JPH11311132A - Steam-cooling gas turbine system - Google Patents
Steam-cooling gas turbine systemInfo
- Publication number
- JPH11311132A JPH11311132A JP11880098A JP11880098A JPH11311132A JP H11311132 A JPH11311132 A JP H11311132A JP 11880098 A JP11880098 A JP 11880098A JP 11880098 A JP11880098 A JP 11880098A JP H11311132 A JPH11311132 A JP H11311132A
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- steam
- gas turbine
- temperature
- turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
- F01K23/106—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、コンバインドサイ
クル発電プラントにおいて、ガスタービン翼冷却蒸気と
燃焼器尾筒冷却蒸気を、燃料との熱交換およびクーラ等
の冷却装置により減温調節したのち、翼と尾筒へ供給す
るようにした蒸気冷却ガスタービンシステムに関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined cycle power plant, in which heat of gas turbine blade cooling steam and combustor tail pipe cooling steam is reduced by a heat exchange with fuel and a cooling device such as a cooler, and then the blade is cooled. And a steam-cooled gas turbine system adapted to supply to a transition piece.
【0002】[0002]
【従来の技術】図2に基づき従来の蒸気冷却ガスタービ
ンの概要について説明する。2. Description of the Related Art An outline of a conventional steam-cooled gas turbine will be described with reference to FIG.
【0003】従来の蒸気冷却ガスタービンは、高圧ター
ビン出口からの蒸気を直接的に使用して翼冷却を行い、
その後中圧タービンへ回収するシステムとなっており、
燃焼器尾筒については、圧縮機の出口空気により冷却を
行っていた。[0003] Conventional steam-cooled gas turbines perform blade cooling using steam directly from the high pressure turbine outlet,
After that, it is a system to recover to medium pressure turbine,
The combustor transition piece was cooled by the outlet air of the compressor.
【0004】即ち、図2において、01はガスタービン
装置、02は排熱回収ボイラ、7は高圧タービン、8は
中圧タービン、9は低圧タービンであり、ガスタービン
装置01では圧縮機5により吸い込んだ大気を所定の圧
力まで圧縮後、この圧縮機5により加圧された空気をタ
ービン4の入り口で所定の温度になるように調整された
燃料と混合して燃焼器6において燃焼させている。That is, in FIG. 2, reference numeral 01 denotes a gas turbine device, 02 denotes an exhaust heat recovery boiler, 7 denotes a high-pressure turbine, 8 denotes a medium-pressure turbine, and 9 denotes a low-pressure turbine. After compressing the ambient air to a predetermined pressure, the air pressurized by the compressor 5 is mixed with fuel adjusted to a predetermined temperature at the inlet of the turbine 4 and burned in a combustor 6.
【0005】タービン4では、燃焼器6で発生した高温
高圧の燃焼ガスを膨張させ、出力を発生して発電機20
で発電を行う。仕事を終えた排ガスは、排ガスダクト1
0から排熱回収ボイラ02へ供給される。[0005] In the turbine 4, the high-temperature and high-pressure combustion gas generated in the combustor 6 is expanded to generate an output, and the power
To generate electricity. Exhaust gas after work is exhaust gas duct 1.
0 to the exhaust heat recovery boiler 02.
【0006】そしてタービン4の静翼および動翼は、高
圧タービン7の出口から翼冷却蒸気供給配管11を介し
て冷却蒸気となる高圧排気の供給を受けて冷却され、同
冷却により加熱された冷却蒸気は、翼冷却蒸気回収配管
12を介して中圧タービン8の入り口へ供給される。[0006] The stationary blades and the moving blades of the turbine 4 are cooled by receiving high-pressure exhaust as cooling steam from the outlet of the high-pressure turbine 7 through the blade cooling steam supply pipe 11, and cooled by the cooling. The steam is supplied to the inlet of the intermediate pressure turbine 8 via the blade cooling steam recovery pipe 12.
【0007】排熱回収ボイラ02においては、高圧ドラ
ム3で発生した高圧蒸気が、高圧蒸気配管13により高
圧タービン7に導かれ、同高圧タービン7で膨張して出
力を発生する。In the exhaust heat recovery boiler 02, the high-pressure steam generated in the high-pressure drum 3 is guided to the high-pressure turbine 7 by the high-pressure steam pipe 13, and expands in the high-pressure turbine 7 to generate an output.
【0008】高圧タービン7の出口蒸気は、前記した翼
冷却蒸気配管11によってガスタービン01のタービン
静翼と動翼に冷却蒸気として導かれるものと、排熱回収
ボイラ02の再熱器24に導かれるものとに分岐され
る。The outlet steam of the high-pressure turbine 7 is guided as cooling steam to the turbine stationary blades and the moving blades of the gas turbine 01 by the blade cooling steam pipe 11, and to the reheater 24 of the exhaust heat recovery boiler 02. Divided into things.
【0009】中圧ドラム2で発生した中圧蒸気は、高圧
タービン7の出口蒸気のうち前記冷却蒸気を分岐した残
部の高圧排気と混合した後再熱器24へ供給され、同再
熱器24で加熱された後翼冷却蒸気回収配管12によっ
て導かれた前記翼冷却蒸気と混合されて中圧タービン8
へ供給される。The medium-pressure steam generated in the medium-pressure drum 2 is mixed with the remaining high-pressure exhaust of the branch of the cooling steam from the outlet steam of the high-pressure turbine 7 and then supplied to the reheater 24. After being heated in the intermediate pressure turbine 8, it is mixed with the blade cooling steam guided by the blade cooling steam recovery pipe 12.
Supplied to
【0010】中圧タービン8では、これらの蒸気が膨張
して所定の出力を得る。そして中圧タービン8の出口蒸
気である中圧排気は、低圧ドラム1で発生して低圧蒸気
配管15を経て供給される低圧蒸気と混合し、その後、
低圧タービン9へ供給されて所定の出力を得る。In the intermediate pressure turbine 8, these steams expand to obtain a predetermined output. The medium-pressure exhaust, which is the outlet steam of the medium-pressure turbine 8, is mixed with the low-pressure steam generated in the low-pressure drum 1 and supplied through the low-pressure steam pipe 15,
It is supplied to the low-pressure turbine 9 to obtain a predetermined output.
【0011】なお、低圧タービン9を出た低圧排気は復
水器21により復水され、加圧ポンプ22により所定の
圧力まで加圧した後、給水配管23により排熱回収ボイ
ラ02へ給水される。The low-pressure exhaust discharged from the low-pressure turbine 9 is condensed by a condenser 21, pressurized to a predetermined pressure by a pressurizing pump 22, and then supplied to an exhaust heat recovery boiler 02 by a water supply pipe 23. .
【0012】[0012]
【発明が解決しようとする課題】前記したように従来の
蒸気冷却ガスタービンシステムにおいては、タービン静
翼および動翼を冷却する冷却蒸気は、高圧タービン7か
ら出た高圧排気を直接供給して冷却に供しているため、
ガスタービンの入り口温度、入り口案内羽根開度または
大気温度等が変化した場合、高圧タービン7の出口温度
が追随して変化し、タービン翼冷却蒸気温度が変化する
ことになる。As described above, in the conventional steam-cooled gas turbine system, the cooling steam for cooling the turbine stationary blades and the moving blades is cooled by directly supplying high-pressure exhaust gas from the high-pressure turbine 7. Because it is offered to
When the inlet temperature of the gas turbine, the opening degree of the inlet guide vanes, the atmospheric temperature, or the like changes, the outlet temperature of the high-pressure turbine 7 changes accordingly, and the turbine blade cooling steam temperature changes.
【0013】同タービン翼冷却蒸気温度の変化は、ター
ビン翼、メタル温度も同時に変化することに連なり、特
に部分負荷時においては、冷却蒸気温度が高くなる傾向
が強く、タービン翼がクリープ変形する可能性が生じる
という問題点を伴うものであった。The change in the turbine blade cooling steam temperature leads to a simultaneous change in the turbine blade and metal temperatures. Particularly, at a partial load, the cooling steam temperature tends to increase, and the turbine blades may creep. However, there is a problem that the property arises.
【0014】なお、冷却蒸気の高温化に対応すべく冷却
蒸気供給温度をコントロールする試みとして、冷却蒸気
中にスプレー水を供給することが考えられるが、その場
合には、スプレー水が蒸気と混合し蒸発する過程におい
てスプレー水中の不純物が冷却蒸気中に生じることとな
り、この不純物が蒸気冷却翼の冷却通路に付着すること
により蒸気冷却翼が腐食を起こす可能性がある。As an attempt to control the supply temperature of the cooling steam to cope with the higher temperature of the cooling steam, it is conceivable to supply the spray water into the cooling steam. In this case, the spray water is mixed with the steam. During the evaporation and evaporation process, impurities in the spray water are generated in the cooling steam, and the impurities may adhere to the cooling passages of the steam cooling blades, causing corrosion of the steam cooling blades.
【0015】また、腐食問題だけではなく、同蒸気冷却
翼の冷却通路に付着した不純物は、冷却蒸気通路の熱伝
達率を低下させるため、翼メタル温度が上昇し翼がクリ
ープ変形する可能性がある。In addition to the corrosion problem, impurities adhering to the cooling passage of the steam cooling blade lower the heat transfer coefficient of the cooling steam passage, so that the blade metal temperature increases and the blade may creep. is there.
【0016】前記蒸気冷却翼の冷却通路の腐食は、翼の
肉厚が薄くし、ひび割れを発生させ、冷却蒸気がガスタ
ービン01のタービン4内部へ漏れ出す可能性があり、
かつこの蒸気漏れはコンバインド効率を低下させること
がわかっているので、腐食を起こさせる不純物を冷却蒸
気中に混入することは避けねばならない重要事項であ
る。The corrosion of the cooling passages of the steam cooling blades causes the wall thickness of the blades to be thin, causing cracks, and the cooling steam may leak into the turbine 4 of the gas turbine 01.
In addition, since it is known that this steam leakage reduces the combined efficiency, it is an important matter to avoid the inclusion of corrosion-causing impurities in the cooling steam.
【0017】本発明はこの様な背景下において、従来の
この種装置、及び従来検討されているこの種装置におけ
る不具合を解消し、冷却蒸気として使用する高圧排気を
腐食等の不具合を伴うことなく適温に調節して冷却に供
し得るようにしたものを提供することを課題とするもの
である。Under such a background, the present invention solves the problems in the conventional apparatus of this type and the conventional apparatus of this type, and eliminates the problem of corrosion or the like of the high-pressure exhaust used as cooling steam. It is an object of the present invention to provide a material which can be cooled to a suitable temperature.
【0018】[0018]
【課題を解決するための手段】本発明は前記した課題を
解決すべくなされたもので、ガスタービンプラントと蒸
気タービンプラントを組み合わせ、ガスタービン排熱を
利用して蒸気タービンの駆動蒸気を発生させる排熱回収
ボイラを備えたコンバインドサイクル発電プラントにお
いて、ガスタービン翼冷却用蒸気及び燃焼器尾筒冷却用
蒸気として用いる高圧タービン高圧排気を燃料加熱器を
通してガスタービン燃料と熱交換し、次いで冷却温度を
調節可能とした冷却装置を通して冷却した後、ガスター
ビン翼及び燃焼器尾筒の冷却部へ供給するようにした蒸
気冷却ガスタービンシステムを提供するものである。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and a combination of a gas turbine plant and a steam turbine plant to generate steam for driving a steam turbine by utilizing exhaust heat of the gas turbine. In a combined cycle power plant equipped with an exhaust heat recovery boiler, high-pressure turbine high-pressure exhaust used as gas turbine blade cooling steam and combustor transition piece cooling steam is exchanged with gas turbine fuel through a fuel heater, and then the cooling temperature is reduced. A steam-cooled gas turbine system is provided that is cooled through an adjustable cooling device and then supplied to a cooling section of a gas turbine blade and a combustor transition piece.
【0019】本発明によれば、高圧タービン高圧排気は
ガスタービン翼冷却用蒸気及び燃焼器尾筒冷却用蒸気と
してガスタービンの高温部に供給されるに先立ち、燃料
加熱器を通してガスタービン燃料により冷却されると共
に熱回収され、次いで冷却温度調節可能の冷却装置で冷
却した後所期の冷却に供せられるので、前記高温部の状
況に応じて必要な温度に調節して供給することが可能と
なり、同高温部を適切な温度で冷却することができ、し
かも、この過程で冷却蒸気中に不純物が混入するおそれ
もないので、冷却通路の熱伝達率の低下、腐食の発生等
の不具合もなく、コンバインドサイクル発電プラントの
効率向上に大きく寄与するようにしたものである。According to the present invention, the high-pressure turbine high-pressure exhaust gas is cooled by the gas turbine fuel through the fuel heater before being supplied to the high-temperature portion of the gas turbine as the gas turbine blade cooling steam and the combustor transition piece cooling steam. The heat is recovered at the same time, and then cooled by a cooling device capable of adjusting the cooling temperature, and then subjected to the intended cooling, so that the temperature can be adjusted to a required temperature according to the condition of the high-temperature portion and supplied. Since the high-temperature portion can be cooled at an appropriate temperature, and there is no risk of impurities being mixed into the cooling steam in this process, there is no problem such as a decrease in heat transfer coefficient of the cooling passage and occurrence of corrosion. This greatly contributes to improving the efficiency of the combined cycle power plant.
【0020】[0020]
【発明の実施の形態】本発明の実施の一形態を図1に基
づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIG.
【0021】なお前記した従来のものと同一の部位につ
いては、図中に同一の符号を付して示し、重複する説明
は省略して本実施の形態の特徴ある部分について重点的
に説明する。The same parts as those of the prior art described above are denoted by the same reference numerals in the drawings, and redundant description will be omitted, and the characteristic features of the present embodiment will be mainly described.
【0022】18は燃料加熱器で、高圧タービン7の高
圧排気をガスタービン装置01の高温部へ導く翼冷却蒸
気供給配管11、尾筒冷却蒸気供給配管16と燃焼器6
へ燃料を供給する経路を含んでいる。Reference numeral 18 denotes a fuel heater, which is a blade cooling steam supply pipe 11, a transition piece cooling steam supply pipe 16, and a combustor 6 for guiding high pressure exhaust gas of the high pressure turbine 7 to a high temperature portion of the gas turbine device 01.
Includes a path to supply fuel to
【0023】19はクーラで、タービン4及び燃焼器6
の上流位置で前記燃料加熱器18を出た翼冷却蒸気供給
配管11及び尾筒冷却蒸気供給配管16を取り込み、そ
の外方に配置した回転数可変のモータ25と同モータ2
5により駆動されるファン26により冷却温度を調節可
能に構成されている。Reference numeral 19 denotes a cooler, which includes a turbine 4 and a combustor 6.
At the upstream position, the blade cooling steam supply pipe 11 and the transition piece cooling steam supply pipe 16 that have exited the fuel heater 18 are taken in.
The cooling temperature can be adjusted by a fan 26 driven by the fan 5.
【0024】前記の様に構成された本実施の形態におい
ては、高圧タービン7の出口から吐出した高圧排気の一
部は、冷却蒸気として翼冷却蒸気供給配管11と尾筒冷
却蒸気供給配管16で導かれて燃料加熱器18を通り、
ガスタービンの燃料を加熱する一方自身は冷却されるべ
く熱交換し、次いで前記翼冷却蒸気供給配管11および
尾筒冷却蒸気供給配管16それぞれをクーラ19に供給
し、同クーラ19で所定の温度に減温する。In this embodiment configured as described above, part of the high-pressure exhaust discharged from the outlet of the high-pressure turbine 7 is used as cooling steam by the blade cooling steam supply pipe 11 and the transition piece cooling steam supply pipe 16. Guided through the fuel heater 18,
While heating the fuel of the gas turbine, the heat exchange itself is performed so as to be cooled, and then the blade cooling steam supply pipe 11 and the transition piece cooling steam supply pipe 16 are supplied to the cooler 19, and the cooler 19 cools the gas to a predetermined temperature. Decrease the temperature.
【0025】クーラ19では、その外方に対峙して配置
したモータ25の回転数を図示省略の適宜の制御装置に
より制御調節することによりファン26の回転数を調節
し、同クーラ19における前記翼冷却蒸気供給配管11
および尾筒冷却蒸気供給配管16から供給された蒸気の
減温後の温度を調節する。In the cooler 19, the number of rotations of the fan 26 is adjusted by controlling and adjusting the number of rotations of the motor 25 disposed facing the outside by a suitable control device (not shown). Cooling steam supply pipe 11
And the temperature after the temperature of the steam supplied from the transition pipe cooling steam supply pipe 16 is reduced.
【0026】すなわち、本実施の形態においては前記の
様に冷却装置としてクーラ19を採用し、モータ25、
ファン26によりクーラ19の冷却温度を調節可能に運
転することにより、ガスタービン装置01の定格運転時
及び部分負荷運転時において、冷却蒸気供給温度を所望
の温度に制御、調節することを可能としたものである。That is, in the present embodiment, the cooler 19 is employed as the cooling device as described above, and the motor 25,
By operating the cooling temperature of the cooler 19 so as to be adjustable by the fan 26, it is possible to control and adjust the cooling steam supply temperature to a desired temperature during the rated operation and the partial load operation of the gas turbine device 01. Things.
【0027】しかも本実施の形態においては、前記した
様に冷却蒸気の温度調節に際して、冷却蒸気の供給経路
にスプレー水を供給する手法はとらず、クーラでの熱交
換により冷却蒸気供給温度を減温するものであるので、
冷却蒸気中に不純物が混入するおそれはないものであ
る。Further, in the present embodiment, as described above, in adjusting the temperature of the cooling steam, the method of supplying the spray water to the cooling steam supply path is not used, and the cooling steam supply temperature is reduced by heat exchange in the cooler. Because it is warm
There is no risk of impurities being mixed into the cooling steam.
【0028】また本実施の形態においては、前記したよ
うにガスタービンの定格運転時及び部分負荷時におい
て、冷却蒸気供給温度を所定の温度にコントロールする
ことが可能となったことにより、タービン4の静翼およ
び動翼の信頼性確保と、燃料加熱によるコンバインド効
率の向上が期待できるものである。In the present embodiment, the cooling steam supply temperature can be controlled to a predetermined temperature during the rated operation and the partial load of the gas turbine as described above, so that the turbine 4 It is expected that the reliability of the stationary blade and the moving blade will be ensured, and that the combined efficiency will be improved by heating the fuel.
【0029】以上、本発明を図示の実施の形態について
説明したが、本発明はかかる実施の形態に限定されず、
本発明の範囲内でその具体的構造に種々の変更を加えて
よいことはいうまでもない。Although the present invention has been described with reference to the illustrated embodiment, the present invention is not limited to such an embodiment.
It goes without saying that various changes may be made to the specific structure within the scope of the present invention.
【0030】[0030]
【発明の効果】以上説明したように本発明によれば、ガ
スタービンプラントと蒸気タービンプラントを組み合わ
せ、ガスタービン排熱を利用して蒸気タービンの駆動蒸
気を発生させる排熱回収ボイラを備えたコンバインドサ
イクル発電プラントにおいて、ガスタービン翼冷却用蒸
気及び燃焼器尾筒冷却用蒸気として用いる高圧タービン
高圧排気を燃料加熱器を通してガスタービン燃料と熱交
換し、次いで冷却温度を調節可能とした冷却装置を通し
て冷却した後、ガスタービン翼及び燃焼器尾筒の冷却部
へ供給するようにして蒸気冷却ガスタービンシステムを
構成したので、ガスタービン翼冷却用蒸気及び燃焼器尾
筒冷却用蒸気としてガスタービンの高温部に供給される
高圧タービン高圧排気は、まず、燃料加熱器を通してガ
スタービン燃料により冷却されると共に熱回収され、次
いで冷却温度調節可能の冷却装置で冷却した後所期の冷
却に供せられるので、燃焼器尾筒冷却及びガスタービン
のタービン翼冷却蒸気供給温度をどんな作動条件におい
ても必要とする温度に設定できるため、燃焼器尾筒及び
ガスタービンのタービン翼メタル温度を許容温度以内に
コントロールして適切な温度で冷却することができ、し
かも、この過程で冷却蒸気中に不純物が混入するおそれ
もないので、冷却通路の熱伝達率の低下、腐食の発生等
の不具合もなく、コンバインドサイクル発電プラントの
効率向上に大きく寄与することができたものである。As described above, according to the present invention, a combined gas turbine plant and a steam turbine plant are provided with an exhaust heat recovery boiler for generating steam for driving a steam turbine by utilizing exhaust heat of the gas turbine. In a cycle power plant, high-pressure turbine high-pressure exhaust used as gas turbine blade cooling steam and combustor tail tube cooling steam is exchanged with gas turbine fuel through a fuel heater, and then cooled through a cooling device whose cooling temperature is adjustable. After that, the steam-cooled gas turbine system was configured to supply the gas turbine blades and the combustor transition piece to the cooling section. High-pressure turbine high-pressure exhaust supplied to the gas turbine Cooling and heat recovery, and then cooled by a cooling device with adjustable cooling temperature, and then subjected to the intended cooling, so that the combustor transition piece cooling and the gas turbine turbine blade cooling steam supply temperature can be adjusted to any operating conditions. Temperature can be set to the required temperature, so that the temperature of the combustor transition piece and the turbine blade metal of the gas turbine can be controlled within the allowable temperature and cooled at an appropriate temperature. Since there is no risk of impurities being mixed, there is no problem such as a decrease in the heat transfer coefficient of the cooling passage and the occurrence of corrosion, and this has greatly contributed to the improvement of the efficiency of the combined cycle power plant.
【図1】本発明の実施の一形態に係る蒸気冷却ガスター
ビンシステムの系統を示す説明図である。FIG. 1 is an explanatory diagram showing a system of a steam-cooled gas turbine system according to an embodiment of the present invention.
【図2】従来の蒸気冷却ガスタービンシステムの系統を
示す説明図である。FIG. 2 is an explanatory diagram showing a system of a conventional steam-cooled gas turbine system.
01 ガスタービン装置 02 排熱回収ボイラ 3 高圧ドラム 4 タービン 5 圧縮機 6 燃焼器 7 高圧タービン 8 中圧タービン 9 低圧タービン 10 排ガスダクト 11 翼冷却蒸気供給配管 12 翼冷却蒸気回収配管 13 高圧蒸気配管 16 尾筒冷却蒸気供給配管 18 燃料加熱器 19 クーラ 20 発電機 21 復水器 22 加圧ポンプ 23 給水配管 24 再熱器 25 モータ 26 ファン Reference Signs List 01 Gas turbine device 02 Exhaust heat recovery boiler 3 High pressure drum 4 Turbine 5 Compressor 6 Combustor 7 High pressure turbine 8 Medium pressure turbine 9 Low pressure turbine 10 Exhaust gas duct 11 Blade cooling steam supply pipe 12 Blade cooling steam recovery pipe 13 High pressure steam pipe 16 Transition pipe cooling steam supply pipe 18 fuel heater 19 cooler 20 generator 21 condenser 22 pressurization pump 23 water supply pipe 24 reheater 25 motor 26 fan
Claims (1)
ラントを組み合わせ、ガスタービン排熱を利用して蒸気
タービンの駆動蒸気を発生させる排熱回収ボイラを備え
たコンバインドサイクル発電プラントにおいて、ガスタ
ービン翼冷却用蒸気及び燃焼器尾筒冷却用蒸気として用
いる高圧タービン高圧排気を燃料加熱器を通してガスタ
ービン燃料と熱交換し、次いで冷却温度を調節可能とし
た冷却装置を通して冷却した後、ガスタービン翼及び燃
焼器尾筒の冷却部へ供給するようにしたことを特徴とす
る蒸気冷却ガスタービンシステム。1. A combined cycle power plant comprising a gas turbine plant and a steam turbine plant and having an exhaust heat recovery boiler for generating steam for driving the steam turbine by using exhaust heat of the gas turbine. The high-pressure turbine, which is used as steam for cooling the combustor transition piece, exchanges heat with gas turbine fuel through a fuel heater, and then cools through a cooling device capable of adjusting the cooling temperature. A steam-cooled gas turbine system, characterized in that the steam is supplied to a cooling unit.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11880098A JPH11311132A (en) | 1998-04-28 | 1998-04-28 | Steam-cooling gas turbine system |
DE69930026T DE69930026T2 (en) | 1998-04-28 | 1999-04-22 | Combined cycle power plant |
CA002269731A CA2269731C (en) | 1998-04-28 | 1999-04-22 | Combined cycle plant |
EP99108001A EP0953732B1 (en) | 1998-04-28 | 1999-04-22 | Combined cycle plant |
US09/300,841 US6244039B1 (en) | 1998-04-28 | 1999-04-28 | Combined cycle plant having a heat exchanger for compressed air |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11880098A JPH11311132A (en) | 1998-04-28 | 1998-04-28 | Steam-cooling gas turbine system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11311132A true JPH11311132A (en) | 1999-11-09 |
Family
ID=14745438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11880098A Withdrawn JPH11311132A (en) | 1998-04-28 | 1998-04-28 | Steam-cooling gas turbine system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11311132A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6790002B2 (en) | 2000-02-10 | 2004-09-14 | Kabushiki Kaisha Toshiba | Steam turbine and power generating equipment |
CN101644193A (en) * | 2008-08-05 | 2010-02-10 | 通用电气公司 | System and assemblies for pre-heating fuel in a combined cycle power plant |
JP2014190194A (en) * | 2013-03-26 | 2014-10-06 | Mitsubishi Heavy Ind Ltd | Gas turbine plant and gas turbine plant operation method |
-
1998
- 1998-04-28 JP JP11880098A patent/JPH11311132A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6790002B2 (en) | 2000-02-10 | 2004-09-14 | Kabushiki Kaisha Toshiba | Steam turbine and power generating equipment |
CN1297731C (en) * | 2000-02-10 | 2007-01-31 | 东芝株式会社 | Steam turbine and generating plant |
CN101644193A (en) * | 2008-08-05 | 2010-02-10 | 通用电气公司 | System and assemblies for pre-heating fuel in a combined cycle power plant |
JP2014190194A (en) * | 2013-03-26 | 2014-10-06 | Mitsubishi Heavy Ind Ltd | Gas turbine plant and gas turbine plant operation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2230325C (en) | Steam cooled gas turbine system | |
JP4337960B2 (en) | Apparatus and method for supplying auxiliary steam in a combined cycle system | |
JP3652962B2 (en) | Gas turbine combined cycle | |
US4282708A (en) | Method for the shutdown and restarting of combined power plant | |
US6109019A (en) | Steam cooled gas turbine system | |
KR100268611B1 (en) | Combined cycle power plant and supplying method of coolant therof | |
US8484975B2 (en) | Apparatus and method for start-up of a power plant | |
US6244039B1 (en) | Combined cycle plant having a heat exchanger for compressed air | |
EP1245805A2 (en) | Supercharged gas turbine | |
US11473445B2 (en) | Steam turbine plant and cooling method for same | |
JPH10131718A (en) | Cooled steam system of steam cooling gas turbine | |
JP3564241B2 (en) | Combined cycle power plant | |
JP2000130108A (en) | Starting method for combined cycle power plant | |
US20220195896A1 (en) | Steam turbine plant and operation method, combined cycle plant and operation method | |
JPH11311132A (en) | Steam-cooling gas turbine system | |
JP2806338B2 (en) | Gas turbine generator | |
JP2002021508A (en) | Condensate supply system | |
JP4209060B2 (en) | Steam cooling rapid start system | |
JP2005344528A (en) | Combined cycle power generating plant and method for starting the same | |
JPH03908A (en) | Starting method for combined cycle plant | |
JP3586539B2 (en) | Combined cycle power plant | |
WO1999040306A1 (en) | Steam cooled gas turbine | |
JP2667699B2 (en) | Single-shaft combined plant and start-up method thereof | |
JP4473464B2 (en) | Operation method of combined cycle power plant | |
JP3524731B2 (en) | Recovery steam-cooled gas turbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20050705 |