JPH11304834A - Physical value detecting sensor - Google Patents
Physical value detecting sensorInfo
- Publication number
- JPH11304834A JPH11304834A JP10128254A JP12825498A JPH11304834A JP H11304834 A JPH11304834 A JP H11304834A JP 10128254 A JP10128254 A JP 10128254A JP 12825498 A JP12825498 A JP 12825498A JP H11304834 A JPH11304834 A JP H11304834A
- Authority
- JP
- Japan
- Prior art keywords
- physical quantity
- detection sensor
- support member
- quantity detection
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 claims abstract description 112
- 230000001133 acceleration Effects 0.000 claims abstract description 40
- 238000006073 displacement reaction Methods 0.000 claims description 23
- 230000005484 gravity Effects 0.000 claims description 3
- 239000000758 substrate Substances 0.000 abstract description 16
- 238000010586 diagram Methods 0.000 description 16
- 230000008859 change Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000000034 method Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000005459 micromachining Methods 0.000 description 2
- 230000005489 elastic deformation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Landscapes
- Force Measurement Appropriate To Specific Purposes (AREA)
- Gyroscopes (AREA)
- Micromachines (AREA)
Abstract
Description
【0001】[0001]
【発明が属する技術分野】本発明は、互いに直交するX
軸、Y軸およびZ軸のそれぞれの軸回りの角速度を検出
する物理量検出センサに関するものである。BACKGROUND OF THE INVENTION The present invention is directed to X
The present invention relates to a physical quantity detection sensor that detects angular velocities around respective axes of a Y axis, a Y axis, and a Z axis.
【0002】[0002]
【従来の技術】加速度センサ、角速度センサ等、慣性を
検出するセンサは、例えば、自動車のエアバック、走行
制御装置、バーチャルリアリティ関連の3D入力装置、
各種製造機器の制御装置等に用いられている。2. Description of the Related Art Sensors for detecting inertia, such as an acceleration sensor and an angular velocity sensor, include, for example, an airbag of a car, a traveling control device, a 3D input device relating to virtual reality,
It is used for control devices of various manufacturing equipment.
【0003】近年、各種機器の小型化が進む中で、それ
に搭載されるセンサに対しても小型化の要求が強まって
いる。特に人が手に持つ機器、あるいは身につける機器
に用いるセンサについてはその要求が大きい。In recent years, as various devices have been miniaturized, demands for miniaturization of sensors mounted thereon have increased. In particular, there is a great demand for a sensor used for a device held by a person or a device worn by a person.
【0004】また、自動車の走行制御装置では、従来、
1軸方向のみの加速度を測定していたが、制御が高度化
するに伴い多軸方向の加速度、さらには角速度の測定も
求められるようになってきている。On the other hand, in a travel control device for an automobile,
Although acceleration in only one axis direction has been measured, measurement of acceleration in multiple axes directions, and further, measurement of angular velocity have been required as control becomes more sophisticated.
【0005】また、3D入力装置は、当初より多軸方向
の加速度あるいは角速度の検出を必要としている。[0005] Also, the 3D input device has required detection of acceleration or angular velocity in multiple axes directions from the beginning.
【0006】以上のように、この種のセンサには、小型
で多軸方向の加速度、角速度を検出できることが求めら
れている。As described above, this type of sensor is required to be compact and capable of detecting acceleration and angular velocity in multiple axes.
【0007】従来の加速度センサや角速度センサは、3
軸(互いに直交するX軸、Y軸およびZ軸)のうちの1
の軸に対する加速度または1つの軸回りの角速度を検出
するものが大部分であった。特に、1つのセンサで加速
度と角速度とを検出できるものは存在しなかった。[0007] Conventional acceleration sensors and angular velocity sensors are 3
One of the axes (X axis, Y axis and Z axis orthogonal to each other)
Most of them detect an acceleration with respect to an axis or an angular velocity around one axis. In particular, there was no sensor capable of detecting acceleration and angular velocity with one sensor.
【0008】そのため、複数の軸方向の加速度および複
数の軸回りの角速度を検出するためには、それに応じた
数のセンサとを必要とした。その結果、構造の複雑化、
装置の大型化を招き、また、部品点数の増加による信頼
性の低下等の問題が生じていた。Therefore, in order to detect accelerations in a plurality of axes and angular velocities around a plurality of axes, a corresponding number of sensors are required. As a result, the complexity of the structure,
There have been problems such as an increase in the size of the apparatus and a decrease in reliability due to an increase in the number of parts.
【0009】[0009]
【発明が解決しようとする課題】本発明の目的は、簡易
な構成で、3軸方向の加速度および3軸回りの角速度の
うちの少なくとも2つを検出することができる物理量検
出センサを提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a physical quantity detection sensor capable of detecting at least two of acceleration in three axes and angular velocity around three axes with a simple configuration. It is in.
【0010】[0010]
【課題を解決するための手段】このような目的は、下記
(1)〜(9)の本発明により達成される。This and other objects are achieved by the present invention which is defined below as (1) to (9).
【0011】(1) 加速度および/または角速度を検
出する物理量検出センサであって、質量部と、該質量部
を三次元方向に変位可能に支持する支持部材とを備えて
いることを特徴とする物理量検出センサ。(1) A physical quantity detection sensor for detecting acceleration and / or angular velocity, comprising: a mass portion; and a support member for supporting the mass portion so as to be displaceable in a three-dimensional direction. Physical quantity detection sensor.
【0012】(2) 互いに直交するX軸、Y軸および
Z軸の各軸方向の加速度および各軸回りの角速度の計6
つの物理量のうちの少なくとも2つを検出する物理量検
出センサであって、質量部と、該質量部を三次元方向に
変位可能に支持する支持部材とを備えていることを特徴
とする物理量検出センサ。(2) A total of accelerations 6 in the X-axis, Y-axis, and Z-axis directions orthogonal to each other and angular velocities around the respective axes 6
A physical quantity detection sensor for detecting at least two of the three physical quantities, comprising: a mass part; and a support member that supports the mass part so as to be displaceable in a three-dimensional direction. .
【0013】(3) 前記支持部材は、その全部または
一部が弾性変形可能な弾性体で構成されている上記
(1)または(2)に記載の物理量検出センサ。(3) The physical quantity detection sensor according to (1) or (2), wherein the support member is entirely or partially formed of an elastic body capable of elastic deformation.
【0014】(4) 前記支持部材は、前記質量部と固
定部とを結ぶ最短距離を迂回するような形状をなしてい
る上記(1)ないし(3)のいずれかに記載の物理量検
出センサ。(4) The physical quantity detection sensor according to any one of (1) to (3), wherein the support member has a shape that bypasses a shortest distance connecting the mass portion and the fixed portion.
【0015】(5) 前記支持部材は、L字状に屈曲し
た棒状をなすものまたはこのような棒状部分を有するも
のである上記(1)ないし(4)のいずれかに記載の物
理量検出センサ。(5) The physical quantity detection sensor according to any one of the above (1) to (4), wherein the support member has a rod shape bent in an L shape or has such a rod portion.
【0016】(6) 前記支持部材は、リング状をなす
ものまたはこのようなリング状部分を有するものである
上記(1)ないし(5)のいずれかに記載の物理量検出
センサ。(6) The physical quantity detection sensor according to any one of (1) to (5), wherein the support member has a ring shape or has such a ring portion.
【0017】(7) 前記支持部材は、網目構造をなす
ものである上記(1)ないし(6)のいずれかに記載の
物理量検出センサ。(7) The physical quantity detection sensor according to any one of (1) to (6), wherein the support member has a mesh structure.
【0018】(8) 前記支持部材は、前記質量部の異
なる2または3軸方向の変位をそれぞれ担う部位を有し
ている上記(1)ないし(7)のいずれかに記載の物理
量検出センサ。(8) The physical quantity detection sensor according to any one of (1) to (7), wherein the support member has a portion that performs displacement of the mass portion in two or three different axes.
【0019】(9) 前記支持部材は、前記質量部の重
心に対し、点対称または線対称に配置されている上記
(1)ないし(8)のいずれかに記載の物理量検出セン
サ。(9) The physical quantity detection sensor according to any one of (1) to (8), wherein the support member is arranged point-symmetrically or line-symmetrically with respect to the center of gravity of the mass part.
【0020】[0020]
【発明の実施の形態】以下、本発明の物理量検出センサ
を添付図面に示す実施形態に基づいて詳細に説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a physical quantity detection sensor according to the present invention will be described in detail based on an embodiment shown in the accompanying drawings.
【0021】図1および図2は、それぞれ、本発明の物
理量検出センサの第1実施形態を示す平面図および側面
図である。なお、図1中では、基板2およびケース5の
記載は省略されている。また、基板2の表面上の直交す
る2軸をそれぞれX軸およびY軸、基板2の厚さ方向を
Z軸(これら3軸は互いに直交する)として説明する。FIGS. 1 and 2 are a plan view and a side view, respectively, showing a first embodiment of a physical quantity detection sensor according to the present invention. In FIG. 1, the illustration of the substrate 2 and the case 5 is omitted. Also, two orthogonal axes on the surface of the substrate 2 will be described as an X axis and a Y axis, respectively, and the thickness direction of the substrate 2 will be described as a Z axis (the three axes are orthogonal to each other).
【0022】図1および図2に示すように、本発明の物
理量検出センサ1Aは、基板(基体)2と、基板2上に
設置された素子3と、素子3を覆うように設置されたケ
ース5とを有している。As shown in FIGS. 1 and 2, a physical quantity detection sensor 1A of the present invention comprises a substrate (base) 2, an element 3 mounted on the substrate 2, and a case installed so as to cover the element 3. 5 is provided.
【0023】素子3は、平面視で四角形をなす質量部
(振動子)31と、その4つの角部に設けられた支持部
材(脚部)32とを備えている。この素子3は、例えば
シリコンで構成されている。The element 3 includes a mass part (vibrator) 31 having a quadrangular shape in a plan view, and support members (legs) 32 provided at the four corners. The element 3 is made of, for example, silicon.
【0024】各支持部材32は、L字状に屈曲した棒状
をなし、その末端部は、それぞれ、基板2上に設けられ
た4つの固定部33に固定的に設置されている。すなわ
ち、各支持部材32は、質量部21と固定部33とを結
ぶ最短距離を迂回するような形状をなしている。そし
て、各支持部材32は、弾性変形可能であり、これによ
り、基板2に対し質量部31をX軸方向、Y軸方向およ
びZ軸方向の三次元方向にそれぞれ独立して変位するこ
とが可能なように支持している。Each support member 32 has a rod shape bent in an L-shape, and its ends are fixedly installed on four fixing portions 33 provided on the substrate 2. That is, each support member 32 is shaped so as to bypass the shortest distance connecting the mass part 21 and the fixing part 33. Each support member 32 is elastically deformable, so that the mass portion 31 can be independently displaced with respect to the substrate 2 in three-dimensional directions of the X-axis direction, the Y-axis direction, and the Z-axis direction. I like it.
【0025】この場合、質量部31および各支持部材3
2は、基板2の上面から所定距離離間(浮上)して設置
されており、また、ケース5の下面(内面)からも、同
様に所定距離離間している。これらの離間距離は、質量
部31がZ軸方向に最大量変位しても基板2の上面およ
びケース5の下面に接触しない程度とされる。In this case, the mass portion 31 and each support member 3
2 is installed at a predetermined distance (floating) from the upper surface of the substrate 2, and is also separated from the lower surface (inner surface) of the case 5 by a predetermined distance. These separation distances are set such that the upper surface of the substrate 2 and the lower surface of the case 5 do not contact even if the mass portion 31 is displaced by the maximum amount in the Z axis direction.
【0026】このような支持部材32は、質量部31の
重心(中心)に対し、点対称および線対称に配置されて
いる。これにより、質量部31を均一にかつ安定的に支
持することができる。The support members 32 are arranged point-symmetrically and line-symmetrically with respect to the center of gravity (center) of the mass portion 31. Thereby, the mass part 31 can be uniformly and stably supported.
【0027】質量部31のX軸方向の両側部には、質量
部31をX方向に振動させる櫛形の駆動電極41と、質
量部31のY軸方向の変位を静電容量の変化として検出
する櫛形のY軸方向検出電極(Z軸回りの角速度センサ
およびY軸方向加速度センサ)42とが設置されてい
る。On both sides of the mass portion 31 in the X-axis direction, a comb-shaped drive electrode 41 for vibrating the mass portion 31 in the X direction, and displacement of the mass portion 31 in the Y-axis direction is detected as a change in capacitance. A comb-shaped Y-axis direction detection electrode (angular velocity sensor around the Z-axis and a Y-axis direction acceleration sensor) 42 is provided.
【0028】各駆動電極41には、質量部31の縁部に
形成された櫛形電極34が非接触で対向している。各Y
軸方向検出電極42には、質量部31の縁部に形成され
た櫛形電極35が非接触で対向している。A comb-shaped electrode 34 formed at the edge of the mass portion 31 is opposed to each drive electrode 41 in a non-contact manner. Each Y
The comb-shaped electrode 35 formed at the edge of the mass portion 31 faces the axial direction detection electrode 42 in a non-contact manner.
【0029】これらの駆動電極41およびY軸方向検出
電極42は、基板2に対し固定的に設置されている。The drive electrode 41 and the Y-axis direction detection electrode 42 are fixedly mounted on the substrate 2.
【0030】また、質量部31の上方および下方には、
質量部31のZ軸方向の変位を静電容量の変化として検
出する一対の平面電極よりなるZ軸方向検出電極(Y軸
回りの角速度センサおよびZ軸方向加速度センサ)43
が設置されている。該Z軸方向検出電極43の一対の平
面電極は、それぞれ、基板2の上面およびケース5の下
面に設置、固定されている。Further, above and below the mass part 31,
A Z-axis direction detection electrode (angular velocity sensor around the Y-axis and a Z-axis direction acceleration sensor) 43 composed of a pair of planar electrodes for detecting displacement of the mass portion 31 in the Z-axis direction as a change in capacitance.
Is installed. The pair of plane electrodes of the Z-axis direction detection electrode 43 are installed and fixed on the upper surface of the substrate 2 and the lower surface of the case 5, respectively.
【0031】以上のような物理量検出センサ1Aにおけ
る角速度の検出について説明する。The detection of the angular velocity by the physical quantity detection sensor 1A as described above will be described.
【0032】X軸方向に対向する駆動電極41、41に
それぞれVt+Vd sin(ωt)、Vt−Vd sin(ω
t)の電圧(Vt:直流バイアス電圧、Vd sin(ω
t):駆動用交流電圧)を印加すると、それらに対応す
る櫛形電極34に静電気力が生じる。質量部31は、X
軸方向に加振され、振動(共振)する。この場合、コリ
オリ力の検出感度を高めるために、X軸方向の振動の周
波数は、同方向における質量部31の共振周波数にほぼ
等しい周波数とされる。Vt + Vd sin (ωt) and Vt−Vd sin (ωt) are respectively applied to the drive electrodes 41 and 41 facing each other in the X-axis direction.
t) (Vt: DC bias voltage, Vd sin (ω
t): When a driving AC voltage is applied, an electrostatic force is generated on the corresponding comb-shaped electrode 34. The mass part 31 is X
It is vibrated (resonates) in the axial direction. In this case, in order to increase the detection sensitivity of the Coriolis force, the frequency of the vibration in the X-axis direction is set to a frequency substantially equal to the resonance frequency of the mass unit 31 in the same direction.
【0033】この状態で、質量部31にZ軸回りの角速
度(ΩZ )が作用すると、振動しているX軸と垂直のY
軸方向にコリオリ力が発生し、質量部31はY軸方向に
振動することとなる。In this state, when an angular velocity (Ω Z ) around the Z-axis acts on the mass portion 31, the Y-axis perpendicular to the vibrating X-axis is applied.
A Coriolis force is generated in the axial direction, and the mass section 31 vibrates in the Y-axis direction.
【0034】この振動は、Y軸方向検出電極42により
静電容量の変化として検出される。すなわち、質量部3
1の櫛形電極35とY軸方向検出電極42との間隔が変
化することにより、静電容量が変化する。This vibration is detected by the Y-axis direction detection electrode 42 as a change in capacitance. That is, the mass part 3
When the distance between the one comb-shaped electrode 35 and the Y-axis direction detection electrode 42 changes, the capacitance changes.
【0035】コリオリ力により生じたY軸方向の振動
は、駆動電極41によるX軸方向の振動に対し、同一の
周波数でかつ位相が90°進んだものとなる。そして、
Z軸回りの角速度の大きさは、Y軸方向の振動の振幅に
対応する。これにより、Z軸回りの角速度(ΩZ )を検
出することができる。The vibration in the Y-axis direction caused by the Coriolis force has the same frequency and a phase advance of 90 ° with respect to the vibration in the X-axis direction by the drive electrode 41. And
The magnitude of the angular velocity about the Z axis corresponds to the amplitude of the vibration in the Y axis direction. Thus, the angular velocity (Ω Z ) around the Z axis can be detected.
【0036】また、質量部31がX軸方向に振動してい
る状態で、質量部31にY軸回りの角速度(ΩY )が作
用すると、振動しているX軸と垂直のZ軸方向にコリオ
リ力が発生し、質量部31はZ軸方向に振動することと
なる。When an angular velocity (Ω Y ) about the Y axis acts on the mass section 31 in a state where the mass section 31 is vibrating in the X axis direction, the mass section 31 moves in the Z axis direction perpendicular to the vibrating X axis. A Coriolis force is generated, and the mass section 31 vibrates in the Z-axis direction.
【0037】この振動は、Z軸方向検出電極43により
静電容量の変化として検出される。すなわち、質量部3
1と両Z軸方向検出電極43との間隔がそれぞれ変化す
ることにより、静電容量が変化する。This vibration is detected by the Z-axis direction detection electrode 43 as a change in capacitance. That is, the mass part 3
When the distance between the first and second Z-axis direction detection electrodes 43 changes, the capacitance changes.
【0038】コリオリ力により生じたZ軸方向の振動
は、駆動電極41によるX軸方向の振動に対し、同一の
周波数でかつ位相が90°進んだものとなる。そして、
Y軸回りの角速度の大きさは、Z軸方向の振動の振幅に
対応する。これにより、Y軸回りの角速度(ΩY )を検
出することができる。The vibration in the Z-axis direction caused by the Coriolis force has the same frequency and a phase advance of 90 ° with respect to the vibration in the X-axis direction by the drive electrode 41. And
The magnitude of the angular velocity about the Y axis corresponds to the amplitude of the vibration in the Z axis direction. Thereby, the angular velocity (Ω Y ) around the Y axis can be detected.
【0039】次に、物理量検出センサ1Aにおける加速
度の検出について説明する。質量部31の質量をmと
し、該質量部31にY軸方向の加速度αY が加わると、
質量部31には、慣性力fY =−mαY yが働く。ここ
で、質量部31のY方向の変位Δyは、加速度αY に比
例するので、Y軸方向検出電極42によりこの変位Δy
を静電容量の変化として検出することにより、加速度α
Y が求まる。従って、Y軸方向検出電極42は、前述し
たZ軸回りの角速度ΩZ を検出するとともに、Y軸方向
の加速度αY を検出する加速度センサとしても機能す
る。Next, detection of acceleration by the physical quantity detection sensor 1A will be described. When the mass of the mass part 31 is m and the acceleration α Y in the Y-axis direction is applied to the mass part 31,
The inertia force f Y = −mα Y y acts on the mass portion 31. Here, since the displacement Δy of the mass portion 31 in the Y direction is proportional to the acceleration α Y , the displacement Δy
Is detected as a change in capacitance, the acceleration α
Y is found. Therefore, Y-axis direction detection electrode 42, and detects an angular velocity Omega Z around the Z axis as described above, also functions as an acceleration sensor for detecting acceleration alpha Y in the Y-axis direction.
【0040】同様に、質量部31にZ軸方向の加速度α
Z が加わった場合、質量部31のZ方向の変位Δzは、
加速度αZ に比例するので、Z軸方向検出電極43によ
りこの変位Δzを静電容量の変化として検出することに
より、加速度αZ が求まる。従って、Z軸方向検出電極
43は、前述したY軸回りの角速度ΩY を検出するとと
もに、Z軸方向の加速度αZ を検出する加速度センサと
して機能する。Similarly, the acceleration α in the Z-axis direction is
When Z is added, the displacement Δz of the mass portion 31 in the Z direction is
It is proportional to the acceleration alpha Z, by detecting the displacement Δz as a change in capacitance by the Z-axis direction detection electrode 43, the acceleration alpha Z is obtained. Therefore, Z-axis direction detection electrode 43 detects the angular velocity Omega Y around the Y axis as described above, functions as an acceleration sensor for detecting acceleration alpha Z in the Z-axis direction.
【0041】なお、Y軸方向検出電極42から出力され
る信号は、前述したように加速度αY と角速度ΩZ によ
る信号が加算されたものとなり、同様に、Z軸方向検出
電極43から出力される信号は、前述したように加速度
αZ と角速度ΩY による信号が加算されたものとなる
が、これらは、例えば次のような信号処理を施すことに
より、容易に分離(抽出または除去)することができ
る。The signal output from the Y-axis direction detection electrode 42 is the sum of the signals based on the acceleration α Y and the angular velocity Ω Z as described above. that signal is the one signal by the acceleration alpha Z and angular velocity Omega Y is added as described above, these are, for example, by performing the following signal processing, easily separated (extracting or removing) be able to.
【0042】すなわち、X軸方向の加振周波数(=角速
度ΩZ により生じるコリオリ力によるY軸方向の振動の
周波数、=角速度ΩY により生じるコリオリ力によるZ
軸方向の振動の周波数)は、加速度αY 、αZ の周波数
に比べ十分に大きな値に設定されるため、例えばローパ
スフィルタ(LPF)の設置により、加速度成分のみを
容易に抽出することができる。That is, the excitation frequency in the X-axis direction (= frequency of vibration in the Y-axis direction due to the Coriolis force generated by the angular velocity Ω Z; = Z due to the Coriolis force generated by the angular velocity Ω Y
Since the frequency of the vibration in the axial direction is set to a value sufficiently larger than the frequencies of the accelerations α Y and α Z , only the acceleration component can be easily extracted by installing a low-pass filter (LPF), for example. .
【0043】また、同様の理由から、例えばハイパスフ
ィルタ(HPF)の設置により、加速度成分を除去した
後、残った成分をX軸方向の加振周波数で同期検波する
ことにより、角速度成分を容易に得ることができる。For the same reason, the angular velocity component is easily detected by removing the acceleration component by installing a high-pass filter (HPF) and synchronously detecting the remaining component at the excitation frequency in the X-axis direction. Obtainable.
【0044】以上述べたように、物理量検出センサ1A
では、素子3により、Y軸回りの角速度および加速度
と、Z軸回りの角速度および加速度の合計4種の物理量
を検出することができる。As described above, the physical quantity detection sensor 1A
Thus, the element 3 can detect a total of four kinds of physical quantities: the angular velocity and acceleration around the Y axis and the angular velocity and acceleration around the Z axis.
【0045】この場合、物理量検出センサ1Aでは、い
ずれの軸方向に関しても、コリオリ力同士や、加振した
振動とコリオリ力とが重畳することはなく、よって、各
物理量を高精度で検出することができる。In this case, the physical quantity detection sensor 1A does not superimpose the Coriolis forces on each other or the vibrations applied and the Coriolis force in any axial direction. Therefore, each physical quantity can be detected with high accuracy. Can be.
【0046】また、このような1つの素子3で複数の物
理量を検出することができるので、センサの構造が簡易
であり、部品点数が少なく、小型化に寄与する。Further, since a plurality of physical quantities can be detected by such one element 3, the structure of the sensor is simple, the number of parts is small, and it contributes to miniaturization.
【0047】なお、本発明の物理量検出センサは、3軸
方向の加速度および3軸回りの角速度のうちの少なくと
も2つ物理量を検出することができるものであるのが好
ましく、その組み合わせは、前述した第1実施形態のも
のに限定されない。この場合、素子の周囲に設置される
各軸方向の検出電極は、検出する物理量の種類に応じ
て、適宜配置される。例えば、物理量検出センサ1Aに
おいて、さらにX方向の加速度を検出し得るようにする
場合には、質量部31の図1中上下方向の両側部に、質
量部31のX軸方向の変位を静電容量の変化として検出
するY軸方向検出電極42と同様の櫛形のX軸方向検出
電極を設置すればよい。It is preferable that the physical quantity detection sensor according to the present invention can detect at least two physical quantities among acceleration in three axes and angular velocities around three axes. The present invention is not limited to the first embodiment. In this case, the detection electrodes in the respective axial directions provided around the element are appropriately arranged according to the type of the physical quantity to be detected. For example, when the physical quantity detection sensor 1A can further detect acceleration in the X direction, the displacement of the mass section 31 in the X-axis direction is placed on both sides of the mass section 31 in the vertical direction in FIG. A comb-shaped X-axis direction detection electrode similar to the Y-axis direction detection electrode 42 that detects a change in capacitance may be provided.
【0048】また、質量部31を加振する方法は、前記
第1実施形態で挙げた静電引力に基づくものの他、例え
ば、圧電効果、電磁力等を用いたものでもよい。The method of vibrating the mass portion 31 may be, for example, a method using a piezoelectric effect, an electromagnetic force or the like, in addition to the method based on the electrostatic attraction described in the first embodiment.
【0049】また、質量部31の各方向の変位の検出
は、前記第1実施形態で挙げた静電容量の変化に基づく
ものの他、例えば、ピエゾ抵抗効果、圧電効果等を用い
たものでもよい。The detection of the displacement of the mass portion 31 in each direction may be based on the change in capacitance described in the first embodiment, or may be based on the piezoresistive effect, the piezoelectric effect, or the like. .
【0050】図3は、本発明の物理量検出センサの第2
実施形態の構造および動作を示す図、図4は、本発明の
物理量検出センサの第3実施形態の構造および動作を示
す図、図5は、本発明の物理量検出センサの第4実施形
態の構造および動作を示す図、図6は、本発明の物理量
検出センサの第5実施形態の構造および動作を示す図、
図7は、本発明の物理量検出センサの第6実施形態の構
造および動作を示す図、図8は、本発明の物理量検出セ
ンサの第7実施形態の構造および動作を示す図、図9
は、本発明の物理量検出センサの第8実施形態の構造お
よび動作を示す図、図10は、本発明の物理量検出セン
サの第9実施形態の構造および動作を示す図、図11
は、本発明の物理量検出センサの第10実施形態の構造
および動作を示す図、図12は、本発明の物理量検出セ
ンサの第11実施形態の構造および動作を示す図、図1
3は、本発明の物理量検出センサの第12実施形態の構
造および動作を示す図、図14は、本発明の物理量検出
センサの第13実施形態の構造および動作を示す図であ
る。これらの各図中で、上段は質量部のX軸方向の変位
の状態、中段は質量部のY軸方向の変位の状態、下段は
質量部のZ軸方向変位の状態をそれぞれ点線で表わして
いる。なお、これらの各図中では、前記基板、ケース、
質量部に形成される櫛形電極、駆動電極および各検出電
極の記載は省略されている。FIG. 3 shows a second example of the physical quantity detection sensor according to the present invention.
FIG. 4 shows the structure and operation of the physical quantity detection sensor according to the third embodiment of the present invention. FIG. 5 shows the structure and operation of the physical quantity detection sensor according to the fourth embodiment of the present invention. FIG. 6 is a diagram showing the structure and operation of a physical quantity detection sensor according to a fifth embodiment of the present invention;
FIG. 7 is a diagram showing the structure and operation of a physical quantity detection sensor according to a sixth embodiment of the present invention. FIG. 8 is a diagram showing the structure and operation of a physical quantity detection sensor according to a seventh embodiment of the present invention.
Is a diagram showing the structure and operation of a physical quantity detection sensor according to an eighth embodiment of the present invention; FIG. 10 is a diagram showing the structure and operation of a ninth embodiment of the physical quantity detection sensor according to the present invention;
1 is a diagram showing the structure and operation of a physical quantity detection sensor according to a tenth embodiment of the present invention; FIG. 12 is a diagram showing the structure and operation of an eleventh embodiment of the physical quantity detection sensor of the present invention;
3 is a diagram showing the structure and operation of a physical quantity detection sensor according to a twelfth embodiment of the present invention, and FIG. 14 is a diagram showing the structure and operation of a physical quantity detection sensor according to a thirteenth embodiment of the present invention. In each of these figures, the upper part represents the state of displacement of the mass part in the X-axis direction, the middle part represents the state of displacement of the mass part in the Y-axis direction, and the lower part represents the state of displacement of the mass part in the Z-axis direction by dotted lines. I have. In each of these figures, the substrate, case,
The description of the comb-shaped electrode, the drive electrode, and each detection electrode formed on the mass part is omitted.
【0051】以下、これらの図に基づき、本発明の物理
量検出センサの第2〜13実施形態について、前記第1
実施形態との相違点を中心に説明する。なお、これらの
各実施形態では、いずれも、支持部材は、前記第1実施
形態と同様に、質量部と固定部とを結ぶ最短距離を迂回
するような形状をなしている。これにより、質量部の3
軸方向の変位を容易に可能とし、かつその応答性が良好
となる。Hereinafter, based on these drawings, the first to thirteenth embodiments of the physical quantity detection sensor according to the present invention will be described.
The description will focus on the differences from the embodiment. In each of these embodiments, the support member has a shape that bypasses the shortest distance connecting the mass part and the fixed part, as in the first embodiment. Thereby, 3 parts by mass
The displacement in the axial direction can be easily performed, and the response is improved.
【0052】図3に示す物理量検出センサ1Bは、素子
3bの質量部31bの4つの角部にある支持部材32b
が、それぞれ、一対のL字状をなす棒状部材を組み合わ
せて四角形としたものである。すなわち、固定部33b
と質量部31bの角部とを2つのL字状の梁(棒状部
材)で支持した構成となっている。The physical quantity detection sensor 1B shown in FIG. 3 includes a support member 32b at four corners of a mass portion 31b of the element 3b.
However, each is formed by combining a pair of L-shaped rod-shaped members to form a square. That is, the fixing portion 33b
And the corner of the mass portion 31b are supported by two L-shaped beams (bar-shaped members).
【0053】この構成によれば、支持部材32bの剛性
(バネ性)が高まり、質量部31bのZ軸回りの回転
(ねじれ)を有効に防止することができる。According to this configuration, the rigidity (springiness) of the support member 32b is increased, and the rotation (twist) of the mass portion 31b around the Z axis can be effectively prevented.
【0054】図4に示す物理量検出センサ1Cは、4つ
の固定部33cが、それぞれ、素子3cの質量部31c
の各辺に対向した位置にあり、該固定部33cと質量部
31cの4つの角部とをそれぞれ一対のL字状をなす棒
状の支持部材32cで連結した構造となっている。In the physical quantity detection sensor 1C shown in FIG. 4, the four fixing portions 33c are respectively connected to the mass portions 31c of the element 3c.
The fixing portion 33c and the four corner portions of the mass portion 31c are connected to each other by a pair of L-shaped rod-shaped support members 32c.
【0055】この構成によれば、質量部31cのZ軸回
りの回転(ねじれ)を有効に防止することができるとと
もに、質量部31cの4つの角部付近のスペースを例え
ば処理回路の搭載部等に有効利用することができる。According to this configuration, the rotation (twist) of the mass portion 31c around the Z axis can be effectively prevented, and the space near the four corners of the mass portion 31c can be reduced, for example, by the mounting portion of the processing circuit. Can be used effectively.
【0056】図5に示す物理量検出センサ1Dは、4つ
の固定部33dが、それぞれ、素子3dの質量部31d
の各辺に対向した位置にあり、該固定部33dと質量部
31dの4つの辺の中央部とを支持部材32dで連結し
た構造となっている。この場合、支持部材32dは、四
角形とその一辺(または対向する一対の辺のそれぞれ)
から延長された延長部321dとを一体化した形状であ
る。In the physical quantity detection sensor 1D shown in FIG. 5, the four fixed portions 33d are respectively connected to the mass portion 31d of the element 3d.
, And has a structure in which the fixing portion 33d and the center of the four sides of the mass portion 31d are connected by a support member 32d. In this case, the support member 32d has a rectangular shape and one side thereof (or each of a pair of opposing sides).
And an extended portion 321d extended from the shape.
【0057】この構成によれば、支持部材32dの実質
的長さが長くなり、狭い面積で質量部31dの3軸方向
の変位量を多くとること(拡大すること)ができる。ま
た、前記物理量検出センサ1Cと同様に、質量部31d
の4つの角部付近のスペースを例えば処理回路の搭載部
等に有効利用することができるという利点もある。According to this configuration, the substantial length of the support member 32d is increased, and the displacement of the mass portion 31d in the three axial directions can be increased (enlarged) in a small area. Further, similarly to the physical quantity detection sensor 1C, the mass section 31d
There is also an advantage that the space near the four corners can be effectively used for, for example, a mounting portion of a processing circuit.
【0058】図6に示す物理量検出センサ1Eは、4つ
の固定部33eが、それぞれ、素子3eの質量部31e
の各辺に対向した位置にあり、該固定部33eと質量部
31eの4つの辺とを網目状(ハニカム状)の支持部材
32eで連結した構造となっている。In the physical quantity detection sensor 1E shown in FIG. 6, the four fixing portions 33e are respectively connected to the mass portions 31e of the element 3e.
And has a structure in which the fixed portion 33e and the four sides of the mass portion 31e are connected by a mesh-shaped (honeycomb-shaped) support member 32e.
【0059】この構成によれば、質量部31eの変位に
際し、支持部材32eの変形は、その網目毎の小さな変
形を加算することとなるので、応力集中がなく、支持部
材32eの強度、耐久性の向上が図れる。従って、例え
ば瞬間的に大きな力が作用した場合でも、支持部材32
eの破損を防止することができる。According to this configuration, when the mass portion 31e is displaced, the deformation of the support member 32e adds a small deformation for each mesh, so that there is no stress concentration, and the strength and durability of the support member 32e. Can be improved. Therefore, for example, even when a large force acts instantaneously,
e can be prevented from being damaged.
【0060】なお、支持部材32eの網目の形状は、図
示のような格子状のものに限定されず、変形可能なもの
であれば、いかなるものでもよい。The shape of the mesh of the support member 32e is not limited to the lattice shape as shown in the figure, but may be any shape as long as it can be deformed.
【0061】図7に示す物理量検出センサ1Fは、素子
3fの質量部31fが円形をなし、その外周部にリング
状の固定部33fを有し、質量部31fの外周と固定部
33fとを網目状(ハニカム状)の支持部材32fで連
結した構造となっている。In the physical quantity detection sensor 1F shown in FIG. 7, the mass part 31f of the element 3f has a circular shape, and has a ring-shaped fixing part 33f on its outer periphery. The outer periphery of the mass part 31f and the fixing part 33f are meshed. It has a structure in which it is connected by a support member 32f having a honeycomb shape.
【0062】この構成によれば、網目構造としたことに
よる前記物理量検出センサ1Eと同様の効果を有すると
ともに、質量部31fが円形であり、またその全周を支
持しているため、支持のバランスがより優れている。According to this configuration, the mesh structure has the same effect as that of the physical quantity detection sensor 1E, and the mass portion 31f is circular and supports the entire circumference, so that the balance of support is maintained. Is better.
【0063】なお、質量部31fと固定部33fとを逆
に設置すること、すなわち、リング状の質量部の中心部
に固定部を設け、これらを同様の支持部材で支持する構
成とすることもできる。It should be noted that the mass part 31f and the fixing part 33f may be installed reversely, that is, a fixing part may be provided at the center of the ring-shaped mass part, and these may be supported by similar supporting members. it can.
【0064】また、支持部材32fの網目の形状は、図
示のような格子状のものに限定されず、変形可能なもの
であれば、いかなるものでもよい。The shape of the mesh of the support member 32f is not limited to the lattice shape shown in the figure, but may be any shape as long as it can be deformed.
【0065】図8に示す物理量検出センサ1Gは、素子
3gの質量部31gが円形をなし、その外周部に4つの
固定部33gを有し、質量部31gの外周と各固定部3
3gとを網目状(ハニカム状)の支持部材32gで連結
した構造となっている。In the physical quantity detection sensor 1G shown in FIG. 8, the mass part 31g of the element 3g has a circular shape, and has four fixing parts 33g on its outer periphery.
3g is connected by a mesh-like (honeycomb-like) support member 32g.
【0066】この構成によれば、前記物理量検出センサ
1Fと同様の効果を有するとともに、質量部31gの変
位に伴う支持部材32gの変形の際に、支持部材32g
がX軸方向およびY軸方向に逃げること(移動するこ
と)ができるので、質量部31gの変位量を拡大するこ
とができ、検出精度が高まる。According to this configuration, the same effect as that of the physical quantity detection sensor 1F is obtained, and when the supporting member 32g is deformed due to the displacement of the mass portion 31g, the supporting member 32g
Can escape (move) in the X-axis direction and the Y-axis direction, so that the displacement amount of the mass portion 31g can be increased, and the detection accuracy can be increased.
【0067】なお、支持部材32gの網目の形状は、図
示のような格子状のものに限定されず、変形可能なもの
であれば、いかなるものでもよい。The shape of the mesh of the support member 32g is not limited to the lattice shape as shown in the figure, but may be any shape as long as it can be deformed.
【0068】図9に示す物理量検出センサ1Hは、素子
3hの質量部31hが円形をなし、その外周部に4つの
固定部33hを有し、質量部31hの外周4箇所と各固
定部33hとをリング状(円環状または楕円環状)の支
持部材32hで連結した構造となっている。In the physical quantity detection sensor 1H shown in FIG. 9, the mass part 31h of the element 3h has a circular shape, and has four fixing parts 33h on its outer periphery. Are connected by a ring-shaped (annular or elliptical annular) support member 32h.
【0069】この構成によれば、支持部材32hに角部
がないので、該角部への応力集中が防止または緩和さ
れ、よって、支持部材32hの強度および耐久性を高め
ることができる。また、支持部材32hのバネ性も向上
することができる。According to this configuration, since the support member 32h has no corner, stress concentration on the corner is prevented or reduced, and the strength and durability of the support member 32h can be increased. Further, the spring property of the support member 32h can be improved.
【0070】図10に示す物理量検出センサ1Iは、素
子3iの質量部31iがリング状(円環状または楕円環
状)をなし、その中心部に固定部33iを有し、質量部
31iの内周4箇所と固定部33iとをリング状(円環
状または楕円環状)の支持部材32iで連結した構造と
なっている。In the physical quantity detection sensor 1I shown in FIG. 10, the mass part 31i of the element 3i has a ring shape (annular or elliptical ring), has a fixed part 33i at the center thereof, and has an inner periphery 4i of the mass part 31i. The location and the fixing portion 33i are connected by a ring-shaped (annular or elliptical annular) support member 32i.
【0071】この構成によれば、前記物理量検出センサ
1Hと同様の効果を有するとともに、質量部31iの周
辺に固定部33iが存在しないので、駆動電極、検出電
極等の設置の自由度が高いという利点がある。According to this configuration, the same effect as that of the physical quantity detection sensor 1H is obtained, and since the fixed portion 33i does not exist around the mass portion 31i, the degree of freedom of installation of the drive electrode, the detection electrode and the like is high. There are advantages.
【0072】図11に示す物理量検出センサ1Jは、素
子3jの質量部31jが円形をなし、その外周部に4つ
の固定部33jを有し、質量部31jの外周4箇所と各
固定部33jとを前記支持部材32dと同様の形状の支
持部材32jで連結した構造となっている。In the physical quantity detection sensor 1J shown in FIG. 11, the mass 3j of the element 3j has a circular shape, and has four fixing portions 33j on its outer periphery. Are connected by a support member 32j having the same shape as the support member 32d.
【0073】この構成によれば、質量部31jを円形と
したことによる前記物理量検出センサ1Fと同様の効果
を有するとともに、前記物理量検出センサ1Dと同様
に、狭い面積で質量部31jの3軸方向の変位量を拡大
することができる。According to this configuration, the mass portion 31j has the same effect as the physical quantity detection sensor 1F due to the circular shape, and similarly to the physical quantity detection sensor 1D, the three-axis direction of the mass portion 31j has a small area. Can be increased.
【0074】図12に示す物理量検出センサ1Kは、素
子3kの質量部31kが円形をなし、その外周部に4つ
の固定部33kを有し、質量部31kの外周4箇所と各
固定部33kとをT字状(L字状部分を含む)の支持部
材32kで連結した構造となっている。この場合、1つ
の支持部材32kは、隣接する2つの固定部33kのそ
れぞれに連結されている。In the physical quantity detection sensor 1K shown in FIG. 12, the mass portion 31k of the element 3k has a circular shape, and has four fixing portions 33k on its outer periphery. The outer periphery of the mass portion 31k and four fixing portions 33k Are connected by a T-shaped (including an L-shaped portion) support member 32k. In this case, one support member 32k is connected to each of two adjacent fixing portions 33k.
【0075】この構成によれば、質量部31kを円形と
したことによる前記物理量検出センサ1Fと同様の効果
を有するとともに、支持部材32kの実質的長さが長く
なり、狭い面積で質量部31kの3軸方向の変位量を拡
大することができる。また、支持部材32kのバネ性も
優れている。According to this configuration, the mass part 31k has the same effect as the physical quantity detection sensor 1F by making the mass part 31k circular, and the substantial length of the support member 32k becomes longer, so that the mass part 31k of the mass part 31k has a small area. The amount of displacement in the three axial directions can be increased. Further, the spring property of the support member 32k is also excellent.
【0076】図13に示す物理量検出センサ1Mは、素
子3mの質量部31mが四角形(円形等でもよい)をな
し、その外周部に4つの固定部33mを有し、各固定部
33mと質量部31mの対向する一対の辺のそれぞれと
をループ状(2つのL字状部分を連結した形状)の支持
部材32mで連結した構造となっている。In the physical quantity detection sensor 1M shown in FIG. 13, the mass part 31m of the element 3m has a quadrangular shape (or may be a circle or the like), and has four fixed parts 33m on its outer periphery. Each of a pair of opposing sides of 31m is connected by a loop-shaped (connecting two L-shaped portions) support member 32m.
【0077】この構成によれば、支持部材32mの実質
的長さが長くなり、狭い面積で質量部31mの3軸方向
の変位量を拡大することができる。According to this configuration, the substantial length of the support member 32m is increased, and the displacement of the mass portion 31m in the three axial directions can be increased with a small area.
【0078】図14に示す物理量検出センサ1Nは、素
子3nの質量部31nが四角形の枠状(円環状、楕円環
状等でもよい)をなし、その中心部に固定部33nを有
し、質量部31nの内周4箇所と固定部33nとを支持
部材32nで連結した構造となっている。In the physical quantity detection sensor 1N shown in FIG. 14, the mass part 31n of the element 3n has a rectangular frame shape (an annular or elliptical ring shape may be used), and has a fixed part 33n at the center thereof. A structure in which four inner peripheral portions of 31n and a fixing portion 33n are connected by a support member 32n.
【0079】支持部材32nは、Y軸方向に延びる第1
支持部材321nと、X軸方向に延びる第2支持部材3
22nと、これらを接続する中継部材323nとで構成
されている。そして、質量部31nがX軸方向に変位し
た際には、主に、第1支持部材321nが変形し、質量
部31nがY軸方向に変位した際には、主に第2支持部
材322nが変形する。また、質量部31nがZ軸方向
に変位した際には、第1支持部材321n、第2支持部
材322n共に変形する。The support member 32n is a first member extending in the Y-axis direction.
Support member 321n and second support member 3 extending in the X-axis direction
22n, and a relay member 323n that connects them. When the mass part 31n is displaced in the X-axis direction, the first support member 321n is mainly deformed, and when the mass part 31n is displaced in the Y-axis direction, the second support member 322n is mainly distorted. Deform. When the mass part 31n is displaced in the Z-axis direction, both the first support member 321n and the second support member 322n are deformed.
【0080】この構成によれば、質量部31nの周辺に
固定部33nが存在しないので、駆動電極、検出電極等
の設置の自由度が高いという利点があるとともに、質量
部31nのX軸方向の変位とY軸方向の変位とをそれぞ
れ別の部位(第1支持部材321nと第2支持部材32
2n)で担うので、それらの干渉をより有効に防止する
ことができ、検出精度の向上に寄与する。According to this configuration, since there is no fixing portion 33n around the mass portion 31n, there is an advantage that the degree of freedom of installation of the drive electrode, the detection electrode, and the like is high, and the mass portion 31n in the X-axis direction is provided. The displacement and the displacement in the Y-axis direction are respectively applied to different portions (the first support member 321n and the second support member 32
2n), it is possible to more effectively prevent such interference and contribute to improvement in detection accuracy.
【0081】なお、物理量検出センサ1Nの変形例とし
て、支持部材は、質量部の3軸方向の変位(X軸方向、
Y軸方向およびZ軸方向の変位)をそれぞれ別の部位で
担うような構成とすることもできる。As a modification of the physical quantity detection sensor 1N, the support member is provided with a displacement of the mass part in three axial directions (X axis direction,
(Displacements in the Y-axis direction and the Z-axis direction) may be carried by different portions.
【0082】以上、本発明の物理量検出センサを図示の
各実施形態に基づいて説明したが、本発明は、これらに
限定されるものではない。Although the physical quantity detection sensor of the present invention has been described based on the illustrated embodiments, the present invention is not limited to these embodiments.
【0083】特に、質量部、固定部および支持部材の形
状、構造、個数、配置パターン等の条件は、図示以外の
任意の構成のものが可能である。In particular, the conditions such as the shape, structure, number, arrangement pattern, and the like of the mass part, the fixing part, and the support member can be of any configuration other than those shown.
【0084】以上のような本発明の物理量検出センサ
は、バルクドサーフェイス等のマイクロマシニング技術
を用いても、実現できる。The physical quantity detection sensor of the present invention as described above can be realized by using a micromachining technique such as a bulk surface.
【0085】[0085]
【発明の効果】以上述べたように、本発明によれば、簡
易な構造、少ない部品点数で、加速度、角速度またはそ
の双方を検出、特に、3軸方向の加速度および3軸回り
の角速度のうちの少なくとも2つを検出し得る物理量検
出センサを提供することができる。As described above, according to the present invention, acceleration and / or angular velocity can be detected with a simple structure and a small number of parts. Can be provided.
【0086】そのため、小型化が可能であり、特に、設
置空間を広くとらず、周辺に配置される電極の電極面積
等を大きくすることができるので、感度の高い検出が可
能となり、検出精度の向上が図れる。Therefore, it is possible to reduce the size, and in particular, it is possible to increase the electrode area and the like of the electrodes arranged on the periphery without increasing the installation space. Improvement can be achieved.
【0087】また、マイクロマシニング技術等を用い
て、大量生産が可能であり、低コスト化が図れる。Further, mass production is possible using micromachining technology or the like, and cost reduction can be achieved.
【図1】本発明の物理量検出センサの第1実施形態を示
す平面図である。FIG. 1 is a plan view showing a first embodiment of a physical quantity detection sensor according to the present invention.
【図2】本発明の物理量検出センサの第1実施形態を示
す側面図である。FIG. 2 is a side view showing the first embodiment of the physical quantity detection sensor of the present invention.
【図3】本発明の物理量検出センサの第2実施形態の構
造および動作を示す図である。FIG. 3 is a diagram showing the structure and operation of a physical quantity detection sensor according to a second embodiment of the present invention.
【図4】本発明の物理量検出センサの第3実施形態の構
造および動作を示す図である。FIG. 4 is a view showing the structure and operation of a physical quantity detection sensor according to a third embodiment of the present invention.
【図5】本発明の物理量検出センサの第4実施形態の構
造および動作を示す図である。FIG. 5 is a diagram showing the structure and operation of a physical quantity detection sensor according to a fourth embodiment of the present invention.
【図6】本発明の物理量検出センサの第5実施形態の構
造および動作を示す図である。FIG. 6 is a diagram showing the structure and operation of a physical quantity detection sensor according to a fifth embodiment of the present invention.
【図7】本発明の物理量検出センサの第6実施形態の構
造および動作を示す図である。FIG. 7 is a view showing the structure and operation of a physical quantity detection sensor according to a sixth embodiment of the present invention.
【図8】本発明の物理量検出センサの第7実施形態の構
造および動作を示す図である。FIG. 8 is a view showing the structure and operation of a physical quantity detection sensor according to a seventh embodiment of the present invention.
【図9】本発明の物理量検出センサの第8実施形態の構
造および動作を示す図である。FIG. 9 is a diagram showing the structure and operation of a physical quantity detection sensor according to an eighth embodiment of the present invention.
【図10】本発明の物理量検出センサの第9実施形態の
構造および動作を示す図である。FIG. 10 is a diagram showing the structure and operation of a ninth embodiment of a physical quantity detection sensor according to the present invention.
【図11】本発明の物理量検出センサの第10実施形態
の構造および動作を示す図である。FIG. 11 is a view showing the structure and operation of a physical quantity detection sensor according to a tenth embodiment of the present invention.
【図12】本発明の物理量検出センサの第11実施形態
の構造および動作を示す図である。FIG. 12 is a diagram showing the structure and operation of a physical quantity detection sensor according to an eleventh embodiment of the present invention.
【図13】本発明の物理量検出センサの第12実施形態
の構造および動作を示す図である。FIG. 13 is a diagram showing the structure and operation of a twelfth embodiment of a physical quantity detection sensor according to the present invention.
【図14】本発明の物理量検出センサの第13実施形態
の構造および動作を示す図である。FIG. 14 is a view showing the structure and operation of a physical quantity detection sensor according to a thirteenth embodiment of the present invention.
1A〜1K、1M、1N 物理量検出センサ 2 基板 3 素子 31 質量部 31b〜31k、31m、31n 質量部 32 支持部材 32b〜32k、32m、32n 支持部材 321d 延長部 321n 第1支持部材 322n 第2支持部材 323n 中継部材 33 固定部 33b〜33k、33m、33n 固定部 34 櫛形電極 35 櫛形電極 41 駆動電極 42 Y軸方向検出電極 43 Z軸方向検出電極 5 ケース 1A to 1K, 1M, 1N Physical quantity detection sensor 2 Substrate 3 Element 31 Mass part 31b to 31k, 31m, 31n Mass part 32 Support member 32b to 32k, 32m, 32n Support member 321d Extension 321n First support member 322n Second support Member 323n Relay member 33 Fixed part 33b to 33k, 33m, 33n Fixed part 34 Comb electrode 35 Comb electrode 41 Drive electrode 42 Y-axis direction detection electrode 43 Z-axis direction detection electrode 5 Case
Claims (9)
物理量検出センサであって、 質量部と、該質量部を三次元方向に変位可能に支持する
支持部材とを備えていることを特徴とする物理量検出セ
ンサ。1. A physical quantity detection sensor for detecting acceleration and / or angular velocity, comprising: a mass part; and a support member that supports the mass part so as to be displaceable in a three-dimensional direction. Detection sensor.
各軸方向の加速度および各軸回りの角速度の計6つの物
理量のうちの少なくとも2つを検出する物理量検出セン
サであって、 質量部と、該質量部を三次元方向に変位可能に支持する
支持部材とを備えていることを特徴とする物理量検出セ
ンサ。2. A physical quantity detection sensor for detecting at least two of a total of six physical quantities of an acceleration in each of X-axis, Y-axis and Z-axis orthogonal to each other and an angular velocity around each axis. And a support member that supports the mass portion so as to be displaceable in a three-dimensional direction.
弾性変形可能な弾性体で構成されている請求項1または
2に記載の物理量検出センサ。3. The physical quantity detection sensor according to claim 1, wherein the support member is entirely or partially formed of an elastic body that can be elastically deformed.
を結ぶ最短距離を迂回するような形状をなしている請求
項1ないし3のいずれかに記載の物理量検出センサ。4. The physical quantity detection sensor according to claim 1, wherein the support member is shaped so as to bypass a shortest distance connecting the mass part and the fixed part.
をなすものまたはこのような棒状部分を有するものであ
る請求項1ないし4のいずれかに記載の物理量検出セン
サ。5. The physical quantity detection sensor according to claim 1, wherein the support member has a rod shape bent in an L shape or has such a rod portion.
たはこのようなリング状部分を有するものである請求項
1ないし5のいずれかに記載の物理量検出センサ。6. The physical quantity detection sensor according to claim 1, wherein the support member has a ring shape or has such a ring portion.
ある請求項1ないし6のいずれかに記載の物理量検出セ
ンサ。7. The physical quantity detection sensor according to claim 1, wherein the support member has a mesh structure.
または3軸方向の変位をそれぞれ担う部位を有している
請求項1ないし7のいずれかに記載の物理量検出セン
サ。8. The support member is provided with two different mass parts.
The physical quantity detection sensor according to any one of claims 1 to 7, wherein the physical quantity detection sensor has a portion that performs displacement in three axial directions.
し、点対称または線対称に配置されている請求項1ない
し8のいずれかに記載の物理量検出センサ。9. The physical quantity detection sensor according to claim 1, wherein the support member is arranged point-symmetrically or line-symmetrically with respect to the center of gravity of the mass part.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12825498A JP4178192B2 (en) | 1998-04-22 | 1998-04-22 | Physical quantity detection sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12825498A JP4178192B2 (en) | 1998-04-22 | 1998-04-22 | Physical quantity detection sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11304834A true JPH11304834A (en) | 1999-11-05 |
JP4178192B2 JP4178192B2 (en) | 2008-11-12 |
Family
ID=14980315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12825498A Expired - Fee Related JP4178192B2 (en) | 1998-04-22 | 1998-04-22 | Physical quantity detection sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4178192B2 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100430367B1 (en) * | 2000-07-07 | 2004-05-04 | 가부시키가이샤 무라타 세이사쿠쇼 | External force measuring device |
US6973829B2 (en) | 2000-08-29 | 2005-12-13 | Denso Corporation | Semiconductor dynamic quantity sensor with movable electrode and fixed electrode supported by support substrate |
KR100816049B1 (en) | 2005-09-07 | 2008-03-21 | 가부시끼가이샤 히다치 세이사꾸쇼 | Combined sensor and method for producing the same |
JP2008089581A (en) * | 2006-09-01 | 2008-04-17 | Commissariat A L'energie Atomique | Microsystem, especially microgyrometer, with capacitive electrode detection element |
WO2008102537A1 (en) * | 2007-02-20 | 2008-08-28 | Panasonic Corporation | Composite sensor |
JP2009529697A (en) * | 2006-03-10 | 2009-08-20 | コンティ テミック マイクロエレクトロニック ゲゼルシャフト ミット ベシュレンクテル ハフツング | Micro mechanical rotation speed sensor |
JP2010501831A (en) * | 2006-08-18 | 2010-01-21 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Two-axis yaw rate detection unit with tuning fork gyroscope device |
JP2010513045A (en) * | 2006-12-18 | 2010-04-30 | アクスティカ,インコーポレイテッド | Proof mass having support structure on integrated circuit MEMS platform and method of manufacturing the same |
JP2010112858A (en) * | 2008-11-07 | 2010-05-20 | Sony Corp | Micro-electromechanical system and electronic apparatus |
WO2010140574A1 (en) * | 2009-06-03 | 2010-12-09 | アルプス電気株式会社 | Physical quantity sensor |
WO2011031256A1 (en) * | 2009-09-09 | 2011-03-17 | Hewlett-Packard Development Company, L.P. | Gyroscopic input systems and methods |
JP2011106822A (en) * | 2009-11-12 | 2011-06-02 | Mitsubishi Electric Corp | Acceleration sensor |
JP2012503761A (en) * | 2008-09-25 | 2012-02-09 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Connection structure for angular velocity sensor device, angular velocity sensor device and manufacturing method |
KR101189098B1 (en) * | 2012-02-02 | 2012-10-10 | 주식회사 티엘아이 | 3 axis accelerometer sharing elastic body |
JP2012196041A (en) * | 2011-03-16 | 2012-10-11 | Toshiba Corp | Electrostatic actuator |
JP5175308B2 (en) * | 2008-02-07 | 2013-04-03 | アルプス電気株式会社 | Physical quantity sensor |
JP5193300B2 (en) * | 2008-07-04 | 2013-05-08 | アルプス電気株式会社 | Capacitance detection type movable sensor |
JP5223003B2 (en) * | 2009-06-03 | 2013-06-26 | アルプス電気株式会社 | Physical quantity sensor |
US9470525B2 (en) | 2012-04-19 | 2016-10-18 | Seiko Epson Corporation | Gyro sensor and electronic apparatus |
DE102004042761B4 (en) * | 2003-09-05 | 2020-02-20 | Denso Corporation | Sensor arrangement of a capacitance type for a dynamic variable |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03229160A (en) * | 1990-02-01 | 1991-10-11 | Nec Corp | Semiconductor acceleration sensor |
JPH05248872A (en) * | 1992-03-06 | 1993-09-28 | Toshiba Corp | Inertia sensor |
JPH05249138A (en) * | 1991-12-19 | 1993-09-28 | Motorola Inc | Triaxial accelerometer |
JPH0642971A (en) * | 1990-05-18 | 1994-02-18 | British Aerospace Plc <Baf> | Sensor |
JPH0664164U (en) * | 1993-02-12 | 1994-09-09 | 株式会社村田製作所 | Semiconductor type acceleration sensor |
JPH07159181A (en) * | 1993-12-13 | 1995-06-23 | Nippondenso Co Ltd | Semiconductor yaw rate sensor, and manufacture thereof |
JPH07167885A (en) * | 1993-12-13 | 1995-07-04 | Omron Corp | Semiconductor acceleration sensor and manufacture thereof as well as detecting system of acceleration by the sensor |
JPH07225243A (en) * | 1994-02-14 | 1995-08-22 | Omron Corp | Acceleration sensor and its production, method for detecting acceleration by the acceleration sensor and acceleration sensor array |
JPH08145683A (en) * | 1994-11-16 | 1996-06-07 | Nikon Corp | Acceleration/angular acceleration detector |
JPH0989927A (en) * | 1995-09-28 | 1997-04-04 | Zexel Corp | Multi-axial acceleration sensor |
JPH09318649A (en) * | 1996-05-30 | 1997-12-12 | Texas Instr Japan Ltd | Composite sensor |
-
1998
- 1998-04-22 JP JP12825498A patent/JP4178192B2/en not_active Expired - Fee Related
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03229160A (en) * | 1990-02-01 | 1991-10-11 | Nec Corp | Semiconductor acceleration sensor |
JPH0642971A (en) * | 1990-05-18 | 1994-02-18 | British Aerospace Plc <Baf> | Sensor |
JPH05249138A (en) * | 1991-12-19 | 1993-09-28 | Motorola Inc | Triaxial accelerometer |
JPH05248872A (en) * | 1992-03-06 | 1993-09-28 | Toshiba Corp | Inertia sensor |
JPH0664164U (en) * | 1993-02-12 | 1994-09-09 | 株式会社村田製作所 | Semiconductor type acceleration sensor |
JPH07159181A (en) * | 1993-12-13 | 1995-06-23 | Nippondenso Co Ltd | Semiconductor yaw rate sensor, and manufacture thereof |
JPH07167885A (en) * | 1993-12-13 | 1995-07-04 | Omron Corp | Semiconductor acceleration sensor and manufacture thereof as well as detecting system of acceleration by the sensor |
JPH07225243A (en) * | 1994-02-14 | 1995-08-22 | Omron Corp | Acceleration sensor and its production, method for detecting acceleration by the acceleration sensor and acceleration sensor array |
JPH08145683A (en) * | 1994-11-16 | 1996-06-07 | Nikon Corp | Acceleration/angular acceleration detector |
JPH0989927A (en) * | 1995-09-28 | 1997-04-04 | Zexel Corp | Multi-axial acceleration sensor |
JPH09318649A (en) * | 1996-05-30 | 1997-12-12 | Texas Instr Japan Ltd | Composite sensor |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100430367B1 (en) * | 2000-07-07 | 2004-05-04 | 가부시키가이샤 무라타 세이사쿠쇼 | External force measuring device |
US6973829B2 (en) | 2000-08-29 | 2005-12-13 | Denso Corporation | Semiconductor dynamic quantity sensor with movable electrode and fixed electrode supported by support substrate |
DE102004042761B4 (en) * | 2003-09-05 | 2020-02-20 | Denso Corporation | Sensor arrangement of a capacitance type for a dynamic variable |
KR100816049B1 (en) | 2005-09-07 | 2008-03-21 | 가부시끼가이샤 히다치 세이사꾸쇼 | Combined sensor and method for producing the same |
US8342022B2 (en) | 2006-03-10 | 2013-01-01 | Conti Temic Microelectronic Gmbh | Micromechanical rotational speed sensor |
JP2009529697A (en) * | 2006-03-10 | 2009-08-20 | コンティ テミック マイクロエレクトロニック ゲゼルシャフト ミット ベシュレンクテル ハフツング | Micro mechanical rotation speed sensor |
JP2010501831A (en) * | 2006-08-18 | 2010-01-21 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Two-axis yaw rate detection unit with tuning fork gyroscope device |
JP2008089581A (en) * | 2006-09-01 | 2008-04-17 | Commissariat A L'energie Atomique | Microsystem, especially microgyrometer, with capacitive electrode detection element |
JP2010513045A (en) * | 2006-12-18 | 2010-04-30 | アクスティカ,インコーポレイテッド | Proof mass having support structure on integrated circuit MEMS platform and method of manufacturing the same |
WO2008102537A1 (en) * | 2007-02-20 | 2008-08-28 | Panasonic Corporation | Composite sensor |
US8418557B2 (en) | 2008-02-07 | 2013-04-16 | Alps Electric Co., Ltd. | Physical quantity sensor |
JP5175308B2 (en) * | 2008-02-07 | 2013-04-03 | アルプス電気株式会社 | Physical quantity sensor |
JP5193300B2 (en) * | 2008-07-04 | 2013-05-08 | アルプス電気株式会社 | Capacitance detection type movable sensor |
JP2012503761A (en) * | 2008-09-25 | 2012-02-09 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング | Connection structure for angular velocity sensor device, angular velocity sensor device and manufacturing method |
US8875574B2 (en) | 2008-09-25 | 2014-11-04 | Robert Bosch Gmbh | Coupling structure for a yaw rate sensor device, yaw rate sensor device, and method for the production thereof |
JP2010112858A (en) * | 2008-11-07 | 2010-05-20 | Sony Corp | Micro-electromechanical system and electronic apparatus |
JP5223003B2 (en) * | 2009-06-03 | 2013-06-26 | アルプス電気株式会社 | Physical quantity sensor |
WO2010140574A1 (en) * | 2009-06-03 | 2010-12-09 | アルプス電気株式会社 | Physical quantity sensor |
JP5089807B2 (en) * | 2009-06-03 | 2012-12-05 | アルプス電気株式会社 | Physical quantity sensor |
WO2011031256A1 (en) * | 2009-09-09 | 2011-03-17 | Hewlett-Packard Development Company, L.P. | Gyroscopic input systems and methods |
US8847912B2 (en) | 2009-09-09 | 2014-09-30 | Hewlett-Packard Development Company, L.P. | Gyroscopic input systems and methods |
JP2011106822A (en) * | 2009-11-12 | 2011-06-02 | Mitsubishi Electric Corp | Acceleration sensor |
US8866363B2 (en) | 2011-03-16 | 2014-10-21 | Kabushiki Kaisha Toshiba | Electrostatic actuator having urging members with varying rigidities |
JP2012196041A (en) * | 2011-03-16 | 2012-10-11 | Toshiba Corp | Electrostatic actuator |
KR101189098B1 (en) * | 2012-02-02 | 2012-10-10 | 주식회사 티엘아이 | 3 axis accelerometer sharing elastic body |
US9470525B2 (en) | 2012-04-19 | 2016-10-18 | Seiko Epson Corporation | Gyro sensor and electronic apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP4178192B2 (en) | 2008-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4178192B2 (en) | Physical quantity detection sensor | |
JP4687577B2 (en) | Inertial sensor | |
US6742390B2 (en) | Angular velocity sensor | |
US8549918B2 (en) | Inertial sensors using piezoelectric transducers | |
CN101360968B (en) | Inertial force sensor | |
US7168317B2 (en) | Planar 3-axis inertial measurement unit | |
US6865944B2 (en) | Methods and systems for decelerating proof mass movements within MEMS structures | |
JP5205725B2 (en) | Angular velocity sensor | |
US8011247B2 (en) | Multistage proof-mass movement deceleration within MEMS structures | |
US5691471A (en) | Acceleration and angular velocity detector | |
JP6191151B2 (en) | Physical quantity sensor | |
US7197928B2 (en) | Solid-state gyroscopes and planar three-axis inertial measurement unit | |
US6539801B1 (en) | Z-axis vibratory gyroscope | |
GB2318184A (en) | Vibratory gyroscopic rate sensor | |
CN104136886A (en) | Multiaxial micro-electronic inertial sensor | |
FI126070B (en) | Improved ring gyroscope design and gyroscope | |
JPH0868636A (en) | Apparatus for detecting both acceleration and angular velocity | |
JP2006064539A (en) | Gyroscope sensor and method for detecting angular speed | |
JP4774733B2 (en) | Compound sensor | |
JP3873266B2 (en) | 3D angular velocity sensor | |
JP4466283B2 (en) | Gyro sensor | |
JP2002071705A (en) | Acceleration/angular velocity sensor using piezo-electric element | |
CN221826183U (en) | Fully decoupled three-axis micromechanical gyroscope | |
RU2119645C1 (en) | Inertial primary information sensor | |
JP2009063392A (en) | Inertial force sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060331 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060510 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060706 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060728 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20070406 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080611 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080722 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110905 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |