JPH11306859A - Manufacture of polymer solid electrolyte, polymer solid electrolyte, lithium secondary battery and electric double layer capacitor using the same, and their manufacture - Google Patents
Manufacture of polymer solid electrolyte, polymer solid electrolyte, lithium secondary battery and electric double layer capacitor using the same, and their manufactureInfo
- Publication number
- JPH11306859A JPH11306859A JP10124201A JP12420198A JPH11306859A JP H11306859 A JPH11306859 A JP H11306859A JP 10124201 A JP10124201 A JP 10124201A JP 12420198 A JP12420198 A JP 12420198A JP H11306859 A JPH11306859 A JP H11306859A
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- electrolyte
- solid electrolyte
- polymer solid
- solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 57
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 33
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 29
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 26
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 24
- 239000003990 capacitor Substances 0.000 title claims abstract description 17
- 150000001875 compounds Chemical class 0.000 claims abstract description 25
- 229910003002 lithium salt Inorganic materials 0.000 claims abstract description 21
- 159000000002 lithium salts Chemical class 0.000 claims abstract description 21
- 150000004693 imidazolium salts Chemical class 0.000 claims abstract description 19
- 239000012298 atmosphere Substances 0.000 claims abstract description 17
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 9
- 239000011159 matrix material Substances 0.000 claims abstract description 8
- 125000005010 perfluoroalkyl group Chemical group 0.000 claims abstract description 8
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 6
- 239000007787 solid Substances 0.000 claims description 26
- 239000005518 polymer electrolyte Substances 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 claims description 16
- -1 and thereafter Substances 0.000 claims description 14
- 239000003792 electrolyte Substances 0.000 claims description 14
- 229920001577 copolymer Polymers 0.000 claims description 12
- 125000004432 carbon atom Chemical group C* 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 7
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 6
- 229910052731 fluorine Inorganic materials 0.000 claims description 6
- 239000011737 fluorine Substances 0.000 claims description 6
- 229920002313 fluoropolymer Polymers 0.000 claims description 5
- 239000004811 fluoropolymer Substances 0.000 claims description 5
- 229910017008 AsF 6 Inorganic materials 0.000 claims description 4
- 229910020366 ClO 4 Inorganic materials 0.000 claims description 3
- 229910015015 LiAsF 6 Inorganic materials 0.000 claims description 3
- 229910013063 LiBF 4 Inorganic materials 0.000 claims description 3
- 229910013684 LiClO 4 Inorganic materials 0.000 claims description 3
- 229910013870 LiPF 6 Inorganic materials 0.000 claims description 2
- 229920001519 homopolymer Polymers 0.000 claims description 2
- 229910017048 AsF6 Inorganic materials 0.000 abstract 1
- 229910001914 chlorine tetroxide Inorganic materials 0.000 abstract 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Chemical compound [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 abstract 1
- 239000011245 gel electrolyte Substances 0.000 description 52
- 150000003839 salts Chemical class 0.000 description 25
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- 239000010408 film Substances 0.000 description 10
- 239000007788 liquid Substances 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 239000002033 PVDF binder Substances 0.000 description 8
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical compound FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000007773 negative electrode material Substances 0.000 description 6
- 229920001169 thermoplastic Polymers 0.000 description 6
- 239000004416 thermosoftening plastic Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- 229920006373 Solef Polymers 0.000 description 4
- 239000011149 active material Substances 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 4
- 239000008151 electrolyte solution Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 238000007639 printing Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-O Imidazolium Chemical compound C1=C[NH+]=CN1 RAXXELZNTBOGNW-UHFFFAOYSA-O 0.000 description 3
- 229910021383 artificial graphite Inorganic materials 0.000 description 3
- 239000012752 auxiliary agent Substances 0.000 description 3
- LRESCJAINPKJTO-UHFFFAOYSA-N bis(trifluoromethylsulfonyl)azanide;1-ethyl-3-methylimidazol-3-ium Chemical compound CCN1C=C[N+](C)=C1.FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F LRESCJAINPKJTO-UHFFFAOYSA-N 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000002482 conductive additive Substances 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 229920001973 fluoroelastomer Polymers 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- FPBWSPZHCJXUBL-UHFFFAOYSA-N 1-chloro-1-fluoroethene Chemical group FC(Cl)=C FPBWSPZHCJXUBL-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 229910000733 Li alloy Inorganic materials 0.000 description 2
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229920005549 butyl rubber Polymers 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000009831 deintercalation Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 238000007606 doctor blade method Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000007610 electrostatic coating method Methods 0.000 description 2
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000007756 gravure coating Methods 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000001989 lithium alloy Substances 0.000 description 2
- 239000002931 mesocarbon microbead Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000005486 organic electrolyte Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 2
- OQMIRQSWHKCKNJ-UHFFFAOYSA-N 1,1-difluoroethene;1,1,2,3,3,3-hexafluoroprop-1-ene Chemical group FC(F)=C.FC(F)=C(F)C(F)(F)F OQMIRQSWHKCKNJ-UHFFFAOYSA-N 0.000 description 1
- HVVRUQBMAZRKPJ-UHFFFAOYSA-N 1,3-dimethylimidazolium Chemical compound CN1C=C[N+](C)=C1 HVVRUQBMAZRKPJ-UHFFFAOYSA-N 0.000 description 1
- HBWYMXAVEBGFFO-UHFFFAOYSA-N C=C.C=C(F)F.F.F.F.Cl Chemical compound C=C.C=C(F)F.F.F.F.Cl HBWYMXAVEBGFFO-UHFFFAOYSA-N 0.000 description 1
- CHDVXKLFZBWKEN-UHFFFAOYSA-N C=C.F.F.F.Cl Chemical compound C=C.F.F.F.Cl CHDVXKLFZBWKEN-UHFFFAOYSA-N 0.000 description 1
- 239000004831 Hot glue Substances 0.000 description 1
- 229920006370 Kynar Polymers 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910012949 LiV2O4 Inorganic materials 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229920006220 SOLEF 21508 PVDF Polymers 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- XHIHMDHAPXMAQK-UHFFFAOYSA-N bis(trifluoromethylsulfonyl)azanide;1-butylpyridin-1-ium Chemical compound CCCC[N+]1=CC=CC=C1.FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F XHIHMDHAPXMAQK-UHFFFAOYSA-N 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011978 dissolution method Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 239000011267 electrode slurry Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000002522 swelling effect Effects 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229920005609 vinylidenefluoride/hexafluoropropylene copolymer Polymers 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Conductive Materials (AREA)
- Cell Separators (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高分子固体電解質
およびこれを用いたリチウム二次電池と電気二重層キャ
パシタに関する。The present invention relates to a solid polymer electrolyte, and a lithium secondary battery and an electric double layer capacitor using the same.
【0002】[0002]
【従来の技術】近年、二次電池の需要は、産業用大型電
池から民生用小型電池まで拡大の一途をたどっている。
エレクトロニクスの進歩による電子機器の小型化、軽量
化、高機能化に伴い、高エネルギー密度と長サイクル寿
命とを併せ持つ二次電池の開発が望まれている。2. Description of the Related Art In recent years, demand for secondary batteries has been steadily expanding from large industrial batteries to small consumer batteries.
2. Description of the Related Art As electronic devices have become smaller, lighter, and more sophisticated due to advances in electronics, development of secondary batteries having both high energy density and long cycle life has been desired.
【0003】現在利用されている電池の電解質には、通
常、液体が用いられているが、電解質を固体状にできれ
ば、電池の全固体化が達成され、液漏れの防止やシート
構造化が可能となる。このため、固体電解質を利用する
電池は、次世代タイプの電池として注目を集めている。
特に、現在、ノート型パソコン、携帯電話等での利用が
急速に広まっているリチウムイオン二次電池等の全固体
化が実現すれば、小型電池のみならず、電力ロードリベ
リング用二次電池、電気自動車用二次電池等の大型電池
に対しても、応用展開が加速されると期待されている。[0003] Liquids are generally used as the electrolyte of currently used batteries. However, if the electrolyte can be made solid, the solidification of the battery can be achieved, and liquid leakage can be prevented and a sheet structure can be formed. Becomes For this reason, batteries using solid electrolytes have attracted attention as next-generation batteries.
In particular, if all-solidification of lithium-ion secondary batteries and the like, which are now widely used in notebook computers and mobile phones, is realized, not only small batteries but also secondary batteries for power load leveling, It is expected that application development will be accelerated even for large batteries such as secondary batteries for electric vehicles.
【0004】こうした固体状の電解質を用いる場合、セ
ラミックス材料、高分子材料、あるいは、それらを複合
化した材料が提案されている。中でも、高分子電解質と
電解液等とを用い、可塑化したゲル電解質は、液体系の
高導電率と高分子系のプラスチック性とを兼ね備えてお
り、固体電解質として有望視されている。When such a solid electrolyte is used, a ceramic material, a polymer material, or a composite material thereof has been proposed. Above all, a gel electrolyte plasticized using a polymer electrolyte and an electrolyte solution has both high liquid-based electrical conductivity and high polymer-based plasticity, and is considered promising as a solid electrolyte.
【0005】ゲル状の高分子固体電解質を電池に利用し
た例は既に開示されており、米国特許第5,296,3
18号明細書、同第5,418,091号明細書等によ
り実用的な系も提示されている。An example in which a gel polymer solid electrolyte is used in a battery has been disclosed, and US Pat. No. 5,296,3.
No. 18, No. 5,418,091 and the like also provide practical systems.
【0006】このようなゲル状の高分子固体電解質(以
下、「ゲル電解質」と呼ぶ)は、導電率が液体のそれに
近く、10-3S・cm-1レベルの値を示すものもある。Some of such gel-like polymer solid electrolytes (hereinafter, referred to as “gel electrolytes”) have a conductivity close to that of a liquid and exhibit a value of 10 −3 S · cm −1 level.
【0007】例えば、米国特許第5,296,318号
明細書には、フッ化ビニリデン(VDF)と8〜25重
量%の6フッ化プロピレン(HFP)の共重合体〔P
(VDF−HFP)〕に、リチウム塩が溶解した溶液が
20〜70重量%含まれているゲル電解質が開示されて
いる。このゲル電解質の導電率は10-3S・cm-1に達す
る。For example, US Pat. No. 5,296,318 discloses a copolymer of vinylidene fluoride (VDF) and 8 to 25% by weight of propylene hexafluoride (HFP) [P
(VDF-HFP)] discloses a gel electrolyte containing 20 to 70% by weight of a solution in which a lithium salt is dissolved. The conductivity of this gel electrolyte reaches 10 −3 S · cm −1 .
【0008】しかしながら、このようなゲル電解質は、
溶液系と同様の電解液を含有しているため、漏液が起こ
りやすく、また、ゲル電解質から有機溶媒が揮発しやす
く、長期間の信頼性に欠ける。また、有機溶媒が引火性
なので、溶液系ほどではないにせよ、安全性にも問題が
ある。[0008] However, such a gel electrolyte is
Since it contains the same electrolytic solution as in the solution system, liquid leakage is likely to occur, and the organic solvent tends to volatilize from the gel electrolyte, thus lacking long-term reliability. Further, since the organic solvent is flammable, there is a problem in safety, though not as much as in the solution system.
【0009】さらには、有機電解液への水分の混入は電
池特性を著しく劣化させるので、ゲル電解質の製造は露
点マイナス数十度といった水分のコントロールされた特
殊な環境で行わなければならない。工業的にゲル電解質
を製造しようとする場合、全工程をドライな雰囲気に維
持する必要があり、多額な設備投資・維持費が必要にな
るとともに、工程内の在庫管理も容易ではない。低額な
設備で生産可能で、高い生産性を有した高性能のゲル電
解質とその製造方法が要望されている。Furthermore, since the incorporation of moisture into the organic electrolyte significantly deteriorates the battery characteristics, the production of the gel electrolyte must be carried out in a special environment in which moisture is controlled such as a dew point minus several tens of degrees. When manufacturing a gel electrolyte industrially, it is necessary to maintain all processes in a dry atmosphere, which requires a large amount of capital investment and maintenance cost, and inventory management in the process is not easy. There is a demand for a high-performance gel electrolyte that can be produced with low-cost equipment and has high productivity, and a method for producing the same.
【0010】また、溶融塩を電解質として用いる試みが
なされている。Attempts have also been made to use molten salts as electrolytes.
【0011】例えば、N−ブチルピリジニウム等の芳香
族四級アンモニウムのハロゲン化物とハロゲン化アルミ
ニウムとの錯体が提案されている(高橋、電気化学、59
巻、14頁、1991年)。しかし、このものはハロゲン化物
イオンによる腐食の問題がある。また、安定性にも問題
がある。For example, a complex of an aromatic quaternary ammonium halide such as N-butylpyridinium and an aluminum halide has been proposed (Takahashi, Electrochemistry, 59).
Vol. 14, p. 1991). However, this has the problem of corrosion by halide ions. There is also a problem with stability.
【0012】特開平8−245493号公報には、有機
カルボン酸の脂肪族四級アンモニウム塩とリチウム塩と
を混合してなる常温溶融塩が開示されている。しかし、
このものも、窒素雰囲気下等の水分のコントロールされ
た特殊な環境でしか製造できない。さらには、イオン伝
導率が10-4S・cm-1以下で、実用化するためには低す
ぎる。JP-A-8-245493 discloses a room-temperature molten salt obtained by mixing an aliphatic quaternary ammonium salt of an organic carboxylic acid and a lithium salt. But,
This product can also be produced only in a special environment in which moisture is controlled such as in a nitrogen atmosphere. Furthermore, the ionic conductivity is 10 −4 S · cm −1 or less, which is too low for practical use.
【0013】また、電解質として、常温溶融塩を高分子
化合物で固体化させた高分子化合物複合体が提案されて
いる。Further, as an electrolyte, a polymer compound composite obtained by solidifying a room temperature molten salt with a polymer compound has been proposed.
【0014】例えば、常温溶融塩として知られているN
−ブチルピリジニウムハロゲン化物とハロゲン化アルミ
ニウムとの錯体を高分子化合物で固定化したものが提案
されている(渡辺ら、J.C.S.Chem.Commun., 929, 199
3)。しかし、このものはハロゲン化物イオンによる腐
食の問題がある。また、安定性にも問題がある。For example, N which is known as a room temperature molten salt
-Immobilization of a complex of butylpyridinium halide and aluminum halide with a polymer compound has been proposed (Watanabe et al., JCSChem. Commun., 929, 199).
3). However, this has the problem of corrosion by halide ions. There is also a problem with stability.
【0015】特開平8−245828号公報には、有機
カルボン酸の脂肪族四級アンモニウム塩とリチウム塩と
の混合物から成る常温溶融塩を高分子化合物で固体化さ
せた高分子化合物複合体が開示されている。しかし、こ
のものも、窒素雰囲気下等の水分のコントロールされた
特殊な環境でしか製造できない。さらには、イオン伝導
率が10-4S・cm-1以下で、実用化するためには低すぎ
る。JP-A-8-245828 discloses a polymer compound complex obtained by solidifying a room temperature molten salt comprising a mixture of an aliphatic quaternary ammonium salt of an organic carboxylic acid and a lithium salt with a polymer compound. Have been. However, this can also be produced only in a special environment where moisture is controlled such as in a nitrogen atmosphere. Furthermore, the ionic conductivity is 10 −4 S · cm −1 or less, which is too low for practical use.
【0016】[0016]
【発明が解決しようとする課題】本発明の目的は、電池
素体まで大気中で製造できる、より信頼性、安全性が高
く、導電率もよい高分子固体電解質の製造方法、高分子
固体電解質およびこれを用いたリチウム二次電池と電気
二重層キャパシタを提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a solid polymer electrolyte having higher reliability, higher safety, and higher electric conductivity, which can produce a battery element in the air. And a lithium secondary battery and an electric double layer capacitor using the same.
【0017】[0017]
【課題を解決するための手段】このような目的は、下記
の本発明により達成される。 (1) 大気中で、フッ素系高分子化合物のマトリクス
中に、下記の一般式(I)で表されるイミダゾリウム塩
とリチウム塩とを含有させて高分子固体電解質を得る高
分子固体電解質の製造方法。This and other objects are achieved by the present invention described below. (1) A polymer solid electrolyte obtained by mixing an imidazolium salt and a lithium salt represented by the following general formula (I) in a matrix of a fluorine-based polymer compound in the atmosphere to obtain a polymer solid electrolyte Production method.
【0018】[0018]
【化2】 Embedded image
【0019】(一般式(I)において、R1、R2および
R3はそれぞれアルキル基または水素原子を表し、A-は
(RSO2)3C-、(RSO2)2N-、RSO3 -、B
F4 -、PF6 -、AsF6 -およびClO4 -のいずれかを表
し、Rは炭素数1〜3のパーフルオロアルキル基を表
し、Rが複数存在するときには互いに同一でも異なって
いてもよい。) (2) 前記リチウム塩がLiC(RSO2)3、LiN
(RSO2)2、LiRSO3、(Rは炭素数1〜3のパ
ーフルオロアルキル基を表し、Rが複数存在するときに
は互いに同一でも異なっていてもよい。) LiBF4、LiPF6、LiAsF6およびLiClO4
のいずれか一種以上である上記(1)の高分子固体電解
質の製造方法。 (3) 前記フッ素系高分子化合物がフッ化ビニリデン
の単独重合体または共重合体であるである上記(1)ま
たは(2)の高分子固体電解質の製造方法。 (4) 前記イミダゾリウム塩と前記リチウム塩との混
合比率が、モル比で、10:1〜1:2である上記
(1)〜(3)のいずれかの高分子固体電解質の製造方
法。 (5) 前記フッ素系高分子化合物が微多孔膜化したも
のである上記(1)〜(4)のいずれかの高分子固体電
解質の製造方法。 (6) 上記(1)〜(5)のいずれかの高分子固体電
解質の製造方法で製造された高分子固体電解質。 (7) 上記(6)の高分子固体電解質を有するリチウ
ム二次電池。 (8) 上記(6)の高分子固体電解質と電極とを有す
る電池素体を大気中で製造し、その後、水分を除去する
上記(7)のリチウム二次電池の製造方法。 (9) 上記(6)の高分子固体電解質を有する電気二
重層キャパシタ。 (10)上記(6)の高分子固体電解質と電極とから成
る電気二重層キャパシタを大気中で製造し、その後、水
分を除去する上記(8)の電気二重層キャパシタの製造
方法。(In the general formula (I), R 1 , R 2 and R 3 each represent an alkyl group or a hydrogen atom, and A − represents (RSO 2 ) 3 C − , (RSO 2 ) 2 N − , RSO 3 - , B
Represents any of F 4 − , PF 6 − , AsF 6 − and ClO 4 − , and R represents a perfluoroalkyl group having 1 to 3 carbon atoms, and when a plurality of Rs are present, they may be the same or different from each other . (2) The lithium salt is LiC (RSO 2 ) 3 , LiN
(RSO 2 ) 2 , LiRSO 3 , (R represents a perfluoroalkyl group having 1 to 3 carbon atoms and may be the same or different when a plurality of Rs exist.) LiBF 4 , LiPF 6 , LiAsF 6 and LiClO 4
The method for producing a solid polymer electrolyte according to the above (1), which is at least one of the above. (3) The method for producing a solid polymer electrolyte according to the above (1) or (2), wherein the fluorine-based polymer compound is a homopolymer or a copolymer of vinylidene fluoride. (4) The method for producing a solid polymer electrolyte according to any one of the above (1) to (3), wherein a mixing ratio of the imidazolium salt and the lithium salt is 10: 1 to 1: 2 in molar ratio. (5) The method for producing a solid polymer electrolyte according to any one of the above (1) to (4), wherein the fluorine-based polymer compound is formed into a microporous film. (6) A solid polymer electrolyte produced by the method for producing a solid polymer electrolyte according to any one of the above (1) to (5). (7) A lithium secondary battery having the polymer solid electrolyte according to (6). (8) The method for producing a lithium secondary battery according to (7), wherein the battery element having the solid polymer electrolyte and the electrode according to (6) is produced in the air, and then water is removed. (9) An electric double layer capacitor having the polymer solid electrolyte according to (6). (10) The method for producing an electric double layer capacitor according to the above (8), wherein the electric double layer capacitor comprising the polymer solid electrolyte and the electrode according to the above (6) is produced in the atmosphere, and then water is removed.
【0020】[0020]
【作用】本発明の高分子固体電解質の製造方法は、大気
中で、フッ素系高分子化合物のマトリクス中に、下記の
一般式(I)で表されるイミダゾリウム塩とリチウム塩
とを含有して高分子固体電解質を得るというものであ
る。イミダゾリウム溶融塩が水分を含んだ大気中でも安
定であり、常温での蒸気圧が無視できるほど小さく、沸
点/分解温度が高いために、従来のものとは違って、高
分子固体電解質、電極、これらを組み合わせた電池素体
を大気中で製造した後に、減圧加熱乾燥して水分を除去
することができる。これにより、電池等の製造工程の著
しい簡素化を図ることができ、工業的に非常に有利であ
る。According to the process for producing a solid polymer electrolyte of the present invention, an imidazolium salt and a lithium salt represented by the following general formula (I) are contained in a matrix of a fluoropolymer compound in the atmosphere. To obtain a solid polymer electrolyte. The imidazolium molten salt is stable even in a water-containing atmosphere, has a negligible vapor pressure at room temperature, and has a high boiling point / decomposition temperature. After producing a battery element in which these are combined in the air, the water can be removed by heating under reduced pressure and drying. As a result, the manufacturing process of batteries and the like can be significantly simplified, which is industrially very advantageous.
【0021】また、製造される高分子固体電解質はゲル
電解質なので、液漏れの防止、シート構造化可能といっ
た全固体型電池あるいは電気二重層キャパシタの特徴を
有するものである。Further, since the polymer solid electrolyte to be produced is a gel electrolyte, it has characteristics of an all-solid-state battery or an electric double layer capacitor such as prevention of liquid leakage and formation of a sheet.
【0022】この高分子固体電解質は、従来の電解液、
つまり、有機溶媒を含まないので、漏液、揮発といった
問題がなく、信頼性、耐久性が高い。また、従来の常温
溶融塩の成分として知られているハロゲン化アルミニウ
ムのような腐食の問題もない。This polymer solid electrolyte is composed of a conventional electrolytic solution,
That is, since it does not contain an organic solvent, there is no problem such as liquid leakage or volatilization, and reliability and durability are high. Further, there is no problem of corrosion as in aluminum halide which is conventionally known as a component of a room temperature molten salt.
【0023】しかも、引火性の成分を含有していない上
に、このイミダゾリウム塩を用いる溶融塩は、他の化合
物と比べて安定である。従って、電解質は不燃性であ
り、安全性が高い。Moreover, the molten salt using the imidazolium salt is stable as compared with other compounds, in addition to containing no flammable component. Therefore, the electrolyte is nonflammable and has high safety.
【0024】また、本発明の高分子固体電解質の導電率
は、10-4〜10-2S・cm-1で、従来のゲル電解質と同
等であり、液体のそれに近いものが得られる。The electric conductivity of the solid polymer electrolyte of the present invention is 10 −4 to 10 −2 S · cm −1 , which is equivalent to that of a conventional gel electrolyte and that is close to that of a liquid.
【0025】なお、本発明者らは、イミダゾリウム誘導
体のポリマーとリチウム塩(リチウムビス(トリフルオ
ロメタンスルホンイミド))との混合物を電解質に用い
ることを既に提案している(1997年10月、高分子
討論会)。しかし、この電解質は、現時点では、イオン
伝導度が10-4S・cm-1程度以下であり、今後実用に供
するために、薄層フィルム化、あるいは更なる伝導度の
向上が課題として残されている。The present inventors have already proposed using a mixture of a polymer of an imidazolium derivative and a lithium salt (lithium bis (trifluoromethanesulfonimide)) for the electrolyte (October 1997; Molecular Symposium). However, at present, this electrolyte has an ionic conductivity of about 10 −4 S · cm −1 or less. In order to be put to practical use in the future, a thin film or further improvement in conductivity is left as an issue. ing.
【0026】[0026]
【発明の実施の形態】本発明の高分子固体電解質の製造
方法は、大気中で、フッ素系高分子化合物のマトリクス
中に、下記の一般式(I)で表されるイミダゾリウム塩
とリチウム塩とを含有して高分子固体電解質を得るとい
うものである。BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a solid polymer electrolyte according to the present invention is characterized in that an imidazolium salt represented by the following general formula (I) and a lithium salt To obtain a solid polymer electrolyte.
【0027】[0027]
【化3】 Embedded image
【0028】一般式(I)において、R1、R2およびR
3はそれぞれアルキル基または水素原子を表し、A-は
(RSO2)3C-、(RSO2)2N-、RSO3 -、B
F4 -、PF6 -、AsF6 -およびClO4 -のいずれかを表
す。Rは炭素数1〜3のパーフルオロアルキル基を表
し、Rが複数存在するときには互いに同一でも異なって
いてもよい。In the general formula (I), R 1 , R 2 and R
3 each represent an alkyl group or a hydrogen atom, A - is (RSO 2) 3 C -, (RSO 2) 2 N -, RSO 3 -, B
Represents any of F 4 − , PF 6 − , AsF 6 − and ClO 4 − . R represents a C1-C3 perfluoroalkyl group, and when two or more R exist, they may be mutually the same or different.
【0029】イミダゾリウム溶融塩は、フッ素系高分子
化合物に非常によく含浸できる。そのため、従来の電解
液を含まない、信頼性の高い、より安全な電池を作製す
ることができる。また、このイミダゾリウム塩を用いる
溶融塩は、他の化合物と比べて安定である。従って、電
解質としても不燃性であり、安全性が高い。The imidazolium molten salt can very well impregnate the fluoropolymer compound. Therefore, a highly reliable and safer battery that does not contain a conventional electrolytic solution can be manufactured. Further, the molten salt using this imidazolium salt is more stable than other compounds. Therefore, it is nonflammable as an electrolyte and has high safety.
【0030】まず、本発明に用いるイミダゾリウム塩に
ついて説明する。First, the imidazolium salt used in the present invention will be described.
【0031】一般式(I)において、R1、R2およびR
3はそれぞれアルキル基または水素原子を表す。アルキ
ル基は総炭素数1〜5のものが好ましく、特に総炭素数
1〜3のもの、さらにはメチル基、エチル基が好まし
い。アルキル基は、直鎖状であっても分枝を有するもの
であってもよい。In the general formula (I), R 1 , R 2 and R
3 represents an alkyl group or a hydrogen atom, respectively. The alkyl group preferably has a total of 1 to 5 carbon atoms, particularly preferably a total of 1 to 3 carbon atoms, and more preferably a methyl group or an ethyl group. The alkyl group may be linear or branched.
【0032】R1〜R3は少なくとも一つがアルキル基で
あることが好ましい。特に、R1とR3とがアルキル基で
あり、R2は水素原子であることが好ましい。R1〜R3
は同一でも異なるものでもよい。Preferably, at least one of R 1 to R 3 is an alkyl group. In particular, it is preferable that R 1 and R 3 are an alkyl group, and R 2 is a hydrogen atom. R 1 to R 3
May be the same or different.
【0033】A-は(RSO2)3C-、(RSO2)
2N-、RSO3 -、BF4 -、PF6 -、AsF6 -およびCl
O4 -のいずれかである。Rは炭素数1〜3のパーフルオ
ロアルキル基を表す。Rは、パーフルオロメチル基が好
ましい。Rが複数存在するときには互いに同一でも異な
っていてもよい。[0033] A - is (RSO 2) 3 C -, (RSO 2)
2 N -, RSO 3 -, BF 4 -, PF 6 -, AsF 6 - and Cl
O 4 - is either. R represents a perfluoroalkyl group having 1 to 3 carbon atoms. R is preferably a perfluoromethyl group. When a plurality of Rs are present, they may be the same or different.
【0034】A-としては、特に、(CF3SO2)2N-
が特に好ましい。[0034] A - The particularly, (CF 3 SO 2) 2 N -
Is particularly preferred.
【0035】以下に、一般式(I)で表されるイミダゾ
リウム塩の具体例を示すが、本発明はこれらに限定され
るものではない。なお、化4、化5、化6、化7は、化
3の一般式(I)の表示を用いて表している。Hereinafter, specific examples of the imidazolium salt represented by the general formula (I) will be shown, but the present invention is not limited thereto. In addition, Chemical formula 4, Chemical formula 5, Chemical formula 6, Chemical formula 7 are represented using the notation of the general formula (I) of Chemical formula 3.
【0036】[0036]
【化4】 Embedded image
【0037】[0037]
【化5】 Embedded image
【0038】[0038]
【化6】 Embedded image
【0039】[0039]
【化7】 Embedded image
【0040】中でも、R1とR3とが異なる、いわゆる非
対称型のイミダゾリウム塩が特に好ましい。Of these, a so-called asymmetric imidazolium salt in which R 1 and R 3 are different is particularly preferred.
【0041】イミダゾリウム塩は、J.S.Wilkes et al.,
J.Chem.Soc.,Chem.Commun., 965,1992、V.R.Koch et a
l., J.Electrochem.Soc., 142, L116, 1995、V.R.Koch
etal., J.Electrochem.Soc., 143, 798, 1996 等に準じ
て合成すればよい。The imidazolium salt is obtained from JSWilkes et al.,
J. Chem. Soc., Chem. Commun., 965, 1992, VRKoch et a
l., J. Electrochem. Soc., 142 , L116, 1995, VRKoch
etal., J. Electrochem. Soc., 143 , 798, 1996 and the like.
【0042】本発明の高分子固体電解質は、フッ素系高
分子化合物のマトリクス中に、上記のイミダゾリウム塩
とともに、リチウム塩を含有して得られる。The solid polymer electrolyte of the present invention is obtained by containing a lithium salt together with the above-mentioned imidazolium salt in a matrix of a fluoropolymer compound.
【0043】リチウム塩は、LiC(RSO2)3、Li
N(RSO2)2、LiRSO3、LiBF4、LiP
F6、LiAsF6およびLiClO4を用いることが好
ましい。Rは炭素数1〜3のパーフルオロアルキル基を
表す。Rは、パーフルオロメチル基が好ましい。Rが複
数存在するときには互いに同一でも異なっていてもよ
い。The lithium salt is LiC (RSO 2 ) 3 , Li
N (RSO 2 ) 2 , LiRSO 3 , LiBF 4 , LiP
It is preferable to use F 6 , LiAsF 6 and LiClO 4 . R represents a perfluoroalkyl group having 1 to 3 carbon atoms. R is preferably a perfluoromethyl group. When a plurality of Rs are present, they may be the same or different.
【0044】リチウム塩としては、特に、LiN(CF
3SO2)2が好ましい。As the lithium salt, LiN (CF
3 SO 2 ) 2 is preferred.
【0045】リチウム塩は、1種を用いても、2種以上
を併用してもよい。2種以上を併用する場合、その混合
比は任意である。As the lithium salt, one kind may be used alone, or two or more kinds may be used in combination. When two or more kinds are used in combination, the mixing ratio is arbitrary.
【0046】イミダゾリウム塩とリチウム塩との混合比
率は、モル比で、10:1〜1:2、特に4:1〜1:
1であることが好ましい。これよりもイミダゾリウム塩
が多いと、融点が高くなり実用に供しなくなってくる。
これよりもリチウム塩が少ないと、リチウムイオン伝導
度が低下し、やはり実用に供しなくなってくる。The mixing ratio of the imidazolium salt and the lithium salt is from 10: 1 to 1: 2, especially from 4: 1 to 1:
It is preferably 1. If the amount of the imidazolium salt is larger than this, the melting point becomes high and it is not practical.
If the amount of the lithium salt is smaller than this, the lithium ion conductivity is lowered, and it is not practical.
【0047】本発明で得られる高分子固体電解質は、イ
ミダゾリウム塩とリチウム塩とをフッ素系高分子化合物
に含浸させたものである。The solid polymer electrolyte obtained in the present invention is obtained by impregnating a fluoropolymer compound with an imidazolium salt and a lithium salt.
【0048】フッ素系高分子化合物は、例えば、ポリフ
ッ化ビニリデン(PVDF)、フッ化ビニリデン−ヘキ
サフルオロプロピレン共重合体、フッ化ビニリデン−塩
化3フッ化エチレン(CTFE)共重合体〔P(VDF
−CTFE)〕、フッ化ビニリデン−ヘキサフルオロプ
ロピレンフッ素ゴム、フッ化ビニリデン−テトラフルオ
ロエチレン−ヘキサフルオロプロピレンフッ素ゴム〔P
(VDF−TFE−HFP)〕、フッ化ビニリデン−テ
トラフルオロエチレン−パーフルオロアルキルビニルエ
ーテルフッ素ゴム等が好ましい。これらフッ化ビニリデ
ン(VDF)系ポリマーは、フッ化ビニリデンが50重
量%以上、特に70重量%以上のものが好ましい。これ
らのうちでは、ポリフッ化ビニリデン、フッ化ビニリデ
ン(VDF)とヘキサフルオロプロピレン(HFP)と
の共重合体、フッ化ビニリデンと塩化3フッ化エチレン
との共重合体〔P(VDF−CTFE)〕が特に好まし
い。共重合体とすることにより、結晶性が低くなって、
常温溶融塩を含浸しやすくなり、また、これを保持しや
すくなる。Examples of the fluorine-based polymer compound include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-ethylene trifluoride chloride (CTFE) copolymer [P (VDF
-CTFE)], vinylidene fluoride-hexafluoropropylene fluororubber, vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene fluororubber [P
(VDF-TFE-HFP)], vinylidene fluoride-tetrafluoroethylene-perfluoroalkyl vinyl ether fluororubber, and the like. These vinylidene fluoride (VDF) polymers preferably have a vinylidene fluoride content of 50% by weight or more, especially 70% by weight or more. Among them, polyvinylidene fluoride, a copolymer of vinylidene fluoride (VDF) and hexafluoropropylene (HFP), a copolymer of vinylidene fluoride and ethylene chloride trifluoride [P (VDF-CTFE)] Is particularly preferred. By making it a copolymer, the crystallinity becomes low,
It becomes easy to impregnate the room temperature molten salt, and it becomes easy to hold it.
【0049】VDF−CTFE共重合体は、例えばセン
トラル硝子(株)から商品名「セフラルソフト(G15
0,G180)」として、日本ソルベイ(株)から商品
名「ソレフ31508」等として市販されている。ま
た、VDF−HFP共重合体は、エルフアトケム社から
商品名「KynarFlex2750(VDF:HFP=85:15wt%) 」、「Kyna
rFlex2801(VDF:HFP=90:10wt%) 」等として、日本ソルベ
イ(株)から商品名「ソレフ11008」、「ソレフ1
1010」、「ソレフ21508」、「ソレフ2151
0」等として市販されている。The VDF-CTFE copolymer is available from, for example, Central Glass Co., Ltd. under the trade name “Sefuralsoft (G15).
0, G180) ”from Solvay Japan Limited under the trade name“ Solef 31508 ”. In addition, VDF-HFP copolymers are trade names “KynarFlex2750 (VDF: HFP = 85: 15wt%)” and “KynaFlex
rFlex2801 (VDF: HFP = 90: 10wt%) ”and other product names from Solvay Japan Ltd.“ Solef 11008 ”,“ Solef 1 ”
1010 "," Solef 21508 "," Solef 2151 "
0 "and the like.
【0050】次に、高分子固体電解質の製造方法につい
て述べる。製造は、従来のものとは違って、大気中で行
う。有機電解液への水分の混入は電池特性を著しく劣化
させるので、従来のゲル電解質は、全工程を水分量5pp
m以下という特殊な環境で行わなければならなかった。
本発明のゲル電解質は、イミダゾリウム溶融塩が水分を
含んだ大気中でも安定であり、沸点/分解温度が高いた
めに、高分子固体電解質、電極、これらを組み合わせた
電池素体を大気中で製造した後に、減圧加熱乾燥して水
分を除去することができる。これにより、電池等の製造
工程の著しい簡素化を図ることができ、工業的に非常に
有利である。Next, a method for producing a solid polymer electrolyte will be described. The production takes place in the atmosphere, unlike conventional ones. Since the incorporation of water into the organic electrolyte significantly deteriorates the battery characteristics, the conventional gel electrolyte requires 5 pp of water for all processes.
It had to be done in a special environment of less than m.
Since the imidazolium molten salt is stable in the atmosphere containing water and has a high boiling point / decomposition temperature, the gel electrolyte of the present invention produces a polymer solid electrolyte, an electrode, and a battery element body combining these in the atmosphere. After that, moisture can be removed by heating under reduced pressure. As a result, the manufacturing process of batteries and the like can be significantly simplified, which is industrially very advantageous.
【0051】まず、高分子化合物を溶媒に溶解させる。
このときの溶媒は高分子が溶解可能な各種溶媒から適宜
選択すればよく、例えば、アセトン、テトラヒドロフラ
ン、酢酸メチル等を用いることが好ましい。溶媒に対す
る高分子の濃度は5〜40重量%が好ましい。溶解方法
は、室温または100℃以下に加温しながら攪拌するこ
とが好ましい。First, a polymer compound is dissolved in a solvent.
The solvent at this time may be appropriately selected from various solvents in which the polymer can be dissolved, and for example, acetone, tetrahydrofuran, methyl acetate and the like are preferably used. The concentration of the polymer in the solvent is preferably 5 to 40% by weight. In the dissolution method, it is preferable to stir while heating to room temperature or 100 ° C. or lower.
【0052】そして、この高分子溶液に常温溶融塩を添
加する。イミダゾリウム塩とリチウム塩とから成る常温
溶融塩の含有量は、重量比で、高分子:常温溶融塩=5
0:50〜20:80が好ましい。Then, a room temperature molten salt is added to the polymer solution. The content of the room temperature molten salt composed of the imidazolium salt and the lithium salt is as follows: polymer: room temperature molten salt = 5 by weight ratio.
0:50 to 20:80 is preferred.
【0053】高分子溶液と常温溶融塩との混合溶液
(「ゲル電解質溶液」と呼ぶことにする)を基体上に塗
布する。この基体は平滑なものなら何でもよい。例え
ば、ポリエステルフィルム、ガラス、ポリテトラフルオ
ロエチレンフィルム等が挙げられる。ゲル電解質溶液を
基体に塗布するための手段は特に限定されず、基体の材
質や形状などに応じて適宜決定すればよい。一般に、メ
タルマスク印刷法、静電塗装法、ディップコート法、ス
プレーコート法、ロールコート法、ドクターブレード
法、グラビアコート法、スクリーン印刷法等が使用され
ている。その後、必要に応じて、平板プレス、カレンダ
ーロール等により圧延処理を行う。A mixed solution of a polymer solution and a room temperature molten salt (referred to as “gel electrolyte solution”) is applied on a substrate. This substrate may be any smooth material. For example, polyester film, glass, polytetrafluoroethylene film and the like can be mentioned. The means for applying the gel electrolyte solution to the substrate is not particularly limited, and may be appropriately determined according to the material and shape of the substrate. Generally, a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method, a screen printing method, and the like are used. Thereafter, if necessary, a rolling treatment is performed by a flat plate press, a calender roll, or the like.
【0054】そして、高分子を溶解したときの溶媒を蒸
発させて、ゲル電解質のフィルムが得られる。溶媒を蒸
発させるときの温度は室温でもよいが、加熱してもよ
い。Then, the solvent in which the polymer was dissolved is evaporated to obtain a gel electrolyte film. The temperature at which the solvent is evaporated may be room temperature, but may be heated.
【0055】なお、常温溶融塩は上述のようにゲル電解
質溶液作製時に混合しておいてもよいが、あらかじめ常
温溶融塩を含まないフィルムを作製後、常温溶融塩を含
浸させてもよい。The room temperature molten salt may be mixed at the time of preparing the gel electrolyte solution as described above. Alternatively, a film not containing the room temperature molten salt may be prepared in advance and then impregnated with the room temperature molten salt.
【0056】また、フィルム強度、膨潤性を増すため、
ゲル電解質には、シリカ、アルミナ等の充填剤(フィラ
ー)を添加してもよい。加える充填剤の材質、粒度、形
状、充填量に特に制限はないが、固体電解質のイオン伝
導度は充填量とともに低下するので、充填量を30wt
%以下にすることが好ましい。In order to increase film strength and swelling property,
A filler such as silica or alumina may be added to the gel electrolyte. There is no particular limitation on the material, particle size, shape, and filling amount of the filler to be added, but the ionic conductivity of the solid electrolyte decreases with the filling amount.
% Is preferable.
【0057】高分子化合物は、公知の方法で微多孔膜化
することが好ましい。例えば、米国特許第5,418,
091号明細書に記載されている、高分子溶液に可塑剤
を加え、これを基材に塗布後、溶媒を揮発させて微多孔
膜化させる方法を用いてもよい。あるいは、膨潤性のあ
る高分子フィルムを用い、常温溶融塩を含浸させて微多
孔膜化してもよい。他にも、海島型の相分離を示すポリ
マーブレンドを用いたり、針で穴をあけたり、電子線を
当てたりする方法がある。The polymer compound is preferably formed into a microporous film by a known method. For example, US Pat. No. 5,418,
No. 091, a method of adding a plasticizer to a polymer solution, applying this to a substrate, and then evaporating the solvent to form a microporous film may be used. Alternatively, a microporous film may be formed by using a swellable polymer film and impregnating with a room temperature molten salt. Other methods include using a polymer blend exhibiting sea-island type phase separation, making a hole with a needle, or applying an electron beam.
【0058】高分子微多孔膜の細孔径は0.005〜5
μm、特に0.01〜0.5μmが好ましい。また、気
孔率が20〜90%、特に35〜70%の範囲にある膜
が実用上好ましい。The pore diameter of the polymer microporous membrane is 0.005 to 5
μm, particularly preferably 0.01 to 0.5 μm. A film having a porosity in the range of 20 to 90%, particularly 35 to 70% is practically preferable.
【0059】本発明の高分子固体電解質の厚さは、通
常、5〜200μmとする。The thickness of the solid polymer electrolyte of the present invention is usually 5 to 200 μm.
【0060】このようにして得られる本発明の高分子固
体電解質の導電率は、10-4〜10-2S・cm-1で、従来
のゲル電解質と同等であり、液体のそれに近い。The thus obtained solid polymer electrolyte of the present invention has an electric conductivity of 10 −4 to 10 −2 S · cm −1 , which is equivalent to that of a conventional gel electrolyte and close to that of a liquid.
【0061】本発明のゲル電解質を使用したリチウム二
次電池の構造は特に限定されないが、積層型電池や円筒
型電池等に適用される。The structure of the lithium secondary battery using the gel electrolyte of the present invention is not particularly limited, but is applied to a stacked battery, a cylindrical battery and the like.
【0062】また、ゲル電解質と組み合わせる電極は、
好ましくは電極活物質とゲル電解質、必要により導電助
剤との組成物を用いる。The electrode combined with the gel electrolyte is
Preferably, a composition of an electrode active material, a gel electrolyte, and if necessary, a conductive additive is used.
【0063】負極には、炭素材料、リチウム金属、リチ
ウム合金あるいは酸化物材料のような負極活物質を用
い、正極には、リチウムイオンがインターカレート・デ
インターカレート可能な酸化物または炭素材料のような
正極活物質を用いることが好ましい。このような電極を
用いることにより、良好な特性のリチウム二次電池を得
ることができる。For the negative electrode, a negative electrode active material such as a carbon material, lithium metal, lithium alloy or oxide material is used. For the positive electrode, an oxide or carbon material capable of intercalating / deintercalating lithium ions is used. It is preferable to use such a positive electrode active material as described above. By using such an electrode, a lithium secondary battery having excellent characteristics can be obtained.
【0064】電極活物質として用いる炭素材料は、例え
ば、メソカーボンマイクロビーズ(MCMB)、天然あ
るいは人造の黒鉛、樹脂焼成炭素材料、カーボンブラッ
ク、炭素繊維などから適宜選択すればよい。これらは粉
末として用いられる。中でも黒鉛が好ましく、その平均
粒子径は1〜30μm 、特に5〜25μm であることが
好ましい。The carbon material used as the electrode active material may be appropriately selected from, for example, mesocarbon microbeads (MCMB), natural or artificial graphite, resin fired carbon material, carbon black, carbon fiber and the like. These are used as powders. Above all, graphite is preferred, and its average particle size is preferably 1 to 30 μm, particularly preferably 5 to 25 μm.
【0065】リチウムイオンがインターカレート・デイ
ンターカレート可能な酸化物としては、リチウムを含む
複合酸化物が好ましく、例えば、LiCoO2、LiM
n2O4、LiNiO2、LiV2O4などが挙げられる。
これらの酸化物の粉末の平均粒子径は1〜40μm 程度
であることが好ましい。As the oxide capable of intercalating / deintercalating lithium ions, a composite oxide containing lithium is preferable. For example, LiCoO 2 , LiM
n 2 O 4, LiNiO 2, LiV 2 O 4 and the like.
The average particle diameter of these oxide powders is preferably about 1 to 40 μm.
【0066】電極には、必要により導電助剤が添加され
る。導電助剤としては、好ましくは黒鉛、カーボンブラ
ック、炭素繊維、ニッケル、アルミニウム、銅、銀等の
金属が挙げられ、特に黒鉛、カーボンブラックが好まし
い。A conductive assistant is added to the electrode as necessary. Preferred examples of the conductive auxiliary agent include metals such as graphite, carbon black, carbon fiber, nickel, aluminum, copper, and silver. Particularly, graphite and carbon black are preferable.
【0067】電極組成は、正極では、重量比で、活物
質:導電助剤:ゲル電解質=30〜90:3〜10:1
0〜70の範囲が好ましく、負極では、重量比で、活物
質:導電助剤:ゲル電解質=30〜90:0〜10:1
0〜70の範囲が好ましい。The electrode composition of the positive electrode is as follows: active material: conductive auxiliary agent: gel electrolyte = 30 to 90: 3 to 10: 1 by weight.
The range of 0 to 70 is preferable. In the negative electrode, active material: conductive auxiliary agent: gel electrolyte = 30 to 90: 0 to 10: 1 by weight ratio.
A range from 0 to 70 is preferred.
【0068】本発明では、上記負極活物質および/また
は正極活物質、好ましくは両活物質を、好ましくは上述
したゲル電解質中に混合して集電体表面に接着させる。In the present invention, the above-mentioned negative electrode active material and / or positive electrode active material, preferably both active materials, are preferably mixed in the above-mentioned gel electrolyte and adhered to the surface of the current collector.
【0069】電極の製造は、まず、活物質と必要に応じ
て導電助剤を、ゲル電解質溶液に分散し、塗布液を調製
する。In the production of the electrode, first, an active material and, if necessary, a conductive auxiliary are dispersed in a gel electrolyte solution to prepare a coating solution.
【0070】そして、この電極塗布液を集電体に塗布す
る。塗布する手段は特に限定されず、集電体の材質や形
状などに応じて適宜決定すればよい。一般に、メタルマ
スク印刷法、静電塗装法、ディップコート法、スプレー
コート法、ロールコート法、ドクターブレード法、グラ
ビアコート法、スクリーン印刷法等が使用されている。
その後、必要に応じて、平板プレス、カレンダーロール
等により圧延処理を行う。Then, this electrode coating solution is applied to the current collector. The means for applying is not particularly limited, and may be determined as appropriate according to the material and shape of the current collector. Generally, a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method, a screen printing method, and the like are used.
Thereafter, if necessary, a rolling treatment is performed by a flat plate press, a calender roll, or the like.
【0071】集電体は、電池の使用するデバイスの形状
やケース内への集電体の配置方法などに応じて、適宜通
常の集電体から選択すればよい。一般に、正極にはアル
ミニウム等が、負極には銅、ニッケル等が使用される。
なお、集電体は金属箔、金属メッシュなどが、通常、使
用される。金属箔よりも金属メッシュの方が電極との接
触抵抗が小さくなるが、本発明のゲル電解質の場合は金
属箔でも十分接触抵抗が小さくなる。The current collector may be appropriately selected from ordinary current collectors according to the shape of the device used by the battery, the method of disposing the current collector in the case, and the like. Generally, aluminum or the like is used for the positive electrode, and copper, nickel, or the like is used for the negative electrode.
Note that a metal foil, a metal mesh, or the like is generally used as the current collector. Although the metal mesh has a smaller contact resistance with the electrode than the metal foil, in the case of the gel electrolyte of the present invention, the metal foil has a sufficiently small contact resistance.
【0072】そして、溶媒を蒸発させ、電極を作製す
る。塗布厚は、50〜400μm 程度とすることが好ま
しい。Then, the solvent is evaporated to form an electrode. The coating thickness is preferably about 50 to 400 μm.
【0073】このように、電極にもゲル電解質と同一の
ゲル電解質を含有させることにより、ゲル電解質との密
着性が向上し、内部抵抗が減少する。なお、負極活物質
にリチウム金属、リチウム合金を用いる場合には、負極
活物質とゲル電解質との組成物を用いなくてもよい。As described above, when the electrode contains the same gel electrolyte as the gel electrolyte, the adhesion to the gel electrolyte is improved, and the internal resistance is reduced. When lithium metal or lithium alloy is used as the negative electrode active material, the composition of the negative electrode active material and the gel electrolyte may not be used.
【0074】このようにして得られた正極、ゲル電解
質、負極をこの順に積層し、圧着して電池素体とする。The positive electrode, the gel electrolyte, and the negative electrode thus obtained are laminated in this order and pressed to form a battery body.
【0075】このようにして大気中で製造した高分子固
体電解質、電極、これらを組み合わせた電池素体を減圧
加熱乾燥して水分を除去することができる。このときの
真空度は10〜10-5Pa、特に1〜10-3Paが好まし
い。温度は25〜120℃、特に40〜90℃が好まし
い。乾燥する時間は0.1〜8時間、特に1〜3時間が
好ましい。乾燥はAr等の不活性ガス雰囲気下で行うこ
とが好ましい。The polymer solid electrolyte, the electrode, and the battery element obtained by combining the solid electrolyte and the electrode thus manufactured in the atmosphere can be dried by heating under reduced pressure to remove water. The degree of vacuum at this time is preferably 10 to 10 -5 Pa, particularly preferably 1 to 10 -3 Pa. The temperature is preferably from 25 to 120C, particularly preferably from 40 to 90C. The drying time is preferably 0.1 to 8 hours, particularly preferably 1 to 3 hours. Drying is preferably performed in an atmosphere of an inert gas such as Ar.
【0076】電池素体を乾燥した後、水分量5ppm以下
の環境で電池素体を外装体中に密閉してリチウム二次電
池が得られる。このとき、Ar等の不活性ガス雰囲気下
であることが好ましい。このように大気中で電池素体ま
で作製しても、水分量5ppm以下の環境で全工程を行っ
た場合と同等の電池特性が得られ、製造工程の著しい簡
素化を図ることができ、工業的に非常に有利である。After the battery element is dried, the battery element is sealed in an outer package in an environment having a water content of 5 ppm or less to obtain a lithium secondary battery. At this time, it is preferable to be in an atmosphere of an inert gas such as Ar. Thus, even when the battery element is manufactured in the air, the same battery characteristics as those obtained when all the processes are performed in an environment having a water content of 5 ppm or less can be obtained, and the manufacturing process can be significantly simplified. It is very advantageous in terms of quality.
【0077】さらに、本発明の高分子固体電解質、電極
は、電気二重層キャパシタにも有効である。これも大気
中で電気二重層キャパシタを製造できるので、製造工程
の著しい簡素化を図ることができ、工業的に非常に有利
である。Further, the polymer solid electrolyte and electrode of the present invention are also effective for electric double layer capacitors. This also enables the electric double layer capacitor to be manufactured in the atmosphere, so that the manufacturing process can be remarkably simplified, which is industrially very advantageous.
【0078】分極性電極に用いられる集電体は、導電性
ブチルゴム等の導電性ゴムなどであってよく、またアル
ミニウム、ニッケル等の金属の溶射によって形成しても
よく、上記電極層の片面に金属メッシュを付設してもよ
い。The current collector used for the polarizable electrode may be a conductive rubber such as a conductive butyl rubber or the like, or may be formed by spraying a metal such as aluminum or nickel. A metal mesh may be provided.
【0079】電気二重層キャパシタには、上記のような
分極性電極と、ゲル電解質とを組み合わせる。The electric double layer capacitor is obtained by combining the above-mentioned polarizable electrode and a gel electrolyte.
【0080】絶縁性ガスケットとしては、ポリプロピレ
ン、ブチルゴム等の絶縁体を用いればよい。As the insulating gasket, an insulator such as polypropylene or butyl rubber may be used.
【0081】本発明のゲル電解質が使用される電気二重
層キャパシタの構造は特に限定されないが、通常、一対
の分極性電極がゲル電解質を介して配置されており、分
極性電極およびゲル電解質の周辺部には絶縁性ガスケッ
トが配置されている。このような電気二重層キャパシタ
はコイン型、ペーパー型、積層型等と称されるいずれの
ものであってもよい。The structure of the electric double layer capacitor in which the gel electrolyte of the present invention is used is not particularly limited. Usually, a pair of polarizable electrodes are arranged via the gel electrolyte, and the polarizable electrode and the periphery of the gel electrolyte are usually arranged. An insulating gasket is arranged in the part. Such an electric double layer capacitor may be any type called a coin type, a paper type, a laminated type, or the like.
【0082】[0082]
【実施例】以下、本発明の具体的実施例を示し、本発明
をさらに詳細に説明する。EXAMPLES Hereinafter, the present invention will be described in more detail by showing specific examples of the present invention.
【0083】<実施例1>ゲル電解質には以下のものを
用いた。Example 1 The following gel electrolyte was used.
【0084】高分子マトリクス PVDF Kynar 2801(エルフ・アトケム社製) (ポリフッ化ビニリデンと6フッ化プロピレンの共重合
体)常温溶融塩 (ILと略す) 下記の1,3−ジメチルイミダゾリウムビス(トリフル
オロメチルスルホニル)イミド(DMIIm)とLiN
(CF3SO2)2との混合物 DMIIm:LiN(CF3SO2)2=2:1 (モル
比)溶媒 アセトン (Acと略す) Polymer matrix PVDF Kynar 2801 (manufactured by Elf Atochem) (copolymer of polyvinylidene fluoride and propylene hexafluoride) Room temperature molten salt (abbreviated as IL) The following 1,3-dimethylimidazolium bis Fluoromethylsulfonyl) imide (DMIIm) and LiN
Mixture with (CF 3 SO 2 ) 2 DMIIm: LiN (CF 3 SO 2 ) 2 = 2: 1 (molar ratio) Solvent Acetone (abbreviated as Ac)
【0085】[0085]
【化8】 Embedded image
【0086】上記各成分を、重量比で、PVDF:I
L:Ac=3:7:5となるように秤量し、50℃に加
熱して溶解し、ゲル電解質溶液を調整した。Each of the above components was converted to PVDF: I by weight.
L: Ac = 3: 7: 5, weighed, heated to 50 ° C and dissolved to prepare a gel electrolyte solution.
【0087】このゲル電解質溶液をポリエチレンテレフ
タレート(PET)フィルムにギャップ0.8mmのアプ
リケーターで幅50mmに塗布した。そして、室温から5
0℃の範囲でアセトンを蒸発させ、ゲル電解質シートを
得た。This gel electrolyte solution was applied to a polyethylene terephthalate (PET) film to a width of 50 mm with an applicator having a gap of 0.8 mm. And from room temperature to 5
Acetone was evaporated in the range of 0 ° C. to obtain a gel electrolyte sheet.
【0088】正極活物質としてLiCoO2 を、導電助
剤としてアセチレンブラックを用いた。これらを、上記
ゲル電解質溶液に対し、重量比で、ゲル電解質溶液:L
iCoO2 :アセチレンブラック=10:8:1となる
ように秤量し、室温でホモジナイザーを用いてゲル電解
質溶液に正極活物質と導電助剤とを分散・混合して正極
用スラリーとした。得られたスラリーをメタルマスク印
刷でタンタル箔に塗布して乾燥し、正極シートとした。
この電極の膜厚は0.15mmであった。LiCoO 2 was used as a positive electrode active material, and acetylene black was used as a conductive additive. These were added to the gel electrolyte solution in a weight ratio of gel electrolyte solution: L
The mixture was weighed so that iCoO 2 : acetylene black = 10: 8: 1, and the cathode active material and the conductive additive were dispersed and mixed in the gel electrolyte solution using a homogenizer at room temperature to prepare a slurry for the cathode. The obtained slurry was applied to tantalum foil by metal mask printing and dried to obtain a positive electrode sheet.
The thickness of this electrode was 0.15 mm.
【0089】また、負極活物質として人造黒鉛を用い
た。これを、上記ゲル電解質溶液に対し、重量比で、ゲ
ル電解質溶液:人造黒鉛=2:1となるように秤量し、
室温でホモジナイザーを用いてゲル電解質溶液に負極活
物質を分散・混合して負極用スラリーとした。得られた
スラリーをメタルマスク印刷で銅箔に塗布して乾燥し、
負極シートとした。この電極の膜厚は0.15mmであっ
た。Further, artificial graphite was used as a negative electrode active material. This was weighed with respect to the gel electrolyte solution so that gel electrolyte solution: artificial graphite = 2: 1 by weight ratio,
The negative electrode active material was dispersed and mixed in the gel electrolyte solution using a homogenizer at room temperature to prepare a negative electrode slurry. The obtained slurry is applied to copper foil by metal mask printing and dried,
A negative electrode sheet was obtained. The thickness of this electrode was 0.15 mm.
【0090】このようにして得られた正極、ゲル電解
質、負極を所定のサイズに切断して、各シートをこの順
に積層し、適宜圧着して電池素体とした。The positive electrode, the gel electrolyte and the negative electrode thus obtained were cut into a predetermined size, and the respective sheets were laminated in this order and pressed appropriately to obtain a battery element.
【0091】以上、電池素体作製までは大気中で行っ
た。As described above, the steps up to the production of the battery element were performed in the air.
【0092】この電池素体を、露点−70℃以下のアル
ゴングローブボックス(水分量3ppm)に接続した真空
乾燥機で、真空度10-1Pa、90℃で一昼夜放置して、
水分を除去した。そして、乾燥アルゴンで大気圧まで戻
した。This battery element was left standing overnight at 90 ° C. at a degree of vacuum of 10 −1 Pa and a vacuum dryer connected to an argon glove box (water content: 3 ppm) having a dew point of −70 ° C. or less.
Water was removed. Then, the pressure was returned to the atmospheric pressure with dry argon.
【0093】次に、この電池素体をアルゴングローブボ
ックスに移してアルミラミネートパックに入れ、リード
部を取り出し、ポリオレフィン系のホットメルト接着剤
等で封口し、シート型リチウム二次電池を得た。Next, the battery element was transferred to an argon glove box and placed in an aluminum laminate pack. The lead portion was taken out and sealed with a polyolefin-based hot melt adhesive or the like to obtain a sheet-type lithium secondary battery.
【0094】この電池を4.15Vまで定電流で充電し
た後、定電流で2.8Vまで放電して、充放電特性を測
定した。電流密度は20mA/dm2 とした。測定の結
果、この電池の容量は98mAhであった。After charging the battery at a constant current up to 4.15 V, the battery was discharged at a constant current up to 2.8 V, and the charge / discharge characteristics were measured. The current density was 20 mA / dm 2 . As a result of the measurement, the capacity of this battery was 98 mAh.
【0095】<実施例2>常温溶融塩に、下記の1−エ
チル−3−メチルイミダゾリウムビス(トリフルオロメ
チルスルホニル)イミド(EMIIm)とLiN(CF
3SO2)2との混合物(EMIIm:LiN(CF3SO
2)2=2:1 (モル比))を用いた他は、実施例1と
同様にしてリチウム二次電池を作製した。Example 2 The following 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide (EMIIm) and LiN (CF
3 SO 2 ) 2 (EMIIm: LiN (CF 3 SO
2 ) 2 = 2: 1 (molar ratio)), except that a lithium secondary battery was produced in the same manner as in Example 1.
【0096】[0096]
【化9】 Embedded image
【0097】得られた電池の充放電特性を実施例1と同
様に測定した。この電池の容量は103mAhであっ
た。The charge / discharge characteristics of the obtained battery were measured in the same manner as in Example 1. The capacity of this battery was 103 mAh.
【0098】<実施例3>高分子マトリクスに、熱可塑
性フッ素樹脂を用いた他は、実施例1と同様にしてリチ
ウム二次電池を作製した。この熱可塑性フッ素樹脂とし
ては、具体的には、商品名 セフラルソフト(セントラ
ル硝子社製:主鎖がフッ化ビニリデンと塩化フッ化エチ
レンの共重合体からなり、側鎖がポリフッ化ビニリデン
からなる構造のもの)を用いた。Example 3 A lithium secondary battery was manufactured in the same manner as in Example 1, except that a thermoplastic fluororesin was used for the polymer matrix. Specific examples of the thermoplastic fluororesin include trade name Cefralsoft (manufactured by Central Glass Co., Ltd .; a main chain consisting of a copolymer of vinylidene fluoride and chlorofluoroethylene, and a side chain consisting of polyvinylidene fluoride). ) Was used.
【0099】得られた電池の充放電特性を実施例1と同
様に測定した。この電池の容量は100mAhであっ
た。The charge / discharge characteristics of the obtained battery were measured in the same manner as in Example 1. The capacity of this battery was 100 mAh.
【0100】<実施例4>高分子マトリクスに、熱可塑
性フッ素樹脂を用いた他は、実施例2と同様にしてリチ
ウム二次電池を作製した。この熱可塑性フッ素樹脂とし
ては、具体的には、商品名 セフラルソフト(セントラ
ル硝子社製:主鎖がフッ化ビニリデンと塩化フッ化エチ
レンの共重合体からなり、側鎖がポリフッ化ビニリデン
からなる構造のもの)を用いた。Example 4 A lithium secondary battery was manufactured in the same manner as in Example 2 except that a thermoplastic fluororesin was used for the polymer matrix. Specific examples of the thermoplastic fluororesin include trade name Cefralsoft (manufactured by Central Glass Co., Ltd .; a main chain composed of a copolymer of vinylidene fluoride and chlorofluoroethylene, and a side chain composed of polyvinylidene fluoride). ) Was used.
【0101】得られた電池の充放電特性を実施例1と同
様に測定した。この電池の容量は104mAhであっ
た。The charge / discharge characteristics of the obtained battery were measured in the same manner as in Example 1. The capacity of this battery was 104 mAh.
【0102】<実施例5>実施例1と同一条件で、PV
DFとアセトンとで電解質を作製し、正極、負極を積層
した後で溶融塩を含浸させて、高分子化合物をゲル化し
て、リチウム二次電池を作製した。<Embodiment 5> Under the same conditions as in Embodiment 1, PV
An electrolyte was prepared with DF and acetone, the positive electrode and the negative electrode were laminated, and then impregnated with a molten salt to gel the polymer compound to prepare a lithium secondary battery.
【0103】得られた電池の充放電特性を実施例1と同
様に測定した。この電池の容量は97mAhであった。The charge and discharge characteristics of the obtained battery were measured in the same manner as in Example 1. The capacity of this battery was 97 mAh.
【0104】<実施例6>実施例2と同一条件で、PV
DFとアセトンとで電解質を作製し、正極、負極を積層
した後で溶融塩を含浸させて、高分子化合物をゲル化し
て、リチウム二次電池を作製した。<Embodiment 6> Under the same conditions as in Embodiment 2, PV
An electrolyte was prepared with DF and acetone, the positive electrode and the negative electrode were laminated, and then impregnated with a molten salt to gel the polymer compound to prepare a lithium secondary battery.
【0105】得られた電池の充放電特性を実施例1と同
様に測定した。この電池の容量は101mAhであっ
た。The charge / discharge characteristics of the obtained battery were measured in the same manner as in Example 1. The capacity of this battery was 101 mAh.
【0106】<実施例7>実施例3と同一条件で、熱可
塑性フッ素樹脂とアセトンとで電解質を作製し、正極、
負極を積層した後で溶融塩を含浸させて、高分子化合物
をゲル化して、リチウム二次電池を作製した。Example 7 An electrolyte was prepared from a thermoplastic fluororesin and acetone under the same conditions as in Example 3, and a positive electrode,
After laminating the negative electrode, the molten salt was impregnated, and the polymer compound was gelled to produce a lithium secondary battery.
【0107】得られた電池の充放電特性を実施例1と同
様に測定した。この電池の容量は98mAhであった。The charge / discharge characteristics of the obtained battery were measured in the same manner as in Example 1. The capacity of this battery was 98 mAh.
【0108】<実施例8>実施例4と同一条件で、熱可
塑性フッ素樹脂とアセトンとで電解質を作製し、正極、
負極を積層した後で溶融塩を含浸させて、高分子化合物
をゲル化して、リチウム二次電池を作製した。Example 8 An electrolyte was prepared from a thermoplastic fluororesin and acetone under the same conditions as in Example 4, and a positive electrode,
After laminating the negative electrode, the molten salt was impregnated, and the polymer compound was gelled to produce a lithium secondary battery.
【0109】得られた電池の充放電特性を実施例1と同
様に測定した。この電池の容量は102mAhであっ
た。The charge / discharge characteristics of the obtained battery were measured in the same manner as in Example 1. The capacity of this battery was 102 mAh.
【0110】<比較例1>露点−70℃以下のアルゴン
グローブボックス中(水分量3ppm)で、あらかじめ乾
燥してある材料を用いて実施例1と同様にゲル電解質、
正極、負極を作製し、リチウム二次電池を作製した。<Comparative Example 1> In an argon glove box having a dew point of -70 ° C or less (water content: 3 ppm), a gel electrolyte was prepared in the same manner as in Example 1 by using a previously dried material.
A positive electrode and a negative electrode were manufactured, and a lithium secondary battery was manufactured.
【0111】得られた電池の充放電特性を実施例1と同
様に測定した。この電池の容量は98mAhであった。The charge / discharge characteristics of the obtained battery were measured in the same manner as in Example 1. The capacity of this battery was 98 mAh.
【0112】<比較例2>露点−70℃以下のアルゴン
グローブボックス中(水分量3ppm)で、あらかじめ乾
燥してある材料を用いて実施例2と同様にゲル電解質、
正極、負極を作製し、リチウム二次電池を作製した。<Comparative Example 2> In an argon glove box having a dew point of −70 ° C. or less (water content: 3 ppm), a gel electrolyte was prepared in the same manner as in Example 2 using a material previously dried.
A positive electrode and a negative electrode were manufactured, and a lithium secondary battery was manufactured.
【0113】得られた電池の充放電特性を実施例1と同
様に測定した。この電池の容量は102mAhであっ
た。The charge / discharge characteristics of the obtained battery were measured in the same manner as in Example 1. The capacity of this battery was 102 mAh.
【0114】これらの結果をまとめて表1に示す。Table 1 summarizes the results.
【0115】[0115]
【表1】 [Table 1]
【0116】本発明のゲル電解質を用いたリチウム二次
電池は、大気中で電池素体まで作製しても、その後の水
分除去過程で電池素体が変化せず、露点−70℃以下の
アルゴングローブボックス中で全工程を行った場合と同
等の電池特性が得られた。The lithium secondary battery using the gel electrolyte of the present invention, even when fabricated up to the battery element in the air, does not change in the subsequent water removal process, and has a dew point of −70 ° C. or less. Battery characteristics equivalent to those obtained when all the steps were performed in a glove box were obtained.
【0117】また、本発明のゲル電解質を用いた電池
は、従来のゲル電解質を用いた電池と同様の充放電特性
を得ることができた。Further, the battery using the gel electrolyte of the present invention was able to obtain the same charge / discharge characteristics as the battery using the conventional gel electrolyte.
【0118】[0118]
【発明の効果】以上のように、本発明によれば、電池素
体まで大気中で製造できる、より信頼性、安全性が高
く、導電率もよい高分子固体電解質の製造方法、高分子
固体電解質およびこれを用いたリチウム二次電池と電気
二重層キャパシタを提供できる。As described above, according to the present invention, a method for producing a polymer solid electrolyte having higher reliability, higher safety and good electrical conductivity, which can produce even a battery element in the air, An electrolyte and a lithium secondary battery and an electric double layer capacitor using the same can be provided.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 丸山 哲 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内 (72)発明者 古林 眞 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内 (72)発明者 大江 一英 東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tetsu Maruyama 1-13-1 Nihonbashi, Chuo-ku, Tokyo TDK Corporation (72) Inventor Makoto Kobayashi 1-13-1 Nihonbashi, Chuo-ku, Tokyo TDK (72) Inventor Kazuhide Oe 1-1-13 Nihonbashi, Chuo-ku, Tokyo Inside TDK Corporation
Claims (10)
リクス中に、下記の一般式(I)で表されるイミダゾリ
ウム塩とリチウム塩とを含有させて高分子固体電解質を
得る高分子固体電解質の製造方法。 【化1】 (一般式(I)において、R1、R2およびR3はそれぞ
れアルキル基または水素原子を表し、 A-は(RSO2)3C-、(RSO2)2N-、RSO3 -、
BF4 -、PF6 -、AsF6 -およびClO4 -のいずれかを
表し、 Rは炭素数1〜3のパーフルオロアルキル基を表し、 Rが複数存在するときには互いに同一でも異なっていて
もよい。)1. A polymer solid obtained by mixing an imidazolium salt and a lithium salt represented by the following general formula (I) in a matrix of a fluoropolymer compound in the atmosphere to obtain a polymer solid electrolyte. Manufacturing method of electrolyte. Embedded image (In the general formula (I), R 1 , R 2 and R 3 each represent an alkyl group or a hydrogen atom, and A − represents (RSO 2 ) 3 C − , (RSO 2 ) 2 N − , RSO 3 − ,
Represents any one of BF 4 − , PF 6 − , AsF 6 − and ClO 4 − ; R represents a perfluoroalkyl group having 1 to 3 carbon atoms; and when a plurality of Rs are present, they may be the same or different from each other . )
LiN(RSO2)2、LiRSO3、 (Rは炭素数1〜3のパーフルオロアルキル基を表し、 Rが複数存在するときには互いに同一でも異なっていて
もよい。) LiBF4、LiPF6、LiAsF6およびLiClO4
のいずれか一種以上である請求項1の高分子固体電解質
の製造方法。2. The method according to claim 1, wherein the lithium salt is LiC (RSO 2 ) 3 ,
LiN (RSO 2 ) 2 , LiRSO 3 , (R represents a perfluoroalkyl group having 1 to 3 carbon atoms, and when there are a plurality of R, they may be the same or different.) LiBF 4 , LiPF 6 , LiAsF 6 And LiClO 4
2. The method for producing a solid polymer electrolyte according to claim 1, which is at least one of the following.
リデンの単独重合体または共重合体であるである請求項
1または2の高分子固体電解質の製造方法。3. The method for producing a polymer solid electrolyte according to claim 1, wherein the fluorine-based polymer compound is a homopolymer or a copolymer of vinylidene fluoride.
との混合比率が、モル比で、10:1〜1:2である請
求項1〜3のいずれかの高分子固体電解質の製造方法。4. The method for producing a solid polymer electrolyte according to claim 1, wherein the mixing ratio of the imidazolium salt and the lithium salt is from 10: 1 to 1: 2 in molar ratio.
したものである請求項1〜4のいずれかの高分子固体電
解質の製造方法。5. The method for producing a solid polymer electrolyte according to claim 1, wherein said fluorine-based polymer compound is a microporous film.
解質の製造方法で製造された高分子固体電解質。6. A solid polymer electrolyte produced by the method for producing a solid polymer electrolyte according to claim 1.
チウム二次電池。7. A lithium secondary battery comprising the polymer solid electrolyte according to claim 6.
有する電池素体を大気中で製造し、その後、水分を除去
する請求項7のリチウム二次電池の製造方法。8. The method for manufacturing a lithium secondary battery according to claim 7, wherein the battery element having the polymer solid electrolyte and the electrode according to claim 6 is manufactured in the atmosphere, and thereafter, water is removed.
気二重層キャパシタ。9. An electric double layer capacitor having the polymer solid electrolyte according to claim 6.
から成る電気二重層キャパシタを大気中で製造し、その
後、水分を除去する請求項8の電気二重層キャパシタの
製造方法。10. The method for manufacturing an electric double layer capacitor according to claim 8, wherein the electric double layer capacitor comprising the polymer solid electrolyte and the electrode according to claim 6 is manufactured in the atmosphere, and thereafter water is removed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12420198A JP3472133B2 (en) | 1998-04-17 | 1998-04-17 | Lithium secondary battery and method of manufacturing electric double layer capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12420198A JP3472133B2 (en) | 1998-04-17 | 1998-04-17 | Lithium secondary battery and method of manufacturing electric double layer capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11306859A true JPH11306859A (en) | 1999-11-05 |
JP3472133B2 JP3472133B2 (en) | 2003-12-02 |
Family
ID=14879497
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12420198A Expired - Lifetime JP3472133B2 (en) | 1998-04-17 | 1998-04-17 | Lithium secondary battery and method of manufacturing electric double layer capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3472133B2 (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001052338A1 (en) * | 2000-01-14 | 2001-07-19 | Centre National De La Recherche Scientifique (C.N.R.S.) | Electrolytic compositions, method for production and electrochemical applications |
JP2002334815A (en) * | 2001-05-10 | 2002-11-22 | Sanyo Chem Ind Ltd | Electric double layer capacitor |
WO2001093363A3 (en) * | 2000-05-26 | 2003-01-09 | Covalent Associates Inc | Non-flammable electrolytes |
KR100387393B1 (en) * | 2000-09-05 | 2003-06-18 | 삼성에스디아이 주식회사 | Composite polymer electrolyte containing room-temperature molten salt |
JP2005044548A (en) * | 2003-07-23 | 2005-02-17 | Toyota Motor Corp | Proton exchanger, proton exchange membrane, and fuel cell using the same |
JP2005044550A (en) * | 2003-07-23 | 2005-02-17 | Toyota Motor Corp | Proton exchanger, proton exchange membrane, and fuel cell using the same |
JPWO2005006482A1 (en) * | 2003-07-14 | 2006-08-24 | 株式会社フジクラ | Electrolyte composition, photoelectric conversion device using the same, and dye-sensitized solar cell |
WO2007091517A1 (en) | 2006-02-07 | 2007-08-16 | Daikin Industries, Ltd. | Fluorine-containing polymer containing heteroaromatic ring |
JP2007266548A (en) * | 2006-03-30 | 2007-10-11 | Hitachi Zosen Corp | Electric double layer capacitor using carbon nanotubes |
CN100384009C (en) * | 2004-08-23 | 2008-04-23 | 气体产品与化学公司 | High purity lithium polyhalogenated boron cluster salts useful in lithium batteries |
CN100438206C (en) * | 2003-07-14 | 2008-11-26 | 株式会社藤仓 | Electrolyte compositon, photoelectric converter and dye-sensitized solar cell using same |
JP2009170431A (en) * | 2009-04-28 | 2009-07-30 | Gs Yuasa Corporation | Nonaqueous electrolyte battery |
JP2009193784A (en) * | 2008-02-13 | 2009-08-27 | Sony Corp | Nonaqueous electrolyte battery and method of manufacturing the same |
WO2011126047A1 (en) * | 2010-04-06 | 2011-10-13 | 住友電気工業株式会社 | Method for producing separator, method for manufacturing molten salt battery, separator, and molten salt battery |
JP2013541143A (en) * | 2010-09-13 | 2013-11-07 | ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア | Ionic gel electrolytes, energy storage devices, and methods for their production |
JP2014199824A (en) * | 2008-11-06 | 2014-10-23 | 日産自動車株式会社 | Bipolar secondary battery and method of manufacturing the same |
JP2018039689A (en) * | 2016-09-06 | 2018-03-15 | 三菱瓦斯化学株式会社 | Method for producing ion conductor |
JPWO2017057603A1 (en) * | 2015-09-30 | 2018-07-26 | 株式会社大阪ソーダ | Composition for gel electrolyte |
US10530011B1 (en) | 2014-07-21 | 2020-01-07 | Imprint Energy, Inc. | Electrochemical cells and metal salt-based electrolytes |
CN115461404A (en) * | 2020-05-01 | 2022-12-09 | 大金工业株式会社 | Composites, polymer electrolytes, electrochemical devices, polymer-based solid-state batteries and actuators |
CN115485331A (en) * | 2020-05-01 | 2022-12-16 | 大金工业株式会社 | Composites, polymer electrolytes, electrochemical devices, polymer-based solid-state batteries and actuators |
-
1998
- 1998-04-17 JP JP12420198A patent/JP3472133B2/en not_active Expired - Lifetime
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001052338A1 (en) * | 2000-01-14 | 2001-07-19 | Centre National De La Recherche Scientifique (C.N.R.S.) | Electrolytic compositions, method for production and electrochemical applications |
FR2803951A1 (en) * | 2000-01-14 | 2001-07-20 | Centre Nat Rech Scient | ELECTROLYTE COMPOSITIONS, METHOD OF MANUFACTURE AND ELECTROCHEMICAL APPLICATIONS |
WO2001093363A3 (en) * | 2000-05-26 | 2003-01-09 | Covalent Associates Inc | Non-flammable electrolytes |
KR100387393B1 (en) * | 2000-09-05 | 2003-06-18 | 삼성에스디아이 주식회사 | Composite polymer electrolyte containing room-temperature molten salt |
JP2002334815A (en) * | 2001-05-10 | 2002-11-22 | Sanyo Chem Ind Ltd | Electric double layer capacitor |
US8790551B2 (en) | 2003-07-14 | 2014-07-29 | Fujikura Ltd. | Electrolyte composition, photoelectric conversion element using the same, and dye-sensitized photovoltaic cell |
JPWO2005006482A1 (en) * | 2003-07-14 | 2006-08-24 | 株式会社フジクラ | Electrolyte composition, photoelectric conversion device using the same, and dye-sensitized solar cell |
CN100438206C (en) * | 2003-07-14 | 2008-11-26 | 株式会社藤仓 | Electrolyte compositon, photoelectric converter and dye-sensitized solar cell using same |
US8785765B2 (en) | 2003-07-14 | 2014-07-22 | Fujikura Ltd. | Electrolyte composition, photoelectric converter and dye-sensitized solar cell using same |
JP4579160B2 (en) * | 2003-07-14 | 2010-11-10 | 株式会社フジクラ | Electrolyte composition, photoelectric conversion device using the same, and dye-sensitized solar cell |
US7872191B2 (en) | 2003-07-14 | 2011-01-18 | Fujikura Ltd. | Electrolyte composition, photoelectric conversion element using the same, and dye-sensitized photovoltaic cell |
JP2005044550A (en) * | 2003-07-23 | 2005-02-17 | Toyota Motor Corp | Proton exchanger, proton exchange membrane, and fuel cell using the same |
JP2005044548A (en) * | 2003-07-23 | 2005-02-17 | Toyota Motor Corp | Proton exchanger, proton exchange membrane, and fuel cell using the same |
CN100384009C (en) * | 2004-08-23 | 2008-04-23 | 气体产品与化学公司 | High purity lithium polyhalogenated boron cluster salts useful in lithium batteries |
WO2007091517A1 (en) | 2006-02-07 | 2007-08-16 | Daikin Industries, Ltd. | Fluorine-containing polymer containing heteroaromatic ring |
JP2007266548A (en) * | 2006-03-30 | 2007-10-11 | Hitachi Zosen Corp | Electric double layer capacitor using carbon nanotubes |
US8372546B2 (en) | 2008-02-13 | 2013-02-12 | Sony Corporation | Non-aqueous electrolyte battery and method for manufacturing the same |
JP2009193784A (en) * | 2008-02-13 | 2009-08-27 | Sony Corp | Nonaqueous electrolyte battery and method of manufacturing the same |
JP2014199824A (en) * | 2008-11-06 | 2014-10-23 | 日産自動車株式会社 | Bipolar secondary battery and method of manufacturing the same |
JP2009170431A (en) * | 2009-04-28 | 2009-07-30 | Gs Yuasa Corporation | Nonaqueous electrolyte battery |
JP5712928B2 (en) * | 2010-04-06 | 2015-05-07 | 住友電気工業株式会社 | Separator manufacturing method, molten salt battery manufacturing method, separator, and molten salt battery |
WO2011126047A1 (en) * | 2010-04-06 | 2011-10-13 | 住友電気工業株式会社 | Method for producing separator, method for manufacturing molten salt battery, separator, and molten salt battery |
CN102834949A (en) * | 2010-04-06 | 2012-12-19 | 住友电气工业株式会社 | Method for producing separator, method for producing molten salt battery, separator, and molten salt battery |
US8685571B2 (en) | 2010-04-06 | 2014-04-01 | Sumitomo Electric Industries, Ltd. | Method for producing separator, method for producing molten salt battery, separator, and molten salt battery |
US9368283B2 (en) | 2010-09-13 | 2016-06-14 | The Regents Of The University Of California | Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof |
JP2013541143A (en) * | 2010-09-13 | 2013-11-07 | ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア | Ionic gel electrolytes, energy storage devices, and methods for their production |
US9742030B2 (en) | 2010-09-13 | 2017-08-22 | The Regents Of The University Of California | Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof |
JP2018049833A (en) * | 2010-09-13 | 2018-03-29 | ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニアThe Regents Of The University Of California | Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof |
US10297862B2 (en) | 2010-09-13 | 2019-05-21 | The Regents Of The University Of California | Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof |
US10826119B2 (en) | 2010-09-13 | 2020-11-03 | The Regents Of The University Of California | Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof |
US11264643B2 (en) | 2010-09-13 | 2022-03-01 | The Regents Of The University Of California | Ionic gel electrolyte, energy storage devices, and methods of manufacture thereof |
US10530011B1 (en) | 2014-07-21 | 2020-01-07 | Imprint Energy, Inc. | Electrochemical cells and metal salt-based electrolytes |
JPWO2017057603A1 (en) * | 2015-09-30 | 2018-07-26 | 株式会社大阪ソーダ | Composition for gel electrolyte |
JP2018039689A (en) * | 2016-09-06 | 2018-03-15 | 三菱瓦斯化学株式会社 | Method for producing ion conductor |
CN115461404A (en) * | 2020-05-01 | 2022-12-09 | 大金工业株式会社 | Composites, polymer electrolytes, electrochemical devices, polymer-based solid-state batteries and actuators |
CN115485331A (en) * | 2020-05-01 | 2022-12-16 | 大金工业株式会社 | Composites, polymer electrolytes, electrochemical devices, polymer-based solid-state batteries and actuators |
Also Published As
Publication number | Publication date |
---|---|
JP3472133B2 (en) | 2003-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3472133B2 (en) | Lithium secondary battery and method of manufacturing electric double layer capacitor | |
US7311994B2 (en) | Separator for lithium ion secondary battery and lithium ion secondary battery provided therewith | |
US6503661B1 (en) | Lithium secondary battery | |
JP4005660B2 (en) | Method for producing polymer solid electrolyte, polymer solid electrolyte, and electrochemical device using the same | |
US6051343A (en) | Polymeric solid electrolyte and lithium secondary cell using the same | |
US20010038948A1 (en) | Composite electrolyte for a rechargeable lithium battery | |
JP5987692B2 (en) | Power storage device | |
JP7270210B2 (en) | Non-aqueous electrolyte, semi-solid electrolyte layer, sheet for secondary battery and secondary battery | |
JP3724960B2 (en) | Solid electrolyte and electrochemical device using the same | |
WO2021225065A1 (en) | Non-aqueous electrolytic solution, semi-solid electrolyte layer, sheet for secondary battery, and secondary battery | |
JP3587982B2 (en) | Polymer solid electrolyte and lithium secondary battery and electric double layer capacitor using the same | |
JP4086939B2 (en) | Polymer solid electrolyte, lithium secondary battery and electric double layer capacitor using the same | |
JP4112712B2 (en) | Solid electrolyte, method for producing the same, and electrochemical device using the solid electrolyte | |
KR20190135998A (en) | Battery member and secondary battery for secondary batteries, and their manufacturing method | |
US6669860B1 (en) | Solid electrolyte, electrochemical device, lithium ion secondary battery, and electric double-layer capacitor | |
JPH11242951A (en) | Separator, its manufacture and electrochemical device using the same | |
US20020136958A1 (en) | High ionic conductivity gel polymer electrolyte for rechargeable polymer batteries | |
JP6654924B2 (en) | Manufacturing method of lithium ion secondary battery | |
JP4406946B2 (en) | Solid electrolyte | |
JP4668377B2 (en) | Electric double layer capacitor | |
JP2020004598A (en) | battery | |
JP2003100348A (en) | Composite polymer electrolyte and electrochemical device using the same | |
JP4005789B2 (en) | Secondary battery | |
JPH10265635A (en) | Polymeric solid electrolyte and electrochemical device made by using it | |
US20030077516A1 (en) | Cell incorporating polymer electrolyte |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030902 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070912 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080912 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090912 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100912 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110912 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120912 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130912 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |