[go: up one dir, main page]

JPH11322988A - Porous film, its preparation and use thereof - Google Patents

Porous film, its preparation and use thereof

Info

Publication number
JPH11322988A
JPH11322988A JP10135748A JP13574898A JPH11322988A JP H11322988 A JPH11322988 A JP H11322988A JP 10135748 A JP10135748 A JP 10135748A JP 13574898 A JP13574898 A JP 13574898A JP H11322988 A JPH11322988 A JP H11322988A
Authority
JP
Japan
Prior art keywords
molecular weight
polyolefin resin
porous film
weight
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10135748A
Other languages
Japanese (ja)
Inventor
Takashi Yamamura
隆 山村
Kazunari Yamamoto
一成 山本
Tomoaki Ichikawa
智昭 市川
Toshisuke Nomi
俊祐 能見
Shigeru Fujita
茂 藤田
Yutaka Kishii
豊 岸井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP10135748A priority Critical patent/JPH11322988A/en
Publication of JPH11322988A publication Critical patent/JPH11322988A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To prepare a porous film preferably used in a separator of various batteries, particularly, batteries for an electric car, the film having high strength, a high specific surface, large pore volume and great path curvature, moreover, being excellent in ion permeability and further high speed charge and discharge characteristics. SOLUTION: This porous film comprises an ultra high mol.wt. polyolefin resin in a weight average molecular weight of 5×10<5> or more, or an ultra high mol.wt. polyolefin resin composition comprising at least 15 wt.% of the ultra high mol.wt. polyolefin resin and a polyolefin resin in a weight average molecular weight less than 5×10<5> , the porous film having a specific surface of 100 m<2> /g or more, pore volume of 0.5 cm<3> /g or more, the average diameter of through-holes of 0.03 μm or less and the maximum diameter of 0.1 μm or less, the average diameter of a fibril fiber constituting a three-dimensional network of 0.01-0.1 μm and the maximum diameter of 0.2 μm or less and the average path curvature of from above 2.5 magnifications to 10 magnifications or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超高分子量ポリオ
レフィン樹脂からなる多孔質フィルムに関し、詳しく
は、高強度、高比表面積及び高細孔容積を有し、更に、
膜を貫通する孔の経路、即ち、貫通経路が長いにもかか
わらず、イオン透過性にすぐれ、しかも、高速充放電特
性にすぐれ、従って、種々の電池、特に、電気自動車用
バッテリーにおいて、安定性と耐久性にすぐれる高性能
セパレータとして好適に用いることができる多孔質フィ
ルムとその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous film made of an ultra-high molecular weight polyolefin resin, and more particularly, to a porous film having a high strength, a high specific surface area and a high pore volume.
Although the path of the hole through the membrane, that is, the through path, is long, it has excellent ion permeability and excellent high-speed charge / discharge characteristics. Therefore, the stability of various batteries, particularly batteries for electric vehicles, is high. The present invention relates to a porous film which can be suitably used as a high-performance separator having excellent durability and a method for producing the same.

【0002】[0002]

【従来の技術】従来、種々の電池が実用に供されている
が、最近、電子機器のコードレス化等に対応するため
に、軽量で、高起電力、高エネルギーを得ることがで
き、しかも、自己放電が少ないリチウム電池が注目を集
めている。例えば、円筒形リチウムイオン二次電池は、
携帯電話やノートブックパソコン用として、多量に用い
られており、更に、今後、電気自動車用バッテリーとし
て期待されている。
2. Description of the Related Art Conventionally, various batteries have been put to practical use, but recently, in order to cope with a cordless electronic device, a lightweight, high electromotive force and high energy can be obtained. Lithium batteries with low self-discharge are attracting attention. For example, a cylindrical lithium ion secondary battery is
It is widely used for mobile phones and notebook computers, and is expected to be used as a battery for electric vehicles in the future.

【0003】このようなリチウム電池の負極材料として
は、金属リチウムをはじめ、リチウム合金やリチウムイ
オンを吸蔵放出できる炭素材料のような層間化合物を挙
げることができる。他方、正極材料としては、コバル
ト、ニッケル、マンガン、鉄等の遷移金属の酸化物やこ
れら遷移金属とリチウムとの複合酸化物を挙げることが
できる。
Examples of such a negative electrode material for a lithium battery include interlayer compounds such as metallic lithium, a lithium alloy and a carbon material capable of inserting and extracting lithium ions. On the other hand, examples of the positive electrode material include oxides of transition metals such as cobalt, nickel, manganese, and iron, and composite oxides of these transition metals and lithium.

【0004】一般に、このようなリチウム電池において
は、上述したような正極と負極との間に、それら電極間
の短絡を防止するためにセパレータが設けられている。
このようなセパレータとしては、通常、正極負極間のイ
オンの透過性を確保するために、多数の微細孔を有する
多孔質フイルムが用いられている。
Generally, in such a lithium battery, a separator is provided between the positive electrode and the negative electrode as described above in order to prevent a short circuit between the electrodes.
As such a separator, a porous film having a large number of micropores is generally used in order to secure the permeability of ions between the positive electrode and the negative electrode.

【0005】このような電池用セパレータとして、従
来、超高分子量ポリオレフィン樹脂を、必要に応じてそ
の他のポリオレフィン樹脂と共に、適宜の溶媒中、加熱
して溶解し、これをゲル状のシートに成形し、このシー
トを延伸処理し、この延伸処理の前後に脱溶媒処理を行
なって、シート中に残存する溶媒を除去することによっ
て、多孔質フィルムを製造する方法が種々提案されてい
る。
Conventionally, as such a battery separator, an ultra-high molecular weight polyolefin resin, together with other polyolefin resins, if necessary, is dissolved by heating in an appropriate solvent, and then formed into a gel-like sheet. Various methods have been proposed for producing a porous film by subjecting the sheet to a stretching treatment and performing a solvent removal treatment before and after the stretching treatment to remove a solvent remaining in the sheet.

【0006】例えば、特開平7−228718号公報に
は、重量平均分子量1×106 以上の超高分子量ポリオ
レフィン樹脂を少なくとも10重量%有するポリオレフ
ィン樹脂組成物からなり、フィブリルの平均径が0.01
〜0.2μm、貫通孔の平均径が0.01〜0.1μm、空隙
率が35〜95%、比表面積が20〜400m2 /g、
膜厚に対する貫通経路の比率である曲路率が膜厚の1.5
〜2.5倍である多孔質フィルムが記載されている。
For example, Japanese Patent Application Laid-Open No. 7-228718 discloses a polyolefin resin composition having at least 10% by weight of an ultrahigh molecular weight polyolefin resin having a weight average molecular weight of 1 × 10 6 or more, and having an average fibril diameter of 0.01.
00.2 μm, the average diameter of the through holes is 0.01-0.1 μm, the porosity is 35-95%, the specific surface area is 20-400 m 2 / g,
The curvature ratio, which is the ratio of the penetration path to the film thickness, is 1.5.
A porous film that is 22.5 times is described.

【0007】しかし、超高分子量ポリオレフィン樹脂か
らの多孔質フィルムを電気自動車用バッテリーのセパレ
ータとして実用的に用いるには、フィルムが一層の高強
度、高比表面積、高細孔容積を有すると共に、電解液保
液性にすぐれ、更に、イオン透過性と高速充放電特性に
一層すぐれることが強く要望されている。
However, in order to use a porous film made of an ultra-high-molecular-weight polyolefin resin practically as a separator for an electric vehicle battery, the film must have higher strength, a higher specific surface area, a higher pore volume, There is a strong demand for excellent liquid retention properties, and further excellent ion permeability and high-speed charge / discharge characteristics.

【0008】[0008]

【発明が解決しようとする課題】本発明者らは、超高分
子量ポリオレフィン樹脂からなる多孔質フィルムにおけ
るこのような要望に応えるべく鋭意研究した結果、多孔
質フィルムの三次元網状構造を構成するフィブリル径が
小さく、且つ、分布が均一であると共に、貫通孔も、そ
の最大孔径が0.1μm以下であり、且つ、貫通孔の孔径
の分布も狭い多孔質フィルムを得ることができ、このよ
うな多孔質フィルムが上記特性をすべて備え、特に、非
常に大きい平均曲路率を有するにもかかわらず、イオン
透過性にすぐれることを見出して、本発明に至ったもの
である。
SUMMARY OF THE INVENTION The present inventors have made intensive studies to meet such a demand for a porous film made of an ultrahigh molecular weight polyolefin resin, and as a result, have found that fibrils constituting a three-dimensional network structure of the porous film are obtained. A porous film having a small diameter and a uniform distribution, and the through holes also have a maximum pore diameter of 0.1 μm or less, and a narrow distribution of the through holes can be obtained. The inventors have found that a porous film has all of the above-mentioned properties and, in particular, has excellent ion permeability despite having a very large average curvature, and has led to the present invention.

【0009】従って、本発明は、高強度、高比表面積、
高細孔容積を有すると共に、大きい平均曲路率を有し、
しかも、イオン透過性にすぐれ、更に、高速充放電特性
にすぐれており、種々の電池、特に、電気自動車用バッ
テリーのセパレータとして好適に用いることができる多
孔質フィルムとその製造方法を提供することを目的とす
る。
Therefore, the present invention provides a high strength, high specific surface area,
With high pore volume, large mean curvature,
In addition, it is an object of the present invention to provide a porous film having excellent ion permeability and excellent high-speed charge / discharge characteristics, and which can be suitably used as a separator for various batteries, particularly, batteries for electric vehicles, and a method for producing the same. Aim.

【0010】[0010]

【問題を解決するための手段】本発明による多孔質フィ
ルムは、重量平均分子量が5×105 以上の超高分子量
ポリオレフィン樹脂か、又はこの超高分子量ポリオレフ
ィン樹脂を少なくとも15重量%と重量平均分子量が5
×105 未満のポリオレフィン樹脂とからなる超高分子
量ポリオレフィン樹脂組成物からなり、比表面積が10
0m2 /g以上、細孔容積が0.5cm3 /g以上、貫通
孔の平均孔径が0.03μm以下、最大孔径が0.1μm以
下であり、三次元網状構造を構成するフィブリルの平均
径が0.01〜0.1μm、最大径が0.2μm以下、平均曲
路率が2.5倍を越えて、10倍以下であることを特徴と
する。
According to the present invention, there is provided a porous film comprising an ultrahigh molecular weight polyolefin resin having a weight average molecular weight of 5 × 10 5 or more, or at least 15% by weight of the ultrahigh molecular weight polyolefin resin and a weight average molecular weight of 5%. Is 5
An ultrahigh molecular weight polyolefin resin composition comprising a polyolefin resin having a specific surface area of less than 10 5
0 m 2 / g or more, pore volume 0.5 cm 3 / g or more, average diameter of through-holes 0.03 μm or less, maximum pore diameter 0.1 μm or less, average diameter of fibrils constituting a three-dimensional network structure Is 0.01 to 0.1 μm, the maximum diameter is 0.2 μm or less, and the average curvature is more than 2.5 times and 10 times or less.

【0011】本発明によるこのような多孔質フィルムの
製造方法は、重量平均分子量が5×105 以上の超高分
子量ポリオレフィン樹脂か、又はこの超高分子量ポリオ
レフィン樹脂を少なくとも15重量%と重量平均分子量
が3×105 以下のポリオレフィン樹脂とからなる超高
分子量ポリオレフィン樹脂組成物5〜30重量%と凝固
点が−10℃以下である溶媒95〜70重量%とからな
る混合物を加熱し、上記超高分子量ポリオレフィン樹脂
又はその組成物を上記溶媒中に溶解させ、この混合物を
115〜185℃の範囲の温度に混練りし、次いで、得
られた混練り物を用いた溶媒の凝固点以下の温度まで冷
却しながら、ゲル状シートに成形して、上記超高分子量
ポリオレフィン樹脂を結晶化させ、次いで、上記超高分
子量ポリオレフィン樹脂の融点をMとするとき、上記ゲ
ル状シートを(M+5)℃から(M−30)℃の範囲の
温度にて二軸延伸し、次いで、得られた延伸フィルムを
脱溶媒処理することを特徴とする。
The method for producing such a porous film according to the present invention is characterized in that the weight average molecular weight of the ultrahigh molecular weight polyolefin resin is not less than 5 × 10 5 or at least 15% by weight. Is heated by heating a mixture comprising 5 to 30% by weight of an ultrahigh molecular weight polyolefin resin composition comprising a polyolefin resin having a solidification point of not more than 3 × 10 5 and a solvent having a freezing point of not more than -10 ° C. The molecular weight polyolefin resin or its composition is dissolved in the above solvent, the mixture is kneaded at a temperature in the range of 115 to 185 ° C., and then cooled to a temperature below the freezing point of the solvent using the obtained kneaded product. While forming into a gel-like sheet, the ultra-high molecular weight polyolefin resin is crystallized, When the melting point of the fat is M, the gel sheet is biaxially stretched at a temperature in the range of (M + 5) ° C to (M-30) ° C, and then the obtained stretched film is subjected to a desolvation treatment. Features.

【0012】[0012]

【発明の実施の形態】先ず、本発明による多孔質フィル
ムの製造について説明する。本発明において用いる多孔
質フィルムのための素材は、重量平均分子量が5×10
5 以上の超高分子量ポリオレフィン樹脂か、又はこの超
高分子量ポリオレフィン樹脂を少なくとも15重量%と
重量平均分子量が5×105 未満のポリオレフィン樹脂
とからなる超高分子量ポリオレフィン樹脂組成物であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the production of a porous film according to the present invention will be described. The material for the porous film used in the present invention has a weight average molecular weight of 5 × 10
An ultrahigh molecular weight polyolefin resin composition comprising at least 5 ultrahigh molecular weight polyolefin resin or a polyolefin resin having at least 15% by weight of the ultrahigh molecular weight polyolefin resin and a weight average molecular weight of less than 5 × 10 5 .

【0013】本発明において、簡単のため、上記超高分
子量ポリオレフィン樹脂とこれを含む組成物を超高分子
量ポリオレフィン樹脂(組成物)と総称することとす
る。
In the present invention, for the sake of simplicity, the ultrahigh molecular weight polyolefin resin and a composition containing the same are collectively referred to as an ultrahigh molecular weight polyolefin resin (composition).

【0014】本発明において、超高分子量ポリオレフィ
ン樹脂は、重量平均分子量が5×105 〜20×106
の範囲にあり、好ましくは、1×106 〜15×106
の範囲にある。このような超高分子量ポリオレフィン樹
脂としては、例えば、エチレン、プロピレン、1−ブテ
ン、4−メチル−1−ペンテン、1−ヘキセン等の単独
重合体、共重合体又はこれらの混合物を挙げることがで
きる。しかし、なかでも、本発明においては、超高分子
量ポリエチレン樹脂が好ましく用いられる。
In the present invention, the ultrahigh molecular weight polyolefin resin has a weight average molecular weight of 5 × 10 5 to 20 × 10 6.
And preferably 1 × 10 6 to 15 × 10 6
In the range. Examples of such an ultrahigh molecular weight polyolefin resin include homopolymers, copolymers, and mixtures thereof such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, and 1-hexene. . However, among them, in the present invention, an ultrahigh molecular weight polyethylene resin is preferably used.

【0015】上記超高分子量ポリオレフィン樹脂組成物
は、上記超高分子量ポリオレフィン樹脂と共に、それ以
外のポリオレフィン樹脂を含んでいてもよい。この超高
分子量ポリオレフィン樹脂以外のポリオレフィン樹脂
は、重量平均分子量が1×10 4 以上、5×105 未満
の範囲にあり、好ましくは、1×104 〜3×105
範囲にある。このようなポリオレフィン樹脂としても、
例えば、エチレン、プロピレン、1−ブテン、4−メチ
ル−1−ペンテン、1−ヘキセン等の単独重合体、共重
合体又はこれらの混合物を挙げることができる。しか
し、なかでも、本発明においては、高密度ポリエチレン
樹脂が好ましく用いられる。
The above ultra-high molecular weight polyolefin resin composition
Together with the ultrahigh molecular weight polyolefin resin
An outer polyolefin resin may be included. This super high
Polyolefin resins other than high molecular weight polyolefin resins
Means that the weight average molecular weight is 1 × 10 Four5 × 10 or moreFiveLess than
And preferably 1 × 10Four~ 3 × 10Fiveof
In range. As such a polyolefin resin,
For example, ethylene, propylene, 1-butene, 4-methyl
Homopolymers such as 1-pentene and 1-hexene, and copolymers
Coalescence or mixtures thereof. Only
In particular, in the present invention, high-density polyethylene
Resins are preferably used.

【0016】本発明において、超高分子量ポリオレフィ
ン樹脂組成物を用いるとき、この組成物は、超高分子量
ポリオレフィン樹脂を少なくとも15重量%含むことが
必要である。
In the present invention, when an ultrahigh molecular weight polyolefin resin composition is used, the composition must contain at least 15% by weight of the ultrahigh molecular weight polyolefin resin.

【0017】本発明による多孔質フィルムの製造には、
先ず、上記超高分子量ポリオレフィン樹脂(組成物)5
〜30重量%、好ましくは、8〜20重量%と、凝固点
が−10℃以下である溶媒95〜70重量%、好ましく
は、92〜80重量%とを均一なスラリー状に混合し、
これを加熱攪拌して、上記超高分子量ポリオレフィン樹
脂(組成物)を上記溶媒中に溶解させ、得られた溶液状
混合物を115〜185℃の範囲の温度に混練りして、
混練り物を調製する。
In the production of the porous film according to the present invention,
First, the ultra-high molecular weight polyolefin resin (composition) 5
-30% by weight, preferably 8-20% by weight, and 95-70% by weight, preferably 92-80% by weight of a solvent having a freezing point of -10 ° C or less, are mixed in a uniform slurry,
This is heated and stirred to dissolve the ultrahigh molecular weight polyolefin resin (composition) in the solvent, and knead the resulting solution mixture to a temperature in the range of 115 to 185 ° C.
Prepare a kneaded product.

【0018】上記溶媒としては、上記超高分子量ポリオ
レフィン樹脂(組成物)をよく溶解すると共に、凝固点
が−10℃以下のものであれば、特に、限定されるもの
ではないが、特に、本発明においては、凝固点が−10
℃から−45℃の範囲のものが好ましく用いられる。そ
のような溶媒の好ましい具体例として、例えば、デカ
ン、デカリン、流動パラフィン等の脂肪族又は環式炭化
水素や、凝固点がこれらに対応する鉱油留分を挙げるこ
とができる。しかし、なかでも、流動パラフィンのよう
な不揮発性溶媒が好ましく、特に、凝固点が−15℃以
下であり、40℃における動粘度が65cst以下の不
揮発性溶媒が好ましく用いられる。
The solvent is not particularly limited as long as it dissolves the ultrahigh molecular weight polyolefin resin (composition) well and has a freezing point of -10 ° C. or lower. Has a freezing point of -10
Those having a temperature range of -45 ° C to -45 ° C are preferably used. Preferred specific examples of such a solvent include, for example, aliphatic or cyclic hydrocarbons such as decane, decalin, and liquid paraffin, and mineral oil fractions having a freezing point corresponding thereto. However, among these, a non-volatile solvent such as liquid paraffin is preferable, and a non-volatile solvent having a freezing point of -15 ° C or less and a kinematic viscosity at 40 ° C of 65 cst or less is particularly preferably used.

【0019】超高分子量ポリオレフィン樹脂(組成物)
と上記溶媒との溶液状混合物において、上記超高分子量
ポリオレフィン樹脂(組成物)が30重量%を越えると
きは、特に、超高分子量ポリオレフィン樹脂の溶媒に対
する溶解性が不十分であって、混練り時に超高分子量ポ
リオレフィン樹脂が延び切り状態近くに解されず、ポリ
マー鎖の十分な絡み合いを得ることが困難である。更
に、後述するように、混練り物を冷却しながら、シート
に成形して、樹脂を結晶化させた後、延伸処理して、延
伸フィルムとする際に、延伸倍率が比較的低いとき、本
発明によるフィブリル径、貫通孔径及び平均曲路率に関
する特性を備えた多孔質フィルムを得ることが困難であ
り、他方、上記超高分子量ポリオレフィン樹脂(組成
物)が5重量%を下回るときは、得られる多孔質フィル
ムが強度に劣る。
Ultra high molecular weight polyolefin resin (composition)
When the ultrahigh molecular weight polyolefin resin (composition) exceeds 30% by weight in the solution mixture of the solvent and the solvent, particularly, the solubility of the ultrahigh molecular weight polyolefin resin in the solvent is insufficient, and At times, the ultrahigh molecular weight polyolefin resin is not stretched and unraveled near the cut-off state, making it difficult to obtain sufficient entanglement of the polymer chains. Further, as described later, while cooling the kneaded material, the mixture is formed into a sheet, the resin is crystallized, and then the film is stretched to form a stretched film. It is difficult to obtain a porous film having characteristics regarding the fibril diameter, the through-hole diameter and the average curvature by the above method. On the other hand, when the ultrahigh molecular weight polyolefin resin (composition) is less than 5% by weight, it is obtained. The porous film has poor strength.

【0020】本発明においては、上記超高分子量ポリオ
レフィン樹脂(組成物)を溶媒に溶解させてなる溶液を
混練りするに際して、185℃を越える温度で混練りす
るときは、溶液の粘度が低すぎて、混練り物に十分なせ
ん断力を作用させることができず、他方、混練温度が1
15℃よりも低いときは、上記混合物を効果的に混練す
ることができず、かくして、上記混合物の混練りにおい
て、上述したような超高分子量ポリオレフィン樹脂のポ
リマー鎖の十分な絡み合いを得ることが困難である。
In the present invention, when kneading a solution obtained by dissolving the ultrahigh molecular weight polyolefin resin (composition) in a solvent at a temperature exceeding 185 ° C., the viscosity of the solution is too low. Therefore, a sufficient shearing force cannot be applied to the kneaded material, while the kneading temperature is 1
When the temperature is lower than 15 ° C., the mixture cannot be kneaded effectively. Thus, in kneading the mixture, it is possible to obtain sufficient entanglement of the polymer chains of the ultrahigh molecular weight polyolefin resin as described above. Have difficulty.

【0021】本発明においては、このような超高分子量
ポリオレフィン樹脂のポリマー鎖の十分な絡み合いを得
るために、上記超高分子量ポリオレフィン樹脂(組成
物)と溶媒との溶液状混合物に高いせん断力を作用させ
つつ、混練りすることが好ましい。混練り時に、十分な
せん断力を作用させることができないときは、超高分子
量ポリオレフィン樹脂のポリマー鎖の十分な絡み合いを
得ることができないことがある。従って、本発明によれ
ば、超高分子量ポリオレフィン樹脂(組成物)と溶媒と
の溶液状混合物の混練りには、通常、混合物に強いせん
断力を与えることができるニーダや二軸押出機等が好ま
しく用いられる。
In the present invention, in order to obtain sufficient entanglement of the polymer chains of the ultrahigh molecular weight polyolefin resin, a high shear force is applied to the solution mixture of the ultrahigh molecular weight polyolefin resin (composition) and a solvent. It is preferable to knead while acting. If a sufficient shearing force cannot be applied during kneading, sufficient entanglement of the polymer chains of the ultrahigh molecular weight polyolefin resin may not be obtained. Therefore, according to the present invention, the kneading of the solution mixture of the ultra-high-molecular-weight polyolefin resin (composition) and the solvent usually requires a kneader or a twin-screw extruder capable of giving a strong shear force to the mixture. It is preferably used.

【0022】次いで、本発明によれば、このようにして
得られた超高分子量ポリオレフィン樹脂(組成物)と溶
媒との溶液状の混練り物を用いた溶媒の凝固点以下の温
度、好ましくは、−10℃から−45℃の範囲の温度、
好ましくは、−15℃〜−40℃の範囲の温度に冷却し
ながら、ゲル状シートに成形して、超高分子量ポリオレ
フィン樹脂(と高密度ポリエチレン樹脂)を結晶化させ
る。ゲル状シートの厚みは、通常、0.1〜5.0mmの範
囲が適当である。
Next, according to the present invention, the temperature is lower than the freezing point of the solvent, preferably-, using the solution-kneaded mixture of the ultrahigh molecular weight polyolefin resin (composition) thus obtained and the solvent. A temperature in the range of 10 ° C to -45 ° C,
Preferably, the ultrahigh molecular weight polyolefin resin (and high-density polyethylene resin) is crystallized while cooling to a temperature in the range of −15 ° C. to −40 ° C. to form a gel-like sheet. Usually, the thickness of the gel-like sheet is suitably in the range of 0.1 to 5.0 mm.

【0023】このように、超高分子量ポリオレフィン樹
脂(組成物)と溶媒との溶液状の混練り物を用いた溶媒
の凝固点以下の温度に冷却するには、特に、限定される
ものではないが、例えば、予め2枚の金属板をドライア
イスにて冷却しておき、これら金属板の間に上記混練り
物を挟み、混練り物を加圧して、シートに成形すればよ
い。
As described above, the cooling to the temperature below the freezing point of the solvent using the kneaded product in the form of a solution of the ultrahigh molecular weight polyolefin resin (composition) and the solvent is not particularly limited, For example, two metal plates may be cooled in advance with dry ice, the kneaded material may be sandwiched between these metal plates, and the kneaded material may be pressed to form a sheet.

【0024】本発明によれば、混練り物を冷却しなが
ら、シートに成形する際、得られるシートの表面層のみ
ならず、シートの中心部まで、樹脂を微細に結晶化させ
るために、混練り物を急冷することが好ましく、従っ
て、その冷却速度は平均で50℃/分以上が好ましい。
溶液状態、即ち、混練り物からシートへの成形時の冷却
速度が遅いときは、混練りによって、引き伸ばされ、絡
み合っているフィブリルが毛毬状に戻って、太い繊維を
形成するので、細く、且つ、均一なフィブリルからなる
曲路率の大きい多孔質膜構造が形成され難く、大きな貫
通孔を有する多孔質膜構造が部分的に形成される。
According to the present invention, when the kneaded material is formed into a sheet while cooling the kneaded material, not only the surface layer of the obtained sheet but also the center of the sheet can be finely crystallized with the kneaded material. Is preferably rapidly cooled. Therefore, the cooling rate is preferably 50 ° C./min or more on average.
In the solution state, that is, when the cooling rate at the time of molding from the kneaded material to the sheet is low, the kneading causes the fibrils to be stretched and entangled to return to the shape of a hair, forming a thick fiber, so that it is thin, and It is difficult to form a porous membrane structure having a large curvature ratio formed of uniform fibrils, and a porous membrane structure having large through holes is partially formed.

【0025】即ち、一般に、結晶性高分子量樹脂を結晶
化させると、ラメラ結晶が生成し、このラメラ結晶の厚
みは、結晶化温度に大きく依存し、融点と結晶化温度と
の差が大きいほど、ラメラ結晶の厚みは小さくなる。本
発明によれば、超高分子量ポリオレフィン樹脂(組成
物)と溶媒との混練り物を115〜185℃の高い温度
から、用いた溶媒の凝固点以下の温度、即ち、−10℃
以下の温度に冷却しながら、好ましくは、急冷しなが
ら、ゲル状シートに成形するので、ラメラ結晶の厚みは
非常に小さく、従って、ゲル状シートを延伸して、延伸
フィルムを得る際に、ラメラ結晶が微結晶に分割される
結果、繊維径が小さく、且つ、均一であるフィブリルか
らなり、膜厚に対する貫通経路の比率である曲路率が非
常に大きいミクロフィブリル構造を有する多孔質フィル
ムを得ることができるとみられる。
That is, in general, when a crystalline high molecular weight resin is crystallized, lamellar crystals are formed, and the thickness of the lamellar crystals largely depends on the crystallization temperature, and the larger the difference between the melting point and the crystallization temperature, the greater the difference. The thickness of the lamella crystal becomes smaller. According to the present invention, a kneaded product of an ultrahigh molecular weight polyolefin resin (composition) and a solvent is heated from a high temperature of 115 to 185 ° C to a temperature below the freezing point of the solvent used, that is, -10 ° C.
While being cooled to the following temperature, preferably, while being quenched, it is formed into a gel-like sheet, so that the thickness of the lamella crystal is very small, and therefore, when the gel-like sheet is stretched to obtain a stretched film, As a result of the crystal being divided into microcrystals, a porous film having a microfibril structure composed of fibrils having a small fiber diameter and being uniform and having a very large curvature ratio, which is a ratio of a penetration path to a film thickness, is obtained. Seems to be able to.

【0026】本発明に従って、混練り物を溶液状態から
急冷しながら、ゲル状シートに成形して、樹脂を結晶化
させても、このようなゲル状シートにおける樹脂の結晶
構造は、用いた溶媒の凝固点以上の温度でこのゲル状シ
ートを保存するときは、上記冷却速度が遅いときと同
様、混練りによって、引き伸ばされ、絡み合っているフ
ィブリルが毛毬状に戻って、太い繊維を形成して、微細
で均一な多孔構造が形成され難く、大きな貫通孔が部分
的に形成される。従って、超高分子量ポリオレフィン樹
脂組成物と溶媒との混練り物を急冷しながら、ゲル状シ
ートに成形し、かくして、結晶構造を有せしめたゲル状
シートを直ちに延伸するか、又は保存するとすれば、得
られたゲル状シートを溶媒の凝固点以下の温度に保存す
ることが望ましい。
According to the present invention, even if the kneaded material is formed into a gel-like sheet while being rapidly cooled from a solution state and the resin is crystallized, the crystal structure of the resin in such a gel-like sheet is determined by the solvent used. When storing this gel-like sheet at a temperature equal to or higher than the freezing point, similar to the case where the cooling rate is slow, by kneading, it is stretched, the entangled fibrils return to the shape of a hair, forming thick fibers, It is difficult to form a fine and uniform porous structure, and large through holes are partially formed. Therefore, while rapidly cooling the kneaded product of the ultra-high-molecular-weight polyolefin resin composition and the solvent, it is formed into a gel-like sheet, and thus, the gel-like sheet having a crystal structure is immediately stretched or stored, It is desirable to store the obtained gel-like sheet at a temperature below the freezing point of the solvent.

【0027】このように、混練り物のシートへの成形時
の冷却速度が遅い場合や、得られたシートを用いた溶媒
の凝固点以上の温度で保存した場合には、上述したよう
な現象を生じ、得られる多孔質フィルムは、孔構造の微
細性と均一性に欠けるものとなって、比較的大きい空孔
ができるので、強度、特に、突刺し強度において劣るよ
うになる。
As described above, when the cooling rate at the time of forming the kneaded material into a sheet is low, or when the obtained sheet is stored at a temperature higher than the freezing point of the solvent using the obtained sheet, the above-described phenomenon occurs. The resulting porous film lacks the fineness and uniformity of the pore structure and has relatively large pores, so that the strength, particularly the piercing strength, becomes poor.

【0028】本発明によれば、次いで、上記超高分子量
ポリオレフィン樹脂の融点をMとするとき、上記ゲル状
シートを(M+5)℃から(M−30)℃の範囲の温
度、好ましくは、M℃から(M−25)℃の範囲の温度
にて、二軸延伸する。この二軸延伸は、逐次又は同時二
軸延伸のいずれによってもよいが、好ましくは、同時二
軸延伸する。本発明において、ゲル状シートの延伸倍率
は、一方向に3〜32倍であり、面積延伸倍率は9〜1
024倍の範囲が適当であり、好ましくは、一方向に3
〜20倍であり、面積延伸倍率は9〜400倍の範囲で
ある。
According to the present invention, when the melting point of the ultrahigh molecular weight polyolefin resin is M, the gel-like sheet is heated at a temperature in the range of (M + 5) ° C. to (M-30) ° C., preferably M The film is biaxially stretched at a temperature in the range from ℃ to (M-25) ℃. This biaxial stretching may be either sequential or simultaneous biaxial stretching, but is preferably simultaneous biaxial stretching. In the present invention, the stretch ratio of the gel-like sheet is 3 to 32 times in one direction, and the area stretch ratio is 9 to 1 times.
A range of 024 times is appropriate, and preferably 3 times in one direction.
-20 times, and the area stretching ratio is in the range of 9-400 times.

【0029】次いで、このように得られた二軸延伸フィ
ルムを適宜の溶剤で洗浄して、フィルム中に残留する溶
媒を除去して、多孔質フィルムとし、好ましくは、この
後、このフィルムの熱収縮を防止するために、加熱し
て、ヒートセット(熱固定)する。上記脱溶媒処理に用
いる溶剤としては、例えば、ペンタン、ヘキサン、ヘプ
タン等の炭化水素、塩化メチレン、四塩化炭素等の塩素
化炭化水素、ジエチルエーテル、ジオキサン等のエーテ
ル類等の易揮発性のものが好ましく用いられる。これら
の溶剤は、超高分子量ポリオレフィン樹脂(組成物)の
溶液の調製に用いた溶媒に応じて適宜に選ばれる。シー
ト中に残留する溶媒を除去するには、例えば、シートを
溶剤に浸漬すればよい。
Next, the biaxially stretched film thus obtained is washed with an appropriate solvent to remove the solvent remaining in the film to form a porous film. Heat and heat set (heat set) to prevent shrinkage. Examples of the solvent used in the desolvation treatment include volatile solvents such as hydrocarbons such as pentane, hexane, and heptane; chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride; and ethers such as diethyl ether and dioxane. Is preferably used. These solvents are appropriately selected depending on the solvent used for preparing the solution of the ultrahigh molecular weight polyolefin resin (composition). In order to remove the solvent remaining in the sheet, for example, the sheet may be immersed in the solvent.

【0030】このようにして得られる本発明による多孔
質フィルムは、厚みが1〜60μm、好ましくは、5〜
45μmの範囲にあり、BET比表面積が100m2
g以上、好ましくは、100〜300m2 /gの範囲で
あり、BJH法で測定した細孔容積が0.5cm3 /g以
上、好ましくは、1〜1.5cm3 /gの範囲であり、更
に、BJH法で測定した貫通孔の平均孔径が0.03μm
以下、好ましくは、0.01〜0.03μmの範囲であり、
最大孔径が0.1μm以下、好ましくは、0.1〜0.03μ
mの範囲であり、三次元網状構造を構成するフィブリル
の平均径が0.01〜0.1μm、好ましくは、0.01〜0.
05μm、最大径が0.2μm以下、好ましくは、0.02
〜0.1μm、平均曲路率が2.5倍を越えて、10倍以
下、好ましくは、3.0〜6.0倍の範囲である。
The porous film according to the present invention thus obtained has a thickness of 1 to 60 μm, preferably 5 to 60 μm.
45 μm, and the BET specific surface area is 100 m 2 /
g, preferably in the range of 100 to 300 m 2 / g, and the pore volume measured by the BJH method is 0.5 cm 3 / g or more, preferably in the range of 1 to 1.5 cm 3 / g, Further, the average diameter of the through holes measured by the BJH method is 0.03 μm.
Hereinafter, preferably, it is in the range of 0.01 to 0.03 μm,
Maximum pore diameter is 0.1 μm or less, preferably 0.1 to 0.03 μm
m, and the average diameter of the fibrils constituting the three-dimensional network structure is 0.01 to 0.1 μm, preferably 0.01 to 0.1 μm.
05 μm, the maximum diameter is 0.2 μm or less, preferably 0.02
The average curvature is in the range of more than 2.5 times to 10 times or less, preferably 3.0 to 6.0 times.

【0031】更に、本発明による多孔質フィルムは、空
孔率が35〜75%、好ましくは、50〜70%、通気
度が100〜800秒/100cc、好ましくは、10
0〜500秒/100ccである。
Further, the porous film according to the present invention has a porosity of 35 to 75%, preferably 50 to 70%, and an air permeability of 100 to 800 seconds / 100 cc, preferably 10 to 100 cc.
0 to 500 seconds / 100 cc.

【0032】このような本発明による多孔質フィルム
は、高強度、高比表面積及び高細孔容積を有し、更に、
貫通経路が長いにもかかわらず、イオン透過性にすぐ
れ、しかも、高速充放電特性にすぐれる。また、グロー
ブボックス中でガラスの中に正極にコバルト酸リチウム
電極、負極にカーボン電極を用い、その間に電解液を含
浸させた上記多孔質フイルムをクッション材となる不織
布(電解液含浸品)と共に挟み込み、充放電特性を調べ
たところ、高電流密度で高放電効率を示し、短時間での
大出力が可能である。
The porous film according to the present invention has a high strength, a high specific surface area and a high pore volume.
Despite the long penetration path, it has excellent ion permeability and high-speed charge / discharge characteristics. In a glove box, a lithium cobaltate electrode is used as a positive electrode and a carbon electrode is used as a negative electrode in glass, and the porous film impregnated with an electrolyte is sandwiched between the glass and a nonwoven fabric (electrolyte impregnated product) serving as a cushioning material. When the charge / discharge characteristics were examined, high discharge efficiency was exhibited at a high current density, and large output was possible in a short time.

【0033】更に、本発明による多孔質フイルムは、通
気性は良好なものの、比表面積が高く、細いフィブリル
が高密度に配置して、平均孔径も小さいことから、過充
電試験におけるデンドライトによる短絡も発生し難く、
かくして、電池用セパレータとして安定性と耐久性にす
ぐれる。
Further, the porous film according to the present invention has good air permeability, but has a high specific surface area, a high density of fine fibrils, and a small average pore size. It is hard to occur,
Thus, the battery separator has excellent stability and durability.

【0034】[0034]

【実施例】以下に実施例を挙げて本発明を説明するが、
本発明はこれら実施例により何ら限定されるものではな
い。以下において、用いた樹脂の融点や、得られた多孔
質フィルムの特性は、次のようにして評価した。
EXAMPLES The present invention will be described below with reference to examples.
The present invention is not limited by these examples. Hereinafter, the melting point of the resin used and the properties of the obtained porous film were evaluated as follows.

【0035】(融点)DSC(示差走査熱量計)測定に
おいて、オンセット温度を融点とした。 (重量平均分子量)ゲル浸透クロマトグラフ(ウォータ
ーズ社製、GPC−150C)を用い、溶媒にo−ジク
ロロベンゼンを、また、カラムとしてShodex−8
0M(昭和電工(株)製)を用いて温度135℃で測定
した。データ処理は、TRC社製データ処理システムを
用いて行なった。分子量はポリスチレンを基準として算
出した。 (フィルムの厚み)1/10000mmシックネスゲー
ジ及び多孔質フイルムの断面の1万倍走査電子顕微鏡写
真から測定した。
(Melting Point) In the DSC (differential scanning calorimeter) measurement, the onset temperature was defined as the melting point. (Weight average molecular weight) Using a gel permeation chromatograph (GPC-150C, manufactured by Waters), o-dichlorobenzene was used as a solvent, and Shodex-8 was used as a column.
It was measured at a temperature of 135 ° C. using 0M (manufactured by Showa Denko KK). Data processing was performed using a data processing system manufactured by TRC. The molecular weight was calculated based on polystyrene. (Film thickness) The thickness was measured from a 1 / 10,000 mm thickness gauge and a 10,000 × scanning electron micrograph of the cross section of the porous film.

【0036】(BET比表面積)(株)島津製作所製の
窒素の吸脱着方式による比表面積・細孔分布測定器AS
AP2010を用いて、BET比表面積を測定した。 (細孔容積)(株)島津製作所製の窒素の吸脱着方式に
よる比表面積・細孔分布測定器ASAP2010を用い
て、BJH法にて細孔容積を測定した。 (通気度)JIS P8117に準拠して測定した。
(BET specific surface area) A specific surface area / pore distribution measuring device AS manufactured by Shimadzu Corporation using a nitrogen adsorption / desorption method.
The BET specific surface area was measured using AP2010. (Pore volume) The pore volume was measured by the BJH method using a specific surface area / pore distribution measuring device ASAP2010 by a nitrogen adsorption / desorption method manufactured by Shimadzu Corporation. (Air permeability) Measured according to JIS P8117.

【0037】(貫通孔の平均孔径及び最大孔径)(株)
島津製作所製の窒素の吸脱着方式による比表面積・細孔
分布測定器ASAP2010を用いて、BJH法にて孔
径の分布を測定し、これより平均孔径と最大孔径とを求
めた。 (フィブリルの平均径及び最大径)多孔質フィルムの表
面及び断面の5万倍走査顕微鏡写真から読み取った。
(Average and maximum pore diameters of through-holes)
The pore size distribution was measured by the BJH method using a specific surface area / pore distribution measuring device ASAP2010 manufactured by Shimadzu Corporation using a nitrogen adsorption / desorption method, and the average pore size and the maximum pore size were determined from this. (Average diameter and maximum diameter of fibrils) The surface and cross section of the porous film were read from a 50,000-fold scanning micrograph.

【0038】(5C放電効率比)放電速度5CmAの放
電時における放電容量を求め、市販品の平均放電容量を
1とする相対比率として求めた。 (イオン透過係数比)供給側に1.4モル/L濃度のLi
PF6 (EC/EMC)、透過側にEC/EMCの溶液
を多孔質フィルム(セパレータ)を介してガラスセルに
入れ、LiPF6 の透過速度を測定して、透過係数を求
め、市販品の透過係数を1とする相対比率として求め
た。
(5C Discharge Efficiency Ratio) The discharge capacity at the time of discharge at a discharge rate of 5 CmA was determined as a relative ratio with the average discharge capacity of a commercial product being 1. (Ion permeation coefficient ratio) Li of 1.4 mol / L concentration on the supply side
PF 6 (EC / EMC), the EC / EMC solution on the permeate side is put into a glass cell via a porous film (separator), the permeation rate of LiPF 6 is measured, the permeation coefficient is determined, and the permeation of a commercial product is determined. It was determined as a relative ratio with the coefficient being 1.

【0039】(曲路率)曲路率は、多孔質体における流
体の透過速度と空孔率や比表面積との関係に関する次の
ような Kozeny-Carman 式 k≒〔45ε/(3π2δ0 2・Sp 2)〕×(L0/L) において、L0/Lで与えられる。ここに、εは空孔
率、δ0 はフィブリル径、Sp は多孔質体の固体のみの
単位体積当りの表面積(比表面積)、Lは見掛けの透過
距離(即ち、膜厚)、L0 は真の透過距離(即ち、貫通
経路の長さ)であり、Kozeny 定数kは、通常、5.0と
されている。
(Curve Ratio) The curvature ratio is obtained by the following Kozeny-Carman equation k ≒ [4 5 ε / (3π 2) relating to the relationship between the permeation rate of the fluid in the porous body and the porosity or specific surface area. δ 0 2 · Sp 2 )] × (L 0 / L), and is given by L 0 / L. Here, epsilon is porosity, [delta] 0 fibril diameter, S p is the surface area per unit volume solids only of the porous body (specific surface area), L the transmission distance of the apparent (i.e., film thickness), L 0 Is the true transmission distance (ie, the length of the penetration path), and the Kozeny constant k is usually set to 5.0.

【0040】実施例1 重量平均分子量200万の超高分子量ポリエチレン樹脂
(融点134℃)15重量%と流動パラフィン(凝固点
−15℃、40℃における動粘度59cst)85重量
%とをスラリー状に均一に混合し、これを小型ニーダに
仕込み、160℃の温度で約50分間、加熱し、溶解さ
せ、混練りして、超高分子量ポリエチレン樹脂と溶媒と
の混練り物を得た。この後、この混練り物を−15℃ま
で急冷しながら、厚み0.5mmのシートに成形して、超
高分子量ポリエチレン樹脂を結晶化させた。
Example 1 15% by weight of an ultrahigh molecular weight polyethylene resin having a weight average molecular weight of 2,000,000 (melting point: 134 ° C.) and 85% by weight of liquid paraffin (solidification point: −15 ° C., kinematic viscosity at 40 ° C .: 59 cst) were uniformly slurried. The mixture was charged in a small kneader, heated at a temperature of 160 ° C. for about 50 minutes, dissolved and kneaded to obtain a kneaded product of an ultrahigh molecular weight polyethylene resin and a solvent. Thereafter, the kneaded product was formed into a sheet having a thickness of 0.5 mm while being rapidly cooled to -15 ° C to crystallize the ultrahigh molecular weight polyethylene resin.

【0041】次いで、このシートを約115℃の温度で
縦横4×4倍に同時二軸延伸した後、塩化メチレンに浸
漬して脱溶媒した。このようにして得られた多孔質フイ
ルムを更に120℃で10秒間ヒートセットして、厚み
25μm、空孔率52%の多孔質フイルムを得た。
Then, the sheet was simultaneously biaxially stretched at a temperature of about 115 ° C. 4 × 4 times in length and width, and then immersed in methylene chloride to remove the solvent. The porous film thus obtained was further heat-set at 120 ° C. for 10 seconds to obtain a porous film having a thickness of 25 μm and a porosity of 52%.

【0042】実施例2 重量平均分子量200万の超高分子量ポリエチレン樹脂
(融点134℃)5重量%と重量平均分子量20万の高
密度ポリエチレン樹脂10重量%と流動パラフィン(凝
固点−15℃、40℃における動粘度59cst)85
重量%とをスラリー状に均一に混合し、これを小型ニー
ダーに仕込み、160℃の温度で約50分間、加熱し、
溶解させ、混練りして、超高分子量ポリエチレン樹脂と
高密度ポリエチレン樹脂と溶媒との混練り物を得た。こ
の後、この混練り物を−15℃まで急冷しながら、厚み
0.5mmのシートに成形して、超高分子量ポリエチレン
樹脂と高密度ポリエチレン樹脂とを結晶化させた。
Example 2 5% by weight of an ultrahigh molecular weight polyethylene resin having a weight average molecular weight of 2,000,000 (melting point 134 ° C.), 10% by weight of a high density polyethylene resin having a weight average molecular weight of 200,000 and liquid paraffin (solidification point −15 ° C., 40 ° C.) Kinematic viscosity at 59 cst) 85
% By weight and a slurry, and the mixture is charged into a small kneader and heated at a temperature of 160 ° C. for about 50 minutes.
The mixture was dissolved and kneaded to obtain a kneaded product of an ultrahigh molecular weight polyethylene resin, a high density polyethylene resin and a solvent. Then, while rapidly cooling the kneaded product to -15 ° C,
The sheet was molded into a 0.5 mm sheet, and the ultrahigh molecular weight polyethylene resin and the high density polyethylene resin were crystallized.

【0043】次いで、このシートを約115℃の温度で
縦横4×4倍に同時二軸延伸した後、塩化メチレンに浸
漬して脱溶媒した。このようにして得られた多孔質フイ
ルムを更に120℃で10秒間ヒートセットして、厚さ
30.6μm、空孔率53%の多孔質フイルムを得た。
Next, this sheet was simultaneously biaxially stretched at a temperature of about 115 ° C. by 4 × 4 times in length and width, and then immersed in methylene chloride to remove the solvent. The porous film thus obtained was further heat-set at 120 ° C. for 10 seconds to obtain a porous film having a thickness of 30.6 μm and a porosity of 53%.

【0044】実施例3 重量平均分子量200万の超高分子量ポリエチレン樹脂
(融点134℃)20重量%と流動パラフィン(凝固点
−15℃、40℃における動粘度59cst)80重量
%とをスラリー状に均一に混合し、これをL/D=42
の二軸押出機に仕込み、160℃の温度で約5分間、加
熱し、溶解させ、混練りして、超高分子量ポリエチレン
樹脂と溶媒との混練り物を得た。この後、この混練り物
を−15℃まで急冷しながら、厚み0.5mmのシートに
成形して、超高分子量ポリエチレン樹脂を結晶化させ
た。
Example 3 20% by weight of an ultrahigh molecular weight polyethylene resin having a weight average molecular weight of 2,000,000 (melting point: 134 ° C.) and 80% by weight of liquid paraffin (freezing point: −15 ° C., kinematic viscosity at 40 ° C .: 59 cst) are uniformly slurried. And L / D = 42
Was heated at a temperature of 160 ° C. for about 5 minutes, dissolved and kneaded to obtain a kneaded product of an ultrahigh molecular weight polyethylene resin and a solvent. Thereafter, the kneaded product was formed into a sheet having a thickness of 0.5 mm while being rapidly cooled to -15 ° C to crystallize the ultrahigh molecular weight polyethylene resin.

【0045】次いで、このシートを約115℃の温度で
縦横4×4倍に同時二軸延伸した後、塩化メチレンに浸
漬して脱溶媒した。このようにして得られた多孔質フイ
ルムを更に120℃で10秒間ヒートセットして、厚さ
20μm、空孔率43%の多孔質フイルムを得た。
Next, the sheet was simultaneously biaxially stretched at a temperature of about 115 ° C. 4 × 4 times vertically and horizontally, and then immersed in methylene chloride to remove the solvent. The porous film thus obtained was further heat-set at 120 ° C. for 10 seconds to obtain a porous film having a thickness of 20 μm and a porosity of 43%.

【0046】実施例4 重量平均分子量200万の超高分子量ポリエチレン樹脂
(融点134℃)15重量%と流動パラフィン(凝固点
−15℃、40℃における動粘度59cst)85重量
%とをスラリー状に均一に混合し、これを小型ニーダー
に仕込み、160℃の温度で約50分間、加熱し、溶解
させ、混練りして、超高分子量ポリエチレン樹脂と溶媒
との混練り物を得た。この後、この混練り物を−15℃
まで急冷しながら、厚み0.5mmのシートに成形して、
超高分子ポリエチレン量樹脂を結晶化させた。
Example 4 15% by weight of an ultrahigh molecular weight polyethylene resin having a weight average molecular weight of 2,000,000 (melting point: 134 ° C.) and 85% by weight of liquid paraffin (solidification point: −15 ° C., kinematic viscosity at 40 ° C .: 59 cst) were uniformly formed into a slurry. The mixture was charged into a small kneader, heated at a temperature of 160 ° C. for about 50 minutes, dissolved and kneaded to obtain a kneaded product of an ultrahigh molecular weight polyethylene resin and a solvent. Thereafter, the kneaded material is cooled to -15 ° C.
While cooling rapidly, it is molded into a 0.5mm thick sheet,
The ultra high molecular weight polyethylene resin was crystallized.

【0047】次いで、このシートを約115℃の温度で
縦横4×4倍に同時二軸延伸した後、塩化メチレンに浸
漬して脱溶媒した。このようにして得られた多孔質フイ
ルムを更に120℃で10秒間ヒートセットして、厚さ
23.8μm、空孔率54%の多孔質フイルムを得た。
Then, the sheet was simultaneously biaxially stretched 4 × 4 times at a temperature of about 115 ° C. and then immersed in methylene chloride to remove the solvent. The porous film thus obtained was further heat-set at 120 ° C. for 10 seconds to obtain a porous film having a thickness of 23.8 μm and a porosity of 54%.

【0048】比較例1 重量平均分子量20万の高密度ポリエチレン樹脂15重
量%と流動パラフィン(凝固点−15℃、40℃におけ
る動粘度59cst)85重量%とをスラリー状に均一
に混合し、これを小型ニーダーに仕込み、160℃の温
度で約50分間、加熱し、溶解させ、混練りして、上記
高密度ポリエチレン樹脂と溶媒との混練り物を得た。こ
の後、この混練り物を−15℃まで急冷しながら、厚み
0.5mmのシートに成形して、高密度ポリエチレン樹脂
を結晶化させた。
Comparative Example 1 15% by weight of a high-density polyethylene resin having a weight average molecular weight of 200,000 and 85% by weight of liquid paraffin (freezing point: -15 ° C., kinematic viscosity at 40 ° C .: 59 cst) were uniformly mixed in a slurry form. The mixture was charged in a small kneader, heated at a temperature of 160 ° C. for about 50 minutes, dissolved, and kneaded to obtain a kneaded product of the high-density polyethylene resin and a solvent. Then, while rapidly cooling the kneaded product to -15 ° C,
It was formed into a 0.5 mm sheet to crystallize the high-density polyethylene resin.

【0049】次いで、このシートを約115℃の温度で
縦横4×4倍に同時二軸延伸した後、塩化メチレンに浸
漬して脱溶媒した。このようにして得られた多孔質フイ
ルムを更に120℃で10秒間ヒートセットして、厚さ
16.2μm、空孔率50%の多孔質フイルムを得た。
Next, the sheet was simultaneously biaxially stretched at a temperature of about 115 ° C. 4 × 4 times in length and width, and then immersed in methylene chloride to remove the solvent. The porous film thus obtained was further heat-set at 120 ° C. for 10 seconds to obtain a porous film having a thickness of 16.2 μm and a porosity of 50%.

【0050】比較例2 重量平均分子量200万の超高分子量ポリエチレン樹脂
(融点134℃)5重量%と重量平均分子量20万の高
密度ポリエチレン樹脂10重量%と流動パラフィン(凝
固点−15℃、40℃における動粘度59cst)85
重量%とをスラリー状に均一に混合し、これをフラスコ
中、200〜230℃の温度で加熱攪拌し、溶解させ、
約90分間、へらを用いて混練りして、超高分子量ポリ
オレフィン樹脂と高密度ポリエチレン樹脂と溶媒との混
練り物を得た。この後、この混練り物を−15℃まで急
冷しながら、厚み0.5mmのシートに成形して、超高分
子ポリエチレン樹脂と高密度ポリエチレン樹脂を結晶化
させた。
Comparative Example 2 5% by weight of an ultrahigh molecular weight polyethylene resin having a weight average molecular weight of 2,000,000 (melting point 134 ° C.), 10% by weight of a high density polyethylene resin having a weight average molecular weight of 200,000 and liquid paraffin (solidification point −15 ° C., 40 ° C.) Kinematic viscosity at 59 cst) 85
% By weight and uniformly mixed in a slurry, and the mixture was heated and stirred in a flask at a temperature of 200 to 230 ° C. to dissolve it.
The mixture was kneaded with a spatula for about 90 minutes to obtain a kneaded product of an ultrahigh molecular weight polyolefin resin, a high-density polyethylene resin and a solvent. Thereafter, the kneaded product was formed into a sheet having a thickness of 0.5 mm while being rapidly cooled to −15 ° C. to crystallize the ultrahigh molecular weight polyethylene resin and the high density polyethylene resin.

【0051】次いで、このシートを約115℃の温度で
縦横4×4倍に同時二軸延伸した後、塩化メチレンに浸
漬して脱溶媒した。このようにして得られた多孔質フイ
ルムを更に120℃で10秒間ヒートセットして、厚さ
19μm、空孔率28%の多孔質フイルムを得た。
Next, this sheet was simultaneously biaxially stretched at a temperature of about 115 ° C. 4 × 4 times in length and width, and then immersed in methylene chloride to remove the solvent. The porous film thus obtained was further heat-set at 120 ° C. for 10 seconds to obtain a porous film having a thickness of 19 μm and a porosity of 28%.

【0052】比較例3 重量平均分子量200万の超高分子量ポリエチレン樹脂
(融点134℃)15重量%と流動パラフィン(凝固点
−15℃、40℃における動粘度59cst)85重量
%とをスラリー状に均一に混合し、これを小型ニーダー
に仕込み、160℃の温度で約50分間、加熱し、溶解
させ、混練りして、上記超高分子ポリエチレン樹脂と溶
媒との混練り物を得た。この後、この混練り物を10℃
に水冷保持した2枚の金属板の間に挟み、加圧して、厚
み0.5mmのシートに成形して、上記超高分子ポリエチ
レン樹脂を結晶化させた。
Comparative Example 3 15% by weight of an ultra-high molecular weight polyethylene resin having a weight average molecular weight of 2,000,000 (melting point: 134 ° C.) and 85% by weight of liquid paraffin (solidification point: −15 ° C., kinematic viscosity at 40 ° C .: 59 cst) were uniformly slurried. The mixture was charged into a small kneader, heated at a temperature of 160 ° C. for about 50 minutes, dissolved, and kneaded to obtain a kneaded product of the ultrahigh molecular weight polyethylene resin and the solvent. Thereafter, the kneaded material is heated at 10 ° C.
The sheet was sandwiched between two metal plates kept under water cooling and pressed to form a sheet having a thickness of 0.5 mm to crystallize the ultrahigh molecular weight polyethylene resin.

【0053】次いで、このシートを約115℃の温度で
縦横4×4倍に同時二軸延伸した後、塩化メチレンに浸
漬して脱溶媒した。このようにして得られた多孔質フイ
ルムを更に120℃で10秒間ヒートセットして、厚さ
25μm、空孔率52%の多孔質フイルムを得た。
Next, the sheet was simultaneously biaxially stretched 4 × 4 times at a temperature of about 115 ° C. and then immersed in methylene chloride to remove the solvent. The porous film thus obtained was further heat-set at 120 ° C. for 10 seconds to obtain a porous film having a thickness of 25 μm and a porosity of 52%.

【0054】上記実施例1〜4と比較例1〜3で得られ
た多孔質フィルムと市販品の多孔質フィルムの特性を表
1及び表2に示す。
Tables 1 and 2 show the characteristics of the porous films obtained in Examples 1 to 4 and Comparative Examples 1 to 3 and the commercially available porous films.

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【表2】 [Table 2]

【0057】[0057]

【発明の効果】以上のように、本発明による多孔質フィ
ルムは、高強度を有すると共に、BET比表面積が10
0m2 /g以上、BJH法で測定した細孔容積が0.5c
3 /g以上、更に、BJH法で測定した平均孔径が0.
03μm以下、最大孔径が0.1μm以下である貫通孔を
有し、三次元網状構造を構成するフィブリルの平均径が
0.01〜0.1μm、最大径が0.2μm以下、平均曲路率
が2.5倍を越えて、10倍以下である。
As described above, the porous film according to the present invention has high strength and a BET specific surface area of 10
0 m 2 / g or more, the pore volume measured by the BJH method is 0.5 c
m 3 / g or more, and the average pore size measured by the BJH method is 0.
Having a through-hole having a maximum pore diameter of not more than 0.3 μm, and having an average diameter of fibrils constituting a three-dimensional network structure.
0.01 to 0.1 μm, the maximum diameter is 0.2 μm or less, and the average curvature is more than 2.5 times and 10 times or less.

【0058】このように、本発明による多孔質フィルム
は、三次元網状構造を形成するフィブリルが微細均一で
あり、従って、貫通孔が微細均一であるので、平均曲路
率が大きいにもかかわらず、イオン透過性にすぐれ、更
に、高速充放電特性にすぐれるので、例えば、電気自動
車用バッテリーのセパレータとして好適に用いることが
できる。
As described above, in the porous film according to the present invention, the fibrils forming the three-dimensional network structure are finely uniform, and the through holes are finely uniform. Since it has excellent ion permeability and high speed charge / discharge characteristics, it can be suitably used, for example, as a separator of a battery for an electric vehicle.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08L 23:04 (72)発明者 能見 俊祐 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内 (72)発明者 藤田 茂 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内 (72)発明者 岸井 豊 大阪府茨木市下穂積1丁目1番2号 日東 電工株式会社内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI C08L 23:04 (72) Inventor Shunsuke 1-2-1, Shimohozumi, Ibaraki-shi, Osaka Nitto Denko Corporation (72) Invention Person: Shigeru Fujita 1-2-1, Shimohozumi, Ibaraki-shi, Osaka Nitto Denko Corporation (72) Inventor Yutaka Kishi 1-2-1, Shimohozumi, Ibaraki-shi, Osaka Nitto Denko Corporation

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】重量平均分子量が5×105 以上の超高分
子量ポリオレフィン樹脂か、又はこの超高分子量ポリオ
レフィン樹脂を少なくとも15重量%と重量平均分子量
が5×105 未満のポリオレフィン樹脂とからなる超高
分子量ポリオレフィン樹脂組成物からなり、比表面積が
100m2 /g以上、細孔容積が0.5cm3 /g以上、
貫通孔の平均孔径が0.03μm以下、最大孔径が0.1μ
m以下であり、三次元網状構造を構成するフィブリルの
平均径が0.01〜0.1μm、最大径が0.2μm以下、平
均曲路率が2.5倍を越えて、10倍以下であることを特
徴とする多孔質フイルム。
1. An ultrahigh molecular weight polyolefin resin having a weight average molecular weight of 5 × 10 5 or more, or a polyolefin resin having at least 15% by weight of the ultrahigh molecular weight polyolefin resin and a weight average molecular weight of less than 5 × 10 5. It is composed of an ultra-high molecular weight polyolefin resin composition, has a specific surface area of 100 m 2 / g or more, a pore volume of 0.5 cm 3 / g or more,
The average pore diameter of the through holes is 0.03 μm or less, and the maximum pore diameter is 0.1 μm
m, the average diameter of the fibrils constituting the three-dimensional network structure is 0.01 to 0.1 μm, the maximum diameter is 0.2 μm or less, and the average curvature is more than 2.5 times and 10 times or less. A porous film characterized by the following.
【請求項2】超高分子量ポリオレフィン樹脂が重量平均
分子量1×106 〜15×106 の超高分子量ポリエチ
レン樹脂である請求項1に記載の多孔質フィルム。
2. The porous film according to claim 1, wherein the ultrahigh molecular weight polyolefin resin is an ultrahigh molecular weight polyethylene resin having a weight average molecular weight of 1 × 10 6 to 15 × 10 6 .
【請求項3】重量平均分子量が5×105 未満のポリオ
レフィン樹脂が重量平均分子量が3×105 以下の高密
度ポリエチレン樹脂である請求項1に記載の多孔質フィ
ルム。
3. The porous film according to claim 1, wherein the polyolefin resin having a weight average molecular weight of less than 5 × 10 5 is a high density polyethylene resin having a weight average molecular weight of 3 × 10 5 or less.
【請求項4】フィブリルの平均径が0.01〜0.05μ
m、最大径が0.1μm以下である請求項1に記載の多孔
質フィルム。
4. The fibril has an average diameter of 0.01 to 0.05 μm.
The porous film according to claim 1, wherein m and the maximum diameter are 0.1 µm or less.
【請求項5】平均曲路率が3.5〜6.0倍である請求項1
に記載の多孔質フイルム。
5. The method according to claim 1, wherein the average curvature is 3.5 to 6.0 times.
The porous film according to the above.
【請求項6】請求項1から5のいずれかに記載の多孔質
フイルムからなる電池用セパレータ。
6. A battery separator comprising the porous film according to claim 1.
【請求項7】重量平均分子量が5×105 以上の超高分
子量ポリオレフィン樹脂か、又はこの超高分子量ポリオ
レフィン樹脂を少なくとも15重量%と重量平均分子量
が3×105 以下のポリオレフィン樹脂とからなる超高
分子量ポリオレフィン樹脂組成物5〜30重量%と凝固
点が−10℃以下である溶媒95〜70重量%とからな
る混合物を加熱し、上記超高分子量ポリオレフィン樹脂
又はその組成物を上記溶媒中に溶解させ、この混合物を
115〜185℃の範囲の温度に混練りし、次いで、得
られた混練り物を用いた溶媒の凝固点以下の温度まで冷
却しながら、ゲル状シートに成形して、上記超高分子量
ポリオレフィン樹脂を結晶化させ、次いで、上記超高分
子量ポリオレフィン樹脂の融点をMとするとき、上記ゲ
ル状シートを(M+5)℃から(M−30)℃の範囲の
温度にて二軸延伸し、次いで、得られた延伸フィルムを
脱溶媒処理することを特徴とする請求項1記載の多孔質
フイルムの製造方法。
7. An ultrahigh molecular weight polyolefin resin having a weight average molecular weight of 5 × 10 5 or more, or a polyolefin resin having at least 15% by weight of the ultrahigh molecular weight polyolefin resin and a weight average molecular weight of 3 × 10 5 or less. A mixture of 5 to 30% by weight of the ultra-high-molecular-weight polyolefin resin composition and 95 to 70% by weight of a solvent having a freezing point of -10 ° C or lower is heated, and the ultra-high-molecular-weight polyolefin resin or the composition is placed in the solvent. This mixture is kneaded at a temperature in the range of 115 to 185 ° C., and then, while cooling to a temperature below the freezing point of the solvent using the obtained kneaded product, the mixture is formed into a gel-like sheet, When the high-molecular-weight polyolefin resin is crystallized and the melting point of the ultra-high-molecular-weight polyolefin resin is M, the gel-like sheet is (M + ) Biaxially oriented from ° C. at (M-30) ° C. in the range of temperature, then the resulting production method of a porous film of claim 1 wherein the stretched film, characterized in that desolvation process.
【請求項8】超高分子量ポリオレフィン樹脂が重量平均
分子量1×106 〜15×106 の超高分子量ポリエチ
レン樹脂である請求項7に記載の多孔質フィルムの製造
方法。
8. The method according to claim 7, wherein the ultrahigh molecular weight polyolefin resin is an ultrahigh molecular weight polyethylene resin having a weight average molecular weight of 1 × 10 6 to 15 × 10 6 .
【請求項9】重量平均分子量が3×105 以下のポリオ
レフィン樹脂が高密度ポリエチレン樹脂である請求項7
に記載の多孔質フィルムの製造方法。
9. The polyolefin resin having a weight average molecular weight of 3 × 10 5 or less is a high density polyethylene resin.
3. The method for producing a porous film according to item 1.
【請求項10】溶媒が流動パラフィンである請求項7に
記載の多孔質フィルムの製造方法。
10. The method for producing a porous film according to claim 7, wherein the solvent is liquid paraffin.
【請求項11】ゲル状シートをM℃から(M−25)℃
の範囲の温度で延伸する請求項7に記載の多孔質フィル
ムの製造方法。
11. The gel-like sheet is heated from M ° C. to (M-25) ° C.
The method for producing a porous film according to claim 7, wherein the film is stretched at a temperature in the range of:
【請求項12】ゲル状シートから延伸フィルムへの延伸
倍率が面積倍率にて9〜1024倍の範囲である請求項
7又は11に記載の多孔質フィルムの製造方法。
12. The method for producing a porous film according to claim 7, wherein the stretch ratio from the gel sheet to the stretched film is in the range of 9 to 1024 times in area ratio.
【請求項13】延伸フィルムを脱溶媒処理した後、ヒー
トセツトする請求項7、11又は12記載の多孔質フイ
ルムの製造方法。
13. The method for producing a porous film according to claim 7, wherein the stretched film is subjected to a desolvation treatment and then heat set.
【請求項14】溶媒が−10℃から−45℃の範囲の凝
固点を有する請求項7に記載の多孔質フイルムの製造方
法。
14. The method for producing a porous film according to claim 7, wherein the solvent has a freezing point in a range of -10 ° C. to -45 ° C.
【請求項15】混練り物を−10℃から−45℃の範囲
の温度に冷却する請求項7に記載の多孔質フイルムの製
造方法。
15. The method for producing a porous film according to claim 7, wherein the kneaded material is cooled to a temperature in a range of -10 ° C to -45 ° C.
JP10135748A 1998-05-18 1998-05-18 Porous film, its preparation and use thereof Pending JPH11322988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10135748A JPH11322988A (en) 1998-05-18 1998-05-18 Porous film, its preparation and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10135748A JPH11322988A (en) 1998-05-18 1998-05-18 Porous film, its preparation and use thereof

Publications (1)

Publication Number Publication Date
JPH11322988A true JPH11322988A (en) 1999-11-26

Family

ID=15158956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10135748A Pending JPH11322988A (en) 1998-05-18 1998-05-18 Porous film, its preparation and use thereof

Country Status (1)

Country Link
JP (1) JPH11322988A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260626A (en) * 2001-03-05 2002-09-13 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2002367590A (en) * 2001-06-11 2002-12-20 Nitto Denko Corp Porous film
WO2011118660A1 (en) * 2010-03-23 2011-09-29 帝人株式会社 Microporous polyolefin film, separator for non-aqueous secondary battery, non-aqueous secondary battery, and process for production of microporous polyolefin film
JP2012064556A (en) * 2010-08-18 2012-03-29 Sekisui Chem Co Ltd Propylene resin micropore film, battery separator, battery and method of manufacturing propylene resin micropore film
WO2014034448A1 (en) * 2012-08-29 2014-03-06 国立大学法人群馬大学 Method for manufacturing polyethylene porous film and polyethylene porous film
WO2017057335A1 (en) * 2015-09-29 2017-04-06 ニッポン高度紙工業株式会社 Separator for electrochemical device and electrochemical device
JP2018049828A (en) * 2014-10-31 2018-03-29 株式会社東芝 Positive electrode
WO2020067032A1 (en) * 2018-09-26 2020-04-02 株式会社Gsユアサ Lead acid battery
JPWO2020203908A1 (en) * 2019-03-29 2020-10-08
WO2021015269A1 (en) * 2019-07-25 2021-01-28 東レ株式会社 Microporous polyolefin membrane and separator for nonaqueous electrolyte secondary batteries

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002260626A (en) * 2001-03-05 2002-09-13 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2002367590A (en) * 2001-06-11 2002-12-20 Nitto Denko Corp Porous film
WO2011118660A1 (en) * 2010-03-23 2011-09-29 帝人株式会社 Microporous polyolefin film, separator for non-aqueous secondary battery, non-aqueous secondary battery, and process for production of microporous polyolefin film
JP4920122B2 (en) * 2010-03-23 2012-04-18 帝人株式会社 Polyolefin microporous membrane, separator for nonaqueous secondary battery, nonaqueous secondary battery, and method for producing polyolefin microporous membrane
KR101251437B1 (en) * 2010-03-23 2013-04-05 데이진 가부시키가이샤 Microporous polyolefin film, separator for non-aqueous secondary battery, non-aqueous secondary battery, and process for production of microporous polyolefin film
US9680142B2 (en) 2010-03-23 2017-06-13 Teijin Limited Polyolefin microporous membrane, separator for non-aqueous secondary battery, non-aqueous secondary battery and method of producing polyolefin microporous membrane
JP2012064556A (en) * 2010-08-18 2012-03-29 Sekisui Chem Co Ltd Propylene resin micropore film, battery separator, battery and method of manufacturing propylene resin micropore film
WO2014034448A1 (en) * 2012-08-29 2014-03-06 国立大学法人群馬大学 Method for manufacturing polyethylene porous film and polyethylene porous film
JP2018049828A (en) * 2014-10-31 2018-03-29 株式会社東芝 Positive electrode
CN108140491A (en) * 2015-09-29 2018-06-08 日本高度纸工业株式会社 Electro chemical elements use separator and electrochemical element
WO2017057335A1 (en) * 2015-09-29 2017-04-06 ニッポン高度紙工業株式会社 Separator for electrochemical device and electrochemical device
JPWO2017057335A1 (en) * 2015-09-29 2018-07-19 ニッポン高度紙工業株式会社 Electrochemical element separator and electrochemical element
CN108140491B (en) * 2015-09-29 2020-04-10 日本高度纸工业株式会社 Separator for electrochemical element and electrochemical element
US10748713B2 (en) 2015-09-29 2020-08-18 Nippon Kodoshi Corporation Separator for electrochemical device and electrochemical device
WO2020067032A1 (en) * 2018-09-26 2020-04-02 株式会社Gsユアサ Lead acid battery
JPWO2020067032A1 (en) * 2018-09-26 2021-09-16 株式会社Gsユアサ Lead-acid battery
JPWO2020203908A1 (en) * 2019-03-29 2020-10-08
WO2020203908A1 (en) * 2019-03-29 2020-10-08 東レ株式会社 Microporous polyolefin film, separator for battery, and secondary battery
CN113631643A (en) * 2019-03-29 2021-11-09 东丽株式会社 Polyolefin microporous membrane, battery separator, and secondary battery
WO2021015269A1 (en) * 2019-07-25 2021-01-28 東レ株式会社 Microporous polyolefin membrane and separator for nonaqueous electrolyte secondary batteries

Similar Documents

Publication Publication Date Title
EP1947138B1 (en) Polyolefin microporous membrane, separator for battery using the membrane, and battery
KR101143106B1 (en) Microporous polymer membrane
EP2018406B1 (en) Microporous polyolefin membrane, its production method, battery separator and battery
EP1956041B1 (en) Microporous polyolefin membrane, process for producing the same, separator for cell, and cell
KR101174995B1 (en) Microporous membranes and methods for making and using such membranes
US8414663B2 (en) Microporous polyolefin membrane comprising a polyethlene resin having a specific viscoelastic angular frequency, its production method, battery separator and battery comprising the same
EP1956040B1 (en) Microporous polyolefin membrane, process for producing the same, separator for cell, and cell
US8715849B2 (en) Microporous polymer membrane
EP1911795A1 (en) Polyethylene microporous membrane, process for production thereof, and battery separator
JPH11322988A (en) Porous film, its preparation and use thereof
JP4612182B2 (en) Porous film, production method thereof and use thereof
JP4008516B2 (en) Polyolefin porous membrane, method for producing the same, and battery separator using the same
JP2000109586A (en) Production of porous film
JP2000072908A (en) Porous film and its production and use
JP2002047372A (en) Porous film and method of preparing the same and battery using the same
JP4312302B2 (en) Method for producing porous film
JP4101962B2 (en) Method for producing porous film
JP4998967B2 (en) Porous film
JP4181677B2 (en) Porous film and method for producing the same
JP2000044709A (en) Production of porous film
JP4092029B2 (en) Method for producing porous film
EP2111909A1 (en) Microporous Polyolefin Membrane And Manufacturing Method
JP4577857B2 (en) Method for producing porous film
JP2000219759A (en) Production of porous film
JP2002088189A (en) Method for producing porous film