-26 | 2020-04-28 | Fujifilm Corporation | Surface-modified inorganic substance, method for manufacturing same, resin composition, thermally conductive material, and device |
WO2018147425A1 (en) | 2017-02-09 | 2018-08-16 | 富士フイルム株式会社 | Curable composition, thermally conductive material, and device with thermally conductive layer |
JP2018021180A (en) * | 2017-06-26 | 2018-02-08 | 日立化成株式会社 | Epoxy resin composition, heat conduction material precursor, b stage sheet, prepreg, heat conduction material, laminate, metal substrate and printed wiring board |
WO2019013343A1 (en) | 2017-07-14 | 2019-01-17 | 富士フイルム株式会社 | Surface-modified inorganic nitride, composition, thermally conductive material, device provided with thermally conductive layer |
WO2019013299A1 (en) | 2017-07-14 | 2019-01-17 | 富士フイルム株式会社 | Thermally conductive material, device provided with thermally conductive layer, thermally conductive material formation composition, disc-shaped liquid crystal compound |
KR20200019686A (en) | 2017-07-14 | 2020-02-24 | 후지필름 가부시키가이샤 | Thermally conductive material, device with thermally conductive layer, composition for thermally conductive material formation, liquid crystalline disk-like compound |
WO2019013325A1 (en) | 2017-07-14 | 2019-01-17 | 富士フイルム株式会社 | Surface-modified inorganic nitride, composition, thermally conductive material, device provided with thermally conductive layer |
US11702578B2 (en) | 2017-07-14 | 2023-07-18 | Fujifilm Corporation | Thermally conductive material, device with thermally conductive layer, composition for forming thermally conductive material, and disk-like liquid crystal compound |
EP3816147A1 (en) | 2017-07-14 | 2021-05-05 | FUJIFILM Corporation | Thermally conductive material, device with thermally conductive layer, composition for forming thermally conductive material, and disk-like liquid crystal compound |
WO2019013323A1 (en) | 2017-07-14 | 2019-01-17 | 富士フイルム株式会社 | Surface-modified inorganic nitride, composition, thermally conductive material, device provided with thermally conductive layer |
WO2019013261A1 (en) | 2017-07-14 | 2019-01-17 | 富士フイルム株式会社 | Surface-modified inorganic nitride, composition, thermally conductive material, device provided with thermally conductive layer |
WO2019049911A1 (en) * | 2017-09-06 | 2019-03-14 | Jnc株式会社 | Composition for heat dissipating member, heat dissipating member, electronic device, and method for manufacturing heat dissipating member |
WO2019131332A1 (en) | 2017-12-27 | 2019-07-04 | 富士フイルム株式会社 | Composition, thermally conductive material, device having thermal conduction layer, and method of producing thermally conductive material |
US11319414B2 (en) | 2018-03-22 | 2022-05-03 | Momentive Performance Materials Inc. | Silicone polymer |
WO2019182864A1 (en) | 2018-03-22 | 2019-09-26 | Momentive Performance Materials Inc. | Silicone polymer |
US10941251B2 (en) | 2018-03-22 | 2021-03-09 | Momentive Performance Materials Inc. | Silicone polymer and composition comprising the same |
US11472925B2 (en) | 2018-03-22 | 2022-10-18 | Momentive Performance Materials Inc. | Silicone polymer |
US10968351B2 (en) | 2018-03-22 | 2021-04-06 | Momentive Performance Materials Inc. | Thermal conducting silicone polymer composition |
WO2020045560A1 (en) * | 2018-08-31 | 2020-03-05 | Jnc株式会社 | Composition, cured product, laminated body, and electronic device |
WO2020067364A1 (en) | 2018-09-28 | 2020-04-02 | 富士フイルム株式会社 | Composition for forming heat conductive materials, heat conductive material, heat conductive sheet, device with heat conductive layer, and film |
KR20210018867A (en) | 2018-10-17 | 2021-02-18 | 도요보 가부시키가이샤 | Thermally conductive resin composition |
US11767397B2 (en) | 2018-10-17 | 2023-09-26 | Toyobo Co., Ltd. | Thermally conductive resin composition |
KR20200083305A (en) | 2018-12-28 | 2020-07-08 | 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 | Epoxy resin, epoxy resin composition and cured product |
WO2020153205A1 (en) | 2019-01-23 | 2020-07-30 | 富士フイルム株式会社 | Composition, thermally-conductive sheet, and device equipped with thermally-conductive layer |
DE112020001608T5 (en) | 2019-03-29 | 2021-12-16 | Tdk Corporation | COMPOUND, RESIN COMPOSITION AND POLYMERIZATION PRODUCT |
CN113646292A (en) * | 2019-03-29 | 2021-11-12 | Tdk株式会社 | Compound, resin composition, and polymerization product |
WO2021039732A1 (en) | 2019-08-26 | 2021-03-04 | 富士フイルム株式会社 | Composition for forming heat-conducting material, heat-conducting material, heat-conducting sheet, and device with heat-conducting layer |
WO2021059806A1 (en) | 2019-09-27 | 2021-04-01 | 富士フイルム株式会社 | Composition for forming heat-conducting material, heat-conducting material, heat-conducting sheet, and device with heat-conducting layer |
WO2021131669A1 (en) | 2019-12-26 | 2021-07-01 | 富士フイルム株式会社 | Boron nitride particles, composition for forming heat-conducting material, heat-conducting material, heat-conducting sheet, and device with heat-conducting layer |
WO2021157246A1 (en) | 2020-02-06 | 2021-08-12 | 富士フイルム株式会社 | Composition, thermally conductive material, thermally conductive sheet, and device with thermally conductive layer |
KR20220000829A (en) | 2020-06-26 | 2022-01-04 | 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 | Polyhydric hydroxy resin, method of producing same and epoxy resin composition containing same, and cured epoxy resin |
KR20220002107A (en) | 2020-06-30 | 2022-01-06 | 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 | Epoxy resin, epoxy resin composition and cured product |
JP2022035695A (en) * | 2020-08-21 | 2022-03-04 | 昭和電工マテリアルズ株式会社 | Composition containing methacrylate having mesogenic skeleton |
WO2022210431A1 (en) * | 2021-03-31 | 2022-10-06 | Tdk株式会社 | Resin cured product, resin composition, resin substrate, layered substrate, and resin sheet |
KR20240140085A (en) | 2022-02-04 | 2024-09-24 | 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 | Epoxy resin, epoxy resin composition and epoxy resin cured product |
KR20240151158A (en) | 2022-02-25 | 2024-10-17 | 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 | Epoxy resin, polyhydroxy resin, epoxy resin composition, and cured epoxy resin, and method for producing polyhydroxy resin |
KR20240103995A (en) | 2022-12-27 | 2024-07-04 | 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 | Vinyl resin, method for producing same, composition and cured product |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11323162A (en) | Insulating composition | |
EP0944098B1 (en) | Thermally conductive electrical insulating composition | |
US7109288B2 (en) | Cured thermosetting resin product | |
JP5487010B2 (en) | Circuit board laminate and metal base circuit board | |
KR101618239B1 (en) | High thermal conductivity thermoplastic resin composition and thermoplastic resin | |
KR20040047567A (en) | Thermally-conductive epoxy resin molded article and method of manufacturing the same | |
JP5398700B2 (en) | Thermally conductive and electrically resistive liquid crystal polymer composition | |
KR101503189B1 (en) | Polyimide resin composition and laminate including same | |
JP5427884B2 (en) | Metal base circuit board and manufacturing method thereof | |
JP5814503B2 (en) | Thermosetting composition and printed wiring board using the same | |
JP2006131903A (en) | Conductive liquid crystal polymer matrix, miniature electronic device containing the same, method for producing structure containing the device (conductive liquid crystal polymer matrix containing carbon nanotube) | |
KR20090012233A (en) | Seeding resin to improve the crystallinity of the polymer substructure | |
JP4771939B2 (en) | Polymer composite molded body, printed wiring board using the molded body, and production method thereof | |
Shoji et al. | Cross-linked liquid crystalline polyimides with siloxane units: their morphology and thermal diffusivity | |
JP6364024B2 (en) | High heat conductive resin composition, heat dissipation / heat transfer resin material containing the same, and heat conductive film | |
Zheng et al. | High intrinsic thermally conductivity side-chain liquid crystalline polysiloxane films grafted with pendent difunctional mesogenic groups | |
JPS62100577A (en) | Heat-conductive composition | |
JP2013091179A (en) | Laminate for circuit board and metal base circuit board | |
JP2016037540A (en) | Thermoplastic resin and resin composition, and heat radiation/heat transfer resin material and heat conduction film comprising the same | |
Lv et al. | Flexible low dielectric polyimide/fluorinated ethylene propylene composite films for flexible integrated circuits | |
JP2003268070A (en) | Thermosetting resin cured product | |
JP2015183033A (en) | High heat conductive resin composition, heat dissipation / heat transfer resin material containing the same, and heat conductive film | |
JP7124288B2 (en) | Epoxy resin sheet, method for manufacturing epoxy resin sheet, method for manufacturing insulator, and method for manufacturing electrical equipment | |
JP5504064B2 (en) | Circuit board laminate and metal base circuit board manufacturing method | |
Hong et al. | Effect of annealing on the physical properties of biaxially oriented liquid crystalline copolyester films |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040525 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040726 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040928 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041129 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20041217 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20050208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050412 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050613 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050613 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20060317 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20060427 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070402 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070730 |