JPH11304992A - Turbine equipment for power generation - Google Patents
Turbine equipment for power generationInfo
- Publication number
- JPH11304992A JPH11304992A JP10107204A JP10720498A JPH11304992A JP H11304992 A JPH11304992 A JP H11304992A JP 10107204 A JP10107204 A JP 10107204A JP 10720498 A JP10720498 A JP 10720498A JP H11304992 A JPH11304992 A JP H11304992A
- Authority
- JP
- Japan
- Prior art keywords
- turbine
- pipe
- condensate
- steam
- power generation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010248 power generation Methods 0.000 title claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 73
- 230000007797 corrosion Effects 0.000 claims abstract description 46
- 238000005260 corrosion Methods 0.000 claims abstract description 46
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 43
- 229910052742 iron Inorganic materials 0.000 claims abstract description 21
- 239000000463 material Substances 0.000 claims abstract description 18
- 239000008400 supply water Substances 0.000 claims abstract description 11
- 239000012528 membrane Substances 0.000 claims abstract description 9
- 238000000746 purification Methods 0.000 claims abstract description 9
- 230000007935 neutral effect Effects 0.000 claims abstract description 4
- 238000011144 upstream manufacturing Methods 0.000 claims description 25
- 238000010612 desalination reaction Methods 0.000 claims description 24
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 15
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 15
- 229910001882 dioxygen Inorganic materials 0.000 claims description 15
- 239000012510 hollow fiber Substances 0.000 claims description 8
- 229910000510 noble metal Inorganic materials 0.000 claims description 8
- 238000002347 injection Methods 0.000 claims description 7
- 239000007924 injection Substances 0.000 claims description 7
- 229910000851 Alloy steel Inorganic materials 0.000 claims description 3
- 229910000831 Steel Inorganic materials 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000010959 steel Substances 0.000 claims description 3
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 2
- 239000003456 ion exchange resin Substances 0.000 claims description 2
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 2
- 239000000843 powder Substances 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 18
- 239000001301 oxygen Substances 0.000 abstract description 18
- 229910052760 oxygen Inorganic materials 0.000 abstract description 18
- 239000000126 substance Substances 0.000 abstract description 12
- 230000003628 erosive effect Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 101100021633 Arabidopsis thaliana LPPD gene Proteins 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 229910000975 Carbon steel Inorganic materials 0.000 description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 239000010962 carbon steel Substances 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910000870 Weathering steel Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000003518 caustics Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000001983 electron spin resonance imaging Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
Landscapes
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は原子力発電所または
火力発電所において、材料健全性維持、向上を図ること
ができるように構成した発電用タービン設備に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine plant for power generation configured to maintain and improve material integrity in a nuclear power plant or a thermal power plant.
【0002】[0002]
【従来の技術】蒸気発生器附帯型原子力発電所または火
力発電所においては、蒸気発生器内の伝熱管二次側の材
料健全性を維持するために伝熱管二次側への鉄の堆積量
を極力減少する。この方法として、タービン設備の機器
や配管の腐食による機能低下を抑制するために、近年、
揮発性薬品処理(All Volatile Treatment以下、AV
T)を採用し、タービン系の腐食抑制を図っている。2. Description of the Related Art In a nuclear power plant or a thermal power plant attached to a steam generator, the amount of iron deposited on the secondary side of the heat transfer tube in order to maintain material integrity of the secondary side of the heat transfer tube in the steam generator. Is reduced as much as possible. In recent years, in order to suppress the deterioration in function due to corrosion of turbine equipment and piping,
Volatile treatment (AV below)
T) to prevent turbine system corrosion.
【0003】AVTではアンモニアを添加することによ
り通常pHを約8.7 〜9.5 に保ち、給水にはヒドラジン
を0.2 〜0.6ppm添加することと、脱気器の設置により給
水溶存酸素濃度をほぼ0に管理する脱酸素または還元雰
囲気状態で運転している。In AVT, the pH is usually maintained at about 8.7 to 9.5 by adding ammonia, the hydrazine is added to the water supply at 0.2 to 0.6 ppm, and the concentration of oxygen in the water is controlled to almost zero by installing a deaerator. Operating in a deoxidizing or reducing atmosphere.
【0004】しかし、溶存酸素を下げることにより、材
料表面全体の腐食は抑制されるが、流水により加速され
るエロージョン,コロージョンが発生し、機器や配管の
健全性が損なわれる可能性が生じている。[0004] However, by lowering the dissolved oxygen, corrosion of the entire material surface is suppressed, but erosion and corrosion accelerated by running water are generated, and there is a possibility that the soundness of equipment and piping is impaired. .
【0005】また、蒸気発生器附帯型原子力発電所の一
部では、腐食抑制の観点からさらにpHを上げた高AV
Tを採用している場合もある。この場合、復水脱塩装置
を通常運転時に使用すると、腐食抑制のために使用する
薬品を捕獲し、再生頻度が運転管理上間に合わないこと
から、使用しない。このため、復水系上流で発生した腐
食物は、下流に流れ出す。[0005] Further, in a part of a nuclear power plant with a steam generator, a high AV having a further increased pH is used from the viewpoint of corrosion control.
T may be adopted in some cases. In this case, if the condensate demineralizer is used during normal operation, the chemical used for controlling corrosion is captured, and the frequency of regeneration is not enough for operation management, so that it is not used. For this reason, the corrosive substances generated upstream of the condensate system flow out downstream.
【0006】つぎの文献によれば、給水の鉄濃度で2.3p
pb程度となることが記載されている[ H.G.HEITMANN et
al;Initiial experience gained with a high pH value
inthe secondary system of PWRs,BNES LONDON Water
Chemistry Nuclear systems,1983 ]。[0006] According to the following document, the iron concentration of feed water is 2.3p
It is described to be about pb [HGHEITMANN et
al; Initiial experience gained with a high pH value
inthe secondary system of PWRs, BNES LONDON Water
Chemistry Nuclear systems, 1983].
【0007】一方、火力発電所では10数年前にCWT
(Combined Water Treatment)方式の腐食抑制技術を開
発している。これは,全面腐食を薬品注入により行い、
酸素を注入することにより、エロージョン,コロージョ
ンを抑制するものである。On the other hand, in thermal power plants, CWT 10 years ago
(Combined Water Treatment) type corrosion control technology is being developed. This is done by injecting chemicals into the entire surface,
By injecting oxygen, erosion and corrosion are suppressed.
【0008】[0008]
【発明が解決しようとする課題】蒸気発生器附帯型原子
力発電所では、AVTを採用しても、給水鉄濃度は数pp
b 程度存在するため、蒸気発生器附帯型原子力発電所で
は蒸気発生器での鉄酸化物の堆積量が経年的に増加し、
そこでの不純物の濃縮が起こることにより蒸気発生器伝
熱管二次側の粒界腐食損傷(IGA)が発生する課題が
ある。In a nuclear power plant with a steam generator, even if AVT is adopted, the iron concentration of the feedwater is several pp.
b, the amount of iron oxide deposited on the steam generator has increased over time at the steam generator-attached nuclear power plant,
There is a problem that intergranular corrosion damage (IGA) occurs on the secondary side of the steam generator heat transfer tube due to concentration of impurities there.
【0009】一方、火力発電所では、AVTでは、ボイ
ラ内に鉄酸化物が堆積しボイラの熱交換率を低下させる
現象が発生すると共に溶存酸素濃度が低すぎる箇所での
エロージョン,コロージョンによる機器・配管の減耗が
発生する課題がある。[0009] On the other hand, in a thermal power plant, in the AVT, a phenomenon occurs in which iron oxide is deposited in the boiler and the heat exchange rate of the boiler is reduced, and at the same time, erosion and corrosion are performed at a location where the dissolved oxygen concentration is too low. There is a problem that the pipe is worn out.
【0010】最近の蒸気発生器附帯型原子力発電所での
高AVTでも、また、火力発電所でのCWT方式を採用
しても、薬品の使用量が膨大であり、薬品管理にコスト
がかかるとともに公害に対する懸念も高い。さらに、復
水脱塩装置樹脂の化学再生頻度も高く、再生薬品の発生
量も多くその管理にもコストがかかる課題がある。Even if a high AVT is used in a recent steam generator-attached nuclear power plant or a CWT method is used in a thermal power plant, the amount of chemicals used is enormous, and the cost of chemical management is high. Concerns about pollution are also high. Further, there is a problem that the frequency of chemical regeneration of the resin in the condensate desalination apparatus is high, the amount of the regenerated chemical generated is large, and the management thereof is costly.
【0011】本発明は上記課題を解決するためになされ
たもので、薬品を使用することなく、低管理コストで給
水鉄濃度を低減し、材料の健全性を維持し、向上するこ
とができる発電用タービン設備を提供することを目的と
する。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is possible to reduce the concentration of iron supply water at a low management cost without using chemicals, and to maintain and improve the soundness of materials. It is intended to provide a turbine device for use.
【0012】[0012]
【課題を解決するための手段】請求項1に対応する発明
は、蒸気発生器またはボイラから発生した蒸気を主蒸気
管を通してタービン系へ導き、このタービン系のタービ
ンを回転させて発電機を駆動して発電し、前記タービン
系で仕事を終えた蒸気を復水系の復水器で凝縮して復水
し、この復水を復水浄化系で浄化し、給水系の給水加熱
器で加熱して給水とし、この給水を前記蒸気発生器また
はボイラに戻す発電用タービン設備において、前記給水
を中性純水で溶存酸素濃度を7ppb 以上に調整し、前記
蒸気発生器またはボイラから前記給水系までの機器,配
管の一部に耐食材を組み込んでなることを特徴とする。According to a first aspect of the present invention, steam generated from a steam generator or a boiler is guided to a turbine system through a main steam pipe, and a turbine of the turbine system is rotated to drive a generator. The steam that has completed its work in the turbine system is condensed and condensed in a condenser in the condenser system, and the condensate is purified in the condensate purification system and heated in the feedwater heater in the water supply system. In the power generation turbine facility for returning the feedwater to the steam generator or the boiler, the feedwater is adjusted to a concentration of 7 ppb or more with neutral pure water, and from the steam generator or the boiler to the feedwater system. It is characterized by incorporating a corrosion-resistant material into a part of the equipment and piping.
【0013】請求項2に対応する発明は、前記給水系の
給水鉄濃度は1ppb 以下であることを特徴とする。請求
項3に対応する発明は、前記主蒸気管および前記給水系
の低圧給水加熱器の上流側配管に酸素ガス供給配管を接
続してなることを特徴とする。[0013] The invention corresponding to claim 2 is characterized in that the iron concentration in the water supply system is 1 ppb or less. The invention corresponding to claim 3 is characterized in that an oxygen gas supply pipe is connected to an upstream pipe of the main steam pipe and a low-pressure feedwater heater of the feedwater system.
【0014】請求項4に対応する発明は、前記耐食材は
耐候性鋼,低合金鋼またはステンレス鋼からなることを
特徴とする。請求項5に対応する発明は、前記復水浄化
系は復水フィルタまたは復水脱塩装置の少なくとも一つ
を有し、前記復水フィルタは中空糸膜フィルタ,非プリ
コート型フィルタまたは粉末イオン交換樹脂フィルタの
何れか一つからなることを特徴とする。[0014] The invention corresponding to claim 4 is characterized in that the corrosion-resistant material is made of weathering steel, low alloy steel or stainless steel. According to a fifth aspect of the present invention, the condensate purification system has at least one of a condensate filter and a condensate desalination device, and the condensate filter is a hollow fiber membrane filter, a non-precoated filter, or a powder ion exchange filter. It is characterized by being made of any one of the resin filters.
【0015】請求項6に対応する発明は、前記復水系の
復水ポンプの吐出側配管と前記給水系の低圧給水加熱器
の低圧ヒータドレン側とを低圧ヒータドレン管,低圧ヒ
ータドレンポンプおよび中空糸膜フィルタ上流戻り配管
で接続し、この中空糸膜フィルタ上流戻り配管と前記低
圧給水加熱器の下流側配管に復水脱塩装置の上流戻り配
管および下流戻り配管を接続してなることを特徴とす
る。According to a sixth aspect of the present invention, a low-pressure heater drain pipe, a low-pressure heater drain pump, and a hollow fiber membrane are formed by connecting a discharge pipe of the condensate condensate pump and a low-pressure heater drain of the low-pressure feedwater heater of the water supply system. It is connected by a filter upstream return pipe, and the upstream return pipe and downstream return pipe of the condensate demineralizer are connected to the hollow fiber membrane filter upstream return pipe and the downstream pipe of the low-pressure feed water heater. .
【0016】請求項7に対応する発明は、前記蒸気発生
器またはボイラに貴金属注入装置を接続してなることを
特徴とする。請求項8に対応する発明は、前記復水脱塩
装置の下流側給水系配管に水素ガス供給装置を接続し、
前記蒸気発生器またはボイラの二次側の腐食電位を−20
0mV以下の量に維持してなることを特徴とする。A seventh aspect of the present invention is characterized in that a noble metal injection device is connected to the steam generator or the boiler. The invention corresponding to claim 8 connects a hydrogen gas supply device to a downstream water supply pipe of the condensate desalination device,
The corrosion potential on the secondary side of the steam generator or boiler is -20
It is characterized by being maintained at an amount of 0 mV or less.
【0017】本発明によればタービン設備の材料健全性
を維持し、向上するために、薬品を使用することなく、
中性純水条件下で給水鉄濃度を低下させることにある。
図3では、溶存酸素が存在すると炭素鋼の腐食が抑制さ
れることが明らかにされている。その腐食抑制は溶存酸
素が存在するとFe2 O3 の安定な酸化皮膜が形成され
ることによることが知られている。According to the present invention, in order to maintain and improve the material integrity of turbine equipment, without using chemicals,
The purpose of the present invention is to reduce the concentration of iron supplied under neutral pure water conditions.
FIG. 3 shows that the presence of dissolved oxygen suppresses the corrosion of carbon steel. It is known that the corrosion inhibition is due to the formation of a stable oxide film of Fe 2 O 3 when dissolved oxygen is present.
【0018】なお、図3はGordon etal,“Hydrogen wat
er chemistry for BWRs ”EPRI NP-3935M(1985) の文献
から引用したもので、200 〜300 ℃(392 〜572 F°)
の温度範囲で異なる酸素濃度に1000hr晒した炭素鋼の腐
食率と溶出率を溶存酸素濃度との関係で示している。FIG. 3 shows Gordon et al., “Hydrogen wat
er chemistry for BWRs "EPRI NP-3935M (1985), cited from the literature, 200-300 ° C (392-572F °)
The corrosion rate and elution rate of carbon steel exposed to different oxygen concentrations for 1000 hours in the temperature range above are shown in relation to the dissolved oxygen concentration.
【0019】図4によれば、溶存酸素が7ppb 以上あれ
ば流速によって促進される腐食いわゆるエロージョン,
コロージョン(FAC:Flow-Accelerated Corrosion)
が抑制されることが明らかにされている。According to FIG. 4, when the dissolved oxygen is 7 ppb or more, the corrosion promoted by the flow velocity, so-called erosion,
Corrosion (FAC: Flow-Accelerated Corrosion)
Has been shown to be suppressed.
【0020】図4は流速で加速される腐食摩耗に対する
溶存酸素の影響を示したもので、縦軸は流速で加速され
る腐食摩耗率の増加で、横軸は溶存酸素(ppb )を示し
ている。FIG. 4 shows the effect of dissolved oxygen on the corrosive wear accelerated by the flow velocity. The vertical axis indicates the increase in the corrosion wear rate accelerated by the flow velocity, and the horizontal axis indicates the dissolved oxygen (ppb). I have.
【0021】図5から図7は「火力原子力発電:発電プ
ラントの腐食とその防止,腐食形態と対策2」 vol.47
No.6 p677 〜 Jun.1996から引用したもので、低炭素
鋼は炭素鋼に比較して耐エロージョン,コロージョン性
が極めて高いことが明らかにされている。5 to 7 show "Thermal and Nuclear Power Generation: Corrosion of Power Plant and Its Prevention, Corrosion Forms and Countermeasures 2" vol.47
No. 6 p677-Jun. 1996, it is clear that low carbon steel has extremely high erosion and corrosion resistance compared to carbon steel.
【0022】すなわち、図5は炭素鋼,Ni−Cr−C
u鋼およびCr−Mo鋼についてエロージョン,コロー
ジョン減量に及ぼす影響を示しており、図6は同じく蒸
気湿り度の影響を示し、図7は炭素鋼とCr−Mo鋼に
ついてエロージョン,コロージョン減量に及ぼす蒸気湿
度の影響を示している。FIG. 5 shows carbon steel, Ni—Cr—C
FIG. 6 shows the effect of steam wetness on the erosion and corrosion reduction of the u-steel and the Cr-Mo steel, and FIG. 6 shows the effect of the steam wetness similarly. This shows the effect of humidity.
【0023】本発明では、ヒータドレンシステムをカス
ケードシステムとした場合には、蒸気系に酸素ガスまた
は空気を注入することにより蒸気中および水中の溶存酸
素濃度を高め、機器や配管内面に緻密な酸化皮膜を形成
することによって機器・配管内面の腐食を抑制する。ま
た、復水浄化系において上流から持ち込まれる鉄をほぼ
完全に除去し、さらに酸素ガスを注入することにより給
水系からの鉄発生を抑制して、給水系からの鉄の持ち込
みを1ppb 以下にすることができる。In the present invention, when the heater drain system is a cascade system, the concentration of dissolved oxygen in steam and water is increased by injecting oxygen gas or air into the steam system, and dense oxidation is performed on the equipment and the pipe inner surface. By forming a film, corrosion of the inner surface of equipment and piping is suppressed. Also, in the condensate purification system, iron brought in from the upstream is almost completely removed, and oxygen gas is injected to suppress the generation of iron from the water supply system and reduce the amount of iron brought in from the water supply system to 1 ppb or less. be able to.
【0024】一方、フォワードドレンシステムとした場
合には、蒸気系に酸素ガスまたは空気を注入することに
より蒸気中および水中の溶存酸素濃度を高め、機器や配
管内面に緻密な酸化皮膜を形成することと耐食材を併用
することにより機器や配管内面の腐食をさらに抑制する
他に、復水浄化系の設置と酸素ガス注入にて給水系から
の鉄発生を抑制することにより、給水鉄濃度を1ppb 以
下とする。LPPDの鉄濃度が高い場合、LPPDは復
水浄化系上流に回収し鉄をほぼ完全に除去することによ
り、給水鉄濃度を1ppb 以下とすることができる。On the other hand, when a forward drain system is used, oxygen gas or air is injected into the steam system to increase the concentration of dissolved oxygen in the steam and water to form a dense oxide film on the inner surfaces of equipment and piping. In addition to further suppressing corrosion of equipment and the inner surface of piping by using anticorrosive materials, the concentration of supplied iron is reduced to 1 ppb by installing a condensate purification system and suppressing the generation of iron from the water supply system by injecting oxygen gas. The following is assumed. When the iron concentration of LPPD is high, LPPD can be collected at the upstream of the condensate purification system to remove iron almost completely, so that the iron concentration of feedwater can be reduced to 1 ppb or less.
【0025】さらに、蒸気発生器附帯型原子力発電所で
は、給水水素ガス注入により、蒸気発生器伝熱管二次側
の腐食電位を−200mV 以下とし、IGAの発生を抑制す
る。この給水水素ガス注入量を低減するために、蒸気発
生器伝熱管二次側表面に貴金属をメッキまたはコーティ
ング、あるいは貴金属溶液を高温条件下で注入してIG
Aの発生を抑制することができる。Further, in the steam generator-attached nuclear power plant, the corrosion potential on the secondary side of the heat transfer tube of the steam generator is reduced to -200 mV or less by injection of feed water hydrogen gas, thereby suppressing the generation of IGA. In order to reduce the injection amount of hydrogen gas in the feed water, the noble metal is plated or coated on the secondary side surface of the steam generator heat transfer tube, or a noble metal solution is injected under high temperature conditions to obtain IG.
Generation of A can be suppressed.
【0026】[0026]
【発明の実施の形態】図1により本発明に係る蒸気発生
器附帯型発電用タービン設備の第1の実施の形態を説明
する。図1において、符号1は蒸気発生器で、例えば沸
騰水型原子炉である。蒸気発生器1には伝熱管27として
例えば炉心が内蔵しており、蒸気発生器1には主蒸気管
2が接続している。主蒸気管2はタービン系の高圧ター
ビン3に接続し、高圧タービン3の下流側には湿分分離
器4,再熱器5および低圧タービン6が順次接続してい
る。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a steam generator-attached power generation turbine facility according to the present invention will be described with reference to FIG. In FIG. 1, reference numeral 1 denotes a steam generator, for example, a boiling water reactor. The steam generator 1 incorporates, for example, a core as a heat transfer tube 27, and the main steam tube 2 is connected to the steam generator 1. The main steam pipe 2 is connected to a high-pressure turbine 3 of a turbine system, and a moisture separator 4, a reheater 5, and a low-pressure turbine 6 are sequentially connected downstream of the high-pressure turbine 3.
【0027】低圧タービン6には復水系の主復水器7が
設けられ、主復水器7の下流側には復水ポンプ8が接続
し、復水ポンプ8の吐出側はろ過装置としての復水中空
糸膜フィルタ(以下、HFFと記す)9に接続してい
る。HFF9の下流側給水系には低圧給水加熱器10,給
水ポンプ11,高圧給水加熱器12が順次接続し、高圧給水
加熱器12の下流側は給水配管13により蒸気発生器1に接
続している。The low-pressure turbine 6 is provided with a main condenser 7 of a condensing system, a condensing pump 8 is connected downstream of the main condenser 7, and a discharge side of the condensing pump 8 serves as a filtering device. It is connected to a condensate hollow fiber membrane filter (hereinafter, referred to as HFF) 9. A low-pressure feedwater heater 10, a feedwater pump 11, and a high-pressure feedwater heater 12 are sequentially connected to the downstream feedwater system of the HFF 9, and the downstream side of the high-pressure feedwater heater 12 is connected to the steam generator 1 by a feedwater pipe 13. .
【0028】高圧給水加熱器12の二次側入口には高圧タ
ービン3と接続する抽気管14,湿分分離器ドレン管15お
よび再熱器5と接続する再熱器ドレン管16が接続してお
り、また高圧給水加熱器12の二次側出口には給水ポンプ
11の吸込側に接続する高圧ヒータドレン管17が高圧ヒー
タドレンポンプ18を介して接続している。The secondary inlet of the high-pressure feed water heater 12 is connected with a bleed pipe 14 connected to the high-pressure turbine 3, a moisture separator drain pipe 15, and a reheater drain pipe 16 connected to the reheater 5. A water supply pump is provided at the secondary outlet of the high pressure feed water heater 12.
A high-pressure heater drain pipe 17 connected to the suction side of 11 is connected via a high-pressure heater drain pump 18.
【0029】低圧タービン6と低圧給水加熱器10の二次
側入口との間は抽気管19により接続している。低圧給水
加熱器10の二次側出口とHFF9の吐出側配管との間
は、低圧ヒータドレンバイパス管(以下、LPPDと記
す)20により、低圧ヒータドレンポンプ21を介して接続
している。The low pressure turbine 6 and the secondary side inlet of the low pressure feed water heater 10 are connected by a bleed pipe 19. A low-pressure heater drain bypass pipe (hereinafter, referred to as LPPD) 20 connects the secondary-side outlet of the low-pressure feed water heater 10 to the discharge-side pipe of the HFF 9 via a low-pressure heater drain pump 21.
【0030】ここで、図1中、符号22は酸素ガスまたは
空気供給装置22で、この供給装置22は主蒸気系用加圧ポ
ンプ23を介して主蒸気管2の上流側に配管接続するとと
もに、給水系用加圧ポンプ24を介して低圧給水加熱器10
の入口側給水系配管にも配管接続している。また、符号
25は水素ガス供給装置で、この水素ガス供給装置25は水
素ガス加圧ポンプ26を介して前記HFF9の下流側給水
系配管に配管接続している。In FIG. 1, reference numeral 22 denotes an oxygen gas or air supply device 22. This supply device 22 is connected to the upstream side of the main steam pipe 2 via a main steam pressurizing pump 23 and connected to a pipe. , A low pressure feed water heater 10 through a feed water pressurizing pump 24
The piping is also connected to the inlet side water supply system piping. Also, the sign
Reference numeral 25 denotes a hydrogen gas supply device. The hydrogen gas supply device 25 is connected to a downstream water supply pipe of the HFF 9 via a hydrogen gas pressurizing pump 26.
【0031】符号28は腐食電位計で、蒸気発生器1に接
続し、蒸気発生器1内の液体がポンプにより腐食電位計
28に流入し測定される。また、符号29は貴金属注入装置
で、蒸気発生器1の下部にポンプを介して接続してい
る。符号30は排ガス系で、ポンプを介して主復水器7に
接続し、排ガス系30には排ガス再結合器31が設けられ、
その下流側は排気筒(スタック)に接続している。Reference numeral 28 denotes an erosion potentiometer which is connected to the steam generator 1 and the liquid in the steam generator 1 is pumped by the erosion potentiometer.
It flows into 28 and is measured. Reference numeral 29 denotes a noble metal injection device, which is connected to a lower portion of the steam generator 1 via a pump. Reference numeral 30 denotes an exhaust gas system, which is connected to the main condenser 7 via a pump, and the exhaust gas system 30 is provided with an exhaust gas recombiner 31;
The downstream side is connected to an exhaust stack (stack).
【0032】ここで、蒸気発生器1で発生した蒸気は主
蒸気管2を通って高圧タービン3を回した後、湿分分離
器4により湿分が分離される。その後、再熱器5で再加
熱されて、低圧タービン6に流入し、低圧タービン6を
回転し、発電機(図示せず)を駆動する。仕事を終えた
蒸気は例えばチタン製冷却管を内蔵する主復水器7によ
り凝縮して復水となる。Here, the steam generated by the steam generator 1 is passed through the main steam pipe 2 to the high-pressure turbine 3, and then the moisture is separated by the moisture separator 4. Thereafter, it is reheated by the reheater 5, flows into the low-pressure turbine 6, rotates the low-pressure turbine 6, and drives a generator (not shown). The steam after the work is condensed by the main condenser 7 having a built-in cooling pipe made of titanium, for example, to be condensed.
【0033】復水は主復水器7から復水ポンプ8により
復水 100%浄化容量を持つHFF9へ送られ、復水クラ
ッドがほぼ除去される。HFF9で浄化された復水は、
低圧給水加熱器10と高圧給水加熱器12によって加熱され
た給水となって給水管13を通り給水ポンプ11により蒸気
発生器1へ供給される。このようにして、蒸気発生器1
内で発生した蒸気はタービン系,復水系,給水系をたど
るサイクルを繰り返すことになる。The condensate is sent from the main condenser 7 to the HFF 9 having a condensed water purification capacity of 100% by the condensate pump 8, and the condensate condensate is almost removed. Condensate purified by HFF9 is
The feed water is heated by the low-pressure feed water heater 10 and the high-pressure feed water heater 12 and supplied to the steam generator 1 by the feed water pump 11 through the feed pipe 13. Thus, the steam generator 1
The steam generated in the tank repeats the cycle of the turbine system, condensate system, and water supply system.
【0034】このサイクル中に、高圧給水加熱器12の熱
源として利用される高圧タービン3の抽気は抽気管14を
通り高圧給水加熱器12に流入する。また、湿分分離器4
のドレンはドレン管15を通り高圧給水加熱器12に流入す
る。さらに、再熱器5のドレンはドレン管16を通って高
圧給水加熱器12に流入する。高圧給水加熱器12で給水系
配管と熱交換されて凝縮したドレン17は熱回収向上のた
めに、高圧ヒータドレンポンプ18により給水ポンプ11の
上流に回収される。During this cycle, the bleed air of the high-pressure turbine 3 used as a heat source of the high-pressure feed water heater 12 flows into the high-pressure feed water heater 12 through the bleed pipe 14. In addition, the moisture separator 4
Drain flows into the high-pressure feed water heater 12 through the drain pipe 15. Further, the drain of the reheater 5 flows into the high-pressure feed water heater 12 through the drain pipe 16. The drain 17 condensed by exchanging heat with the water supply pipe in the high pressure feed water heater 12 is collected upstream of the water supply pump 11 by the high pressure heater drain pump 18 in order to improve heat recovery.
【0035】他方、低圧給水加熱器10の熱源として低圧
タービン6の抽気は抽気管19を通って低圧給水加熱器10
に供給された後、熱交換されたドレン20は熱回収向上の
ために、LPPD20を通し低圧ヒータドレンポンプ21に
よりHFF9の下流に回収される。On the other hand, the bleed air of the low-pressure turbine 6 serving as a heat source of the low-pressure feed water heater 10 passes through the bleed pipe 19 to be supplied to the low-pressure feed water heater 10.
After being supplied to the drain, the heat-exchanged drain 20 is recovered downstream of the HFF 9 by the low-pressure heater drain pump 21 through the LPPD 20 in order to improve heat recovery.
【0036】HFF9の下流側の腐食抑制ならびにHF
F9の下流に流入するタービン設備の腐食抑制のため
に、蒸気発生器1から流出した直後の主蒸気管2に酸素
ガスまたは空気供給装置22から供給された酸素ガスまた
は空気を加圧ポンプ23により主蒸気や抽気およびヒータ
ドレンが適切な溶存酸素濃度になるよう供給する。Corrosion inhibition downstream of HFF9 and HF
In order to suppress corrosion of turbine equipment flowing downstream of F9, oxygen gas or air supplied from the oxygen gas or air supply device 22 is supplied to the main steam pipe 2 immediately after flowing out of the steam generator 1 by the pressurizing pump 23. Main steam, bleed air and heater drain are supplied so that the dissolved oxygen concentration becomes appropriate.
【0037】一方、HFF9の下流に酸素ガス供給装置
22から供給された酸素ガスまたは空気を加圧ポンプ24に
より復水および給水が適切な溶存酸素濃度になるよう供
給する。さらに、腐食の絶対量を低減するために、復水
管および給水配管を除くHFF9の下流に流入する蒸気
系やドレン系の機器および配管を低合金鋼で形成し、再
熱器5や給水加熱器10,12の伝熱管はステンレス鋼製と
する。On the other hand, an oxygen gas supply device is provided downstream of the HFF 9.
Oxygen gas or air supplied from 22 is supplied by a pressurizing pump 24 so that condensed water and supplied water have an appropriate dissolved oxygen concentration. Furthermore, in order to reduce the absolute amount of corrosion, steam and drain equipment and piping flowing downstream of the HFF 9 except for the condensing pipe and the water supply pipe are formed of low alloy steel, and the reheater 5 and the feed water heater are formed. The heat transfer tubes 10 and 12 are made of stainless steel.
【0038】これにより、HFF9の下流側に流入して
給水となるすべてのタービン系が緻密な酸化皮膜を形成
し腐食が抑制されることによって給水鉄濃度が1ppb 以
下と低いレベルに維持できる。As a result, all the turbine systems that flow into the downstream side of the HFF 9 and serve as water supply form a dense oxide film and suppress corrosion, so that the concentration of iron supply water can be maintained at a low level of 1 ppb or less.
【0039】また、水素ガス供給装置25から供給された
水素ガスを加圧ポンプ26により蒸気発生器伝熱管27の腐
食電位が蒸気発生器1 から分岐された腐食電位計28の指
示値として−200mV 以下となるようHFF9の下流側に
供給する。Further, the corrosion potential of the steam generator heat transfer tube 27 is reduced by a pressure pump 26 from the hydrogen gas supplied from the hydrogen gas supply device 25 to −200 mV as an indication value of the corrosion potential meter 28 branched from the steam generator 1. It is supplied to the downstream side of the HFF 9 as follows.
【0040】さらに、貴金属溶液注入装置29により貴金
属を蒸気発生器1に注入し、蒸気発生器伝熱管27の表面
に貴金属を付着させることにより、供給酸素ガスと供給
水素ガスとの反応を促し水素ガス供給量を節約すること
ができる。一方、排ガス系30内に水素ガスと酸素ガスを
反応させ水に戻す排ガス再結合器31を設置することによ
り、供給した水素ガスと酸素ガスを安全に処理できる。Further, a noble metal is injected into the steam generator 1 by a noble metal solution injection device 29, and the noble metal is adhered to the surface of the steam generator heat transfer tube 27, thereby promoting the reaction between the supplied oxygen gas and the supplied hydrogen gas. The gas supply can be saved. On the other hand, by providing an exhaust gas recombiner 31 that reacts hydrogen gas and oxygen gas into water in the exhaust gas system 30, the supplied hydrogen gas and oxygen gas can be safely processed.
【0041】本実施の形態によれば、蒸気発生器伝熱管
28の材料健全性を維持、向上することができるのみなら
ず、薬品を使用しないことによる経済性の向上とともに
人体や環境への影響もやさしくなり好ましいものとな
る。According to the present embodiment, the steam generator heat transfer tube
In addition to maintaining and improving the material soundness of No. 28, the use of no chemicals is not only advantageous in economics, but also has a favorable effect on the human body and the environment.
【0042】図2を参照しながら本発明に係る第2の実
施の形態を説明する。本実施の形態が第1の実施の形態
と異なる点はHFF9の下流側に復水脱塩装置32を接続
し、この復水脱塩装置32の前後に復水脱塩装置バイパス
管33を設けるとともに、低圧給水加熱器10の二次側に接
続したLPPD20と復水ポンプ8の吐出側配管との間に
HFF上流戻り配管34を設けたことにある。A second embodiment according to the present invention will be described with reference to FIG. This embodiment is different from the first embodiment in that a condensate desalination device 32 is connected downstream of the HFF 9, and a condensate desalination device bypass pipe 33 is provided before and after this condensate desalination device 32. In addition, an HFF upstream return pipe 34 is provided between the LPPD 20 connected to the secondary side of the low-pressure feed water heater 10 and the discharge pipe of the condensate pump 8.
【0043】また、HFF上流戻り配管34には復水脱塩
装置上流戻り配管35が上流戻り弁38を介してHFF9の
下流側配管に接続し、また復水脱塩装置下流戻り配管36
が下流戻り弁39を介して接続したことにある。The HFF upstream return pipe 34 is connected to a condensate desalination device upstream return pipe 35 via an upstream return valve 38 to the downstream pipe of the HFF 9.
Are connected via the downstream return valve 39.
【0044】本実施の形態においては、HFF9の下流
に設置した復水脱塩装置32は粒状イオン交換樹脂を用い
た混床型復水脱塩装置である。この復水脱塩装置32は発
電用タービンプラント停止中に混入した不純物をプラン
ト起動前の復水、給水浄化時に除去でき、プラント起動
初期の炉水水質の悪化を抑制でき、極めて高純度に維持
できる。また、海水リーク時の対応も可能である。さら
に復水脱塩装置32をバイパスライン33を用いてバイパス
することにより、合理的運用をすることもできる。In this embodiment, the condensate desalination unit 32 installed downstream of the HFF 9 is a mixed-bed type condensate desalination unit using a granular ion exchange resin. This condensate desalination device 32 can remove impurities mixed during the shutdown of the power generation turbine plant during condensate and feedwater purification before starting the plant, can suppress deterioration of reactor water quality at the initial stage of plant startup, and maintain extremely high purity. it can. It is also possible to deal with seawater leaks. Furthermore, rational operation can be performed by bypassing the condensate desalination device 32 using the bypass line 33.
【0045】また、LPPD20の鉄濃度はプラント起動
時によっては高くなり、給水鉄濃度が1ppb を超えるこ
とがありえる場合は、LPPD20の戻りをHFF9の上
流、またはHFF9と復水脱塩装置32の上流の間35、あ
るいは復水脱塩装置32の下流36のどこへでも戻せるよう
弁37,38,39が設置され、これらの弁を切り替えて給水
鉄濃度が1ppb 以下となるよう合理的運用をすることが
できる。The iron concentration of the LPPD 20 increases depending on the start-up of the plant. If the iron concentration of the feed water can exceed 1 ppb, the return of the LPPD 20 is performed upstream of the HFF 9 or upstream of the HFF 9 and the condensate desalination unit 32. Valves 37, 38, and 39 are installed so that they can be returned anywhere during the period 35 or downstream of the condensate desalination unit 32, and these valves are switched to operate rationally so that the iron supply water concentration is 1 ppb or less. be able to.
【0046】なお、HFF上流戻り配管34,HFF9と
復水脱塩装置上流戻り配管35,復水脱塩装置下流戻り配
管36はプラントの合理化のためにそれらを最小の組み合
わせで構成することもできる。The HFF upstream return pipes 34, HFF9, the condensate desalination unit upstream return pipe 35, and the condensate desalination unit downstream return pipe 36 may be configured with a minimum combination for streamlining the plant. .
【0047】[0047]
【発明の効果】本発明によれば、薬品を使用することな
く、給水鉄濃度が1ppb 以下と低いレベルに維持できる
とともに、蒸気発生器伝熱管二次側の腐食電位を−200m
V 以下とすることができ、蒸気発生器伝熱管の材料健全
性を維持、向上することができるのみならず、薬品を使
用しないことによる経済性の向上とともに人体や環境へ
の悪影響も優しくすることができる。According to the present invention, the concentration of iron feedwater can be maintained at a low level of 1 ppb or less without using a chemical, and the corrosion potential on the secondary side of the steam generator heat transfer tube can be reduced by -200 m.
V or less, which not only can maintain and improve the material integrity of the steam generator heat transfer tubes, but also improve the economics of using no chemicals and make the adverse effects on the human body and the environment gentle. Can be.
【図1】本発明に係る発電用タービン設備の第1の実施
の形態を示す系統図。FIG. 1 is a system diagram showing a first embodiment of a power generation turbine facility according to the present invention.
【図2】本発明に係る発電用タービン設備の第2の実施
の形態を示す系統図。FIG. 2 is a system diagram showing a second embodiment of the power generation turbine equipment according to the present invention.
【図3】本発明の作用を従来例と対比するための、溶存
酸素の材料の腐食抑制効果を示す曲線図。FIG. 3 is a curve diagram showing the effect of inhibiting the corrosion of dissolved oxygen material to compare the operation of the present invention with the conventional example.
【図4】同じく、流速で過速される腐食摩耗に対する溶
存酸素の影響を示す曲線図。FIG. 4 is a curve diagram showing the effect of dissolved oxygen on corrosive wear overspeeded at a flow rate.
【図5】同じく、耐食材のエロージョン,コロージョン
減量に及ぼす蒸気流速の影響を示す曲線図。FIG. 5 is a curve diagram showing the effect of the steam flow rate on the erosion and corrosion reduction of the corrosion-resistant material.
【図6】同じく、耐食材のエロージョン,コロージョン
減量に及ぼす蒸気湿り度の影響を示す曲線図。FIG. 6 is a curve diagram showing the effect of steam wetness on the erosion and corrosion loss of a corrosion-resistant material.
【図7】同じく、耐食材のエロージョン,コロージョン
減量に及ぼす蒸気湿度の影響を示す曲線図。FIG. 7 is a curve diagram showing the effect of steam humidity on the erosion and corrosion loss of a corrosion-resistant material.
1…蒸気発生器、2…主蒸気管、3…高圧タービン、4
…湿分分離器、5…再熱器、6…低圧タービン、7…主
復水器、8…復水ポンプ、9…復水中空糸膜フィルタ
(HFF)、10…低圧給水加熱器、11…給水ポンプ、12
…高圧給水加熱器、13…給水配管、14…抽気管、15…湿
分分離器ドレン管、16…再熱器ドレン管、17…高圧ヒー
タドレン管、18…高圧ヒータドレンポンプ、19…抽気
管、20…低圧ヒータドレンバイパス管(LPPD)、21
…低圧ヒータドレンポンプ、22…酸素ガスまたは空気供
給装置、23…主蒸気用加圧ポンプ、24…給水系、25…水
素ガス供給装置、26…水素ガス加圧ポンプ、27…伝熱
管、28…腐食電位計、29…貴金属注入装置、30…排ガス
系、31…排ガス再結合器、32…復水脱塩装置、33…復水
脱塩装置バイパス管、34…HFF上流戻り配管、35…復
水脱塩装置上流戻り配管、36…復水脱塩装置下流戻り配
管、37…HFF上流戻り弁,38…復水脱塩装置上流戻り
弁、39…復水脱塩装置下流戻り弁。DESCRIPTION OF SYMBOLS 1 ... Steam generator, 2 ... Main steam pipe, 3 ... High pressure turbine, 4
... Moisture separator, 5 ... Reheater, 6 ... Low pressure turbine, 7 ... Main condenser, 8 ... Condenser pump, 9 ... Condensed hollow fiber membrane filter (HFF), 10 ... Low pressure feed water heater, 11 ... water pump, 12
… High pressure feed water heater, 13… feed water pipe, 14… bleed pipe, 15… moisture separator drain pipe, 16… reheater drain pipe, 17… high pressure heater drain pipe, 18… high pressure heater drain pump, 19… bleed pipe , 20… Low pressure heater drain bypass pipe (LPPD), 21
... Low pressure heater drain pump, 22 ... Oxygen gas or air supply device, 23 ... Main steam pressurization pump, 24 ... Water supply system, 25 ... Hydrogen gas supply device, 26 ... Hydrogen gas pressurization pump, 27 ... Heat transfer tube, 28 ... Corrosion potentiometer, 29 ... Precious metal injection device, 30 ... Exhaust gas system, 31 ... Exhaust gas recombiner, 32 ... Condensate desalination device, 33 ... Condensate desalination device bypass pipe, 34 ... HFF upstream return pipe, 35 ... Condensate desalination unit upstream return pipe, 36 ... condensate desalination unit downstream return pipe, 37 ... HFF upstream return valve, 38 ... condensate desalination unit upstream return valve, 39 ... condensate desalination unit downstream return valve.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI G21D 1/00 S ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FIG21D 1/00 S
Claims (8)
気を主蒸気管を通してタービン系へ導き、このタービン
系のタービンを回転させて発電機を駆動して発電し、前
記タービン系で仕事を終えた蒸気を復水系の復水器で凝
縮して復水し、この復水を復水浄化系で浄化し、給水系
の給水加熱器で加熱して給水とし、この給水を前記蒸気
発生器またはボイラに戻す発電用タービン設備におい
て、前記給水を中性純水で溶存酸素濃度を7ppb 以上に
調整し、前記蒸気発生器またはボイラから前記給水系ま
での機器,配管の一部に耐食材を組み込んでなることを
特徴とする発電用タービン設備。1. A steam generated from a steam generator or a boiler is guided to a turbine system through a main steam pipe, and a turbine of the turbine system is rotated to drive a generator to generate electric power, thereby completing work in the turbine system. The steam is condensed and condensed by a condenser of a condensing system, the condensed water is purified by a condensate purifying system, and heated by a feed water heater of a water supply system to supply water, and the supplied water is the steam generator or the boiler. In the turbine facility for power generation, the feed water is adjusted to a concentration of 7 ppb or more with neutral pure water, and corrosion-resistant materials are incorporated in some of the equipment and piping from the steam generator or boiler to the feed water system. Turbine equipment for power generation characterized by the following.
あることを特徴とする請求項1記載の発電用タービン設
備。2. The turbine facility for power generation according to claim 1, wherein the iron concentration of the water supply in the water supply system is 1 ppb or less.
水加熱器の上流側配管に酸素ガス供給配管を接続してな
ることを特徴とする請求項1記載の発電用タービン設
備。3. The turbine equipment for power generation according to claim 1, wherein an oxygen gas supply pipe is connected to an upstream pipe of the main steam pipe and a low-pressure feedwater heater of the feedwater system.
ステンレス鋼からなることを特徴とする請求項1記載の
発電用タービン設備。4. The turbine facility for power generation according to claim 1, wherein said corrosion-resistant material is made of weather-resistant steel, low-alloy steel or stainless steel.
水脱塩装置の少なくとも一つを有し、前記復水フィルタ
は中空糸膜フィルタ,非プリコート型フィルタまたは粉
末イオン交換樹脂フィルタの何れか一つからなることを
特徴とする請求項1記載の発電用タービン設備。5. The condensate purification system has at least one of a condensate filter and a condensate desalination device, and the condensate filter is any one of a hollow fiber membrane filter, a non-precoated filter and a powder ion exchange resin filter. The turbine equipment for power generation according to claim 1, wherein the turbine equipment comprises one of the following.
前記給水系の低圧給水加熱器の低圧ヒータドレン側とを
低圧ヒータドレン管,低圧ヒータドレンポンプおよび中
空糸膜フィルタ上流戻り配管で接続し、この中空糸膜フ
ィルタ上流戻り配管と前記低圧給水加熱器の下流側配管
に復水脱塩装置の上流戻り配管および下流戻り配管を接
続してなることを特徴とする請求項1記載の発電用ター
ビン設備。6. A discharge side pipe of the condensate condensate pump and a low pressure heater drain side of the low pressure feed water heater of the water supply system are connected by a low pressure heater drain pipe, a low pressure heater drain pump, and an upstream return pipe of a hollow fiber membrane filter. 2. The power generation system according to claim 1, wherein an upstream return pipe and a downstream return pipe of a condensate desalination apparatus are connected to the upstream return pipe of the hollow fiber membrane filter and the downstream pipe of the low-pressure feedwater heater. Turbine equipment.
入装置を接続してなることを特徴とする請求項1記載の
発電用タービン設備。7. The turbine plant for power generation according to claim 1, wherein a noble metal injection device is connected to the steam generator or the boiler.
水素ガス供給装置を接続してなり、前記蒸気発生器また
はボイラの二次側の腐食電位を−200mV 以下の量に維持
してなることを特徴とする請求項1記載の発電用タービ
ン設備。8. A hydrogen gas supply device is connected to a downstream water supply system pipe of the condensate desalination device to maintain a corrosion potential on the secondary side of the steam generator or the boiler at an amount of -200 mV or less. The turbine equipment for power generation according to claim 1, wherein the turbine equipment comprises:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10720498A JP3667525B2 (en) | 1998-04-17 | 1998-04-17 | Steam generator-attached nuclear power generation turbine facility |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10720498A JP3667525B2 (en) | 1998-04-17 | 1998-04-17 | Steam generator-attached nuclear power generation turbine facility |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11304992A true JPH11304992A (en) | 1999-11-05 |
JP3667525B2 JP3667525B2 (en) | 2005-07-06 |
Family
ID=14453127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10720498A Expired - Fee Related JP3667525B2 (en) | 1998-04-17 | 1998-04-17 | Steam generator-attached nuclear power generation turbine facility |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3667525B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001318188A (en) * | 2000-05-10 | 2001-11-16 | Japan Organo Co Ltd | Condensate purification system and its operation method |
JP2004076651A (en) * | 2002-08-19 | 2004-03-11 | Mitsubishi Heavy Ind Ltd | Steam turbine plant |
JP2005283181A (en) * | 2004-03-29 | 2005-10-13 | Hitachi Ltd | Operation method of residual heat removal system |
JP2005291815A (en) * | 2004-03-31 | 2005-10-20 | Hitachi Ltd | Methods for preventing corrosion and thinning of carbon steel |
JP2008150684A (en) * | 2006-12-19 | 2008-07-03 | Kurita Water Ind Ltd | Anticorrosive for reducing erosion and corrosion and method for reducing the same |
WO2010104062A1 (en) | 2009-03-10 | 2010-09-16 | 株式会社東芝 | Method and system for controlling water quality in power generation plant |
WO2012071923A1 (en) * | 2010-11-29 | 2012-06-07 | 西安热工研究院有限公司 | Method for processing water and steam system oxygenation in thermal power plant |
CN103868048A (en) * | 2012-12-17 | 2014-06-18 | 核动力运行研究所 | Primary side drying system of steam generator |
WO2014099436A1 (en) * | 2012-12-21 | 2014-06-26 | Ge-Hitachi Nuclear Energy Americas Llc | Startup / shutdown hydrogen injection system for boiling water reactors and method thereof |
JP2019502133A (en) * | 2015-11-30 | 2019-01-24 | フラマトム ゲゼルシャフト ミット ベシュレンクテル ハフツング | Nuclear power plant and method of operating nuclear power plant |
-
1998
- 1998-04-17 JP JP10720498A patent/JP3667525B2/en not_active Expired - Fee Related
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001318188A (en) * | 2000-05-10 | 2001-11-16 | Japan Organo Co Ltd | Condensate purification system and its operation method |
JP2004076651A (en) * | 2002-08-19 | 2004-03-11 | Mitsubishi Heavy Ind Ltd | Steam turbine plant |
JP2005283181A (en) * | 2004-03-29 | 2005-10-13 | Hitachi Ltd | Operation method of residual heat removal system |
JP2005291815A (en) * | 2004-03-31 | 2005-10-20 | Hitachi Ltd | Methods for preventing corrosion and thinning of carbon steel |
JP2008150684A (en) * | 2006-12-19 | 2008-07-03 | Kurita Water Ind Ltd | Anticorrosive for reducing erosion and corrosion and method for reducing the same |
JP5651580B2 (en) * | 2009-03-10 | 2015-01-14 | 株式会社東芝 | Water quality management method and system for power plant |
WO2010104062A1 (en) | 2009-03-10 | 2010-09-16 | 株式会社東芝 | Method and system for controlling water quality in power generation plant |
AU2010222160B2 (en) * | 2009-03-10 | 2013-01-31 | Kabushiki Kaisha Toshiba | Method and system for controlling water quality in power generation plant |
US9758880B2 (en) | 2009-03-10 | 2017-09-12 | Kabushiki Kaisha Toshiba | Method and system for controlling water chemistry in power generation plant |
WO2012071923A1 (en) * | 2010-11-29 | 2012-06-07 | 西安热工研究院有限公司 | Method for processing water and steam system oxygenation in thermal power plant |
CN103868048A (en) * | 2012-12-17 | 2014-06-18 | 核动力运行研究所 | Primary side drying system of steam generator |
CN103868048B (en) * | 2012-12-17 | 2015-09-30 | 核动力运行研究所 | Primary side of steam generator drying system |
ES2546928R1 (en) * | 2012-12-21 | 2016-03-16 | Ge-Hitachi Nuclear Energy Americas Llc | Hydrogen injection system start / stop for boiling water reactors (BWRs), and procedure for it |
WO2014099436A1 (en) * | 2012-12-21 | 2014-06-26 | Ge-Hitachi Nuclear Energy Americas Llc | Startup / shutdown hydrogen injection system for boiling water reactors and method thereof |
US10229761B2 (en) | 2012-12-21 | 2019-03-12 | Ge-Hitachi Nuclear Energy Americas Llc | Startup/shutdown hydrogen injection system for boiling water reactors (BWRS), and method thereof |
JP2020073940A (en) * | 2012-12-21 | 2020-05-14 | ジーイー−ヒタチ・ニュークリア・エナジー・アメリカズ・エルエルシーGe−Hitachi Nuclear Energy Americas, Llc | Startup/shutdown hydrogen injection system for boiling water reactors, and method thereof |
US10964436B2 (en) | 2012-12-21 | 2021-03-30 | Ge-Hitachi Nuclear Energy Americas Llc | System for hydrogen injection for boiling water reactors (BWRs) during startup / shutdown |
JP2019502133A (en) * | 2015-11-30 | 2019-01-24 | フラマトム ゲゼルシャフト ミット ベシュレンクテル ハフツング | Nuclear power plant and method of operating nuclear power plant |
Also Published As
Publication number | Publication date |
---|---|
JP3667525B2 (en) | 2005-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2010222160B2 (en) | Method and system for controlling water quality in power generation plant | |
JP2808970B2 (en) | Nuclear power plant, its water quality control method and its operation method | |
JP3667525B2 (en) | Steam generator-attached nuclear power generation turbine facility | |
JPH10339793A (en) | Water quality control system and water quality control method | |
TW540069B (en) | Method for controlling water quality in nuclear reactor and nuclear power generation equipment | |
JP3149738B2 (en) | Boiling water nuclear power plant and operating method thereof | |
JPH11304993A (en) | Turbine equipment for power generation | |
JP7132162B2 (en) | Corrosion suppression method for carbon steel piping | |
JP2543905B2 (en) | Nuclear power plant turbine system | |
JPS60201296A (en) | Reducer for radiation dose | |
JPH0631815B2 (en) | Nuclear power plant water supply system | |
JPS6398597A (en) | Condensate system | |
JPH0666000B2 (en) | Condensate purification system control method for boiling water nuclear power plant | |
JPS63113204A (en) | Turbine system of nuclear power plant | |
CN118882065A (en) | A nuclear power plant secondary circuit oxygenation system and method | |
JPS6333680B2 (en) | ||
JP2519306B2 (en) | Drain recovery system purification device | |
JPS63150504A (en) | water treatment equipment | |
JP4560114B2 (en) | Nuclear power plant | |
JPH0221312B2 (en) | ||
JPS61104298A (en) | Radioactivity accumulation reducer for nuclear reactor primary cooling system | |
JPS61142306A (en) | Feed water system of steam turbine plant | |
JPH0468525B2 (en) | ||
JP2004233228A (en) | Boiling water nuclear power plant and its water quality management method | |
JPS60198494A (en) | Auxiliary facility for generating plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041104 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041116 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050117 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050405 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050406 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080415 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090415 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100415 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100415 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110415 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130415 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140415 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |