JPH11319981A - Punching method for high silicon steel sheet - Google Patents
Punching method for high silicon steel sheetInfo
- Publication number
- JPH11319981A JPH11319981A JP11054961A JP5496199A JPH11319981A JP H11319981 A JPH11319981 A JP H11319981A JP 11054961 A JP11054961 A JP 11054961A JP 5496199 A JP5496199 A JP 5496199A JP H11319981 A JPH11319981 A JP H11319981A
- Authority
- JP
- Japan
- Prior art keywords
- punching
- tool
- steel sheet
- silicon steel
- high silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Punching Or Piercing (AREA)
- Manufacture Of Motors, Generators (AREA)
Abstract
(57)【要約】
【課題】 高珪素鋼板を特殊なプレス機等を用いること
なく常温で適切に打ち抜き加工し、且つ長い工具寿命を
確保する。
【解決手段】 Si:4.0〜7.0wt%の高珪素鋼
板の打ち抜き加工において、(1)クリアランスが被加工
鋼板の板厚の2〜10%であって且つコーナー部の曲率
半径Rが被加工鋼板の板厚以上である工具により打ち抜
き加工を行う、(2)順送り型により複数段の打ち抜き加
工を行うに際し、2段目以降の打ち抜き加工うちの少な
くとも1回の打ち抜き加工を、被加工鋼板の送り方向ま
たはこれと直交する方向で切刃に0.3〜1.5%の勾
配が付された工具を用いて行う、(3)可動ストリッパを
用いて被加工鋼板を拘束し、該可動ストリッパの荷重を
最大剪断荷重の25〜80%に制御する、(4)硬質相の
平均粒径が3μm以下の超硬合金製工具を用いて打ち抜
き加工を行う、(5)工具表面にTiCN、TiN、Ti
C、TiAlNの1種以上をコーティングした工具を用
いて打ち抜き加工を行う、のいずれかを行うことを特徴
とする。
(57) [Summary] [PROBLEMS] To appropriately punch a high silicon steel sheet at room temperature without using a special press or the like, and secure a long tool life. SOLUTION: When punching a high silicon steel sheet having a Si content of 4.0 to 7.0 wt%, (1) the clearance is 2 to 10% of the thickness of the steel sheet to be processed and the radius of curvature R of the corner portion is Punching with a tool that is greater than or equal to the thickness of the steel plate to be processed. (2) When performing multiple-stage punching with a progressive die, at least one punching process in the second and subsequent punching processes is performed. This is performed using a tool having a cutting edge having a gradient of 0.3 to 1.5% in a feed direction of the steel sheet or a direction perpendicular thereto, (3) restraining the steel sheet to be processed by using a movable stripper, The load on the movable stripper is controlled to 25 to 80% of the maximum shearing load. (4) Punching is performed using a cemented carbide tool having an average particle size of the hard phase of 3 μm or less. (5) TiCN on the tool surface , TiN, Ti
Punching using a tool coated with at least one of C and TiAlN.
Description
【0001】[0001]
【発明が属する分野】本発明は、Si含有量が4.0〜
7.0wt%の高珪素鋼板の打ち抜き加工方法に関す
る。FIELD OF THE INVENTION The present invention relates to the present invention, wherein the Si content is 4.0 to 4.0.
The present invention relates to a method for punching a 7.0 wt% high silicon steel sheet.
【0002】[0002]
【従来の技術】Si含有量が4wt%以上の高珪素鋼板
は固有抵抗が高く、高周波帯域において低鉄損特性を示
す。特に、Si含有量が6.5wt%付近では軟磁気特
性が最も良好になるため優れた鉄損特性を示す。しか
し、珪素鋼板はSi含有量が4wt%以上になると室温
で脆性を示すようになるため薄板に加工することが困難
であり、長い間実用材料として大量生産することができ
なかった。しかし近年、圧延法(例えば、特公平3−6
5001号等に示される製造技術)や浸珪法(例えば、
特公平5−49745号等に示される製造技術)による
薄板製造技術が開発され、板厚0.05mm〜0.5m
m程度の高珪素鋼板の製造が可能となった。2. Description of the Related Art A high silicon steel sheet having a Si content of 4 wt% or more has a high specific resistance and exhibits low iron loss characteristics in a high frequency band. In particular, when the Si content is around 6.5 wt%, the soft magnetic properties become the best, so that excellent iron loss properties are exhibited. However, silicon steel sheets become brittle at room temperature when the Si content is 4 wt% or more, so it is difficult to process them into thin plates, and mass production as a practical material for a long time has been impossible. However, in recent years, the rolling method (for example,
No. 5001) and siliconizing method (for example,
A thin plate manufacturing technology based on a manufacturing technology disclosed in Japanese Patent Publication No. 5-49745) has been developed and has a thickness of 0.05 mm to 0.5 m.
m high silicon steel sheets can be manufactured.
【0003】一方、高珪素鋼板をトランスやモータ等の
鉄心に組み立てる際には打ち抜き、剪断等の二次加工が
必要となるが、高珪素鋼板はこれらの二次加工性に乏し
いという問題がある。このような二次加工性の不足を補
うために、高珪素鋼板を温間で加工する方法が特開昭6
2−263827号で提案されているが、この方法は材
料を加熱するための工程や加工設備に加熱装置が必要で
あり、設備コストや製造コストが増大するという欠点が
ある。On the other hand, when assembling a high silicon steel sheet into an iron core such as a transformer or a motor, secondary working such as punching and shearing is required, but there is a problem that the high silicon steel sheet has poor secondary workability. . In order to compensate for such a lack of secondary workability, a method of warm working a high silicon steel sheet is disclosed in
Although this method is proposed in Japanese Patent Application Laid-Open No. 2-263827, this method requires a heating device in a process for heating the material and a processing facility, and has a disadvantage that the equipment cost and the manufacturing cost increase.
【0004】一方、素材そのものの加工性を向上させる
ことを目的とした提案もなされており、例えば、特開昭
62−270723号等では結晶粒径をコントロールす
ることにより加工性を高めることが、また、特開平6−
172940号等では粒界酸化を抑制することにより粒
界強度を高め加工性を向上させることが、それぞれ提案
されている。これらの提案のうち、特に後者による粒界
酸化を抑制した高珪素鋼板は、室温での剪断や曲げ加工
が可能である。On the other hand, proposals have been made for the purpose of improving the workability of the raw material itself. For example, Japanese Patent Application Laid-Open No. Sho 62-270723 discloses that the workability can be improved by controlling the crystal grain size. In addition, Japanese Unexamined Patent Publication No.
In 172940 and the like, it has been proposed to suppress grain boundary oxidation to increase grain boundary strength and improve workability. Among these proposals, in particular, a high silicon steel sheet in which grain boundary oxidation by the latter is suppressed can be sheared or bent at room temperature.
【0005】[0005]
【発明が解決しようとする課題】しかし、このように加
工性を向上させた高珪素鋼板であっても室温では脆性で
あり、打ち抜き加工は困難である。また、高珪素鋼板は
通常の珪素鋼板に比べて硬いため、打ち抜き工具の磨耗
速度が大きいという問題もある。また、高珪素鋼板のよ
うな難加工性材料を打ち抜く場合には、精密抜きなどの
特殊な打ち抜き法を採用することがあるが、このような
打ち抜き法はクリアランスが極端に小さいために工具寿
命が短く、また、特殊なプレス機や工具が必要であるた
め製造コストが増大するという問題がある。However, even high silicon steel sheets with improved workability as described above are brittle at room temperature and are difficult to punch. Further, since the high silicon steel sheet is harder than the normal silicon steel sheet, there is also a problem that the wear speed of the punching tool is high. Also, when punching difficult-to-work materials such as high silicon steel sheets, special punching methods such as precision punching may be adopted.However, such punching methods have extremely small clearances and thus have a long tool life. It is short and requires special presses and tools, which increases the production cost.
【0006】したがって本発明の目的は、特殊なプレス
機や工具を用いることなく、常温での適切な打ち抜きが
可能であり、且つ長い工具寿命を確保できる高珪素鋼板
の打ち抜き方法を提供することにある。SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for punching a high silicon steel sheet which can perform appropriate punching at room temperature without using a special press or tool and can secure a long tool life. is there.
【0007】[0007]
【課題を解決するための手段】高珪素鋼板を打ち抜く場
合に問題となるのは、打ち抜き回数が増えるにしたがっ
てバリ高さが増大したり割れや欠けの発生が増大して製
品不良率が上昇することである。本発明者らは、このよ
うなバリ高さの増大及び割れや欠けの発生率上昇の原因
について検討を行い、その結果、高珪素鋼板の打ち抜き
加工におけるバリ高さの増大及び割れや欠けの発生率の
上昇は、打ち抜き時に製品に導入される微小クラックの
量が打ち抜き回数が増えるにしたがって増加すること、
さらには、このクラック自体が打ち抜き回数の増加につ
れて大きくなっていくことが原因であることを突き止め
た。さらに、微小クラックは製品のある特定の箇所に集
中しており、このように微小クラックが発生しやすい箇
所では特に工具磨耗が進行しやすく、且つこのような工
具磨耗が進行した場合には微小クラックがより発生しや
すくなるという事実を見い出した。The problem when punching a high silicon steel sheet is that, as the number of times of punching increases, the burr height increases, cracks and chippings increase, and the product defect rate increases. That is. The present inventors have studied the causes of such an increase in burr height and the occurrence rate of cracks and chips, and as a result, increased burr height and occurrence of cracks and chips in punching of high silicon steel sheets. The increase in the rate is that the amount of micro cracks introduced into the product at the time of punching increases as the number of punches increases,
Further, the inventors have found that the cause is that the crack itself becomes larger as the number of times of punching increases. Further, the minute cracks are concentrated at a specific place of the product. In such a place where the minute cracks easily occur, the tool wear is particularly easy to progress, and when such tool wear progresses, the minute cracks are generated. Have been found to be more likely to occur.
【0008】また、微小クラックが発生した際に微粉が
発生し、この微粉が研磨剤となって工具摩耗を進行させ
るとともに、微粉が工具表面に凝着し、クリアランスの
変動による打ち抜き不良の発生や工具の凝着摩耗を促進
させること、さらに、耐摩耗性を高めるために通常のハ
イス鋼やダイス鋼よりも硬い超硬合金を工具材質に選定
した場合には、工具摩耗の進行は遅いもののチッピング
が発生しやすく、工具寿命の延命化が図れないという事
実を見い出した。[0008] Further, when fine cracks occur, fine powder is generated, and the fine powder becomes an abrasive and causes tool wear to progress. At the same time, the fine powder adheres to the tool surface, and the occurrence of punching failure due to fluctuations in clearance and the like. If cemented carbide, which is harder than normal high-speed steel or die steel, is selected as the tool material to promote adhesive wear of the tool and to increase wear resistance, the tool wear progresses slowly but chipping occurs. Have been found to occur easily and the life of the tool cannot be extended.
【0009】そこで本発明者らは、上記のような微小ク
ラックの発生の低減と工具磨耗速度を小さくすること、
さらに微小クラックが発生してもこれを製品不良に進展
させないことが高珪素鋼板を打ち抜き加工するための最
適な方法であると考え、これを可能とするような打ち抜
き条件についてさらに詳細な検討を行った。Therefore, the present inventors have proposed to reduce the occurrence of minute cracks and reduce the tool wear rate as described above.
Furthermore, it is considered that the best method for punching high-silicon steel sheets is to prevent the occurrence of minute cracks as a product defect even if they occur, and the punching conditions that enable this are examined in more detail. Was.
【0010】その結果、被加工鋼板の板厚との関係で定
まるある特定の範囲のクリアランスとコーナー部曲率半
径Rを有する打ち抜き工具を用いて打ち抜き加工を行う
ことにより、微小クラックの発生と工具磨耗を極めて有
効に抑制できること、さらに、高珪素鋼板の打ち抜き加
工において広く採用されている順送り型による複数段の
打ち抜き加工を行なうに際し、2段目以降の打ち抜き加
工を切刃に所定の勾配が付された打ち抜き工具を用いて
行うことにより、発生した微小クラックが製品不良に進
展することを効果的に防止できることを見い出した。As a result, by using a punching tool having a specific range of clearance and a corner radius of curvature R determined by the relationship with the thickness of the steel plate to be processed, minute cracks are generated and tool wear is caused. In addition, when performing multiple-stage punching with a progressive die widely used in the punching of high silicon steel sheets, a predetermined gradient is applied to the cutting edge of the second and subsequent steps. It has been found that by using a punching tool, it is possible to effectively prevent the generated microcracks from developing into product defects.
【0011】また、可動ストリッパを用いて被加工鋼板
を拘束し、この可動ストリッパの荷重を最大剪断荷重と
の関係で定まる或る特定の範囲に設定することにより、
微小クラックの発生と工具摩耗を抑制できること、さら
に、硬質相の粒径を規定した超硬合金を工具材質に選定
することによって工具の摩耗及びチッピング発生が抑制
でき、工具寿命の延命化が図られることを見い出した。
また、打ち抜き工具の表面に或る特定組成の皮膜をコー
ティングすることによって、微小クラックの発生に伴っ
て微粉が発生しても工具表面への凝着が生じず、打ち抜
き不良発生の低減化及び工具寿命の延命化が図れること
を見い出した。Further, by restraining the steel plate to be processed by using the movable stripper and setting the load of the movable stripper to a specific range determined in relation to the maximum shear load,
The occurrence of micro cracks and tool wear can be suppressed, and further, by selecting a cemented carbide having a hard phase grain size as the tool material, tool wear and chipping can be suppressed, and the life of the tool can be extended. I found something.
In addition, by coating the surface of the punching tool with a film having a specific composition, even if fine powder is generated due to the generation of minute cracks, adhesion to the tool surface does not occur, reducing the occurrence of punching defects and reducing the tooling. It has been found that the life can be extended.
【0012】本発明はこのような知見に基づきなされた
もので、その特徴とする構成は以下の通りである。 [1] Si含有量が4.0〜7.0wt%の高珪素鋼板の
打ち抜き加工方法において、クリアランスが被加工鋼板
の板厚の2〜10%であって、且つコーナー部の曲率半
径Rが被加工鋼板の板厚以上である打ち抜き工具により
打ち抜き加工を行うことを特徴とする高珪素鋼板の打ち
抜き加工方法。The present invention has been made on the basis of such knowledge, and the characteristic configuration thereof is as follows. [1] In a punching method of a high silicon steel sheet having a Si content of 4.0 to 7.0 wt%, the clearance is 2 to 10% of the thickness of the steel sheet to be processed, and the curvature radius R of the corner portion is A method for punching a high silicon steel sheet, comprising punching with a punching tool having a thickness equal to or greater than the thickness of a steel sheet to be processed.
【0013】[2] Si含有量が4.0〜7.0wt%の
高珪素鋼板の打ち抜き加工方法において、順送り型によ
り複数段の打ち抜き加工を行うに際し、2段目以降の打
ち抜き加工のうちの少なくとも1回の打ち抜き加工を、
被加工鋼板の送り方向またはこれと直交する方向で切刃
に0.3〜1.5%の勾配が付された打ち抜き工具を用
いて行うことを特徴とする高珪素鋼板の打ち抜き加工方
法。[2] In a punching method of a high silicon steel sheet having a Si content of 4.0 to 7.0 wt%, when performing a plurality of steps of punching by a progressive die, the punching of the second and subsequent steps is performed. At least one punching process
A punching method for a high silicon steel sheet, wherein the cutting step is performed using a punching tool having a cutting edge with a gradient of 0.3 to 1.5% in a feed direction or a direction perpendicular to the feed direction of the steel sheet to be processed.
【0014】[3] Si含有量が4.0〜7.0wt%の
高珪素鋼板の打ち抜き加工方法において、可動ストリッ
パを用いて被加工鋼板を拘束し、該可動ストリッパの荷
重を最大剪断荷重の25〜80%に制御することを特徴
とする高珪素鋼板の打ち抜き加工方法。 [4] Si含有量が4.0〜7.0wt%の高珪素鋼板の
打ち抜き加工方法において、硬質相の平均粒径が3μm
以下の超硬合金製打ち抜き工具を用いて打ち抜き加工を
行うことを特徴とする高珪素鋼板の打ち抜き加工方法。[3] In a method of punching a high silicon steel sheet having a Si content of 4.0 to 7.0 wt%, a steel plate to be processed is restrained using a movable stripper, and the load of the movable stripper is reduced to a maximum shear load. A method for punching a high silicon steel sheet, wherein the method is controlled to 25 to 80%. [4] In a punching method for a high silicon steel sheet having a Si content of 4.0 to 7.0 wt%, the average particle size of the hard phase is 3 μm.
A punching method for a high silicon steel sheet, wherein the punching is performed using the following hard metal alloy punching tool.
【0015】[5] Si含有量が4.0〜7.0wt%の
高珪素鋼板の打ち抜き加工方法において、工具表面にT
iCN、TiN、TiC、TiAlNの中から選ばれる
1種以上をコーティングした打ち抜き工具を用いて打ち
抜き加工を行うことを特徴とする高珪素鋼板の打ち抜き
加工方法。[5] In a method for punching a high silicon steel sheet having a Si content of 4.0 to 7.0 wt%, T
A punching method for a high silicon steel sheet, comprising performing punching using a punching tool coated with at least one selected from iCN, TiN, TiC, and TiAlN.
【0016】[0016]
【発明の実施の形態】以下、本発明の詳細をその限定理
由とともに説明する。本発明の打ち抜き加工方法の対象
は、Si含有量が4.0〜7.0wt%の高珪素鋼板で
ある。鋼板のSi含有量が4.0wt%未満では打ち抜
き加工するのに特段の問題はなく、一方、Si含有量が
7.0wt%を超える高珪素鋼板は磁気特性が劣化する
ため対象外である。このような高珪素鋼板は圧延法、浸
珪法、超急冷法等のいずれの方法で製造されたものでも
よい。DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below together with the reasons for limiting the same. The object of the stamping method of the present invention is a high silicon steel sheet having a Si content of 4.0 to 7.0 wt%. If the Si content of the steel sheet is less than 4.0 wt%, there is no particular problem in punching, while a high silicon steel sheet having a Si content of more than 7.0 wt% is out of scope because its magnetic properties deteriorate. Such a high silicon steel sheet may be manufactured by any method such as a rolling method, a siliconizing method, and a super-quenching method.
【0017】まず、本発明による第一の打ち抜き加工方
法について説明する。この打ち抜き加工方法では、打ち
抜き工具のクリアランスが被加工鋼板の板厚の2〜10
%であることを必要とする。打ち抜き工具のクリアラン
スが被加工鋼板の板厚の2%未満では工具の磨耗速度が
大きく、工具の研磨頻度が増すため好ましくない。一
方、クリアランスが被加工鋼板の板厚の10%を超える
と、製品に微小クラックが導入されやすく、割れや欠け
が発生しやすくなる。また、工具の摩耗速度をより低減
させるためには、打ち抜き工具のクリアランスを被加工
鋼板の板厚の4%以上とすることが好ましい。First, the first stamping method according to the present invention will be described. In this punching method, the clearance of the punching tool is 2 to 10 times the thickness of the steel plate to be processed.
Need to be%. If the clearance of the punching tool is less than 2% of the thickness of the steel plate to be processed, the wear rate of the tool is high, and the frequency of polishing the tool is undesirably increased. On the other hand, when the clearance exceeds 10% of the thickness of the steel plate to be processed, minute cracks are easily introduced into the product, and cracks and chips are easily generated. Further, in order to further reduce the wear rate of the tool, it is preferable that the clearance of the punching tool is 4% or more of the thickness of the steel plate to be processed.
【0018】また、微小クラックの発生は製品のコーナ
ー部が最も多い。このためコーナー部でバリ高さの増大
速度が大きく、且つ製品の割れや欠けも発生しやすい。
また、工具のコーナー部は磨耗速度が特に大きい。日比
野らは工具のかどの丸みと工具寿命との関係を示してお
り(日比野、柴田、宮川、木下:“塑性と加工”5-46
(1964),p779)、これによれば工具コーナー部の曲率
半径R(以下、単に“コーナーR”という)が板厚の2
5%以下ではコーナーRが小さいほど磨耗速度が大き
く、一方、コーナーRが板厚の25%を超える範囲では
コーナーRと磨耗速度との間には相関がないとされてい
る。In addition, the occurrence of minute cracks is most likely at corners of the product. For this reason, the increase rate of the burr height is large at the corner portion, and the product is liable to crack or chip.
The wear rate is particularly high at the corners of the tool. Hibino et al. Have shown the relationship between tool roundness and tool life (Hibino, Shibata, Miyakawa, Kinoshita: “Plasticity and Machining” 5-46)
(1964), p779). According to this, the radius of curvature R of the tool corner portion (hereinafter simply referred to as “corner R”) is 2 mm of the plate thickness.
When the corner R is smaller than 5%, the wear rate increases as the corner R decreases. On the other hand, when the corner R exceeds 25% of the sheet thickness, there is no correlation between the corner R and the wear rate.
【0019】しかし、先に述べたように高珪素鋼板を打
ち抜く際に生じる工具の磨耗は微小クラックの発生と密
接な関係があり、本発明者らによる検討の結果では上記
の報告の結果とは異なり、工具のコーナーRを板厚と等
しいか若しくは板厚tよりも大きくする(好ましくは、
R/t≧1.5)ことによって顕著な磨耗低減効果が得
られることが判った。このため本発明の打ち抜き加工方
法では、上記クリアランスの規定に加えて、打ち抜き工
具のコーナーRが被加工鋼板の板厚以上であることを条
件とする。また、特に優れた摩耗低減効果を得るために
は、コーナーRが被加工鋼板の板厚の1.5倍以上であ
ることが好ましい。However, as described above, the wear of the tool when punching a high silicon steel sheet is closely related to the generation of micro cracks. Differently, the corner R of the tool is equal to the plate thickness or larger than the plate thickness t (preferably,
R / t ≧ 1.5), it was found that a remarkable wear reduction effect was obtained. For this reason, in the stamping method of the present invention, the corner R of the stamping tool must be equal to or greater than the thickness of the steel sheet to be processed, in addition to the above-mentioned clearance. In order to obtain a particularly excellent wear reduction effect, the corner R is preferably at least 1.5 times the thickness of the steel plate to be processed.
【0020】次に、本発明による第二の打ち抜き加工方
法について説明する。高珪素鋼板を複雑な形状の製品に
打ち抜く場合、通常は順送り型による複数段の打ち抜き
加工が行われる。上述したように高珪素鋼板の打ち抜き
に特有の問題として打ち抜いた際に発生する微小クラッ
クがあるが、順送り型による打ち抜き加工では、1段目
(1回目)の打ち抜きの際に鋼板に導入された微小クラ
ックが、2段目(2回目)以降の打ち抜きの際にその衝
撃や曲げ応力によって進展し、割れや欠けが発生する傾
向がある。Next, a second punching method according to the present invention will be described. When a high-silicon steel sheet is punched into a product having a complicated shape, a plurality of steps of punching using a progressive die are usually performed. As described above, there is a minute crack that occurs when punching a high silicon steel sheet as a problem peculiar to the punching. However, in the punching process using a progressive die, it is introduced into the steel sheet during the first (first) punching. The microcracks tend to develop due to the impact and bending stress at the time of the second (second) and subsequent punching, causing cracks and chips.
【0021】本発明者らによる検討の結果、このような
問題を防止するためには、2段目以降の打ち抜き加工を
被加工鋼板の送り方向またはこれと直交する方向で切刃
(パンチ)に所定の勾配を付けた打ち抜き工具を用いて
行い、加工の際の最大打ち抜き荷重を低減させることに
より、微小クラックの進展を防止して割れや欠けの発生
頻度を低減できることが判った。As a result of investigations by the present inventors, in order to prevent such a problem, the second and subsequent punching processes are performed on the cutting blade (punch) in the feed direction of the steel plate to be processed or in a direction perpendicular thereto. It has been found that by using a punching tool having a predetermined gradient and reducing the maximum punching load during processing, the development of minute cracks can be prevented and the frequency of occurrence of cracks and chips can be reduced.
【0022】上記切刃の勾配とは、被加工位置にある被
加工鋼板面を基準面とし、この基準面に対する切刃の勾
配(傾き)であり、この切刃の勾配は被加工鋼板の送り
方向(被加工鋼板長手方向)に沿って付けてもよいし、
これと直交する方向(被加工鋼板幅方向)に沿って付け
てもよい。但し、後述する実施例に示すように、被加工
鋼板の送り方向に勾配を付けた方がより効果的である。The gradient of the cutting edge is a gradient (inclination) of the cutting edge with respect to the surface of the steel plate at the processing position with respect to the reference surface. Direction (longitudinal direction of the steel plate to be processed)
You may attach along a direction (width direction of steel plate to be processed) orthogonal to this. However, as shown in the examples described later, it is more effective to provide a gradient in the feed direction of the steel plate to be processed.
【0023】図1の(A)、(B)は切刃(パンチ)に
勾配を付けた打ち抜き工具を用いた2段目以降の打ち抜
き加工の形態を示している。このうち図1(A)は切刃
に被加工鋼板Sの送り方向(鋼板長手方向)での勾配を
付けた工具により打ち抜き加工を行う場合を示してお
り、この場合には、鋼板はその長手方向でx1→x2の
順で切断される。また、図1(B)は切刃に被加工鋼板
Sの送り方向と直交する方向(鋼板幅方向)での勾配を
付けた工具により打ち抜き加工を行う場合を示してお
り、この場合には鋼板はその幅方向でy1→y2の順に
切断される。FIGS. 1A and 1B show a form of punching of the second and subsequent stages using a punching tool having a cutting edge (punch) with a gradient. FIG. 1A shows a case where the cutting edge is punched by a tool in which a cutting edge is provided with a gradient in the feed direction (the longitudinal direction of the steel sheet) of the steel sheet S to be processed. Are cut in the order of x 1 → x 2 in the direction. FIG. 1B shows a case where the cutting edge is punched by a tool having a gradient in a direction (steel plate width direction) perpendicular to the feed direction of the steel plate S to be processed. Are cut in the width direction in the order of y 1 → y 2 .
【0024】切刃に付される上記勾配は0.3〜1.5
%が適当である。この勾配が0.3%未満では打ち抜き
加工時の最大打ち抜き荷重を効果的に低減することがで
きず、一方、勾配が1.5%を超えると製品にかかる曲
げ応力が増大し、却って微小クラックが進展してしま
う。打ち抜き加工が3段以上にわたって行われる多段加
工の場合には、2段目以降の打ち抜き加工うちの少なく
とも1回の打ち抜き加工を、切刃に勾配が付けられた工
具で行うことにより割れや欠けの発生頻度を低減するこ
とができる。また、2段目以降の全ての打ち抜き加工を
切刃に勾配が付けられた工具で行うことにより、割れや
欠けの発生頻度をより効果的に低減することが可能とな
る。The gradient applied to the cutting blade is 0.3 to 1.5.
% Is appropriate. If the gradient is less than 0.3%, the maximum punching load at the time of punching cannot be reduced effectively. On the other hand, if the gradient exceeds 1.5%, the bending stress applied to the product increases, and on the contrary, the minute cracks Will evolve. In the case of multi-stage machining in which the punching is performed over three or more stages, at least one of the punching processes of the second and subsequent stages is performed with a tool having a sloped cutting edge to thereby prevent cracking and chipping. The frequency of occurrence can be reduced. In addition, by performing all the punching processes of the second and subsequent stages with a tool having a sloped cutting edge, it is possible to more effectively reduce the frequency of occurrence of cracks and chips.
【0025】次に、本発明による第三の打ち抜き加工方
法について説明する。この打ち抜き加工方法では、被加
工鋼板の拘束に可動ストリッパを用い、その荷重(以
下、「板押さえ力」という)を最大剪断荷重の25〜8
0%とすることを必要とする。打ち抜き加工に可動スト
リッパを用いた場合、剪断時の鋼板のはね上がりを抑制
できるため工具の摩耗低減効果があるが、その板押さえ
力は最大剪断荷重の10%程度あればよいとされてい
る。しかし、高珪素鋼板を打ち抜く場合には、微小クラ
ックの発生が問題となるため、微小クラックの発生を抑
制して工具の摩耗速度を低減するために、板押さえ力が
最大剪断荷重の25%以上であることが必要である。ま
た、板押さえ力が大き過ぎる場合には、板押さえ力によ
って被加工鋼板にクラックが発生するため、板押え力は
最大剪断荷重の80%以下とする。Next, a third punching method according to the present invention will be described. In this punching method, a movable stripper is used to restrain a steel plate to be processed, and its load (hereinafter referred to as “plate holding force”) is reduced to a maximum shear load of 25 to 8.
0% is required. When a movable stripper is used for the punching process, it is possible to suppress the springing of the steel plate at the time of shearing, thereby reducing the wear of the tool. However, it is said that the plate holding force only needs to be about 10% of the maximum shearing load. However, when punching a high silicon steel sheet, the occurrence of micro cracks becomes a problem. Therefore, in order to suppress the generation of micro cracks and reduce the wear rate of the tool, the plate holding force is 25% or more of the maximum shear load. It is necessary to be. If the plate holding force is too large, cracks occur in the steel plate to be processed due to the plate holding force.
【0026】次に、本発明による第四の打ち抜き加工方
法について説明する。この打ち抜き加工方法では、WC
等を主成分とした硬質相の平均粒径が3μm以下の超硬
合金製打ち抜き工具(例えば、JIS B 4053で規
定される超硬合金製工具)を用いることを必要とする。
高珪素鋼板はビッカーズ硬度が400程度であり非常に
硬いため、工具材質にダイス鋼やハイス鋼を用いた場合
には摩耗速度が大きい。一方、通常の超硬合金製工具を
用いた場合には、摩耗速度は小さいものの、チッピング
が発生しやすく工具寿命が短くなってしまう。摩耗速度
が小さく且つチッピングを発生させずに高珪素鋼板を打
ち抜くためには、硬質相の平均粒径が3μm以下の超硬
合金製打ち抜き工具を用いることが必要である。さらに
好ましくは、硬質相の平均粒径が1μm以下の超硬合金
製打ち抜き工具を用いればよい。Next, a fourth punching method according to the present invention will be described. In this punching method, WC
It is necessary to use a hard-metal-punching tool (for example, a hard-metal alloy tool specified in JIS B 4053) in which the average particle size of the hard phase mainly composed of, for example, 3 μm or less.
Since the high silicon steel sheet has a Vickers hardness of about 400 and is extremely hard, when a die steel or high-speed steel is used as a tool material, the wear rate is high. On the other hand, when a normal cemented carbide tool is used, although the wear rate is low, chipping easily occurs and the tool life is shortened. In order to punch a high silicon steel sheet at a low wear rate and without chipping, it is necessary to use a hard metal stamping tool having a hard phase having an average particle size of 3 μm or less. More preferably, a stamping tool made of a cemented carbide having an average particle size of the hard phase of 1 μm or less may be used.
【0027】次に、本発明による第五の打ち抜き加工方
法について説明する。この打ち抜き加工方法では、工具
表面にTiCN、TiN、TiC、TiAlNの中から
選ばれる1種以上をコーティングした打ち抜き工具を用
いることを必要とする。高珪素鋼板は打ち抜き時に微小
クラックを発生し易いため、同時に発生する微粉が工具
表面に付着しやすく、一般の鋼板に比べて凝着が生じや
すい。このような凝着が生じた場合には、クリアランス
変動による打ち抜き不良の発生や工具の凝着摩耗及び凝
着起因のクラック発生が促進される。しかし、工具の表
面にTiCN、TiN、TiC、TiAlNのうちの1
種以上をコーティングすることによって、微粉が発生し
ても凝着を生じさせず、工具寿命を延命化することが可
能となる。コーティング厚は特に規定しないが、耐摩耗
性や膜の均一性等の観点から0.5μm以上とすること
が望ましく、また、耐剥離性やクリアランスへの影響を
小さくする観点から5μm以下であることが望ましい。Next, a fifth punching method according to the present invention will be described. In this punching method, it is necessary to use a punching tool having a tool surface coated with at least one selected from TiCN, TiN, TiC, and TiAlN. Since high-silicon steel sheets are liable to generate minute cracks during punching, fine powder generated at the same time tends to adhere to the tool surface, and adhesion is more likely to occur than in general steel sheets. When such adhesion occurs, occurrence of punching failure due to clearance fluctuation, adhesion wear of the tool, and generation of cracks due to adhesion are promoted. However, one of TiCN, TiN, TiC and TiAlN is formed on the surface of the tool.
By coating the seeds or more, even if fine powder is generated, no adhesion occurs, and the tool life can be extended. The coating thickness is not particularly limited, but is preferably 0.5 μm or more from the viewpoint of abrasion resistance and film uniformity, and is 5 μm or less from the viewpoint of reducing the influence on peeling resistance and clearance. Is desirable.
【0028】本発明では、上述した第一ないし第五の各
方法単独でも十分な効果が得られるが、任意の2つ以上
の方法を組み合せることにより、さらに優れた効果、特
に工具寿命の延命化を図ることができる。また、本発明
の効果は、工具寿命を延長させるための他の対策、例え
ば極圧添加剤を含む潤滑油の使用等を採用した場合でも
当然に得られ、これらと併用することによりさらなる工
具寿命の延命化が図れる。また、順送り型で打ち抜き加
工を行う場合、1段目(1回目)の打ち抜き加工を行う
打ち抜き工具についても、消音等の目的で上記と同様の
勾配を付けても構わない。In the present invention, sufficient effects can be obtained by the above first to fifth methods alone, but by combining any two or more methods, more excellent effects, especially prolongation of tool life, can be obtained. Can be achieved. Further, the effect of the present invention can be naturally obtained even when other measures for extending the tool life, such as the use of a lubricating oil containing an extreme pressure additive, are employed. Life can be extended. Further, in the case of performing the punching process by the progressive feed die, the same gradient as described above may be applied to the punching tool for performing the first-stage (first) punching process for the purpose of silencing or the like.
【0029】[0029]
【実施例】[実施例1]Si含有量が6.5wt%の高
珪素鋼板(板厚0.3mm)に対して、ダイス鋼で作製
し且つ表面処理を行っていない打ち抜き工具を用いて5
mm角の角穴打ち抜き試験を行った。工具は8本準備
し、各々クリアランスを変えた。また、パンチの4つの
コーナーRと板厚tとの比R/tをそれぞれ0.25、
0.5、1.0、1.5に設定した。工具の概要を図2
に示す。また、被加工鋼板の拘束は固定ストリッパを用
いて行った。プレス機は30tonC型プレスを用い、
無潤滑で200spmの速度で打ち抜き加工を行った。[Example 1] A high silicon steel sheet having a Si content of 6.5 wt% (thickness: 0.3 mm) was prepared by using a punching tool made of die steel and not subjected to surface treatment.
A square hole punching test of mm square was performed. Eight tools were prepared, and the clearance was changed for each. The ratio R / t between the four corners R of the punch and the plate thickness t is 0.25, respectively.
0.5, 1.0, and 1.5 were set. Figure 2 shows an overview of the tool
Shown in The steel plate to be processed was restrained by using a fixed stripper. The press machine uses a 30 ton C type press,
Punching was performed at a speed of 200 spm without lubrication.
【0030】打ち始め(打ち抜き加工初期)の各コーナ
ー部と直片部でのバリ高さと工具のクリアランスとの関
係を図3に示す。一般にバリ高さは20μm以下で合格
とされているが、図3によれば工具のクリアランスが板
厚の2〜10%の場合に打ち抜き始めのバリ高さが小さ
く、良好な打ち抜き加工が可能であることが判る。ま
た、クリアランスが板厚の4〜8%の場合に特に良好な
打ち抜き加工が可能であることも判る。このような結果
が得られるのは、被加工鋼板の板厚に対してクリアラン
スが小さすぎる場合には、2次剪断の影響で微小クラッ
クが発生することによりバリ高さが大きくなり、一方、
クリアランスが大きすぎる場合には鋼板に曲げ応力が強
く働くため微小クラックが発生し、この結果バリ高さが
大きくなるためである考えられる。FIG. 3 shows the relationship between the burr height and the tool clearance at each corner and straight piece at the start of punching (early stage of punching). Generally, a burr height of 20 μm or less is accepted, but according to FIG. 3, when the clearance of the tool is 2 to 10% of the plate thickness, the burr height at the start of punching is small, and good punching can be performed. It turns out there is. It can also be seen that particularly good punching is possible when the clearance is 4 to 8% of the plate thickness. Such a result is obtained because, when the clearance is too small with respect to the thickness of the steel plate to be processed, a small crack is generated due to the influence of the secondary shear, so that the burr height is increased.
If the clearance is too large, a bending stress acts strongly on the steel sheet, so that minute cracks are generated, and as a result, the burr height is increased.
【0031】また、バリ高さが50μmまで増大した時
の打ち抜き回数と工具のクリアランス及びコーナーR/
板厚との関係を図4に示す。上記のように打ち始めのバ
リ高さは工具のクリアランスで決まるが、図4に示され
るように工具寿命は工具のクリアランスとコーナーRに
大きく影響され、クリアランスが板厚の2%以上でコー
ナーRが板厚と等しいか若しくは板厚よりも大きい場合
に工具寿命が顕著に延命化されることが判る。また、こ
の効果はクリアランスが板厚の4%以上の場合に特に高
い。同様に、この効果はクリアランスが板厚の2%以上
(特に、4%以上)で、コーナーRが板厚の1.5倍以
上の場合により顕著であり、この領域でのバリ高さの増
大速度は直片部と変わらない。なお、コーナーRの好ま
しい条件は板厚の1.5倍以上であるが、これを超えて
過剰に大きくても工具寿命のさらなる延命効果はない。When the burr height is increased to 50 μm, the number of punches, the clearance of the tool and the corner R /
FIG. 4 shows the relationship with the plate thickness. As described above, the burr height at the start of striking is determined by the clearance of the tool, but the tool life is greatly affected by the clearance of the tool and the corner R as shown in FIG. It can be seen that the tool life is significantly prolonged when is equal to or greater than the plate thickness. This effect is particularly high when the clearance is 4% or more of the plate thickness. Similarly, this effect is more remarkable when the clearance is 2% or more (especially 4% or more) of the plate thickness and the corner R is 1.5 times or more the plate thickness, and the burr height in this region is increased. The speed is the same as the straight part. The preferable condition of the corner R is 1.5 times or more the plate thickness. However, if the corner R is excessively larger than this, there is no further effect of extending the tool life.
【0032】[実施例2]Si含有量が6.5wt%の
高珪素鋼板(板厚0.2mm)を、図5に示すような2
段の順送り型を用いてEIコアに打ち抜いた。この実施
例ではダイス鋼で作製し且つ表面処理を行っていない打
ち抜き工具を用い、打つ抜き工具のクリアランスを板厚
の15%に設定して微小クラックを意図的に導入すると
ともに、2段目の打ち抜き工具(E型パンチ)として、
切刃が図1に示すような勾配を有しない工具と、切刃が
図1(A)、(B)に示すような2通りの勾配を有し、
且つこの勾配の大きさが異なる種々の工具を用いて打ち
抜き加工を行い、微小クラックが生じた状態で2段目の
打ち抜き加工を行った場合の、切刃の勾配の有無及び勾
配の程度と製品の不良率との関係を調べた。なお、1段
目の打ち抜き加工では、切刃が図1に示すような勾配を
有しない工具(I型パンチ)を用いた。また、全ての工
具のコーナーRは25μmに調整し、被加工鋼板の拘束
は固定ストリッパを用いて行った。製品の不良率は目視
により観察される割れや欠けの有無により評価した。Example 2 A high silicon steel sheet (sheet thickness: 0.2 mm) having a Si content of 6.5 wt% was prepared as shown in FIG.
The EI core was punched using a progressive die of a step. In this embodiment, a punching tool made of die steel and not subjected to surface treatment is used. The clearance of the punching tool is set to 15% of the plate thickness to introduce minute cracks intentionally. As a punching tool (E type punch)
A tool whose cutting edge does not have a gradient as shown in FIG. 1, and a cutting edge which has two types of gradients as shown in FIGS. 1 (A) and (B),
In addition, when the punching process is performed using various tools having different gradient sizes and the second stage punching process is performed in a state where a minute crack is generated, the presence or absence of the gradient of the cutting edge, the degree of the gradient, and the product The relationship with the defective rate was examined. In the first-stage punching, a tool (I-type punch) whose cutting edge does not have a gradient as shown in FIG. 1 was used. The corners R of all tools were adjusted to 25 μm, and the steel plate to be processed was restrained using a fixed stripper. The defective rate of the product was evaluated based on the presence or absence of cracks or chips visually observed.
【0033】その結果を図6に示す。同図によれば2段
目の打ち抜き加工に用いる工具の切刃の勾配(図1
(A)または(B)に示す勾配)が0.3〜1.5%の
場合に顕著な製品不良率の低減効果が認められる。ま
た、同様に切刃の勾配が0.7〜1.5%の場合に特に
顕著な製品不良率の低減効果が認められる。また、この
効果は切刃の勾配を鋼板送り方向に沿って付けた場合の
方がより顕著に得られている。FIG. 6 shows the result. According to the figure, the inclination of the cutting edge of the tool used for the second-stage punching (FIG. 1)
(A) or (B) of 0.3 to 1.5%, a remarkable effect of reducing the product defect rate is observed. Similarly, when the inclination of the cutting edge is 0.7 to 1.5%, a particularly remarkable effect of reducing the product defect rate is recognized. Further, this effect is more remarkably obtained when the inclination of the cutting edge is set along the sheet feeding direction.
【0034】[実施例3]Si含有量が6.5wt%の
高珪素素鋼板(板厚0.3mm)を、図7に示すような
3段の順送り型を用いてEIコアに打ち抜いた。この実
施例ではダイス鋼で作製し且つ表面処理を行っていない
打ち抜き工具を用い、打ち抜き工具のクリアランスを板
厚の23%に設定して微小クラックを意図的に導入する
とともに、2段目の打ち抜き工具(桟抜き用パンチ)及
び3段目の打ち抜き工具(E型パンチ)として、切刃が
図1に示すような勾配を有しない工具と、切刃が図1
(A)に示す勾配(勾配:1%)を有する工具を、図8
に示すような種々の組合せで用いて打ち抜き加工を行
い、微小クラックが生じた状態で2段目、3段目の打ち
抜き加工を行った場合の、切刃勾配の有無と製品の不良
率との関係を調べた。なお、1段目の打ち抜き加工で
は、全ての試験条件において切刃が図1(A)に示す態
様の1%の勾配を有する工具(I型パンチ)を用いた。
また、全ての打ち抜き工具のコーナーRは25μmに調
整し、被加工鋼板の拘束は固定ストリッパを用いて行っ
た。製品の不良率は目視により観察される割れや欠けの
有無により評価した。Example 3 A high silicon silicon steel sheet (sheet thickness: 0.3 mm) having a Si content of 6.5 wt% was punched into an EI core using a three-stage progressive die as shown in FIG. In this embodiment, a punching tool made of die steel and not subjected to surface treatment is used. The clearance of the punching tool is set to 23% of the plate thickness to introduce minute cracks intentionally. As a tool (punch for punching out) and a third-stage punching tool (E-type punch), a tool whose cutting edge does not have a gradient as shown in FIG.
A tool having a gradient (gradient: 1%) shown in FIG.
The punching process is performed by using various combinations as shown in the above, and when the second and third punching processes are performed in a state where a minute crack is generated, the presence or absence of a cutting edge gradient and the product defect rate are compared. Investigated the relationship. In the first-stage punching, a tool (I-type punch) having a cutting edge having a gradient of 1% as shown in FIG. 1A was used under all test conditions.
The corners R of all the punching tools were adjusted to 25 μm, and the steel plate to be processed was restrained using a fixed stripper. The defective rate of the product was evaluated based on the presence or absence of cracks or chips visually observed.
【0035】その結果を図8に示す。同図によれば、3
段の順送り型を用いて高珪素鋼板の打ち抜き加工を行な
う場合、2段目以降の打ち抜き加工うちの少なくとも1
回の打ち抜き加工を勾配付きの切刃を備えた工具を用い
て行うことにより、割れや欠けの発生頻度を効果的に低
減できることが判る。さらに、2段目及び3段目の両方
の打ち抜き加工を勾配付きの切刃を備えた工具を用いて
行うことにより、割れや欠けの発生頻度の低減効果がよ
り顕著に得られることが判る。したがって、4段以上の
順送り型による打ち抜き加工の場合も、同様の効果が得
られるものと考えられる。FIG. 8 shows the result. According to FIG.
When performing punching of a high silicon steel sheet using a progressive die of a stage, at least one of the punching processes of the second and subsequent stages is performed.
It can be seen that the frequency of cracking and chipping can be effectively reduced by performing the punching process a plurality of times using a tool having a sloped cutting blade. Further, it can be seen that the effect of reducing the frequency of occurrence of cracks and chips is more remarkably obtained by performing both the second-stage and the third-stage punching using a tool having a cutting edge with a slope. Therefore, it is considered that the same effect can be obtained in the case of punching using a progressive die having four or more steps.
【0036】[実施例4]Si含有量が6.5wt%の
高珪素鋼板(板厚0.3mm)を、可動ストリッパを備
えた打ち抜き機により、外径45mm−内径33mmの
リング形状に打ち抜いた。この実施例ではダイス鋼で作
製し且つ表面処理を行っていない打ち抜き工具を用い、
この打ち抜き工具のクリアランスを板厚の10%に設定
した。また、可動ストリッパの荷重を制御するために、
バネ定数を変えたバネを使用し、さらに可動ストリッパ
のストロークを変えて打ち抜きを行った。また、工具及
び可動ストリッパにロードセルを付け、最大剪断荷重及
び板押さえ力を測定した。打ち抜いたリングは歪取焼鈍
を施した後に鉄損測定及び打ち抜き端面の観察を行っ
た。端面観察はリングの外周を500倍の光学顕微鏡を
用いて行い、微小クラック発生数が1個以下の場合を
“少”、2個以上の場合を“多”と分類した。Example 4 A high silicon steel sheet (sheet thickness: 0.3 mm) having a Si content of 6.5 wt% was punched into a ring shape having an outer diameter of 45 mm and an inner diameter of 33 mm by a punching machine equipped with a movable stripper. . In this embodiment, using a punching tool made of die steel and not subjected to surface treatment,
The clearance of this punching tool was set to 10% of the plate thickness. Also, to control the load on the movable stripper,
Punching was performed by using a spring with a changed spring constant and further changing the stroke of the movable stripper. Further, a load cell was attached to the tool and the movable stripper, and the maximum shear load and the plate pressing force were measured. After the punched ring was subjected to strain relief annealing, the core loss was measured and the punched end face was observed. The outer periphery of the ring was observed using an optical microscope with a magnification of 500 times, and the case where the number of minute cracks occurred was 1 or less was classified as “small”, and the case where 2 or more microcracks occurred was classified as “many”.
【0037】その結果を表1に示す。同表によれば、被
加工鋼板の拘束に可動ストリッパを用い、且つこれによ
る荷重(板押さえ力)を最大剪断荷重の25〜80%に
した本発明例では、端面に微小クラックを発生させるこ
となく高珪素鋼板を打ち抜くことが可能であり、この結
果、良好な磁気特性のリングコアが得られることが判
る。The results are shown in Table 1. According to the table, in the example of the present invention in which the movable stripper is used to restrain the steel plate to be processed and the load (plate holding force) by this is set to 25 to 80% of the maximum shearing load, a minute crack is generated on the end face. It can be seen that a high-silicon steel sheet can be punched without any problem, and as a result, a ring core having good magnetic properties can be obtained.
【0038】[0038]
【表1】 [Table 1]
【0039】[実施例5]Si含有量が6.5wt%の
高珪素鋼板(板厚0.3mm)について図2に示す打ち
抜き工具(表面処理無し)を用いて打ち抜き試験を行っ
た。打ち抜き工具はクリアランスを板厚の6%に調整
し、硬質相の平均粒径を変えた超硬合金製工具を5種類
用意し、さらにダイス鋼製及びハイス鋼製工具を各々1
種類用意した。他の条件は実施例1と同様とし、30万
回打ち抜いた後に工具のチッピング発生状況及び摩耗状
況を観察した。チッピングの発生状況は、工具直片部5
mm長さのエッジをSEM観察し、10μm以上の大き
さのチッピングの個数を数えて評価した。また、工具の
摩耗状況は、2次元形状測定機によって工具直片部のエ
ッジ形状を測定し、図9に示す面積を算出して評価し
た。Example 5 A high-silicon steel sheet having a Si content of 6.5 wt% (thickness: 0.3 mm) was subjected to a punching test using a punching tool (no surface treatment) shown in FIG. For the punching tool, the clearance was adjusted to 6% of the plate thickness, five types of cemented carbide tools with different average grain sizes of the hard phase were prepared, and one die steel and one high-speed steel tool were prepared.
Available in different types. Other conditions were the same as in Example 1. After punching out 300,000 times, the chipping occurrence state and the wear state of the tool were observed. The occurrence of chipping is determined by the tool straight
The edge having a length of mm was observed by SEM, and the number of chippings having a size of 10 μm or more was counted and evaluated. The wear state of the tool was evaluated by measuring the edge shape of the straight piece portion of the tool with a two-dimensional shape measuring machine and calculating the area shown in FIG.
【0040】それらの結果を表2に示す。同表によれ
ば、工具として硬質相の平均粒径が3μm以下の超硬合
金製工具を用いた本発明例では、工具摩耗速度が小さく
且つチッピングを発生させずに高珪素鋼板を打ち抜くこ
とが可能であることが判る。Table 2 shows the results. According to the table, in the example of the present invention using a cemented carbide tool having an average grain size of the hard phase of 3 μm or less as the tool, it is possible to punch a high silicon steel sheet at a low tool wear rate and without chipping. It turns out that it is possible.
【0041】[0041]
【表2】 [Table 2]
【0042】[実施例6]Si含有量が6.5wt%の
高珪素鋼板(板厚0.3mm)について図2に示す打ち
抜き工具を用いて打ち抜き試験を行った。工具材質はハ
イス鋼及び硬質相の平均粒径を3.9μmに調整した超
硬合金を用い、表面処理を行っていない工具、表面にT
iCN、TiN、TiC、TiAlNのコーティングを
行った工具、NbC、VCの拡散処理を行った工具を準
備し、これらを用いて打ち抜き加工を行った。他の条件
は実施例5と同様とし、30万回打ち抜いた後に工具を
実施例5と同様の観察に供した。Example 6 A high-silicon steel sheet having a Si content of 6.5 wt% (thickness: 0.3 mm) was subjected to a punching test using a punching tool shown in FIG. The tool material is high-speed steel and a cemented carbide in which the average grain size of the hard phase is adjusted to 3.9 μm.
A tool coated with iCN, TiN, TiC, and TiAlN and a tool subjected to a diffusion treatment of NbC and VC were prepared, and punching was performed using these tools. Other conditions were the same as in Example 5, and after punching out 300,000 times, the tool was subjected to the same observation as in Example 5.
【0043】その結果を表3に示す。同表によれば、摩
耗に関しては、表面処理を行った工具を用いた全ての条
件で摩耗低減化は可能であるが、チッピングの発生抑制
にはTiCN、TiN、TiC、TiAlNのいずれか
の表面コーティングが有効であることが判る。チッピン
グは凝着現象により加速されることが知られており、T
iCN、TiN、TiC、TiAlNのコーティングが
凝着を抑制していると考えられる。また、NbC、VC
の拡散処理の場合は硬度上昇するため摩耗低減には効果
があるものの、凝着を防げないために硬度上昇に伴う靭
性の劣化を引き起こし、チッピングが多発したと考えら
れる。Table 3 shows the results. According to the table, the wear can be reduced under all conditions using a tool that has been subjected to a surface treatment. However, to suppress the occurrence of chipping, the surface of any one of TiCN, TiN, TiC, and TiAlN can be reduced. It turns out that the coating is effective. It is known that chipping is accelerated by the adhesion phenomenon.
It is considered that the coating of iCN, TiN, TiC, and TiAlN suppresses adhesion. Also, NbC, VC
In the case of the diffusion treatment, it is considered that although the hardness increases, it is effective in reducing abrasion, but the adhesion cannot be prevented, so that the toughness is deteriorated due to the increase in the hardness and chipping frequently occurs.
【0044】[0044]
【表3】 [Table 3]
【0045】[0045]
【発明の効果】以上述べた本発明の高珪素鋼板の打ち抜
き加工方法によれば、工具寿命が長く、且つ製品の不良
発生頻度の低い打ち抜き加工が可能であり、このため製
造コストを抑えた部品加工を行うことができる。According to the method for punching a high silicon steel sheet according to the present invention described above, it is possible to perform a punching process with a long tool life and a low frequency of occurrence of product defects. Processing can be performed.
【図1】勾配が付された切刃を有する抜き打ち工具と、
これによる打ち抜き加工状況の概要を示す説明図FIG. 1 shows a punching tool having a beveled cutting edge,
Explanatory drawing showing the outline of the punching process status by this
【図2】実施例1で使用した打ち抜き工具の説明図FIG. 2 is an explanatory view of a punching tool used in Example 1.
【図3】打ち抜き工具のクリアランスとコーナーR/板
厚tが打ち始めのバリ高さに及ぼす影響を示すグラフFIG. 3 is a graph showing the effect of the clearance and corner R / thickness t of a punching tool on the burr height at the start of punching.
【図4】打ち抜き工具のクリアランスとコーナーR/板
厚tがバリ高さの増大速度に及ぼす影響を示すグラフFIG. 4 is a graph showing the effect of the clearance of the punching tool and the corner R / plate thickness t on the increasing speed of the burr height.
【図5】実施例2で行なわれた順送り型による2段の打
ち抜き加工の実施状況を示す説明図FIG. 5 is an explanatory diagram showing the state of execution of a two-stage punching process by a progressive die performed in Example 2.
【図6】順送り型による2段の打ち抜き加工において、
2段目の打ち抜き加工を行なった工具の切刃勾配の有無
及び勾配の程度が製品不良の発生に及ぼす影響を示すグ
ラフFIG. 6 shows a two-stage punching process using a progressive die.
A graph showing the effect of the presence or absence of the cutting edge gradient and the degree of the gradient on the occurrence of defective products of the tool subjected to the second-stage punching process
【図7】実施例3で行なわれた順送り型による3段の打
ち抜き加工の実施状況を示す説明図FIG. 7 is an explanatory view showing the state of execution of three-stage punching by a progressive die performed in Example 3.
【図8】順送り型による3段の打ち抜き加工において、
2段目及び3段目の打ち抜き加工を行なった工具の切刃
勾配の有無が製品不良の発生に及ぼす影響を示すグラフFIG. 8 shows a three-stage punching process using a progressive die.
The graph which shows the influence which the presence or absence of the cutting edge gradient of the tool which performed the 2nd stage and the 3rd stage punching process has on the occurrence of a product defect.
【図9】工具摩耗状況の評価方法に関する説明図FIG. 9 is an explanatory diagram relating to a method for evaluating a tool wear state;
Claims (5)
珪素鋼板の打ち抜き加工方法において、クリアランスが
被加工鋼板の板厚の2〜10%であって、且つコーナー
部の曲率半径Rが被加工鋼板の板厚以上である打ち抜き
工具により打ち抜き加工を行うことを特徴とする高珪素
鋼板の打ち抜き加工方法。In a method for punching a high silicon steel sheet having a Si content of 4.0 to 7.0 wt%, a clearance is 2 to 10% of a thickness of a steel sheet to be processed, and a radius of curvature of a corner portion. A punching method for a high silicon steel sheet, wherein the punching is performed by a punching tool in which R is equal to or greater than the thickness of the steel sheet to be processed.
珪素鋼板の打ち抜き加工方法において、順送り型により
複数段の打ち抜き加工を行うに際し、2段目以降の打ち
抜き加工のうちの少なくとも1回の打ち抜き加工を、被
加工鋼板の送り方向またはこれと直交する方向で切刃に
0.3〜1.5%の勾配が付された打ち抜き工具を用い
て行うことを特徴とする高珪素鋼板の打ち抜き加工方
法。2. A method for punching a high silicon steel sheet having a Si content of 4.0 to 7.0 wt%, wherein when performing a plurality of stages of punching with a progressive die, at least one of the second and subsequent stages of punching is performed. A step of performing a single punching operation by using a punching tool having a cutting edge with a gradient of 0.3 to 1.5% in a feed direction of a steel plate to be processed or in a direction perpendicular to the feed direction. Stamping method for steel sheet.
珪素鋼板の打ち抜き加工方法において、可動ストリッパ
を用いて被加工鋼板を拘束し、該可動ストリッパの荷重
を最大剪断荷重の25〜80%に制御することを特徴と
する高珪素鋼板の打ち抜き加工方法。3. A method of punching a high silicon steel sheet having a Si content of 4.0 to 7.0 wt%, wherein a movable steel stripper is used to restrain a steel sheet to be processed, and a load of the movable stripper is reduced to a maximum shear load of 25. A method for punching a high silicon steel sheet, wherein the method is controlled to be up to 80%.
珪素鋼板の打ち抜き加工方法において、硬質相の平均粒
径が3μm以下の超硬合金製打ち抜き工具を用いて打ち
抜き加工を行うことを特徴とする高珪素鋼板の打ち抜き
加工方法。4. A punching method for a high silicon steel sheet having a Si content of 4.0 to 7.0 wt%, wherein the punching is performed using a hard metal punching tool having an average grain size of a hard phase of 3 μm or less. A method for punching a high silicon steel sheet.
珪素鋼板の打ち抜き加工方法において、工具表面にTi
CN、TiN、TiC、TiAlNの中から選ばれる1
種以上をコーティングした打ち抜き工具を用いて打ち抜
き加工を行うことを特徴とする高珪素鋼板の打ち抜き加
工方法。5. A method for punching a high silicon steel sheet having a Si content of 4.0 to 7.0 wt%, comprising:
1 selected from CN, TiN, TiC, TiAlN
A punching method for a high silicon steel sheet, wherein the punching is performed using a punching tool coated with at least one kind.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05496199A JP3620329B2 (en) | 1998-03-04 | 1999-03-03 | Punching method for high silicon steel sheet |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10-69551 | 1998-03-04 | ||
JP6955198 | 1998-03-04 | ||
JP05496199A JP3620329B2 (en) | 1998-03-04 | 1999-03-03 | Punching method for high silicon steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11319981A true JPH11319981A (en) | 1999-11-24 |
JP3620329B2 JP3620329B2 (en) | 2005-02-16 |
Family
ID=26395788
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05496199A Expired - Fee Related JP3620329B2 (en) | 1998-03-04 | 1999-03-03 | Punching method for high silicon steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3620329B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002136065A (en) * | 2000-10-19 | 2002-05-10 | Sanyo Electric Co Ltd | Manufacturing method of stator iron plate for electric motor |
JP2009113051A (en) * | 2007-11-02 | 2009-05-28 | Honda Motor Co Ltd | Piercing punch |
JP2016129902A (en) * | 2015-01-14 | 2016-07-21 | Jfeスチール株式会社 | Blanking method, blanking apparatus, and method of manufacturing laminated iron core |
CN108880012A (en) * | 2018-09-18 | 2018-11-23 | 东莞市领亚自动化科技有限公司 | A kind of manufacturing method of Hall-type servo motor and stator |
-
1999
- 1999-03-03 JP JP05496199A patent/JP3620329B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002136065A (en) * | 2000-10-19 | 2002-05-10 | Sanyo Electric Co Ltd | Manufacturing method of stator iron plate for electric motor |
JP2009113051A (en) * | 2007-11-02 | 2009-05-28 | Honda Motor Co Ltd | Piercing punch |
JP2016129902A (en) * | 2015-01-14 | 2016-07-21 | Jfeスチール株式会社 | Blanking method, blanking apparatus, and method of manufacturing laminated iron core |
CN108880012A (en) * | 2018-09-18 | 2018-11-23 | 东莞市领亚自动化科技有限公司 | A kind of manufacturing method of Hall-type servo motor and stator |
CN108880012B (en) * | 2018-09-18 | 2023-12-15 | 东莞市领亚自动化科技有限公司 | Hall type servo motor and stator manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP3620329B2 (en) | 2005-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3246105B1 (en) | Punching method and method for manufacturing laminated core | |
JP2006193790A (en) | Cold working tool steel | |
JP2005325407A (en) | Cold working tool steel | |
JP5464511B2 (en) | Manufacturing method of orifice plate for liquid injection | |
JPH11319981A (en) | Punching method for high silicon steel sheet | |
JP2004068118A (en) | Ferritic stainless steel excellent in fine blanking workability | |
JPH05228729A (en) | Shaving die | |
JP2001191132A (en) | Mold Guide | |
JP4218239B2 (en) | Method of manufacturing tool steel by lamination and tool steel | |
JP2005095980A (en) | Steel sheet punching tool and punching method using the same | |
WO2010064642A1 (en) | Nickel material and method for producing nickel material | |
JP4322239B2 (en) | Cold tool steel and manufacturing method thereof | |
Leung et al. | The effects of tool geometry change on shearing edge finish in fine-blanking of different materials | |
JP7575028B1 (en) | Carbide Tools | |
CN110177633B (en) | Component of surface-treated steel sheet having cut end faces and method for producing same | |
EP4470691A1 (en) | Method for performing shearing work on amorphous alloy foil | |
JP2023150452A (en) | Shearing work method and shearing workpiece | |
JP3057987B2 (en) | Titanium alloy material excellent in stamping workability and stamping method | |
EP4474086A1 (en) | Steel material, automobile component, shearing device, and manufacturing method for steel material | |
JP3727646B2 (en) | Manufacturing method of austenitic stainless steel sheet with excellent precision punchability | |
JP3632907B2 (en) | Manufacturing method of high-speed tool steel thin wire | |
JP3461041B2 (en) | Knife for shearing steel plate | |
JP2007181844A (en) | Metal plate dowel forming method | |
JP3136460B2 (en) | Linear orbital shaft excellent in fatigue strength and surface properties and method for producing the same | |
JPH10309627A (en) | Piano wire for saw wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040405 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20041026 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20041108 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071126 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081126 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091126 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101126 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111126 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111126 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121126 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131126 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |