JPH11307736A - Method for manufacturing semiconductor memory device - Google Patents
Method for manufacturing semiconductor memory deviceInfo
- Publication number
- JPH11307736A JPH11307736A JP10111218A JP11121898A JPH11307736A JP H11307736 A JPH11307736 A JP H11307736A JP 10111218 A JP10111218 A JP 10111218A JP 11121898 A JP11121898 A JP 11121898A JP H11307736 A JPH11307736 A JP H11307736A
- Authority
- JP
- Japan
- Prior art keywords
- film
- upper electrode
- platinum
- capacitor
- oxide film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 239000004065 semiconductor Substances 0.000 title claims description 11
- 239000003990 capacitor Substances 0.000 claims abstract description 34
- 238000010438 heat treatment Methods 0.000 claims abstract description 28
- 238000000059 patterning Methods 0.000 claims abstract description 5
- 238000000151 deposition Methods 0.000 claims description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 abstract description 66
- 229910052697 platinum Inorganic materials 0.000 abstract description 32
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 17
- 239000001301 oxygen Substances 0.000 abstract description 17
- 229910052760 oxygen Inorganic materials 0.000 abstract description 17
- 239000011229 interlayer Substances 0.000 abstract description 12
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 abstract description 11
- 229910000457 iridium oxide Inorganic materials 0.000 abstract description 11
- 229910052741 iridium Inorganic materials 0.000 abstract description 10
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 10
- 229920005591 polysilicon Polymers 0.000 abstract description 10
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 9
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 abstract description 9
- 229910052814 silicon oxide Inorganic materials 0.000 abstract description 9
- HWEYZGSCHQNNEH-UHFFFAOYSA-N silicon tantalum Chemical compound [Si].[Ta] HWEYZGSCHQNNEH-UHFFFAOYSA-N 0.000 abstract description 9
- 239000000758 substrate Substances 0.000 abstract description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 8
- 229910052710 silicon Inorganic materials 0.000 abstract description 8
- 239000010703 silicon Substances 0.000 abstract description 8
- 238000001312 dry etching Methods 0.000 abstract description 6
- 230000004888 barrier function Effects 0.000 description 10
- 238000005546 reactive sputtering Methods 0.000 description 9
- 239000010936 titanium Substances 0.000 description 9
- 238000009792 diffusion process Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910021332 silicide Inorganic materials 0.000 description 3
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 3
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- 241000700560 Molluscum contagiosum virus Species 0.000 description 1
- 229910020684 PbZr Inorganic materials 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- IZJSTXINDUKPRP-UHFFFAOYSA-N aluminum lead Chemical compound [Al].[Pb] IZJSTXINDUKPRP-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000000089 atomic force micrograph Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005621 ferroelectricity Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- UPSOBXZLFLJAKK-UHFFFAOYSA-N ozone;tetraethyl silicate Chemical compound [O-][O+]=O.CCO[Si](OCC)(OCC)OCC UPSOBXZLFLJAKK-UHFFFAOYSA-N 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
Landscapes
- Semiconductor Memories (AREA)
Abstract
(57)【要約】
【課題】 所望の正確な形状や平坦な表面が得られない
と、キャパシタの特性ばらつきを引き起こしたり、微細
なパターニングを困難にするばかりか、キャパシタ上に
層間絶縁膜や配線を施す際に密着性が悪くなる。
【解決手段】 シリコン基板1の表面に選択トランジス
タを公知の技術で形成した後、層間絶縁膜として第1の
シリコン酸化膜6を成膜し、コンタクトホールを形成す
る。次に、コンタクトホールにポリシリコンを埋め込ん
だ後、表面を平坦化し、ポリシリコンプラグ7を形成す
る。このポリシリコンプラグ7上に、タンタルシリコン
窒化膜8を成膜し、次に、イリジウム膜9、イリジウム
酸化膜10を成膜した。次に、イリジウム酸化膜10上
にSBT膜11を形成した。この上に白金膜を形成し、
酸素中で熱処理工程を行った。次に、上部電極となる白
金膜をドライエッチング法で、上部電極12、SBT膜
11、イリジウム酸化膜10、イリジウム膜9及びタン
タルシリコン窒化膜8順次加工した。
(57) [Summary] [Problem] Unless a desired accurate shape or flat surface is obtained, not only does the characteristic of the capacitor vary, making fine patterning difficult, but also an interlayer insulating film and wiring on the capacitor. When applying, the adhesion becomes poor. SOLUTION: After a selection transistor is formed on the surface of a silicon substrate 1 by a known technique, a first silicon oxide film 6 is formed as an interlayer insulating film to form a contact hole. Next, after the polysilicon is buried in the contact hole, the surface is flattened and a polysilicon plug 7 is formed. On this polysilicon plug 7, a tantalum silicon nitride film 8 was formed, and then an iridium film 9 and an iridium oxide film 10 were formed. Next, an SBT film 11 was formed on the iridium oxide film 10. A platinum film is formed on this,
The heat treatment step was performed in oxygen. Next, the platinum film serving as the upper electrode was sequentially processed by a dry etching method in the order of the upper electrode 12, the SBT film 11, the iridium oxide film 10, the iridium film 9, and the tantalum silicon nitride film 8.
Description
【0001】[0001]
【発明の属する技術分野】本発明は下部電極、誘電体膜
及び上部電極からなるキャパシタを有する半導体メモリ
素子の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor memory device having a capacitor comprising a lower electrode, a dielectric film and an upper electrode.
【0002】[0002]
【従来の技術】従来の不揮発性メモリであるEPROM
やEEPROM、フラッシュメモリ等は読み出し時間こ
そDRAM並であるが、書き込み時間が長く、高速動作
は期待できない。これに対して、強誘電体キャパシタを
用いた不揮発性の半導体メモリ素子は、読み出し、書き
込み共にDRAM並であり、高速動作の期待できる。強
誘電体キャパシタの電極材料として、強誘電体を結晶化
させるための高温酸化性雰囲気中における耐性があるな
どの理由から、従来より上部電極、下部電極ともに白金
が広く用いられている。2. Description of the Related Art EPROM which is a conventional nonvolatile memory
The read time of an EEPROM, an EEPROM, a flash memory, or the like is comparable to that of a DRAM, but the write time is long, and high-speed operation cannot be expected. On the other hand, a non-volatile semiconductor memory device using a ferroelectric capacitor is comparable to a DRAM in both reading and writing, and can be expected to operate at high speed. As an electrode material for a ferroelectric capacitor, platinum has been widely used for both the upper electrode and the lower electrode because of its resistance in a high-temperature oxidizing atmosphere for crystallizing the ferroelectric.
【0003】一方、強誘電体キャパシタに用いる強誘電
体材料としては、これまでよく検討されてきたPbZr
xTi1-xO3(PZT)や新たにSrBi2Ta2O9(S
BT)やBi4Ti3O12(BIT)が注目され、現在盛
んに検討されている。On the other hand, as a ferroelectric material used for a ferroelectric capacitor, PbZr
x Ti 1-x O 3 (PZT) or newly SrBi 2 Ta 2 O 9 (S
BT) and Bi 4 Ti 3 O 12 (BIT) have attracted attention and are being actively studied.
【0004】強誘電体膜の形成方法は、MOD(Met
al Organic Deposition)法、ゾ
ルゲル法、MOCVD法(Metal Organic
Chemical Vapor Depositio
n)法、スパッタリング法等があるが、いずれの成膜法
においても、酸化物強誘電体膜は600℃〜800℃程
度の高温の酸化雰囲気の熱処理で結晶化させる必要があ
る。A method of forming a ferroelectric film is MOD (Met
al Organic Deposition) method, sol-gel method, MOCVD method (Metal Organic)
Chemical Vapor Deposition
There are an n) method, a sputtering method, and the like. In any of the film forming methods, the oxide ferroelectric film needs to be crystallized by heat treatment in a high-temperature oxidizing atmosphere at about 600 ° C. to 800 ° C.
【0005】上述した強誘電体膜のなかでも、SBT
は、PZTに比べて疲労特性が良く、低電圧駆動が可能
であるという利点があり、高集積強誘電体メモリ素子へ
の応用が有力視されている。しかし、SBT膜を結晶化
させ、上部電極を形成しただけでの状態では、キャパシ
タリーク電流が多いという問題があった。そこで、従来
は上部電極を基板全面にわたって形成し、所望の形状に
加工した後で、酸素雰囲気中で熱処理を加えることによ
り、リーク電流特性を向上させる方法が採られていた。[0005] Among the above ferroelectric films, SBT
Has an advantage that it has better fatigue characteristics and can be driven at a low voltage than PZT, and is expected to be applied to a highly integrated ferroelectric memory device. However, in a state where the SBT film is only crystallized and the upper electrode is formed, there is a problem that the capacitor leakage current is large. Therefore, conventionally, a method has been adopted in which the upper electrode is formed over the entire surface of the substrate, processed into a desired shape, and then subjected to a heat treatment in an oxygen atmosphere to improve the leak current characteristics.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、従来の
ように白金上部電極を所望の形状に加工した上で熱処理
工程を行うと、その熱処理工程中に上部電極の白金が再
結晶化するので粒成長が起こり、当初の所望の形状から
収縮して端部がいびつになったり、モフォロジーが悪化
して平坦性が悪くなるという問題点があった。However, if a heat treatment step is performed after processing the platinum upper electrode into a desired shape as in the prior art, the platinum of the upper electrode is recrystallized during the heat treatment step, so that grain growth occurs. Then, there is a problem that the end portion is distorted due to contraction from the originally desired shape, or morphology is deteriorated, and flatness is deteriorated.
【0007】また、上部電極の白金の加工は一般的にド
ライエッチング法を用いて行われるが、この場合、上部
電極の下地のSBTについても、白金のエッチングの際
のオーバーエッチングにより、表面の露出したSBTが
エッチングされるため、露出したSBT表面は平滑であ
る。ところが、その後、熱処理工程を行うとSBTもま
た再結晶化し、表面モフォロジーが悪化するという問題
があった。[0007] In addition, the processing of platinum of the upper electrode is generally performed by using a dry etching method. In this case, the surface of the SBT underlying the upper electrode is also exposed due to overetching during the platinum etching. The exposed SBT surface is smooth because the exposed SBT is etched. However, when the heat treatment step is performed thereafter, there is a problem that the SBT is also recrystallized and the surface morphology is deteriorated.
【0008】このように、所望の正確な形状や平坦な表
面が得られないと、キャパシタの特性ばらつきを引き起
こしたり、微細なパターニングを困難にするばかりか、
キャパシタ上に層間絶縁膜や配線を施す際に密着性が悪
くなり、剥離を引き起こす原因となる。[0008] As described above, if a desired accurate shape and a flat surface cannot be obtained, not only the characteristics of the capacitor will vary, but also fine patterning will be difficult.
When an interlayer insulating film or wiring is formed on the capacitor, the adhesion is deteriorated, which causes peeling.
【0009】一方、強誘電体メモリ素子の高集積化を実
現するためには、スタック型構造を採ることが求められ
る。スタック型構造の場合には、ポリシリコンプラグな
どを用いて、キャパシタ部と選択トランジスタとの電気
的な導通を得る。その場合には、下部電極や強誘電体膜
とプラグとの反応を防ぎ、キャパシタを構成する各元素
の拡散を防ぐバリアメタルや、キャパシタ形成時の結晶
化熱処理の雰囲気等から拡散してくる酸素によってそれ
自身やバリアメタル及びプラグ表面が酸化されないよう
なキャパシタ下部電極も要求される。On the other hand, in order to realize high integration of ferroelectric memory elements, it is required to adopt a stack type structure. In the case of a stack type structure, electrical conduction between the capacitor portion and the select transistor is obtained using a polysilicon plug or the like. In this case, a barrier metal that prevents the reaction between the lower electrode or the ferroelectric film and the plug and prevents the diffusion of each element constituting the capacitor, and oxygen that diffuses from the atmosphere of the crystallization heat treatment at the time of forming the capacitor. Accordingly, a capacitor lower electrode that does not oxidize itself, the barrier metal, and the plug surface is also required.
【0010】しかしながら、バリアメタルや下部電極に
高温酸化雰囲気中での長時間にわたる十分な耐性がない
ため、下部電極形成後の熱処理工程は全て低温化する必
要があったが、低温で従来のように上部電極形成後のリ
ーク低減のための熱処理工程を行うと、優れたリーク特
性の強誘電体キャパシタが得られないという問題があっ
た。However, since the barrier metal and the lower electrode do not have sufficient resistance for a long time in a high-temperature oxidizing atmosphere, it is necessary to lower the temperature of all the heat treatment steps after the formation of the lower electrode. However, if a heat treatment step for reducing leakage after forming the upper electrode is performed, there is a problem that a ferroelectric capacitor having excellent leakage characteristics cannot be obtained.
【0011】[0011]
【課題を解決するための手段】請求項1に記載の半導体
メモリ素子の製造方法は、下部電極、誘電体膜及び上部
電極からなるキャパシタを有する半導体メモリ素子の製
造方法において、上記下部電極上に上記誘電体膜を形成
した後、上記上部電極材料を上記誘電体膜上に堆積させ
る工程と、所定の温度での熱処理を行った後、所定の形
状にパターニングすることにより上部電極を形成する工
程とを有することを特徴とするものである。According to a first aspect of the present invention, there is provided a method of manufacturing a semiconductor memory device having a capacitor comprising a lower electrode, a dielectric film, and an upper electrode. After forming the dielectric film, depositing the upper electrode material on the dielectric film, and performing a heat treatment at a predetermined temperature and then patterning the upper electrode material into a predetermined shape to form an upper electrode And characterized in that:
【0012】また、請求項2に記載の本発明の半導体メ
モリ素子の製造方法は、上記熱処理を400℃以上、且
つ、800℃以下で行うことを特徴とする、請求項1に
記載の半導体メモリ素子の製造方法である。Further, in the method of manufacturing a semiconductor memory device according to the present invention, the heat treatment is performed at 400 ° C. or more and 800 ° C. or less. This is a method for manufacturing an element.
【0013】[0013]
【発明の実施の形態】以下、実施の形態に基づいて、本
発明の半導体メモリ素子の製造方法について説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for manufacturing a semiconductor memory device according to the present invention will be described based on an embodiment.
【0014】図1は本発明の実施の形態の半導体メモリ
素子の前半の製造工程図であり、図において、1はn型
シリコン基板、2はn型シリコン基板の表面に形成され
た素子分離のためのロコス酸化膜、3はゲート酸化膜、
4はゲート電極、5はソース/ドレイン領域、6はシリ
コン基板1上に層間絶縁膜として形成された第1のシリ
コン酸化膜、7はソース/ドレイン領域5とキャパシタ
下部電極とのコンタクトを取るために形成されたポリシ
リコンプラグ、8はポリシリコンプラグ上に拡散バリア
として形成されたタンタルシリコン窒化膜(TaSi
N)、9は拡散バリア及び酸素阻止膜として形成された
イリジウム(Ir)膜、10は強誘電体キャパシタの下
部電極及び酸素阻止膜として形成されたイリジウム酸化
(IrOx)膜、11は下部電極上に形成された強誘電
体膜であるSBT膜、12はSBT膜上に形成された白
金を用いた上部電極、13は強誘電体膜の拡散及びシリ
サイド反応の防止のための酸化チタン膜、14は層間絶
縁膜として形成された第2のシリコン酸化膜、15は第
2のシリコン酸化膜と上部電極との密着層であるチタン
膜、16はドライブラインとなる白金膜、17は密着層
であり且つ反射防止膜である窒化チタン膜、18は層間
絶縁膜として形成された第3のシリコン酸化膜、19は
ソース/ドレイン領域とのコンタクトを取るために形成
されたアルミニウムの引き出し電極である。尚、本実施
の形態においては、n型シリコン基板について述べる
が、本発明はこれに限定されるものではない。FIG. 1 is a diagram showing the first half of a manufacturing process of a semiconductor memory device according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes an n-type silicon substrate, and 2 denotes an element isolation formed on the surface of the n-type silicon substrate. LOCOS oxide film, 3 is a gate oxide film,
4 is a gate electrode, 5 is a source / drain region, 6 is a first silicon oxide film formed as an interlayer insulating film on the silicon substrate 1, and 7 is a contact between the source / drain region 5 and the capacitor lower electrode. 8 is a tantalum silicon nitride film (TaSi) formed as a diffusion barrier on the polysilicon plug.
N) and 9 are an iridium (Ir) film formed as a diffusion barrier and an oxygen blocking film, 10 is a lower electrode of a ferroelectric capacitor and an iridium oxide (IrO x ) film formed as an oxygen blocking film, and 11 is a lower electrode. An SBT film which is a ferroelectric film formed thereon, 12 an upper electrode using platinum formed on the SBT film, 13 a titanium oxide film for diffusion of the ferroelectric film and prevention of a silicide reaction, 14 is a second silicon oxide film formed as an interlayer insulating film, 15 is a titanium film as an adhesion layer between the second silicon oxide film and the upper electrode, 16 is a platinum film as a drive line, and 17 is an adhesion layer. A titanium nitride film which is an anti-reflection film, 18 is a third silicon oxide film formed as an interlayer insulating film, and 19 is an aluminum film formed for making contact with source / drain regions. A lead-out electrode. In this embodiment, an n-type silicon substrate will be described, but the present invention is not limited to this.
【0015】以下、図1を用いて本発明の半導体メモリ
素子の製造工程を説明する。Hereinafter, the manufacturing process of the semiconductor memory device of the present invention will be described with reference to FIG.
【0016】まず、n型シリコン基板1の表面に厚さが
約500Åのロコス酸化膜2を形成して、素子分離領域
を形成する。次に、ゲート酸化膜3、ゲート電極4、ソ
ース/ドレイン領域等からなる選択トランジスタを公知
の技術で形成した後、層間絶縁膜としてCVD(Che
mical Vapor Deposition)法で
第1のシリコン酸化膜6を5000Å程度成膜し、フォ
トリソグラフィ技術及びドライエッチング技術を用い
て、直径0.5μmのコンタクトホールを形成する。次
に、CVD法でコンタクトホールにポリシリコンを埋め
込んだ後、CMP法で表面を平坦化し、ポリシリコンプ
ラグ7を形成する。First, a LOCOS oxide film 2 having a thickness of about 500 ° is formed on the surface of an n-type silicon substrate 1 to form an element isolation region. Next, after a select transistor including a gate oxide film 3, a gate electrode 4, a source / drain region, and the like is formed by a known technique, a CVD (Che) is used as an interlayer insulating film.
A first silicon oxide film 6 is formed to a thickness of about 5000 ° by a physical vapor deposition method, and a contact hole having a diameter of 0.5 μm is formed by using a photolithography technique and a dry etching technique. Next, after the polysilicon is buried in the contact hole by the CVD method, the surface is flattened by the CMP method, and the polysilicon plug 7 is formed.
【0017】このポリシリコンプラグ7上に、DCマグ
ネトロン反応性スパッタ法で膜厚700Åのタンタルシ
リコン窒化膜8を成膜し、次に、DCマグネトロン反応
性スパッタ法で膜厚が300Åのイリジウム膜9を成膜
し、更に、DCマグネトロン反応性スパッタ法で、膜厚
1000Åのイリジウム酸化膜10を成膜した。On this polysilicon plug 7, a tantalum silicon nitride film 8 having a thickness of 700 ° is formed by DC magnetron reactive sputtering, and then an iridium film 9 having a thickness of 300 ° is formed by DC magnetron reactive sputtering. Was formed, and an iridium oxide film 10 having a thickness of 1000 Å was formed by DC magnetron reactive sputtering.
【0018】形成されたイリジウム酸化膜10は非常に
平滑な導電性をもった電極であり、その下部のイリジウ
ム膜9はイリジウム酸化膜10の成膜時にタンタルシリ
コン窒化膜8の表面が酸化されるのを抑制するととも
に、強誘電体の焼成時の酸素雰囲気からの酸素の拡散を
防ぐ。また、タンタルシリコン窒化膜8はイリジウム膜
9とポリシリコンプラグ7とのシリサイド反応を防ぐバ
リアメタルである。The formed iridium oxide film 10 is an electrode having very smooth conductivity, and the iridium film 9 thereunder is oxidized on the surface of the tantalum silicon nitride film 8 when the iridium oxide film 10 is formed. And diffusion of oxygen from the oxygen atmosphere during firing of the ferroelectric is prevented. The tantalum silicon nitride film 8 is a barrier metal that prevents a silicide reaction between the iridium film 9 and the polysilicon plug 7.
【0019】次に、MOD法により、イリジウム酸化膜
10上にSBTのMOD原料溶液をスピナーを用いて3
000rpmで塗布し、乾燥を250℃で5分間行っ
た。第1の焼成を大気圧の酸素雰囲気中で500℃で1
0分間行った。その後、結晶化のための熱処理として、
RTA(Rapid Themal Annealin
g)法で、670℃で10分間の第2の焼成を酸素を含
む雰囲気中で行った。Next, a MOD raw material solution of SBT is applied onto the iridium oxide film 10 by a MOD method using a spinner.
Coating was performed at 000 rpm, and drying was performed at 250 ° C. for 5 minutes. The first firing is performed at 500 ° C. in an oxygen atmosphere at atmospheric pressure.
Performed for 0 minutes. Then, as a heat treatment for crystallization,
RTA (Rapid Thermal Annealin)
By g) method, a second baking at 670 ° C. for 10 minutes was performed in an atmosphere containing oxygen.
【0020】塗布から結晶化のための熱処理までの工程
を所望の膜厚約1800ÅのSBT膜11になるように
3回又は4回繰り返した。尚、SBT膜11の形成方法
は、MOD法だけでなく、スパッタリング法、MOCV
D法等でもよい。この強誘電体膜上にDCマグネトロン
反応性スパッタ法で、白金膜を1500Å形成し、第3
の焼成として、炉で700℃で30分間の酸素中で熱処
理工程を行った。The steps from the application to the heat treatment for crystallization were repeated three or four times so that the SBT film 11 had a desired thickness of about 1800 °. The method of forming the SBT film 11 is not only the MOD method but also the sputtering method and the MOCV method.
The D method may be used. A platinum film was formed on the ferroelectric film by DC magnetron reactive sputtering at 1500 °, and a third film was formed.
Was subjected to a heat treatment step in a furnace at 700 ° C. for 30 minutes in oxygen.
【0021】第3の焼成温度としては、400℃〜80
0℃であることが望ましい。400℃より低い温度で
は、十分にキャパシタリーク電流が向上しないという問
題点が生じ、また、800℃より高い温度では、上部電
極である白金膜ばかりか強誘電体であるSBT膜自体の
再結晶化によりモフォロジーが悪化する。また、下部電
極が凝集を起こしたり、バリアメタルの酸化という問題
も生じ、キャパシタ特性が得られないという問題も生じ
る。The third firing temperature is 400 ° C. to 80 ° C.
Desirably, the temperature is 0 ° C. At a temperature lower than 400 ° C., there is a problem that the capacitor leakage current is not sufficiently improved. At a temperature higher than 800 ° C., recrystallization of not only the platinum film as the upper electrode but also the ferroelectric SBT film itself is performed. Morphology deteriorates. In addition, problems such as aggregation of the lower electrode and oxidation of the barrier metal also occur, and a problem that capacitor characteristics cannot be obtained also occurs.
【0022】次に、フォトリソグラフィ技術を用いて、
フォトレジストによるパターニングを行い、上部電極と
なる白金膜をドライエッチング法で2.7μm角に加工
し、上部電極12を形成した。同様に、SBT膜11を
3.2μm角に、下部電極となるイリジウム酸化膜10
と拡散バリアとしてのイリジウム膜9、タンタルシリコ
ン窒化膜8を3.6μm角に加工した。Next, using photolithography technology,
Patterning with a photoresist was performed, and a platinum film serving as an upper electrode was processed into a 2.7 μm square by dry etching to form an upper electrode 12. Similarly, the SBT film 11 is 3.2 μm square, and the iridium oxide film 10 serving as a lower electrode is formed.
The iridium film 9 as a diffusion barrier and the tantalum silicon nitride film 8 were processed into a 3.6 μm square.
【0023】その後、RFマグネトロン反応性スパッタ
リングで酸化チタン膜13を強誘電体キャパシタを構成
する各元素の拡散防止膜として250Å形成した。この
上に第2の層間絶縁膜14としてオゾンTEOS膜を膜
厚2000Å形成し、更にRFマグネトロン反応性スパ
ッタリングによりチタン膜15をその上部に形成される
ドライブラインとなる白金との密着層として250Å形
成した。Thereafter, a titanium oxide film 13 was formed by RF magnetron reactive sputtering to a thickness of 250 ° as a diffusion preventing film for each element constituting the ferroelectric capacitor. An ozone TEOS film having a thickness of 2000 .ANG. Is formed thereon as the second interlayer insulating film 14, and a titanium film 15 is formed thereon by RF magnetron reactive sputtering as a 250 .ANG. did.
【0024】次に、上層からチタン膜15、第2の層間
絶縁膜14、酸化チタン膜13を1.2μm角で、上部
電極12表面まで開口する。Next, a titanium film 15, a second interlayer insulating film 14, and a titanium oxide film 13 are opened to a surface of the upper electrode 12 in a 1.2 μm square from the upper layer.
【0025】次に、ドライブラインとなる白金膜16を
DCマグネトロン反応性スパッタリング法により、膜厚
1000Åとなるように形成した。この白金膜16上に
窒化チタン膜17をRFマグネトロン反応性スパッタリ
ング法で作成した。これは、この上層に形成される第3
の層間絶縁膜18との密着性を向上させ、また、フォト
リソグラフィ工程の際の反射防止膜として働く。フォト
リソグラフィ技術とドライエッチング技術とを用いて窒
化チタン膜17と白金膜16とチタン膜15とをパター
ニングし、ドライブライン形状に加工した。ここで、上
部電極12の加工以降の工程で、強誘電体キャパシタに
与えられた損傷や電荷の遍在等を正常状態に回復させる
ために、大気圧の酸素雰囲気中で、550℃、30秒間
の短時間熱処理工程をRTA法で行った。Next, a platinum film 16 serving as a drive line was formed to a thickness of 1000 ° by a DC magnetron reactive sputtering method. A titanium nitride film 17 was formed on the platinum film 16 by RF magnetron reactive sputtering. This is because the third layer formed on this upper layer
This improves the adhesion to the interlayer insulating film 18 and also functions as an antireflection film in a photolithography process. The titanium nitride film 17, the platinum film 16, and the titanium film 15 were patterned using a photolithography technique and a dry etching technique, and processed into a drive line shape. Here, in order to recover the damage and the ubiquity of the electric charges given to the ferroelectric capacitor in the steps after the processing of the upper electrode 12 to a normal state, the atmosphere is kept at 550 ° C. for 30 seconds in an oxygen atmosphere at atmospheric pressure. Was performed by the RTA method.
【0026】次に、第3の層間絶縁膜18を成膜し、こ
こにコンタクトホールを開口し、ソース/ドレイン領域
からのアルミニウム引き出し電極19をDCマグネトロ
ン反応性スパッタリング法にて形成した。Next, a third interlayer insulating film 18 was formed, a contact hole was opened therein, and an aluminum lead electrode 19 from the source / drain region was formed by DC magnetron reactive sputtering.
【0027】上述の工程により作成された強誘電体キャ
パシタの上部電極12へ繋がるドライブライン16とシ
リコン基板1からのアルミニウム引き出し電極19との
間に三角波電界を印加することにより、図2に示すヒス
テリシスループが得られた。尚、この印加した三角波
は、3Vで周波数75Hzとした。図2に示したよう
に、3Vで飽和分極値は12.1μmC/cm2、残留
分極値は7.2μC/cm2、図3に示すようにキャパ
シタリーク電流密度は1.4×10-7A/cm2であ
り、強誘電体キャパシタとして用いるのに十分な特性の
強誘電性が得られた。By applying a triangular wave electric field between the drive line 16 connected to the upper electrode 12 of the ferroelectric capacitor formed by the above-described process and the aluminum extraction electrode 19 from the silicon substrate 1, the hysteresis shown in FIG. A loop was obtained. The applied triangular wave had a frequency of 3 V and a frequency of 75 Hz. As shown in FIG. 2, at 3 V, the saturation polarization value is 12.1 μC / cm 2 , the remnant polarization value is 7.2 μC / cm 2 , and the capacitor leakage current density is 1.4 × 10 −7 as shown in FIG. A / cm 2 , and ferroelectricity with sufficient properties to be used as a ferroelectric capacitor was obtained.
【0028】一方、比較のために、従来の製造方法を用
いて、キャパシタ上部電極の白金を2.7μm角に加工
してから第3の焼成を600℃、10分間、酸素雰囲気
中で行った試料を作製した。この試料のリーク電流特性
を測定したところ、図4に示すように、キャパシタリー
ク電流密度で、1.2×10-6A/cm2という特性が
得られ、本発明の製造工程によって得られた試料の特性
の方が優れていることが示された。図3(a)は本発明
を用いた印加電圧を0〜−10(V)としたときのリー
ク電流特性を示し、同(b)は本発明を用いた印加電圧
を0〜+10(V)としたときのリーク電流特性を示
す。また、図4(a)は従来技術を用いた印加電圧を0
〜−10(V)としたときのリーク電流特性を示し、同
(b)は従来技術を用いた印加電圧を0〜+10(V)
としたときのリーク電流特性を示す。On the other hand, for comparison, platinum of the upper electrode of the capacitor was processed into 2.7 μm square using the conventional manufacturing method, and then the third baking was performed at 600 ° C. for 10 minutes in an oxygen atmosphere. A sample was prepared. When the leakage current characteristics of this sample were measured, as shown in FIG. 4, a characteristic of 1.2 × 10 −6 A / cm 2 was obtained in the capacitor leakage current density, which was obtained by the manufacturing process of the present invention. The properties of the sample were shown to be better. FIG. 3A shows the leakage current characteristics when the applied voltage using the present invention is 0 to −10 (V), and FIG. 3B shows the leak current characteristics when the applied voltage using the present invention is 0 to +10 (V). Shows the leakage current characteristics when FIG. 4A shows that the applied voltage using the conventional technique is 0%.
The graph shows leakage current characteristics when the voltage is set to -10 (V), and FIG.
Shows the leakage current characteristics when
【0029】このリーク電流の違いは主にアニール温度
に依存している。上部電極白金はSBT上に均一に堆積
されるため、SBT膜の粒界に入り込んだ白金が存在す
るとその部分に電界が集中し、リーク電流の増大に繋が
る。The difference in the leakage current mainly depends on the annealing temperature. Since the upper electrode platinum is uniformly deposited on the SBT, the presence of platinum that has entered the grain boundaries of the SBT film concentrates the electric field on that portion, leading to an increase in leakage current.
【0030】しかし、白金の堆積後に熱処理を行うと局
所的な凝集によってSBT粒界に入り込んだ白金が上部
に吸い出されるために、電界集中が緩和され、リーク特
性の向上につながる。熱処理温度及び時間が長い方がリ
ーク電流特性の向上に寄与するが、この構造のイリジウ
ム及び酸化イリジウムの酸素バリアの効果が上部電極白
金がない場合、既に高温の熱処理を経ているため、60
0℃、10分間程度までしかなく、それにより高温での
熱処理を行うと、シリサイド反応を抑制するタンタルシ
リコン窒化膜が酸化され、その堆積膨張によりその上部
から剥離が生じてしまう。However, if a heat treatment is performed after the deposition of platinum, the platinum that has entered the SBT grain boundaries due to local aggregation is sucked upward, so that the electric field concentration is alleviated and the leak characteristics are improved. Longer heat treatment temperature and time contribute to the improvement of leakage current characteristics. However, when the effect of the oxygen barrier of iridium and iridium oxide of this structure is not provided with the upper electrode platinum, the heat treatment has already been performed at a high temperature.
When the heat treatment is performed at a high temperature, the tantalum silicon nitride film, which suppresses the silicide reaction, is oxidized, and peels off from the upper portion due to its deposition expansion.
【0031】一方、本発明のように、上部電極である白
金を全面に残したままである場合、雰囲気から拡散して
いくる酸素を緩和できるので、700℃での熱処理も可
能となる。また、SEM及びAFM像によって、上部電
極の白金を2.7μm角に加工した場合、従来方法で
は、上部電極の白金パターン端部より平均して0.2μ
m程度、最大で0.4μmもの収縮が見られ、白金の平
均粒径は0.2μmと大きかったが、本発明による製造
工程によって得られた上部電極では、パターン端部での
収縮は見られず、白金の平均粒径も0.15μmと比較
的平滑であった。On the other hand, when the platinum as the upper electrode is left on the entire surface as in the present invention, oxygen diffusing from the atmosphere can be relaxed, so that a heat treatment at 700 ° C. is also possible. Further, when the platinum of the upper electrode is processed into a 2.7 μm square according to the SEM and the AFM image, in the conventional method, an average of 0.2 μm from the platinum pattern end of the upper electrode
m, a shrinkage of 0.4 μm at the maximum was observed, and the average particle diameter of platinum was as large as 0.2 μm. However, in the upper electrode obtained by the manufacturing process according to the present invention, shrinkage was observed at the pattern edge. The average particle size of platinum was relatively smooth at 0.15 μm.
【0032】本発明の実施の形態において、強誘電体と
してSrBi2Ta2O9を用いたが、この他の誘電体と
して、(PbxLa1-x)(ZryTi1-y)O3、Bi4T
i3O12、BaTiO3、LiNbO3、LiTaO3、Y
MoO3、Sr2Nb2O7、SrBi2(TaxNb1-x)2
O9,(0≦x,y≦1)、また、高誘電体材料である
SrTiO3及び(BaxSr1-x)TiO3、SrBi4
Ti4O15(0≦x≦1)でも同様な効果が得られる。[0032] In an embodiment of the present invention, was used SrBi 2 Ta 2 O 9 as the ferroelectric, as another dielectric, (Pb x La 1-x ) (Zr y Ti 1-y) O 3 , Bi 4 T
i 3 O 12 , BaTiO 3 , LiNbO 3 , LiTaO 3 , Y
MoO 3, Sr 2 Nb 2 O 7, SrBi 2 (Ta x Nb 1-x) 2
O 9 , (0 ≦ x, y ≦ 1), and SrTiO 3 and (Ba x Sr 1-x ) TiO 3 , SrBi 4 which are high dielectric materials
Similar effects can be obtained with Ti 4 O 15 (0 ≦ x ≦ 1).
【0033】また、上部電極をPtとしたが、強誘電体
特性を引き出せるものであれば、これに限ったものでは
なく、Rh、Ir、Ruまたはこれらの酸化物、合金及
び合金の酸化物又はそれらの組み合わせを用いても、同
様な効果が得られた。Although the upper electrode is made of Pt, the material is not limited to Pt as long as it can bring out the ferroelectric characteristics. Rh, Ir, Ru or their oxides, alloys, oxides of alloys or Similar effects were obtained by using those combinations.
【0034】[0034]
【発明の効果】以上、詳細に説明したように、上部電極
白金を熱処理工程を行ってから微細加工することによ
り、微細化された上部電極白金の粒成長に伴う収縮やモ
フォロジーの悪化の問題が回避できた。上部電極白金の
熱処理条件は、従来より高温の700℃、30分間の酸
素雰囲気中で行うことにより、キャパシタリークは低減
された。また、熱処理工程を行ってから、上部電極の白
金をドライエッチング法によって加工し、その後での高
温の熱処理工程はないので、SBT表面の露出した部分
では非常に平滑な表面が得られた。キャパシタは所望の
寸法・形状で作製されたので、キャパシタの特性ばらつ
きは殆どみられず、また、配線を形成するために必要な
層間絶縁膜をキャパシタ上に積層した場合にも剥離など
の現象は見られなかった。As described above in detail, by subjecting the upper electrode platinum to a heat treatment process and then finely processing, the problem of shrinkage and deterioration of morphology accompanying the grain growth of the finer upper electrode platinum is reduced. I could avoid it. The heat treatment of the upper electrode platinum was performed in an oxygen atmosphere at 700 ° C. for 30 minutes, which was higher than before, to reduce capacitor leakage. Further, after performing the heat treatment step, the platinum of the upper electrode was processed by a dry etching method, and there was no subsequent high-temperature heat treatment step, so that a very smooth surface was obtained in the exposed portion of the SBT surface. Since the capacitor was manufactured with the desired dimensions and shape, there was almost no variation in the characteristics of the capacitor, and even when an interlayer insulating film required for forming wiring was laminated on the capacitor, phenomena such as delamination did not occur. I couldn't see it.
【0035】メモリセルがスタック型構造をとっている
場合には、SBT及び下部電極を通してその下のバリア
メタルに酸素が拡散したりヒロックが発生したりして、
耐酸化性、耐熱性に限界があるため、高温酸化雰囲気中
での熱処理は行うことが難しいが、上部電極の白金によ
って、キャパシタ下部電極への酸素の拡散が緩和され
る。When the memory cell has a stack type structure, oxygen diffuses into the barrier metal thereunder through the SBT and the lower electrode, and hillocks are generated.
Heat treatment in a high-temperature oxidizing atmosphere is difficult due to limitations in oxidation resistance and heat resistance, but diffusion of oxygen to the capacitor lower electrode is eased by platinum in the upper electrode.
【0036】よって、従来では高くても600℃程度の
短時間の熱処理しかできなかったが、本発明により高温
の酸化雰囲気中で熱処理を行うことができるので、キャ
パシタ特性、特にリーク電流特性の向上が図れた。Therefore, conventionally, only a short heat treatment of about 600 ° C. could be performed at the highest, but the heat treatment can be performed in a high-temperature oxidizing atmosphere according to the present invention. Was achieved.
【図1】強誘電体キャパシタを有する半導体メモリ素子
の構造断面図である。FIG. 1 is a structural sectional view of a semiconductor memory device having a ferroelectric capacitor.
【図2】本発明を用いた強誘電体キャパシタの強誘電特
性のステリシスループを示す図である。FIG. 2 is a diagram showing a steeresis loop of ferroelectric characteristics of a ferroelectric capacitor using the present invention.
【図3】(a)は本発明を用いた印加電圧を0〜−10
(V)としたときのリーク電流特性を示す図であり、
(b)は本発明を用いた印加電圧を0〜+10(V)と
したときのリーク電流特性を示す図である。FIG. 3 (a) shows an applied voltage of 0 to -10 using the present invention.
FIG. 6 is a diagram showing a leakage current characteristic when (V) is set;
(B) is a diagram showing the leakage current characteristics when the applied voltage using the present invention is 0 to +10 (V).
【図4】(a)は従来技術を用いた印加電圧を0〜−1
0(V)としたときのリーク電流特性を示す図であり、
(b)は従来技術を用いた印加電圧を0〜+10(V)
としたときのリーク電流特性を示す図である。FIG. 4 (a) shows an applied voltage of 0 to -1 using the prior art.
FIG. 9 is a diagram illustrating a leakage current characteristic when the voltage is set to 0 (V);
(B) shows an applied voltage of 0 to +10 (V) using the prior art.
FIG. 9 is a diagram showing a leakage current characteristic when “1” is set.
1 n型シリコン基板 2 ロコス酸化膜 3 ゲート酸化膜 4 ゲート電極 5 ソース/ドレイン領域 6 第1のシリコン酸化膜 7 ポリシリコンプラグ 8 タンタルシリコン窒化膜 9 イリジウム膜 10 イリジウム酸化膜 11 SBT膜 12 上部電極 13 酸化チタン膜 14 第2のシリコン酸化膜 15 チタン膜 16 白金膜 17 窒化チタン膜 18 第3のシリコン酸化膜 19 アルミニウムの引き出し電極 REFERENCE SIGNS LIST 1 n-type silicon substrate 2 LOCOS oxide film 3 gate oxide film 4 gate electrode 5 source / drain region 6 first silicon oxide film 7 polysilicon plug 8 tantalum silicon nitride film 9 iridium film 10 iridium oxide film 11 SBT film 12 upper electrode Reference Signs List 13 titanium oxide film 14 second silicon oxide film 15 titanium film 16 platinum film 17 titanium nitride film 18 third silicon oxide film 19 aluminum extraction electrode
Claims (2)
るキャパシタを有する半導体メモリ素子の製造方法にお
いて、 上記下部電極上に上記誘電体膜を形成した後、上記上部
電極材料を上記誘電体膜上に堆積させる工程と、 所定の温度での熱処理を行った後、所定の形状にパター
ニングすることにより上部電極を形成する工程とを有す
ることを特徴とする、半導体メモリ素子の製造方法。1. A method for manufacturing a semiconductor memory device having a capacitor comprising a lower electrode, a dielectric film, and an upper electrode, comprising: forming the dielectric film on the lower electrode; A method for manufacturing a semiconductor memory device, comprising: a step of depositing an upper electrode; and a step of forming a top electrode by performing a heat treatment at a predetermined temperature and then patterning it into a predetermined shape.
0℃以下で行うことを特徴とする、請求項1に記載の半
導体メモリ素子の製造方法。2. The method according to claim 1, wherein the heat treatment is performed at a temperature of 400.degree.
The method according to claim 1, wherein the method is performed at a temperature of 0 ° C or lower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10111218A JPH11307736A (en) | 1998-04-22 | 1998-04-22 | Method for manufacturing semiconductor memory device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10111218A JPH11307736A (en) | 1998-04-22 | 1998-04-22 | Method for manufacturing semiconductor memory device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11307736A true JPH11307736A (en) | 1999-11-05 |
Family
ID=14555530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10111218A Pending JPH11307736A (en) | 1998-04-22 | 1998-04-22 | Method for manufacturing semiconductor memory device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11307736A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001210796A (en) * | 1999-11-17 | 2001-08-03 | Sanyo Electric Co Ltd | Dielectric element |
JP2001237395A (en) * | 2000-02-22 | 2001-08-31 | Matsushita Electric Ind Co Ltd | Semiconductor storage device |
JP2002141478A (en) * | 2000-11-06 | 2002-05-17 | Matsushita Electric Ind Co Ltd | Semiconductor device and manufacturing method thereof |
US6534375B2 (en) | 2000-08-21 | 2003-03-18 | Hitachi, Ltd. | Method of forming a capacitor in a semiconductor integrated circuit device using a metal silicon nitride layer to protect an underlying metal silicide layer from oxidation during subsequent processing steps |
JP2003197874A (en) * | 2001-12-28 | 2003-07-11 | Fujitsu Ltd | Method for manufacturing semiconductor device |
US6723612B2 (en) | 2001-08-31 | 2004-04-20 | Renesas Technology Corproation | Semiconductor integrated circuit device and method of manufacturing the same |
US6762476B2 (en) | 2001-02-06 | 2004-07-13 | Sanyo Electric Co., Ltd | Dielectric element including oxide dielectric film and method of manufacturing the same |
JP2004303993A (en) * | 2003-03-31 | 2004-10-28 | Seiko Epson Corp | Semiconductor device manufacturing method and semiconductor device |
US6888189B2 (en) | 2000-11-08 | 2005-05-03 | Sanyo Electric Co., Ltd. | Dielectric element including oxide-based dielectric film and method of fabricating the same |
US7270884B2 (en) * | 2003-04-07 | 2007-09-18 | Infineon Technologies Ag | Adhesion layer for Pt on SiO2 |
-
1998
- 1998-04-22 JP JP10111218A patent/JPH11307736A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001210796A (en) * | 1999-11-17 | 2001-08-03 | Sanyo Electric Co Ltd | Dielectric element |
JP2001237395A (en) * | 2000-02-22 | 2001-08-31 | Matsushita Electric Ind Co Ltd | Semiconductor storage device |
US6534375B2 (en) | 2000-08-21 | 2003-03-18 | Hitachi, Ltd. | Method of forming a capacitor in a semiconductor integrated circuit device using a metal silicon nitride layer to protect an underlying metal silicide layer from oxidation during subsequent processing steps |
US6720603B2 (en) | 2000-08-21 | 2004-04-13 | Hitachi, Ltd. | Capacitor structure and a semiconductor device with a first metal layer, a second metal silicide layer formed over the first metal layer and a second metal layer formed over the second metal silicide layer |
JP2002141478A (en) * | 2000-11-06 | 2002-05-17 | Matsushita Electric Ind Co Ltd | Semiconductor device and manufacturing method thereof |
US6888189B2 (en) | 2000-11-08 | 2005-05-03 | Sanyo Electric Co., Ltd. | Dielectric element including oxide-based dielectric film and method of fabricating the same |
US6762476B2 (en) | 2001-02-06 | 2004-07-13 | Sanyo Electric Co., Ltd | Dielectric element including oxide dielectric film and method of manufacturing the same |
US6723612B2 (en) | 2001-08-31 | 2004-04-20 | Renesas Technology Corproation | Semiconductor integrated circuit device and method of manufacturing the same |
US6724034B2 (en) | 2001-08-31 | 2004-04-20 | Renesas Technology Corporation | Semiconductor integrated circuit device and manufacturing method which avoids oxidation of silicon plug during thermal treatment of capacitor insulating film |
JP2003197874A (en) * | 2001-12-28 | 2003-07-11 | Fujitsu Ltd | Method for manufacturing semiconductor device |
JP2004303993A (en) * | 2003-03-31 | 2004-10-28 | Seiko Epson Corp | Semiconductor device manufacturing method and semiconductor device |
US7270884B2 (en) * | 2003-04-07 | 2007-09-18 | Infineon Technologies Ag | Adhesion layer for Pt on SiO2 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3484324B2 (en) | Semiconductor memory device | |
JP3319994B2 (en) | Semiconductor storage element | |
JP3452763B2 (en) | Semiconductor storage device and method of manufacturing semiconductor storage device | |
JPH09260600A (en) | Method for manufacturing semiconductor memory device | |
US6352898B2 (en) | Method of manufacturing a semiconductor memory device incorporating a capacitor therein | |
JP3419665B2 (en) | Method for manufacturing semiconductor device | |
US6727156B2 (en) | Semiconductor device including ferroelectric capacitor and method of manufacturing the same | |
JPH11307736A (en) | Method for manufacturing semiconductor memory device | |
JPH11111930A (en) | Method for manufacturing semiconductor storage element | |
JP4445091B2 (en) | Ferroelectric memory element | |
JP2000260954A (en) | Ferroelectric capacitor, semiconductor device and method of manufacturing the same | |
JP2001127262A (en) | Ferroelectric capacitor, method of manufacturing the same, and semiconductor device | |
US6495412B1 (en) | Semiconductor device having a ferroelectric capacitor and a fabrication process thereof | |
JP4421814B2 (en) | Capacitor element manufacturing method | |
JPH09246490A (en) | Semiconductor device and manufacture thereof | |
JP2001237402A (en) | Structured metal oxide-containing layer and method for producing semiconductor structural element | |
JP3641142B2 (en) | Ferroelectric memory | |
JPH09162372A (en) | Electrode material and capacitor element using it | |
JP2000223666A (en) | Fabrication of semiconductor memory element | |
JP2002313966A (en) | Transistor type ferroelectric nonvolatile memory element and method of manufacturing the same | |
JP2002289810A (en) | Semiconductor device and its manufacturing method | |
JP2002151654A (en) | Dielectric capacitor element and method of manufacturing the same | |
JP2000156473A (en) | Semiconductor device, method of manufacturing the same, and method of manufacturing a capacitor | |
JPH11233734A (en) | Semiconductor memory element and its manufacture | |
JP2002329845A (en) | Method of manufacturing ferroelectric memory element and ferroelectric memory device |