JPH11297524A - Current leads for superconducting devices - Google Patents
Current leads for superconducting devicesInfo
- Publication number
- JPH11297524A JPH11297524A JP10098821A JP9882198A JPH11297524A JP H11297524 A JPH11297524 A JP H11297524A JP 10098821 A JP10098821 A JP 10098821A JP 9882198 A JP9882198 A JP 9882198A JP H11297524 A JPH11297524 A JP H11297524A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- low
- terminal
- superconductor
- superconducting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
(57)【要約】
【課題】極低温部への熱侵入量を低減することのできる
超電導装置用電流リードを提供する。
【解決手段】超電導装置用電流リードの低温側リードの
低温端子21に形成された溝30に高温超電導体222
を設置して半田付けし、かつ低温端子21の1面ないし
複数面に形成された溝または孔61に、超電導コイルの
コイル端子からの1ないし数本の金属系超電導体60を
高温超電導体222と軸方向でラップするように設置し
て半田付けする。
(57) [Summary] To provide a current lead for a superconducting device which can reduce the amount of heat entering a cryogenic part. A high-temperature superconductor is formed in a groove formed in a low-temperature terminal of a low-temperature side lead of a current lead for a superconducting device.
And one or several metal-based superconductors 60 from the coil terminals of the superconducting coil are inserted into the grooves or holes 61 formed on one or more surfaces of the low-temperature terminal 21 by soldering. It is installed so as to wrap in the axial direction and soldered.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、磁気浮上列車、磁
気共鳴画像診断装置等の超電導装置において、真空断熱
容器に収納され液体ヘリウムに浸漬された超電導コイル
等に外部電源から電流を供給するための超電導装置用電
流リードに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting apparatus such as a magnetic levitation train, a magnetic resonance imaging apparatus, etc., for supplying a current from an external power supply to a superconducting coil or the like immersed in liquid helium and housed in a vacuum insulated container. And a current lead for a superconducting device.
【0002】[0002]
【従来の技術】超電導装置の超電導コイルは、液体ヘリ
ウム等の極低温冷媒により冷却されることにより超電導
状態を保持するので、通常、極低温の窒素を用いた輻射
シールドや多層断熱層を備えた真空断熱容器中に、液体
ヘリウムに浸漬した状態で収納される。この超電導コイ
ルを励磁するためには、真空断熱容器に電流リードを組
み込み、外部電源と接続して励磁電流を通電する。この
とき、常温部と極低温部とを連結することになるので、
この電流リードを介して極低温部へ侵入する熱が多い
と、高価な液体ヘリウムを大量に消費することになる。
したがって、電流リードは自身による熱侵入により気化
した低温のヘリウムガスを利用して自己冷却され、常温
側からの伝導による熱侵入、および通電に伴うジュール
発熱が極低温部へ侵入するのを極力抑制するように配慮
して構成されている。常温部からの熱侵入を抑えるため
には、電流リードの導体の断面積を小さくすることが有
効であるが、導体の断面積を小さくすると電流リードの
電気抵抗が大きくなるので、ジュール発熱が大きくな
る。従って冷却効果を勘案し、これらのバランスのとれ
た構成とすることが重要である。2. Description of the Related Art Since a superconducting coil of a superconducting device maintains a superconducting state by being cooled by a cryogenic refrigerant such as liquid helium, it is usually provided with a radiation shield using cryogenic nitrogen and a multilayer heat insulating layer. It is stored in a vacuum insulated container while immersed in liquid helium. In order to excite the superconducting coil, a current lead is incorporated in a vacuum insulated container and connected to an external power supply to supply an exciting current. At this time, since the normal temperature part and the extremely low temperature part will be connected,
If much heat enters the cryogenic part through the current lead, a large amount of expensive liquid helium will be consumed.
Therefore, the current lead is self-cooled by using the low-temperature helium gas vaporized by the heat penetration by itself, minimizing the heat penetration due to conduction from the room temperature side and the Joule heat generated by energization entering the cryogenic part as much as possible. It is configured with consideration for. It is effective to reduce the cross-sectional area of the conductor of the current lead in order to suppress heat intrusion from the room temperature part.However, if the cross-sectional area of the conductor is reduced, the electric resistance of the current lead increases, so that Joule heat increases. Become. Therefore, it is important to provide a balanced configuration in consideration of the cooling effect.
【0003】電流リードの導体には、一般に、銅あるい
は銅合金等の良電導体の金属が使用されてきたが、高温
超電導体が発見されてから、高温超電導体が液体窒素温
度状態でも超電導状態を保持できるため、ジュール発熱
がなく、かつ銅導体に比べ低熱伝導性を有することか
ら、電流リードの低温側リード部の導体としての応用が
期待される。このため、極低温部への熱侵入を低減でき
る超電導装置用電流リードの開発が行われている。[0003] In general, a good conductor such as copper or a copper alloy has been used as a conductor of a current lead. However, since the discovery of a high-temperature superconductor, the high-temperature superconductor has been in a superconducting state even in a liquid nitrogen temperature state. Therefore, since it does not generate Joule heat and has lower thermal conductivity than a copper conductor, it is expected to be used as a conductor of a low-temperature side lead portion of a current lead. For this reason, a current lead for a superconducting device capable of reducing heat penetration into a cryogenic part has been developed.
【0004】(参考資料:セラミックス高温超電導体を
用いた電流リード、出典:EMC(電磁環境工学情報)
1994.7.5(NO.75 )P32 〜(1994))この参考資料で用
いているシース型高温超電導体は、シース材料を合金化
(例えば金を添加)することにより、純銀の熱伝導性に
比べ熱伝導性を低く抑えることが現在の技術で可能であ
る。また、シース型高温超電導体はバルク型超電導体に
比べ、導体部にクエンチ(超電導状態から常電導状態に
移行する現象)が発生した場合に、電流がシース材(銀
または銀合金)にバイパスして流れるため、安全性が高
いことから、大容量電流リードの低温側リードへの応用
が期待される。現在では、10kA級超電導電流リード
の開発例がある。このため、超電導装置の経済的な運転
を実現するために、高温超電導体を用いた電流リードの
開発が活発化している。(Reference material: Current lead using ceramic high-temperature superconductor, Source: EMC (Electromagnetic Environment Engineering Information)
1994.7.5 (NO.75) P32-(1994)) The sheath-type high-temperature superconductor used in this reference material is made by alloying the sheath material (for example, by adding gold), and comparing it with the thermal conductivity of pure silver. It is possible with current technology to keep the thermal conductivity low. In addition, when a quench occurs in the conductor (transition from the superconducting state to the normal conducting state), the current in the sheath-type high-temperature superconductor is bypassed to the sheath material (silver or silver alloy) compared to the bulk-type superconductor. It is expected to be applied to low-temperature-side leads of large-capacity current leads because of high safety. At present, there is a development example of a 10 kA class superconducting current lead. For this reason, in order to realize economical operation of the superconducting device, the development of a current lead using a high-temperature superconductor has been activated.
【0005】図3は、従来技術による超電導装置用電流
リードを用いた超電導装置の一例を示す概念図であり、
電流リードの部分断面図を含めて示している。図3にお
いて、1は超電導コイル、2は電流リード、3は真空容
器、4は液体ヘリウム、10は液体ヘリウム容器、11
は引出しリード、20は中間接続金具、21は低温端
子、22は低温側リード、23は高温側リード、24は
常温端子、41はヘリウムガス、221は筒状容器、2
22は高温超電導体、223は中空部、231は筒状容
器、232は導体束、233は中空部、241は出口
管、242は端子金具である。FIG. 3 is a conceptual diagram showing an example of a superconducting device using a current lead for a superconducting device according to the prior art.
The drawing includes a partial sectional view of the current lead. In FIG. 3, 1 is a superconducting coil, 2 is a current lead, 3 is a vacuum vessel, 4 is liquid helium, 10 is a liquid helium vessel, 11
Is a lead lead, 20 is an intermediate connection fitting, 21 is a low temperature terminal, 22 is a low temperature side lead, 23 is a high temperature side lead, 24 is a normal temperature terminal, 41 is helium gas, 221 is a cylindrical container,
22 is a high-temperature superconductor, 223 is a hollow portion, 231 is a cylindrical container, 232 is a conductor bundle, 233 is a hollow portion, 241 is an outlet tube, and 242 is a terminal fitting.
【0006】電流リード2は、下から低温端子21、低
温側リード22、高温側リード23および常温端子24
から構成され、低温側リード22と高温側リード23は
中間接続金具20により電気的機械的に接続されてい
る。低温端子21は、引出しリード11を介して、真空
で断熱された液体ヘリウム容器10に収納された液体ヘ
リウム4に浸漬されている超電導コイル1に接続されて
いる。常温端子24は、一部だけを示す真空容器3の外
部の大気中にあり、端子金具242を介して図示されて
いない外部電源に接続されている。電流リード2の導体
を冷却したヘリウムガス41は、常温端子24に設置し
た出口管241より外部に放出されるか、場合によって
は回収される。低温側リード22は、筒状容器221と
この内部に配置された高温超電導体222とならなり、
これらの間に中空部223がある。この中空部223を
ヘリウムガス41が流れることにより、高温超電導体2
22が超電導状態に保持される。ヘリウムガス41は、
低温端子21に設置された流通孔から電流リード2の内
部へ流入する。一般に、高温超電導体222は、バルク
体、シース型のいずれでも良い。また、形状も多角形、
円筒、円柱などがある。図では、高温超電導体222が
平板状(シース型)で構成したものを示している。高温
側リード23は、筒状容器231とこの中を通る導体束
232とから構成され、中空部233を導体冷却のため
のヘリウムガス41が流れる。The current lead 2 includes a low-temperature terminal 21, a low-temperature lead 22, a high-temperature lead 23, and a normal-temperature terminal 24 from below.
, And the low-temperature side lead 22 and the high-temperature side lead 23 are electrically and mechanically connected by the intermediate connection fitting 20. The low-temperature terminal 21 is connected to the superconducting coil 1 immersed in the liquid helium 4 contained in the liquid helium container 10 insulated by vacuum through the lead-out lead 11. The room temperature terminal 24 is in the atmosphere outside the vacuum vessel 3 showing only a part thereof, and is connected to an external power supply (not shown) via a terminal fitting 242. The helium gas 41 that has cooled the conductor of the current lead 2 is discharged to the outside through an outlet tube 241 provided at the room temperature terminal 24, or may be recovered in some cases. The low-temperature side lead 22 becomes the cylindrical container 221 and the high-temperature superconductor 222 arranged inside the cylindrical container 221,
There is a hollow part 223 between them. When the helium gas 41 flows through the hollow portion 223, the high-temperature superconductor 2
22 is maintained in a superconducting state. Helium gas 41 is
It flows into the inside of the current lead 2 from the flow hole provided in the low-temperature terminal 21. Generally, the high-temperature superconductor 222 may be a bulk type or a sheath type. Also, the shape is polygonal,
There are cylinders and cylinders. In the drawing, the high-temperature superconductor 222 is formed in a plate shape (sheath type). The high-temperature side lead 23 is composed of a cylindrical container 231 and a conductor bundle 232 passing therethrough, and the helium gas 41 for cooling the conductor flows through the hollow portion 233.
【0007】図4は、従来技術による超電導装置用電流
リードの低温端子の詳細図である。図4において、30
は溝、40はボルト孔であり、その他の構成要素は図3
と同じであり同じ符号を付してある。銅導体等で構成さ
れた低温端子21に形成された溝30に高温超電導体2
22が設置され半田付けにより電気的機械的に接続され
ている。また、低温端子21には、図示しない超電導コ
イルのコイル端子に接続するためのボルト孔40が設け
てある。FIG. 4 is a detailed view of a low-temperature terminal of a current lead for a superconducting device according to the prior art. In FIG. 4, 30
Is a groove, 40 is a bolt hole, and other components are shown in FIG.
And the same reference numerals are used. The high-temperature superconductor 2 is inserted into the groove 30 formed in the low-temperature terminal 21 made of a copper conductor or the like.
22 are installed and electrically and mechanically connected by soldering. Further, the low-temperature terminal 21 is provided with a bolt hole 40 for connecting to a coil terminal of a superconducting coil (not shown).
【0008】図5は、従来技術による超電導装置用電流
リードの低温端子の接続部概念図である。図5におい
て、1は超電導コイル、50はコイル端子、51はボル
ト孔であり、その他の構成要素は図4と同じであり同じ
符号を付してある。低温端子21とコイル端子50と
は、図示しない複数本のボルトによって固定結合され
る。外部電源からの電流は、常温端子、高温側リード、
中間接続金具、低温側リード、低温端子21、コイル端
子50、超電導コイル1の経路で通電される。FIG. 5 is a conceptual view of a connection portion of a low-temperature terminal of a current lead for a superconducting device according to the prior art. In FIG. 5, 1 is a superconducting coil, 50 is a coil terminal, 51 is a bolt hole, and other components are the same as those in FIG. The low-temperature terminal 21 and the coil terminal 50 are fixedly connected by a plurality of bolts (not shown). The current from the external power supply is
Electricity is supplied through the path of the intermediate connection fitting, the low-temperature side lead, the low-temperature terminal 21, the coil terminal 50, and the superconducting coil 1.
【0009】[0009]
【発明が解決しようとする課題】従来の低温端子の構造
では、銅導体からなる低温端子に溝を形成し、この溝に
シース型高温超電導体からなる低温側リード導体を半田
により接続しており、この低温端子と超電導コイルのコ
イル端子とをねじ等により結合している。従って、電流
が流れることにより、ジュール発熱および端子間接触抵
抗による発熱により温度上昇を招くばかりか、大容量型
の電流リードの場合、極低温部への熱侵入量が増大する
という問題があった。In the conventional low-temperature terminal structure, a groove is formed in a low-temperature terminal made of a copper conductor, and a low-temperature-side lead conductor made of a sheath-type high-temperature superconductor is connected to this groove by soldering. The low-temperature terminal and the coil terminal of the superconducting coil are connected by screws or the like. Therefore, when a current flows, not only does the temperature rise due to Joule heat generation and heat generation due to contact resistance between terminals, but also in the case of a large-capacity type current lead, there is a problem that the amount of heat entering the cryogenic portion increases. .
【0010】本発明の目的は、低温側リードの低温端子
と超電導コイルのコイル端子の構造に関するもので、極
低温部への熱侵入量を低減することのできる超電導装置
用電流リードを提供することにある。An object of the present invention relates to a structure of a low-temperature terminal of a low-temperature side lead and a coil terminal of a superconducting coil, and to provide a current lead for a superconducting device capable of reducing the amount of heat entering a cryogenic part. It is in.
【0011】[0011]
【課題を解決するための手段】上記課題を解決するため
に、本発明においては、真空断熱容器に収納され液体ヘ
リウムにより極低温に冷却された超電導コイルに外部電
源から電流を供給するための、銅または銅合金導体から
なる高温側リードと高温超電導体からなる低温側リード
とが直列に接続された超電導装置用電流リードにおい
て、前記低温側リードの低温端子に形成された溝部に高
温超電導体を設置して半田付けし、かつ前記低温端子の
1面ないし複数面に形成された溝部または孔部に、前記
超電導コイルのコイル端子からの1ないし複数本の金属
系超電導体を前記高温超電導体と軸方向でラップするよ
うに設置して半田付けした構造とする。In order to solve the above-mentioned problems, the present invention provides a method for supplying a current from an external power supply to a superconducting coil housed in a vacuum insulated container and cooled to a very low temperature by liquid helium. In a current lead for a superconducting device in which a high-temperature side lead made of a copper or copper alloy conductor and a low-temperature side lead made of a high-temperature superconductor are connected in series, a high-temperature superconductor is inserted into a groove formed in a low-temperature terminal of the low-temperature side lead. Installed and soldered, and one or more metal-based superconductors from the coil terminals of the superconducting coil in the grooves or holes formed on one or more surfaces of the low-temperature terminal with the high-temperature superconductor. The structure is such that it is installed so as to wrap in the axial direction and soldered.
【0012】また、低温端子と高温超電導体との接続用
半田と、低温端子と金属系超電導体との接続用半田との
融点温度を異なるものとする。Further, the melting point temperature of the solder for connecting the low-temperature terminal and the high-temperature superconductor is different from that of the solder for connecting the low-temperature terminal and the metal-based superconductor.
【0013】[0013]
【発明の実施の形態】図2は、この発明の実施例を示す
超電導装置用電流リードの低温端子の接続部概念図であ
る。図2において、60は金属系超電導体、61は溝で
あり、その他の構成要素は図5と同じであり同じ符号を
付してある。図5と異なる点は、低温端子21に溝61
を形成し、この溝61にコイル端子50からのNbTi
やNb 3 Snなどからなる金属系超電導体60を、高温
超電導体222と軸方向で重なるように接続したことで
ある。接続は半田によって電気的機械的に接続する。こ
のとき、低温端子21と高温超電導体222との接続に
用いる半田および低温端子21と金属系超電導体60と
の接続に用いる半田として、それぞれ融点温度が異なる
半田を用いる。FIG. 2 shows an embodiment of the present invention.
FIG. 5 is a conceptual diagram of a connection portion of a low-temperature terminal of a current lead for a superconducting device.
You. In FIG. 2, reference numeral 60 denotes a metallic superconductor, and 61 denotes a groove.
And the other components are the same as those in FIG.
It is attached. 5 is different from FIG.
Is formed, and NbTi from the coil terminal 50 is
And Nb ThreeThe metal-based superconductor 60 made of Sn or the like is heated to a high temperature.
By connecting so that it overlaps with the superconductor 222 in the axial direction,
is there. The connection is made electrically and mechanically by soldering. This
At the time of connection between the low-temperature terminal 21 and the high-temperature superconductor 222.
Solder and low-temperature terminal 21 and metal superconductor 60 used
Melting point temperature differs as solder used for connection
Use solder.
【0014】これらの構成によれば、電流は、常温端
子、高温側リード、中間接続金具、低温側リード、低温
端子21、金属系超電導体60、コイル端子50、超電
導コイル1の経路で通電される。図1は、この発明の実
施例を示す超電導装置用電流リードの低温端子の詳細図
である。図1において、30は溝であり、その他の構成
要素は図2と同じであり同じ符号を付してある。図4と
の相違点は、低温端子21の複数の面に溝61または孔
部を形成し、この部分に金属系超電導体60を設置し半
田付けして電気的、機械的に結合する。このような構成
にすることにより、電流リードに安定して通電すること
ができる。According to these configurations, the current is supplied through the normal temperature terminal, the high temperature side lead, the intermediate connection fitting, the low temperature side lead, the low temperature terminal 21, the metal superconductor 60, the coil terminal 50, and the superconducting coil 1. You. FIG. 1 is a detailed view of a low-temperature terminal of a current lead for a superconducting device according to an embodiment of the present invention. In FIG. 1, reference numeral 30 denotes a groove, and other components are the same as those in FIG. 2, and are denoted by the same reference numerals. The difference from FIG. 4 is that grooves 61 or holes are formed on a plurality of surfaces of the low-temperature terminal 21, and a metal-based superconductor 60 is installed in this portion and soldered to electrically and mechanically couple. With this configuration, it is possible to stably supply current to the current lead.
【0015】[0015]
【発明の効果】本発明によれば、低温端子とコイル端子
間の電気的な抵抗は、各端子の面接触による接触抵抗
と、金属系超電導体の抵抗(各半田付け部の抵抗分を含
む)との並列抵抗となり、電気的な抵抗を低減すること
ができる。また、低温端子において、高温超電導体と金
属系超電導体とを軸方向にラップして半田付けしてある
ので、これらの間の電気的抵抗も低減することができ
る。従って、端子間の接触抵抗による発熱および低温端
子のジュール発熱を低減することができ、極低温部への
熱侵入量を軽減できるため、超電導装置の経済的な運転
が期待できる。According to the present invention, the electrical resistance between the low-temperature terminal and the coil terminal includes the contact resistance due to the surface contact of each terminal and the resistance of the metallic superconductor (including the resistance of each soldered portion). ) And the electrical resistance can be reduced. In the low-temperature terminal, the high-temperature superconductor and the metal-based superconductor are wrapped in the axial direction and soldered, so that the electrical resistance between them can be reduced. Therefore, heat generation due to contact resistance between terminals and Joule heat generation at low-temperature terminals can be reduced, and the amount of heat infiltration into the cryogenic portion can be reduced, so that economical operation of the superconducting device can be expected.
【0016】また、低温端子と高温超電導体の半田付
け、および低温端子と金属系超電導体の半田付けを同時
に行うことは難しい。従って、それぞれの接続部に用い
る半田として融点温度の異なるものを用い、半田の融点
を考慮して接続部の温度管理を行うことにより、組立作
業時の作業性を改善することができるとともに、信頼性
の高い接続部を実現することができる。Further, it is difficult to simultaneously perform soldering of the low-temperature terminal and the high-temperature superconductor and soldering of the low-temperature terminal and the metal-based superconductor. Therefore, by using solders having different melting points as solders used for the respective connection parts and controlling the temperature of the connection parts in consideration of the melting point of the solder, it is possible to improve workability at the time of assembling work and to improve reliability. It is possible to realize a connection unit having high reliability.
【図1】この発明の実施例を示す超電導装置用電流リー
ドの低温端子の詳細図FIG. 1 is a detailed view of a low-temperature terminal of a current lead for a superconducting device according to an embodiment of the present invention.
【図2】この発明の実施例を示す超電導装置用電流リー
ドの低温端子の接続部概念図FIG. 2 is a conceptual diagram of a connection portion of a low-temperature terminal of a current lead for a superconducting device according to an embodiment of the present invention.
【図3】従来技術による超電導装置用電流リードを用い
た超電導装置の概念図FIG. 3 is a conceptual diagram of a superconducting device using a current lead for a superconducting device according to the prior art.
【図4】従来技術による超電導装置用電流リードの低温
端子の詳細図FIG. 4 is a detailed view of a low-temperature terminal of a current lead for a superconducting device according to the prior art.
【図5】従来技術による超電導装置用電流リードの低温
端子の接続部概念図FIG. 5 is a conceptual diagram of a connection portion of a low-temperature terminal of a current lead for a superconducting device according to a conventional technique.
1…超電導コイル、21…低温端子、30,61…溝、
40,51…ボルト用孔、50…コイル端子、60…金
属系超電導体、222…高温超電導体。DESCRIPTION OF SYMBOLS 1 ... Superconducting coil, 21 ... Low temperature terminal, 30, 61 ... Groove,
Reference numerals 40, 51: bolt holes, 50: coil terminals, 60: metallic superconductor, 222: high-temperature superconductor.
Claims (2)
り極低温に冷却された超電導コイルに外部電源から電流
を供給するための、銅または銅合金導体からなる高温側
リードと高温超電導体からなる低温側リードとが直列に
接続された超電導装置用電流リードにおいて、前記低温
側リードの低温端子に形成された溝部に高温超電導体を
設置して半田付けし、かつ前記低温端子の1面ないし複
数面に形成された溝部または孔部に、前記超電導コイル
のコイル端子からの1ないし複数本の金属系超電導体を
前記高温超電導体と軸方向でラップするように設置して
半田付けしたことを特徴とする超電導装置用電流リー
ド。A high-temperature side lead made of a copper or copper alloy conductor and a low-temperature side made of a high-temperature superconductor for supplying a current from an external power supply to a superconducting coil housed in a vacuum insulated container and cooled to a very low temperature by liquid helium. A high-temperature superconductor placed in a groove formed in a low-temperature terminal of the low-temperature side lead and soldered, and one or more surfaces of the low-temperature terminal are connected to the low-temperature side lead. Characterized in that one or more metal-based superconductors from the coil terminals of the superconducting coil are installed and soldered so as to wrap in the axial direction with the high-temperature superconductor in the grooves or holes formed in the superconducting coil. Current leads for superconducting devices.
と、低温端子と金属系超電導体との接続用半田との融点
温度が異なることを特徴とする請求項1記載の超電導装
置用電流リード。2. The current for a superconducting device according to claim 1, wherein the melting point of the solder for connecting the low-temperature terminal and the high-temperature superconductor and the melting point of the solder for connecting the low-temperature terminal and the metal-based superconductor are different. Lead.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10098821A JPH11297524A (en) | 1998-04-10 | 1998-04-10 | Current leads for superconducting devices |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10098821A JPH11297524A (en) | 1998-04-10 | 1998-04-10 | Current leads for superconducting devices |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11297524A true JPH11297524A (en) | 1999-10-29 |
Family
ID=14229981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10098821A Withdrawn JPH11297524A (en) | 1998-04-10 | 1998-04-10 | Current leads for superconducting devices |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11297524A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005183941A (en) * | 2003-11-28 | 2005-07-07 | Dowa Mining Co Ltd | Composite conductor, superconducting equipment system, and method of manufacturing composite conductor |
KR100755896B1 (en) | 2006-09-22 | 2007-09-06 | 한국전기연구원 | Superconducting Current Lead Connection |
KR100855034B1 (en) | 2007-06-14 | 2008-08-29 | 한국전기연구원 | Superconducting Current Lead Connection |
EP4530655A1 (en) * | 2023-09-28 | 2025-04-02 | Koninklijke Philips N.V. | Connector for a connector system of a magnetic resonance examination apparatus |
-
1998
- 1998-04-10 JP JP10098821A patent/JPH11297524A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005183941A (en) * | 2003-11-28 | 2005-07-07 | Dowa Mining Co Ltd | Composite conductor, superconducting equipment system, and method of manufacturing composite conductor |
KR100755896B1 (en) | 2006-09-22 | 2007-09-06 | 한국전기연구원 | Superconducting Current Lead Connection |
KR100855034B1 (en) | 2007-06-14 | 2008-08-29 | 한국전기연구원 | Superconducting Current Lead Connection |
EP4530655A1 (en) * | 2023-09-28 | 2025-04-02 | Koninklijke Philips N.V. | Connector for a connector system of a magnetic resonance examination apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5917393A (en) | Superconducting coil apparatus and method of making | |
EP0596249B1 (en) | Compact superconducting magnet system free from liquid helium | |
US5742217A (en) | High temperature superconductor lead assembly | |
JPS60189207A (en) | Superconducting magnet device | |
JP2011171090A (en) | Superconductive current lead | |
JP2756551B2 (en) | Conduction-cooled superconducting magnet device | |
JPH11297524A (en) | Current leads for superconducting devices | |
JP4599807B2 (en) | Current leads for superconducting equipment | |
JP3569997B2 (en) | Current leads for superconducting devices | |
JPH11112043A (en) | Current leads for superconducting devices | |
JPH10247532A (en) | Current leads for superconducting devices | |
JP2006324325A (en) | Super-conducting magnet apparatus | |
JP2004111581A (en) | Superconducting magnet unit | |
JP2981810B2 (en) | Current lead of superconducting coil device | |
JP3020140B2 (en) | Permanent current switch device for refrigerator cooled superconducting magnet | |
JP2008130860A (en) | Superconductive device, and current lead | |
JP3715002B2 (en) | Current lead for superconducting device and operation method thereof | |
JP3127705B2 (en) | Current lead using oxide superconductor | |
JP2000082851A (en) | Current leads for superconducting devices | |
JP2943032B2 (en) | High temperature superconductor current lead | |
JP2883697B2 (en) | Current lead for superconducting coil | |
JP5749126B2 (en) | Conduction cooled superconducting magnet system | |
JP3284656B2 (en) | Current lead using oxide superconductor | |
JP4734004B2 (en) | Superconducting current lead | |
JPH0494105A (en) | Current lead for superconductive coil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041214 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20050218 |