[go: up one dir, main page]

JPH11295605A - Cylindrical optical reflection and refraction system - Google Patents

Cylindrical optical reflection and refraction system

Info

Publication number
JPH11295605A
JPH11295605A JP10111508A JP11150898A JPH11295605A JP H11295605 A JPH11295605 A JP H11295605A JP 10111508 A JP10111508 A JP 10111508A JP 11150898 A JP11150898 A JP 11150898A JP H11295605 A JPH11295605 A JP H11295605A
Authority
JP
Japan
Prior art keywords
optical system
optical axis
concave mirror
lens
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10111508A
Other languages
Japanese (ja)
Inventor
Yuuto Takahashi
友刀 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP10111508A priority Critical patent/JPH11295605A/en
Priority to US09/286,376 priority patent/US6097537A/en
Publication of JPH11295605A publication Critical patent/JPH11295605A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70225Optical aspects of catadioptric systems, i.e. comprising reflective and refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical reflection and refraction system in which the control of respective optical components is facilitated in spite of having plural optical axes. SOLUTION: Concerning this optical reflection and refraction system, a concave mirror Mc is arranged on one end side of a main optical axis z1 , a second plane P2 is provided on the other end side, a reflection plane M is arranged between the concave mirror Mc and the second plane P2 , a first optical image forming system A is arranged between the reflection plane M and the concave mirror Mc , a second optical image forming system B is arranged between the reflection plane M and the second plane P2 , a first plane P1 is provided on a sub optical axis z2 while defining the direction of bending the main optical axis z1 of the first optical image forming system A on the reflection plane M as the sub optical axis z2 , an object RA is arranged or an image WA of the object is formed in any one area on the first plane P1 bisected by a crossing line Q1 between a plane orthogonal with the main optical axis z1 while including the sub optical axis z1 and the first plane P1 , the image WA is formed or the object RA is arranged in any one area on the second plane P2 bisected by a crossing line Q2 between a plane orthogonal with the sub optical axis z2 while including the main optical axis z1 and the second plane P2 , and an intermediate image C of the object RA is formed near the reflection plane M.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は主として半導体の製
造に用いられるステッパーなどの縮小露光装置の光学系
に関し、特に光学系に反射屈折光学系を用いることによ
り、紫外線波長域でのサブミクロン単位の分解能を有す
る1/4×程度の反射屈折縮小光学系に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical system of a reduction exposure apparatus such as a stepper mainly used for manufacturing a semiconductor, and more particularly, to a submicron unit in an ultraviolet wavelength region by using a catadioptric optical system for the optical system. The present invention relates to a catadioptric reduction optical system of about 1/4 × having a resolution.

【0002】[0002]

【従来の技術】近年、半導体の回路パターンはますます
微細化しており、このパターンを焼き付ける露光装置に
はより解像力の高いものが要求されてきている。この要
求を満足するためには、光源の波長を短波長化しかつN
A(光学系の開口数)を大きくしなければならない。し
かしながら、波長が短くなると光の吸収のため実用に耐
える光学ガラスが限られてくる。波長が180nm以下
となると、実用上使える硝材は蛍石だけとなる。このよ
うな場合、屈折光学系だけで投影光学系を構成したので
は、色収差補正がまったく不可能となる。従って要求さ
れる解像力を有し、しかも屈折光学系のみで構成された
投影光学系を作ることは、非常に難しいものとなる。
2. Description of the Related Art In recent years, semiconductor circuit patterns have become increasingly finer, and an exposure apparatus for printing such patterns has been required to have a higher resolution. In order to satisfy this requirement, the wavelength of the light source is shortened and N
A (numerical aperture of the optical system) must be increased. However, as the wavelength becomes shorter, optical glass that can withstand practical use is limited due to light absorption. When the wavelength is 180 nm or less, the only glass material that can be used practically is fluorite. In such a case, if the projection optical system is constituted only by the refraction optical system, the chromatic aberration cannot be corrected at all. Therefore, it is very difficult to produce a projection optical system having the required resolving power and composed of only a refractive optical system.

【0003】そこで反射系と使用波長に使える光学ガラ
スからなる屈折系とを組み合わせたいわゆる反射屈折光
学系によって、縮小投影光学系を構成する技術が色々提
案されている。その中で、光学系の途中で1回以上の中
間結像を行うタイプは、これまで種々のものが提案され
ているが、中間像を1回だけ結像するものに限定する
と、特公平5−25170、特開昭63−16331
9、特開平4−234722、USP−4,779,9
66に開示された技術が挙げられる。
Therefore, various techniques have been proposed for forming a reduction projection optical system by using a so-called catadioptric optical system in which a reflecting system and a refracting system made of optical glass usable for a used wavelength are combined. Among them, there have been proposed various types in which an intermediate image is formed one or more times in the middle of an optical system. -25170, JP-A-63-16331
9, JP-A-4-234722, USP-4,779,9
66, for example.

【0004】上記従来技術の中で、凹面ミラーを1枚だ
け使用しているものは、特開平4−234722とUS
P−4,779,966に開示された光学系である。こ
れらの光学系は、凹面ミラーで構成される往復兼用光学
系において、凹レンズのみが採用されており、凸のパワ
ーの光学系が使われていない。そのため、光束が広がっ
て凹面ミラーに入射するため、凹面ミラーの径が大きく
なりがちであった。また特に特開平4−234722に
開示された往復兼用光学系は完全対称型であり、この光
学系での収差発生を極力抑えて後続の屈折光学系の収差
補正負担を軽くしているが、対称光学系を採用している
ため、第2面付近でのワーキングディスタンスがとりに
くく、またハーフプリズムを使用しなければならなかっ
た。またUSP−4,779,966に開示された光学
系では、中間像よりも後方の2次結像光学系にミラーを
使用している。したがって光学系の必要な明るさを確保
するためには、光束が広がって凹面ミラーに入射するこ
とになり、ミラーの小型化が困難なものであった。
Among the above prior arts, those using only one concave mirror are disclosed in Japanese Patent Application Laid-Open No. 4-234722 and US Pat.
P-4, 779, 966. In these optical systems, a reciprocating optical system constituted by a concave mirror employs only a concave lens, and does not use an optical system having a convex power. As a result, the light beam spreads and enters the concave mirror, so that the diameter of the concave mirror tends to increase. In particular, the reciprocating optical system disclosed in Japanese Patent Application Laid-Open No. Hei 4-234722 is a completely symmetrical type. Since an optical system is employed, it is difficult to obtain a working distance near the second surface, and a half prism must be used. In the optical system disclosed in US Pat. No. 4,779,966, a mirror is used in a secondary imaging optical system behind the intermediate image. Therefore, in order to ensure the required brightness of the optical system, the light beam spreads and enters the concave mirror, making it difficult to reduce the size of the mirror.

【0005】また複数のミラーを使用するものでは、屈
折光学系のレンズ枚数を削減できる可能性があるが、こ
れらのタイプでは以下の問題があった。すなわち、最
近、焦点深度を稼ぎながら解像力を上げるため、マスク
の選択部分の位相をずらす位相シフト法が考え出されて
いるが、さらに、効果を上げるために、照明光学系のN
Aと結像光学系のNAの比σを可変にすることが行われ
る。このとき照明光学系には開口絞りを設置することが
できるが、前記に挙げた反射屈折光学系を対物レンズと
する場合は、有効な絞り設置部分がどこにも採れないこ
とになる。
In the case of using a plurality of mirrors, there is a possibility that the number of lenses in the refractive optical system can be reduced. However, these types have the following problems. That is, recently, a phase shift method for shifting the phase of a selected portion of a mask has been devised in order to increase the resolution while increasing the depth of focus.
The ratio σ between A and the NA of the imaging optical system is made variable. At this time, an aperture stop can be installed in the illumination optical system. However, when the above-described catadioptric optical system is used as an objective lens, an effective stop installation portion cannot be taken anywhere.

【0006】さらにこのような配置の往復光学系を縮小
側の第1面側に採用するタイプの反射屈折光学系では、
縮小倍率の関係から反射ミラーで反射した後ウエハまで
の距離が長く採れないため、この光路中に挿入される対
物レンズのレンズ枚数がそう多く採れず、そのため得ら
れる光学系の明るさは限られたものとならざるを得なか
った。たとえ高NAの光学系が実現できても、限られた
長さに多くの光学部材が挿入されるため、ウエハと対物
レンズの端面との距離、いわゆるワーキングディスタン
スWDが長く採れない光学系となっていた。またこのよ
うな従来の反射屈折光学系においては、光路を必ず途中
で折り曲げる必要があり、その光路折り曲げ部材の調整
作業が困難で、なかなか高精度の系を実現することがで
きなかった。
Further, in a catadioptric optical system of the type employing the reciprocating optical system having such an arrangement on the first surface side on the reduction side,
Since the distance to the wafer after reflection by the reflection mirror cannot be taken long due to the reduction magnification, the number of objective lenses inserted into this optical path cannot be so large, and the brightness of the obtained optical system is limited. It had to be something. Even if an optical system with a high NA can be realized, since many optical members are inserted into a limited length, the optical system cannot take a long distance between the wafer and the end surface of the objective lens, that is, a so-called working distance WD. I was Further, in such a conventional catadioptric system, it is necessary to bend the optical path halfway, and it is difficult to adjust the optical path bending member, so that a highly accurate system cannot be realized.

【0007】そこで本出願人は、第1結像光学系によっ
て第2面の中間像を形成し、第2結像光学系によって中
間像の再結像を第1面上に形成し、第1結像光学系から
の光束を第2結像光学系へ導くように反射面を設け、第
1結像光学系を、凹面鏡と該凹面鏡への入射光と反射光
との双方が透過するレンズ群とからなる往復光学系を有
するように形成した2回結像光学系を提案した。この2
回結像光学系によれば、凹面鏡の径を縮小させることが
でき、位相シフト法のための照明光学系のNAと結像光
学系のNAの比σを可変にすることができるように、有
効な絞り設置部分を採ることができ、さらに光学系の明
るさを十分とりながら、なおウエハと対物レンズの端面
との距離、いわゆるワーキングディスタンスWDを長く
採ることができる光学系を実現することができる。また
光路折り曲げ部材の調整作業が比較的容易で、高精度の
光学系を実現するものである。
Accordingly, the present applicant forms an intermediate image on the second surface by the first image forming optical system, forms a re-image of the intermediate image on the first surface by the second image forming optical system, A reflecting surface for guiding a light beam from the imaging optical system to the second imaging optical system, and a lens group through which the first imaging optical system transmits a concave mirror and both incident light and reflected light to the concave mirror A two-time imaging optical system formed to have a reciprocating optical system consisting of This 2
According to the rotational imaging optical system, the diameter of the concave mirror can be reduced, and the ratio σ of the NA of the illumination optical system and the NA of the imaging optical system for the phase shift method can be made variable. It is possible to realize an optical system that can take an effective diaphragm installation part and can take a long distance between the wafer and the end face of the objective lens, that is, a so-called working distance WD, while sufficiently maintaining the brightness of the optical system. it can. Further, the adjustment work of the optical path bending member is relatively easy, and a highly accurate optical system is realized.

【0008】[0008]

【発明が解決しようとする課題】以上に述べたように2
回結像光学系は優れた点が多いが、これらの光学系は、
凹面鏡に入射する光束と、凹面鏡から出射する光束を分
離するために、光束分離プリズムか、穴開きミラーを使
用するか、または軸外光束を使って反射ミラーで分離す
るか、などの方法が必要となってくる。いずれの方法に
おいても、光学系の光軸を反射面を使って、例えば直角
に折り曲げることが必要となる。これは、従来からの反
射屈折光学系に比較すれば格段に容易にはなるものの、
従来の屈折系のみによる光学系と比較すれば、やはり光
学系の調整機構に大きな負担となっていた。すなわち、
屈折光学系をはじめとする大方の光学系は直線状の1本
の光軸上に構成されるので、レンズの据えつけ方が光軸
に対してずれたり、傾いておかれた場合には、この直線
状の光軸を中心にしてレンズを回転させ、レンズからの
反射光などを調べて改善することができるのである。
SUMMARY OF THE INVENTION As described above, 2
Although the imaging optical system has many excellent points, these optical systems
In order to separate the light beam entering the concave mirror from the light beam emerging from the concave mirror, a method such as using a light beam splitting prism, a perforated mirror, or using an off-axis light beam and separating it with a reflecting mirror is required It becomes. In either method, it is necessary to bend the optical axis of the optical system, for example, at a right angle using a reflective surface. Although this is much easier than conventional catadioptric systems,
As compared with the conventional optical system using only the refraction system, the adjustment mechanism of the optical system also has a large burden. That is,
Most optical systems, including refractive optical systems, are configured on a single linear optical axis, so if the mounting method of the lens is shifted or tilted with respect to the optical axis, By rotating the lens about this linear optical axis, the reflected light from the lens and the like can be examined and improved.

【0009】ところが、光軸が折れ曲がっていると、こ
のような調整手段を採ることができず、調整法が困難と
なるのである。またさらに、1本の光軸からなる光学系
では、光軸からの傾き(チルト)と位置ずれ(シフト)
の2種類の調整項目しか存在しない。しかるに、複数本
の光軸を持つ光学系では、そのうちの基準となる1本の
光軸から外れたレンズには、3次元空間上の位置座標
X、Y、Z、およびX、Y、Z軸周りの回転角度α、
β、γの6種の自由度が発生し、その調整の必要項目数
も大幅に増えるのである。そのため、調整時間も増え、
コスト高になるとともに、精密な光学系では、設計上の
性能を実現することさえ、困難なことが多いのが実情で
ある。以上のことより、如何にしてこのようなめんどう
な調整をなくすことができるかが、以前から重要な懸案
事項となっていた。本発明は、複数本の光軸を持つもの
の、各光学部品の調整が容易な反射屈折光学系を提供す
ることを課題とする。
However, if the optical axis is bent, such an adjusting means cannot be adopted, and the adjusting method becomes difficult. Further, in an optical system composed of one optical axis, a tilt (tilt) and a positional shift (shift) from the optical axis.
There are only two types of adjustment items. However, in an optical system having a plurality of optical axes, a lens deviated from one optical axis serving as a reference among them has positional coordinates X, Y, Z, and X, Y, Z axes in a three-dimensional space. Rotation angle α,
Six degrees of freedom, β and γ, occur, and the number of items that need to be adjusted greatly increases. Therefore, adjustment time also increases,
In addition to the increase in cost, it is often difficult to achieve a design performance with a precision optical system. As described above, how to eliminate such troublesome adjustments has been an important issue for some time. An object of the present invention is to provide a catadioptric optical system which has a plurality of optical axes but allows easy adjustment of each optical component.

【0010】[0010]

【課題を解決するための手段】本発明では、各光学部品
の困難な調整を省くために、結像作用をなす光学系を1
本の光軸になるように構成したものである。すなわち本
発明は、主光軸の一端側に凹面鏡を配置し、主光軸の他
端側に該主光軸と直交する第2面を設け、前記凹面鏡と
第2面との間に反射面を配置し、該反射面と前記凹面鏡
との間に該凹面鏡と共に第1結像光学系を形成する複数
枚のレンズを配置し、前記反射面と前記第2面との間に
第2結像光学系を形成する複数枚のレンズを配置し、前
記第1結像光学系の主光軸が前記反射面によって折り曲
げられる方向を副光軸とし、該副光軸に該副光軸と直交
する第1面を設け、前記副光軸を含み主光軸と直交する
平面と前記第1面との交線によって2分される該第1面
のいずれか一方の領域に、物体を配置し又は該物体の像
を形成し、前記主光軸を含み副光軸と直交する平面と前
記第2面との交線によって2分される該第2面のいずれ
か一方の領域に、前記像を形成し又は前記物体を配置
し、前記物体の中間像を前記反射面の近傍に形成したこ
とを特徴とする直筒型反射屈折光学系である。
According to the present invention, in order to eliminate the difficult adjustment of each optical component, an optical system for forming an image is provided with one optical system.
It is configured to be the optical axis of a book. That is, according to the present invention, a concave mirror is arranged at one end of the main optical axis, a second surface orthogonal to the main optical axis is provided at the other end of the main optical axis, and a reflecting surface is provided between the concave mirror and the second surface. Are arranged, and a plurality of lenses forming a first imaging optical system together with the concave mirror are arranged between the reflecting surface and the concave mirror, and a second image is formed between the reflecting surface and the second surface. A plurality of lenses forming an optical system are arranged, and a direction in which a main optical axis of the first imaging optical system is bent by the reflection surface is defined as a sub optical axis, and the sub optical axis is orthogonal to the sub optical axis. A first surface is provided, and an object is arranged in one of the regions of the first surface that is bisected by an intersection line between the plane including the sub optical axis and orthogonal to the main optical axis and the first surface, or Any one of the second surfaces that forms an image of the object and is bisected by an intersection of a plane including the main optical axis and orthogonal to the sub optical axis and the second surface In the region, to form the image or placing the object, a straight barrel type catadioptric system, characterized in that an intermediate image of the object formed in the vicinity of the reflecting surface.

【0011】[0011]

【発明の実施の形態】本発明の実施の形態を図面によっ
て説明する。図1(A)は本発明による直筒型反射屈折
光学系の一実施の形態を示し、図1(B)、(C)は、
それぞれ図1(A)中、B−B線、C−C線矢視図を示
す。この実施の形態は、本発明による光学系を、走査型
露光装置の投影光学系に適用したものである。図1に示
すように、主光軸z1の上端側に凹面鏡MCが配置され、
主光軸z1の下端側に、主光軸z1と直交する第2面P2
が設けられる。凹面鏡MCと第2面P2との間の主光軸z
1には、複数枚のレンズと反射面Mとが配置される。図
1に示す例では、反射面Mを平面鏡によって形成してい
るが、反射面はプリズムによって形成してもよい。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1A shows an embodiment of a straight cylindrical catadioptric optical system according to the present invention, and FIGS.
FIG. 1 (A) shows a view taken along line BB and line CC, respectively. In this embodiment, an optical system according to the present invention is applied to a projection optical system of a scanning exposure apparatus. As shown in FIG. 1, a concave mirror M C is arranged on the upper end side of the main optical axis z 1 ,
The lower end of the main optical axis z 1, the second surface perpendicular to the main optical axis z 1 P 2
Is provided. Main optical axis z between concave mirror M C and second surface P 2
In 1 , a plurality of lenses and a reflection surface M are arranged. In the example shown in FIG. 1, the reflecting surface M is formed by a plane mirror, but the reflecting surface may be formed by a prism.

【0012】反射面Mから凹面鏡MCまでの光路に配置
されるレンズと、凹面鏡MCとによって、第1結像光学
系Aが構成され、反射面Mから第2面P2までの光路に
配置されるレンズによって、第2結像光学系Bが構成さ
れる。第1結像光学系Aと第2結像光学系Bは、同一の
光軸、すなわち主光軸z1上に配置されている。また第
1結像光学系Aは、往復光学系となっている。反射面M
は、第1結像光学系Aの主光軸z1を折り曲げるように
配置され、その折り曲げられた方向を副光軸z2とす
る。副光軸z2には、副光軸z2と直交する第1面P1
設けられる。
A first imaging optical system A is constituted by a lens arranged in the optical path from the reflecting surface M to the concave mirror M C and the concave mirror M C, and is provided in the optical path from the reflecting surface M to the second surface P 2. The second imaging optical system B is configured by the disposed lenses. A first imaging optical system A second imaging optical system B, and are arranged the same optical axis, that is, on the main optical axis z 1. The first imaging optical system A is a reciprocating optical system. Reflective surface M
It is arranged to bend the main optical axis z 1 of the first imaging optical system A, and the folded direction Fukuhikarijiku z 2. The Fukuhikarijiku z 2, the first side P 1 perpendicular to the Fukuhikarijiku z 2 is provided.

【0013】副光軸z2を含み主光軸z1と直交する平面
と、第1面P1との交線をQ1とすると、図1(B)に示
すように、交線Q1によって2分される第1面P1の下側
の領域に、物体、すなわちレチクルRの照明領域RAが
配置される。また、主光軸z 1を含み副光軸z2と直交す
る平面と、第2面P2との交線をQ2とすると、図1
(C)に示すように、交線Q2によって2分される第2
面P2の左側の領域に、レチクルRの像が形成され、し
たがってその位置にウエハWの露光領域WAが形成され
る。
The sub optical axis zTwoAnd the main optical axis z1Plane orthogonal to
And the first surface P1Intersecting line with Q1Then, as shown in FIG.
As you can see, intersection Q1First surface P divided by1Below
Object, that is, the illumination area RA of the reticle R
Be placed. Also, the main optical axis z 1And the auxiliary optical axis zTwoOrthogonal to
Plane and the second plane PTwoIntersecting line with QTwoThen, FIG. 1
As shown in FIG.TwoSecond divided by
Plane PTwoAn image of reticle R is formed in the left area of
Accordingly, the exposure area WA of the wafer W is formed at that position.
You.

【0014】照明領域RA内のレチクルRから発した光
束は、反射面Mによって進行方向を折り曲げられて、第
1結像光学系Aに入る。第1結像光学系Aに入った光束
は、凹面鏡MCで反射して往路を逆進し、反射面Mの近
傍に中間像Cを形成し、すなわち光束径が極小となる。
光束径が極小となった光束は、反射面Cの脇を通り過
ぎ、第2結像光学系Bを通過して、ウエハWの露光領域
WA上に中間像Cの再結像を形成する。こうしてレチク
ルRのパターンのうちの照明領域RA内の部分が、ウエ
ハW上の露光領域WAに転写される。他方、レチクルR
は主光軸z1と平行な方向に走査移動し、ウエハWは副
光軸z2と平行な方向に、レチクルRの走査と同期して
走査移動する。この結果、レチクルRのパターンの全域
がウエハW上に転写される。
The luminous flux emitted from the reticle R in the illumination area RA has its traveling direction bent by the reflection surface M and enters the first imaging optical system A. The light beam that has entered the first imaging optical system A is reflected by the concave mirror M C and travels backward on the outward path, forming an intermediate image C near the reflection surface M, that is, the light beam diameter is minimized.
The light beam having the minimum light beam diameter passes by the reflection surface C, passes through the second imaging optical system B, and forms a re-image of the intermediate image C on the exposure area WA of the wafer W. In this way, a portion of the pattern of reticle R within illumination area RA is transferred to exposure area WA on wafer W. On the other hand, reticle R
Scans moved in a direction parallel to the main optical axis z 1, the wafer W in the direction parallel to the Fukuhikarijiku z 2, for scanning movement in synchronization with the scanning of the reticle R. As a result, the entire pattern of the reticle R is transferred onto the wafer W.

【0015】なお、図1に示す例では、交線Q1によっ
て2分される第1面P1の下側の領域にレチクルRの照
明領域RAを配置しているが、交線Q1によって2分さ
れる第1面P1の上側の領域に照明領域RAを配置する
こともでき、そのときには、交線Q2によって2分され
る第2面P2の右側の領域に、ウエハWの露光領域WA
が形成されることとなる。しかるに照明領域RAから反
射面Mに向う光束は、照明領域RAから離れるに従って
広がるから、この構成によると、反射面Mの面積が大き
くなり、凹面鏡MCからの反射光と干渉するおそれが生
じる。したがって図1に示すように、第1面P1の下側
の領域に照明領域RAを配置することが好ましい。
[0015] In the example shown in FIG. 1, but are arranged illuminated area RA of the reticle R to the lower region of the first surface P 1 of the line of intersection Q 1 is 2 minutes, the line of intersection Q 1 The illumination area RA can also be arranged in an area above the first surface P 1 divided into two , and in this case, the wafer W is placed in a region on the right side of the second surface P 2 divided by the intersection line Q 2 . Exposure area WA
Is formed. However the light beam toward the reflecting surface M from the illumination region RA, since spreads with distance from the illuminated area RA, according to this configuration, the area of the reflecting surface M is increased, may interfere occurs and the reflected light from the concave mirror M C. Thus, as shown in FIG. 1, it is preferable to arrange the illumination region RA in the lower region of the first surface P 1.

【0016】このように本発明では、凹面鏡MCに入射
する光束と、凹面鏡MCから反射する光束とを分離する
ために、反射面Mを用いているが、この反射面Mは、結
像光学系A、Bの外部に配置されており、結像光学系
A、Bを構成する凹面鏡MCと複数枚のレンズの光軸は
1本、すなわち主光軸z1のみとなっている。そのた
め、光学系全体を光軸z1中心で調べることができ、各
内部レンズの傾きや位置ずれを検知することができるの
である。
[0016] Thus, in the present invention, a light beam incident on the concave mirror M C, in order to separate the light flux reflected from the concave mirror M C, although a reflective surface M, the reflective surface M is imaged optical system a, is arranged outside the B, the optical axis of the concave mirror M C and a plurality of lenses constituting the imaging optical system a, B has become one, i.e. only the main optical axis z 1. Therefore, it is possible to examine the entire optical system in the optical axis z 1 center, it is possible to detect the inclination and displacement of the inner lens.

【0017】なお、結像光学系A、Bの外部に配置する
反射面Mは、結像光学系A、Bの調整後に配置しても良
い。また、この反射面Mの調整は、光軸z1に対して、
位置(シフト)と角度(チルト)の2種類の調整項目の
みで良い。またこの場合の反射面Mのずれや角度誤差
は、結像特性に直接関係せず、単に像の位置ずれか、傾
きとなるのみであるので、結像性能を確保するのに、非
常に有利となるのである。すなわち、光軸z1、z2の折
り曲げを光学系A、Bの内部で行うと、反射面Mの調整
が非常に困難となるが、反射面Mを光学系A、Bの外部
に配置することにより、光学系全体の調整が非常に楽に
なるのである。ただしこのような、反射面Mを光学系の
外部に配置するときには、収差補正上、および光学系の
配置として、以下のようなことが必要となる。
The reflecting surface M arranged outside the imaging optical systems A and B may be arranged after the adjustment of the imaging optical systems A and B. The adjustment of the reflective surface M, relative to the optical axis z 1,
Only two types of adjustment items, ie, position (shift) and angle (tilt) are required. Further, in this case, the shift and the angle error of the reflection surface M are not directly related to the image forming characteristics, but merely become the position shift or the inclination of the image. Therefore, it is very advantageous to secure the image forming performance. It becomes. That is, if the bending of the optical axes z 1 and z 2 is performed inside the optical systems A and B, it becomes very difficult to adjust the reflection surface M. However, the reflection surface M is arranged outside the optical systems A and B. This greatly facilitates adjustment of the entire optical system. However, when such a reflection surface M is arranged outside the optical system, the following is required for aberration correction and arrangement of the optical system.

【0018】まず、本発明では、物体(レチクルR)か
ら反射面Mまでの部分に、反射面Mを構成する光路折り
曲げ部材しか入っていない。それ故、反射面Mの大きさ
は、基本的に、物体Rから反射面Mまでの距離Dと、物
体側のNA(開口数)により決定される。距離Dが長い
と、必然的に反射面Mの大きさも大きくなるが、このと
き、凹面鏡MCで反射して第2結像光学系Bに向う光束
と反射面Mとが干渉するおそれを生じるから、好ましく
ない。また、反射面Mをプリズムで構成する場合には、
距離Dが長くなって反射面Mが大きくなると、プリズム
自体も大きくなるから、同様に得策ではない。よって、
物体から反射面までの距離Dは、短ければ短いほど良
い。
First, in the present invention, only the optical path bending member constituting the reflection surface M is included in the portion from the object (reticle R) to the reflection surface M. Therefore, the size of the reflection surface M is basically determined by the distance D from the object R to the reflection surface M and the NA (numerical aperture) on the object side. If the distance D is long, but also increases the size of the inevitably reflecting surface M, at this time, resulting in a possibility the light beam and the reflecting surface M interferes toward the second imaging optical system B is reflected by the concave mirror M C Is not preferred. When the reflecting surface M is configured by a prism,
When the distance D increases and the reflection surface M increases, the size of the prism itself also increases. Therefore,
The shorter the distance D from the object to the reflection surface, the better.

【0019】しかしあまりに短すぎると、レチクルR
が、反射面Mを構成する光路折り曲げ部材やその他の光
学系と干渉して、レチクルRを走査させることが出来な
くなる。これを避けるため、以下の式による値が適切で
あることが分かった。 1<|D/H|<3 ‥‥(1) ここで、Hは照明領域RAの副光軸z2からの最大高
さ、すなわちレチクルフィールドRFの半径である。条
件式(1)の上限を越えると、凹面鏡MCに向う往路の
光束と凹面鏡MCで反射する復路の光束との分離が困難
となり、また下限を越えると、レチクルRの走査が困難
となるから、いずれも好ましくない。
However, if it is too short, reticle R
However, the reticle R cannot be scanned because of interference with the optical path bending member and other optical systems constituting the reflection surface M. In order to avoid this, the value according to the following equation was found to be appropriate. 1 <| D / H | < 3 ‥‥ (1) where, H is the maximum height from the secondary optical axis z 2 of the illumination region RA, i.e. the radius of the reticle field RF. Above the upper limit of condition (1), the separation of the return of the light beam reflected by the forward light beam and the concave mirror M C toward the concave mirror M C becomes difficult, and the lower limit, it becomes difficult to scan the reticle R Therefore, neither is preferred.

【0020】また、レチクルRから反射面Mに向う光束
は、レチクルRから離れるに従って広がるが、更に、反
射面Mで反射した後に、第1結像光学系Aの第1レンズ
面に入射するまでの間にも広がる。したがって、第1結
像光学系Aの有効径を小さくするためには、反射面Mか
ら第1結像光学系Aの第1レンズ面までの主光軸z1
の距離D2は、次式を満たすことが好ましい。 |D2/H|<2.5 ‥‥(2) 条件式(2)の上限を越えると、第1結像光学系Aの有
効径が過大となって好ましくない。
The luminous flux from the reticle R to the reflecting surface M spreads as the distance from the reticle R increases, but after the light is reflected by the reflecting surface M, it is incident on the first lens surface of the first imaging optical system A. Spread between. Therefore, in order to reduce the effective diameter of the first imaging optical system A, the distance D 2 of the main optical axis z 1 from the reflective surface M to the first lens surface of the first imaging optical system A, the following It is preferable to satisfy the formula. | D 2 /H|<2.5 (2) If the upper limit of conditional expression (2) is exceeded, the effective diameter of the first imaging optical system A becomes undesirably large.

【0021】また、物体(レチクルR)から反射面まで
の部分に光学系がないために、歪曲収差の補正が困難と
なり、ほとんど第2結像光学系Bで歪曲収差を補正しな
ければならない。また中間像Cは、反射面M付近になる
ように構成することが、光束分離の点で有利である。特
に、レチクルRから反射面Mに向う光束は、レチクルR
から離れるに従って広がるから、レチクルRから離れる
に従って反射面Mは大きく形成する必要がある。それ
故、光束径が極小となる中間像Cの位置は、反射面Mの
上端の近傍に形成することが好ましい。
Further, since there is no optical system in a portion from the object (reticle R) to the reflecting surface, it becomes difficult to correct distortion, and the second imaging optical system B almost needs to correct distortion. It is advantageous to configure the intermediate image C so as to be in the vicinity of the reflection surface M from the viewpoint of light flux separation. In particular, the luminous flux from the reticle R to the reflection surface M is the reticle R
As the distance from the reticle R increases, the reflection surface M needs to be formed larger. Therefore, it is preferable that the position of the intermediate image C where the light beam diameter is minimum is formed near the upper end of the reflection surface M.

【0022】またこのように、2回結像光学系A、Bを
1本の光軸z1上に構成することから、光学系自身の長
さLがかなり長くなるため、できるだけこの長さLを短
縮するよう、第1結像光学系Aの部分を短くしなければ
ならない。このために、第1結像光学系Aは、凹面鏡M
Cから順に、少なくとも、負メニスカスレンズL1と、正
レンズL4とを有することが好ましい。更に、凹面鏡MC
側から順に、少なくとも、負メニスカスレンズL1と、
正レンズL2と、負レンズL3と、正レンズL4を有する
ことが好ましい。このような配置にすることにより、第
1結像光学系Aの長さを短縮することができる。しかし
あまりに短くすると、光学系の収差が補正しきれずに、
光学性能の悪化を招くので、以下の条件式を満たすこと
が好ましい。 20<|L/H|<30 ‥‥(3) 条件式(3)の上限を越えると全系の過大化を招き、下
限を越えると光学性能の悪化を招くから、いずれも好ま
しくない。
Further, since the two-time imaging optical systems A and B are formed on one optical axis z 1 as described above, the length L of the optical system itself becomes considerably long. Must be shortened in order to shorten the length of the first imaging optical system A. For this purpose, the first imaging optical system A includes a concave mirror M
From C sequentially, at least, it is preferred to have a negative meniscus lens L 1, and a positive lens L 4. Further, the concave mirror M C
In order from the side, at least, a negative meniscus lens L 1,
A positive lens L 2, a negative lens L 3, preferably has a positive lens L 4. With such an arrangement, the length of the first imaging optical system A can be reduced. However, if it is too short, the aberration of the optical system cannot be completely corrected,
It is preferable that the following conditional expression is satisfied, since the optical performance is deteriorated. 20 <| L / H | <30 (3) Exceeding the upper limit of conditional expression (3) leads to an excessively large system, while exceeding the lower limit causes deterioration of optical performance.

【0023】また第2結像光学系Bにおいては、中間像
Cから順にまず正レンズL5を配することが好ましい。
これにより、光束が発散するのを防止し、光学系の径の
大型化を防止することが出来る。さらに次に、歪曲収差
を補正するために、負レンズL6を配置することが好ま
しい。また第2結像光学系Bには開口絞りASが配置さ
れるが、この開口絞りAS付近には、球面収差を補正す
るために、正レンズL7と、メニスカスレンズL8を配置
することが好ましい。さらに結像面の付近には、大NA
を達成するために、反射面M側に凸面を向けた正レンズ
9を配置することが好ましい。さらに絞り付近に球面
収差を補正するために、非球面を採用し、また中間像C
付近の正レンズに、歪曲収差補正のための非球面を採用
することが好ましい。
In the second image forming optical system B, it is preferable to arrange the positive lens L 5 in order from the intermediate image C.
Accordingly, it is possible to prevent the luminous flux from diverging, and to prevent the optical system from increasing in diameter. Further then, in order to correct distortion, it is preferable to dispose the negative lens L 6. Also in the second imaging optical system B is the aperture stop AS is disposed in the vicinity of the aperture stop AS, in order to correct the spherical aberration, that a positive lens L 7, placing the meniscus lens L 8 preferable. In addition, near the image plane, a large NA
To achieve, it is preferable to dispose the positive lens L 9 having a convex surface facing the reflective surface M side. In order to correct spherical aberration near the stop, an aspherical surface is adopted.
It is preferable to employ an aspheric surface for distortion correction in the nearby positive lens.

【0024】以上のように、その目的に合った場所に、
その目的に合ったレンズを配置することにより、ほとん
どすべての収差を同時に補正することができる。その結
果、最終的には、レンズ枚数を大幅に削減した、劇的に
小型の光学系を得ることができ、最小の非球面要素を使
いながら、最終的には1本の光軸z1で構成することが
できるのである。なお、上記の実施の形態では、副光軸
2と直交する第1面P1に物体であるレチクルRの照明
領域RAを配置し、主光軸z1と直交する第2面P2に物
体の像を形成したが、これとは逆に、第2面P2に物体
を配置し、第1面P1に像を形成することも出来る。ま
た、レンズの変形と光軸調整について若干難点がある
が、第1面P1と反射面Mとの間に、ごく少数枚のレン
ズ、例えば正レンズを配置し、この少数枚のレンズを含
めて第1結像光学系Aとすることにより、全系の小型化
を図ることも出来る。
As described above, in a place suitable for the purpose,
By arranging a lens for that purpose, almost all aberrations can be corrected simultaneously. As a result, it is possible to finally obtain a dramatically small optical system with a great reduction in the number of lenses, and finally use one optical axis z 1 while using the smallest aspherical element. It can be configured. In the above embodiment, the illumination area RA of the reticle R as an object is arranged on the first plane P 1 orthogonal to the sub optical axis z 2, and is arranged on the second plane P 2 orthogonal to the main optical axis z 1. was formed an image of an object, on the contrary, the object on the second surface P 2 are arranged, it can be formed an image on the first surface P 1. Further, there is a difficulty somewhat Deformation and the optical axis adjustment of the lens, between the first surface P 1 and the reflecting surface M, a small number of lenses, for example, a positive lens is arranged, including the small number of lenses By using the first imaging optical system A, the size of the entire system can be reduced.

【0025】[0025]

【実施例】以下本発明の実施例を示す。図2、図5及び
図8は、本発明による直筒型反射屈折光学系の第1、第
2及び第3実施例を示し、いずれの実施例も、本発明に
よる光学系を走査型露光装置の投影光学系に適用したも
のである。図2に示す第1実施例の投影光学系では、レ
チクルRの後に、光束分離ミラーMが配置されている。
第1結像光学系Aは、光束分離ミラーM側から順に、2
枚の正レンズA1、A2、メニスカスレンズA3、負メニ
スカスレンズA4、正レンズA5、負レンズA6、正レン
ズA7、光束分離ミラーM側に凹面を向けた負メニスカ
スレンズA8、及び凹面鏡MCを配置した往復光学系で構
成されている。第2結像光学系Bは、光束分離ミラーM
側から順に、正レンズB1、負レンズB2、正レンズ
3、負レンズB4、正レンズB5、開口絞りAS、メニ
スカスレンズB6、3枚の正レンズB7、B8、B9、負レ
ンズB10、及び光束分離ミラーM側に凸面を向けた正レ
ンズB11から構成されている。
Embodiments of the present invention will be described below. FIGS. 2, 5 and 8 show first, second and third embodiments of the straight cylindrical catadioptric optical system according to the present invention. This is applied to a projection optical system. In the projection optical system of the first embodiment shown in FIG. 2, a light beam splitting mirror M is disposed after the reticle R.
The first image forming optical system A includes two light beam separating mirrors M in order from the light beam separating mirror M side.
The positive lenses A 1 and A 2 , the meniscus lens A 3 , the negative meniscus lens A 4 , the positive lens A 5 , the negative lens A 6 , the positive lens A 7 , and the negative meniscus lens A having a concave surface facing the light beam separating mirror M side 8, and is composed of a reciprocating optical system disposed concave mirror M C. The second imaging optical system B includes a light beam splitting mirror M
In order from the side, a positive lens B 1 , a negative lens B 2 , a positive lens B 3 , a negative lens B 4 , a positive lens B 5 , an aperture stop AS, a meniscus lens B 6 , three positive lenses B 7 , B 8 , B 9, and a negative lens B 10 and the light beam splitting mirror M side positive lens B 11 having a convex surface facing the.

【0026】図5に示す第2実施例の投影光学系では、
レチクルRの後に、光束分離プリズムPが配置されてい
る。第1結像光学系Aは、光束分離プリズムP側から順
に、2枚の正レンズA1、A2、メニスカスレンズA3
負メニスカスレンズA4、正レンズA5、負レンズA6
正レンズA7、光束分離プリズムP側に凹面を向けた負
メニスカスレンズA8、及び凹面鏡MCを配置した往復光
学系で構成されている。第2結像光学系Bは、光束分離
プリズムP側から順に、正レンズB1、負レンズB2、正
レンズB3、負レンズB4、正レンズB5、開口絞りA
S、メニスカスレンズB6、3枚の正レンズB7、B8
9、負レンズB10、及び光束分離プリズムP側に凸面
を向けた正レンズB11から構成されている。
In the projection optical system of the second embodiment shown in FIG.
After the reticle R, a light beam splitting prism P is arranged. The first imaging optical system A includes two positive lenses A 1 and A 2 , a meniscus lens A 3 , and
Negative meniscus lens A 4 , positive lens A 5 , negative lens A 6 ,
Positive lens A 7, and a negative meniscus lens A 8, and the reciprocating optical system disposed concave mirror M C a concave surface facing the light flux separating prism P side. The second imaging optical system B includes a positive lens B 1 , a negative lens B 2 , a positive lens B 3 , a negative lens B 4 , a positive lens B 5 , and an aperture stop A in this order from the light beam splitting prism P side.
S, meniscus lens B 6 , three positive lenses B 7 , B 8 ,
B 9 , a negative lens B 10 , and a positive lens B 11 having a convex surface facing the light beam splitting prism P side.

【0027】図8に示す第3実施例の投影光学系では、
レチクルRの後に、光束分離ミラーMが配置されてい
る。第1結像光学系Aは、光束分離ミラーM側から順
に、2枚の正レンズA1、A2、メニスカスレンズA3
負メニスカスレンズA4、正レンズA5、負レンズA6
正レンズA7、負レンズA8、正レンズA9、光束分離ミ
ラーM側に凹面を向けた負メニスカスレンズA10、及び
凹面鏡MCを配置した往復光学系で構成されている。第
2結像光学系Bは、光束分離ミラーM側から順に、正レ
ンズB1、負レンズB2、正レンズB3、負レンズB4、正
レンズB5、開口絞りAS、メニスカスレンズB6、3枚
の正レンズB7、B8、B9、負レンズB10、及び光束分
離ミラーM側に凸面を向けた正レンズB11から構成され
ている。
In the projection optical system of the third embodiment shown in FIG.
After the reticle R, a light beam splitting mirror M is arranged. The first imaging optical system A includes two positive lenses A 1 and A 2 , a meniscus lens A 3 , and
Negative meniscus lens A 4 , positive lens A 5 , negative lens A 6 ,
Positive lens A 7, the negative lens A 8, the positive lens A 9, and a negative meniscus lens A 10, and a reciprocating optical system disposed concave mirror M C a concave surface facing the beam splitting mirror M side. The second imaging optical system B includes, in order from the light beam splitting mirror M side, a positive lens B 1 , a negative lens B 2 , a positive lens B 3 , a negative lens B 4 , a positive lens B 5 , an aperture stop AS, and a meniscus lens B 6. It comprises three positive lenses B 7 , B 8 , B 9 , a negative lens B 10 , and a positive lens B 11 having a convex surface facing the light beam splitting mirror M side.

【0028】以下の表1〜表3に、それぞれ第1〜第3
実施例の諸元を示す。各表の[主要諸元]中、λは使用
波長、βは投影倍率、NAは像側開口数、φmaxはレン
ズの最大有効径を表す。 [光学部材諸元]中、第1欄NoはレチクルR側からの
各光学面の番号、第2欄rは各光学面の曲率半径、第3
欄dは各光学面から次の光学面までの光軸上の間隔、第
4欄は各光学面又は光学部材の番号を示す。各実施例と
も、すべてのレンズとプリズムの硝材は溶融石英であ
り、使用波長(λ=193nm)での溶融石英の屈折率
nは、n=1.56033である。
The following Tables 1 to 3 respectively show the first to third
The specifications of the embodiment will be described. In [Main Specifications] of each table, [lambda] represents a wavelength used, [beta] represents a projection magnification, NA represents an image-side numerical aperture, and [phi] max represents a maximum effective diameter of a lens. In [optical member specifications], the first column No is the number of each optical surface from the reticle R side, the second column r is the radius of curvature of each optical surface, and the third column r is the third column r.
Column d shows the interval on the optical axis from each optical surface to the next optical surface, and column 4 shows the number of each optical surface or optical member. In each of the embodiments, the glass material of all the lenses and prisms is fused silica, and the refractive index n of the fused silica at the wavelength used (λ = 193 nm) is n = 1.60333.

【0029】また第1欄No中*印を付した光学面は非
球面を示し、非球面についての第2欄rは、頂点曲率半
径である。非球面の形状は、 y:光軸からの高さ z:接平面から非球面までの光軸方向の距離 r:頂点曲率半径 κ:円錐係数 A、B、C、D:非球面係数 によって表わしており、[非球面データ]に非球面係数
A、B、C、Dを示した。各非球面とも、円錐係数κは
κ=0.0である。
The optical surface marked with * in the first column No indicates an aspherical surface, and the second column r for the aspherical surface is the radius of curvature of the vertex. The shape of the aspheric surface is y: height from the optical axis z: distance in the optical axis direction from the tangent plane to the aspherical surface r: radius of curvature of the vertex κ: conical coefficient A, B, C, D: aspherical surface coefficient Data] shows the aspherical coefficients A, B, C, and D. For each aspheric surface, the cone coefficient κ is κ = 0.0.

【0030】なお各実施例とも、投影光学系の露光領域
WAは25×6.6mmの矩形開口であるが、この露光
領域WAに対してウエハWを相対走査することにより、
ウエハW上での全体の露光面積として、例えば25×3
3mmの領域を露光することが出来る。また、各実施例
とも、使用レンズの有効径は、通常のこのスペックで使
用される屈折系球面光学系の3/4程度に小さく、使用
レンズ枚数は、屈折球面光学系の約半分程度に少ない。
In each of the embodiments, the exposure area WA of the projection optical system has a rectangular opening of 25 × 6.6 mm. By scanning the wafer W relative to the exposure area WA,
As the entire exposure area on the wafer W, for example, 25 × 3
An area of 3 mm can be exposed. In each of the embodiments, the effective diameter of the lens used is as small as about 屈折 of the refractive spherical optical system normally used in this specification, and the number of lenses used is about half that of the refractive spherical optical system. .

【0031】[0031]

【表1】 [主要諸元] λ=193nm(ArFエキシマレーザー) β=1/4 NA=0.7 H=70.36mm D=160.1mm D2=10.0mm L=1534mm φmax=220mm 露光領域:25×6.6mm(矩形) |D/H|=2.28 |D2/H|=0.14 |L/H|=21.8 [光学部材諸元] No r d 0 ∞ 160.100000 R 1 ∞ -10.000000 M 2 -1788.71639 -29.000000 A14 3 419.30758 -0.097200 4 -250.61403 -33.000000 A24 5 -6136.00339 -138.422781 6 244.13129 -27.000000 A3 7 236.86664 -0.200000 8 -441.03076 -17.000000 A4 9 -130.33902 -13.232045 10 -391.22278 -19.000000 A5 11 -4917.23961 -18.600000 12 245.26287 -17.000000 A63 13 -1615.89591 -1.843450 14 -241.95870 -25.000000 A72 15 14452.00549 -62.163582 16 145.04293 -18.000000 A81 17 347.29355 -19.661891 18 248.23614 19.661891 MC 19 347.29355 18.000000 A8 20 145.04293 62.163582 21 14452.00549 25.000000 A7 22 -241.95870 1.843450 23 -1615.89591 17.000000 A6 24 245.26287 18.600000 25 -4917.23957 19.000000 A5 26 -391.22278 13.232045 27 -130.33902 17.000000 A4 28 -441.03076 0.200000 29 236.86664 27.000000 A3 30 244.13129 138.422781 31 -6136.00339 33.000000 A2 32 -250.61403 0.097200 33 419.30758 29.000000 A1 34 -1788.71639 291.668555 *35 8637.19547 32.000000 B15 36 -278.32248 120.501173 37 -284.21267 21.000000 B26 38 380.00000 7.640330 39 977.55302 45.000000 B3 40 -289.72006 188.674290 41 -782.07989 24.000000 B4 42 275.00000 2.199165 43 311.81819 56.000000 B57 44 -375.13741 11.588720 45 − 10.000000 AS 46 196.65458 25.000000 B68 *47 180.51391 10.087193 48 253.87648 40.000000 B7 49 8600.70931 2.214198 50 157.11074 48.000000 B8 51 1256.41165 55.106219 52 113.93043 33.000000 B9 53 886.99217 8.485632 54 -18818.69933 12.000000 B10 55 207.40711 0.100000 56 109.31199 45.000000 B119 57 14193.19706 6.000000 58 ∞ W [非球面データ] No=35 A=-0.123690×10-7 B= 0.129803×10-13 C=-0.212874×10-18 D=-0.943396×10-22 No=47 A= 0.136582×10-7 B= 0.193143×10-12 C= 0.306903×10-17 D= 0.487055×10-22 [Table 1] [Main specifications] λ = 193nm (ArF excimer laser) β = 1/4 NA = 0.7 H = 70.36mm D = 160.1mm D 2 = 10.0mm L = 1534mm φ max = 220mm exposure area: 25 × 6.6 mm (rectangle) | D / H | = 2.28 | D 2 /H|=0.14 | L / H | = 21.8 [Optical member specifications] Nor d 0 ∞ 160.100000 R 1 ∞ -10.000000 M 2 -1788.71639 -29.000000 A 1 L 4 3 419.30758 -0.097200 4 -250.61403 -33.000000 A 2 L 4 5 -6136.00339 -138.422781 6 244.13129 -27.000000 A 3 7 236.86664 -0.200000 8 -441.03076 -17.000000 A 4 9 -130.33902 -13.232045 10 -391.22278-1 5 11 -4917.23961 -18.600000 12 245.26287 -17.000000 A 6 L 3 13 -1615.89591 -1.843450 14 -241.95870 -25.000000 A 7 L 2 15 14452.00549 -62.163582 16 145.04293 -18.000000 A 8 L 1 17 347.29355 -19.661891 18 248.23614 19.661891 M C 19 347.29355 18.000000 A 8 20 145.04293 62.163582 21 14452.00549 25.000000 A 7 22 -241.95870 1.843450 23 -1615.89591 17.000000 A 6 24 245.26287 18.600000 25 -4917.23957 19.000000 A 5 26 -391.22278 13.232045 27 -130.33902 17.000000 A 4 28 -441.03076 0.200000 29 236.86664 27.000000 A 3 30 244.13129 138.422781 31 -6136.00339 33.000000 A 2 32 -250.61403 0.097200 33 419.30758 29.000000 A 1 34 -1788.71639 291.668555 * 35 8637.19547 32.000000 B 1 L 5 36 -278.32248 120.501173 37 -284.21267 21.000000 B 2 L 6 38 380.00000 7.640330 39 977.55302 45.000000 B 3 40 -289.72006 188.674290 41 -782.07989 24.000000 B 4 42 275.00000 2.199165 43 311.81819 56.000000 B 5 L 7 44 -375.13741 11.588720 45 - 10.000000 AS 46 196.65458 25.000000 B 6 L 8 * 47 180.51391 10.087193 48 253.87648 40.000000 B 7 49 8600.70931 2.214198 50 157.11074 48.000000 B 8 51 1256.41165 55.106219 52 113.93043 33.000000 B 9 53 886.99217 8.485632 54 -18818.69933 12.000000 B 10 55 207.40711 0.100000 56 109.31199 45.000000 B 11 L 9 57 14193.19706 6.000000 58 ∞ W [Aspherical data] No = 35 A = -0.123690 × 10 -7 B = 0.129803 × 10 -13 C = -0.212874 × 10 -18 D = -0.943396 × 10 -22 No = 47 A = 0.136582 × 10 -7 B = 0.193143 × 10 - 12 C = 0.306903 × 10 -17 D = 0.487055 × 10 -22

【0032】[0032]

【表2】 [主要諸元] λ=193nm(ArFエキシマレーザー) β=1/4 NA=0.75 H=70.36mm D=190.1mm D2=20.0mm L=1693mm φmax=234mm 露光領域:25×6.6mm(矩形) |D/H|=2.70 |D2/H|=0.28 |L/H|=24.1 [光学部材諸元] No r d 0 ∞ 85.100000 R 1 ∞ 105.000000 P 2 ∞ -15.000000 P M 3 ∞ -5.000000 4 -1788.71639 -29.000000 A14 5 419.30758 -0.097200 6 -310.64095 -33.000000 A24 7 -2807.83665 -152.548704 8 287.16506 -27.000000 A3 9 255.48240 -0.200000 10 -367.14810 -17.000000 A4 11 -141.19742 -14.911131 12 -398.90704 -19.000000 A5 13 -608.94218 -18.600000 14 232.39912 -17.000000 A63 15 1698.12647 -15.952383 16 -327.74499 -25.000000 A72 17 6237.96729 -61.535574 18 166.40938 -18.000000 A81 19 395.75289 -55.022688 20 301.44131 55.022688 MC 21 395.75289 18.000000 A8 22 166.40938 61.535574 23 6237.96729 25.000000 A7 24 -327.74499 15.952383 25 1698.12647 17.000000 A6 26 232.39912 18.600000 27 -608.94218 19.000000 A5 28 -398.90704 14.911131 29 -141.19742 17.000000 A4 30 -367.14810 0.200000 31 255.48240 27.000000 A3 32 287.16506 152.548704 33 -2807.83665 33.000000 A2 34 -310.64095 0.097200 35 419.30758 29.000000 A1 36 -1788.71639 303.707152 *37 -20585.21661 32.000000 B15 38 -292.08517 141.774594 39 -331.57665 21.000000 B26 40 380.00000 6.23928641 61
5.03205 45.000000 B3 42 -350.96686 195.254624 43 -860.60392 24.000000 B4 44 277.65121 2.310597 45 304.34780 56.000000 B57 46 -515.18847 46.552459 47 − 18.195879 AS 48 226.73175 25.000000 B68 *49 231.03852 11.577787 50 282.73561 40.000000 B7 51 -1674.49168 4.412329 52 169.98274 48.000000 B8 53 1665.64536 63.416012 54 124.88297 33.000000 B9 55 711.33878 8.237993 56 2405.86425 12.000000 B10 57 164.17050 0.100000 58 117.66988 45.000000 B119 59 1593.84226 6.000000 60 ∞ W [非球面データ] No=37 A=-0.888458×10-8 B= 0.557250×10-14 C=-0.314040×10-18 D=-0.462916×10-22 No=49 A= 0.168833×10-7 B= 0.172714×10-12 C= 0.225018×10-17 D= 0.368469×10-22
[Main specifications] λ = 193 nm (ArF excimer laser) β = 1/4 NA = 0.75 H = 70.36 mm D = 190.1 mm D 2 = 20.0 mm L = 1693 mm φ max = 234 mm Exposure area: 25 × 6.6 mm (rectangle) | D / H | = 2.70 | D 2 /H|=0.28 | L / H | = 24.1 [Specifications of optical members] Nor d 0 ∞ 85.100000 R 1 ∞ 105.000000 P 2 -1 -15.000000 PM 3 ∞ -5.000000 4 -1788.71639 -29.000000 A 1 L 4 5 419.30758 -0.097200 6 -310.64095 -33.000000 A 2 L 4 7 -2807.83665 -152.548704 8 287.16506 -27.000000 A 3 9 255.48240 -0.200000 10 -367.14810 -17.000000 A 4 11- 141.19742 -14.911131 12 -398.90704 -19.000000 A 5 13 -608.94218 -18.600000 14 232.39912 -17.000000 A 6 L 3 15 1698.12647 -15.952383 16 -327.74499 -25.000000 A 7 L 2 17 6237.96729 -61.535574 18 166.40938 -18.000000 A 8 L 1 19 395.75289 -55.022688 20 301.44131 55.022688 M C 21 395.75289 18.000000 A 8 22 166.40938 61.535574 23 6237.96729 2 5.000000 A 7 24 -327.74499 15.952383 25 1698.12647 17.000000 A 6 26 232.39912 18.600000 27 -608.94218 19.000000 A 5 28 -398.90704 14.911131 29 -141.19742 17.000000 A 4 30 -367.14810 0.200000 31 255.48240 27.000000 A 3 32 287.16506 152.548704 33 -2807.83665 33.000000 A 2 34 -310.64095 0.097200 35 419.30758 29.000000 A 1 36 -1788.71639 303.707152 * 37 -20585.21661 32.000000 B 1 L 5 38 -292.08517 141.774594 39 -331.57665 21.000000 B 2 L 6 40 380.00000 6.23928641 61
5.003205 45.000000 B 3 42 -350.96686 195.254624 43 -860.60392 24.000000 B 4 44 277.65121 2.310597 45 304.34780 56.000000 B 5 L 7 46 -515.18847 46.552459 47-18.195879 AS AS 48 226.73175 25.000000 B 6 L 8 * 49 231.03852.71 11.787 B 7 51 -1674.49168 4.412329 52 169.98274 48.000000 B 8 53 1665.64536 63.416012 54 124.88297 33.000000 B 9 55 711.33878 8.237993 56 2405.86425 12.000000 B 10 57 164.17050 0.100000 58 117.66988 45.000000 B 11 L 9 59 1593.84226 6.000000 60 ∞ 37 A = -0.888458 × 10 -8 B = 0.557250 × 10 -14 C = -0.314040 × 10 -18 D = -0.462916 × 10 -22 No = 49 A = 0.168833 × 10 -7 B = 0.172714 × 10 -12 C = 0.225018 × 10 -17 D = 0.368469 × 10 -22

【0033】[0033]

【表3】 [主要諸元] λ=193nm(ArFエキシマレーザー) β=1/4 NA=0.8 H=70.36mm D=176.0mm D2=20.0mm L=1731mm φmax=246mm 露光領域:25×6.6mm(矩形) |D/H|=2.50 |D2/H|=0.28 |L/H|=24.6 [光学部材諸元] No r d 0 ∞ 176.024677 R 1 ∞ -20.000000 M 2 -1788.71639 -33.000000 A14 3 419.30758 -0.097200 4 -268.74569 -40.000000 A24 5 -3732.51475 -132.767922 6 239.37693 -27.000000 A3 7 244.82836 -0.216094 8 -2548.31604 -25.000000 A4 9 -143.32698 -8.449526 10 -204.90390 -45.000000 A5 11 -272.57153 -0.100000 12 327.21563 -17.000000 A6 13 -181.11096 -5.571460 14 -266.20425 -25.000000 A7 15 -1015.69653 -18.600000 16 194.20523 -17.000000 A83 17 997.00876 -6.595016 18 -338.50796 -25.000000 A92 19 -3625.68572 -29.822032 20 222.83295 -18.000000 A101 21 455.81520 -42.796334 22 295.50430 42.796334 MC 23 455.81520 18.000000 A10 24 222.83295 29.822032 25 -3625.68572 25.000000 A9 26 -338.50796 6.595016 27 997.00876 17.000000 A8 28 194.20523 18.600000 29 -1015.69652 25.000000 A7 30 -266.20425 5.571460 31 -181.11096 17.000000 A6 32 327.21563 0.100000 33 272.57153 45.000000 A5 34 -204.90390 8.449526 35 -143.32698 25.000000 A4 36 -2458.31604 0.216094 37 244.82836 27.000000 A3 38 239.37693 132.767922 39 -3732.51475 40.000000 A2 40 -268.74569 0.097200 41 419.30758 33.000000 A1 42 -1788.71639 322.860627 *43 1988.13960 40.000000 B15 44 -346.17707 118.096619 45 -314.01518 21.000000 B26 46 380.00000 7.483728 47 692.44628 45.000000 B3 48 -337.77571 215.989100 49 -792.05453 24.000000 B4 50 285.31369 2.593128 51 316.36067 56.000000 B57 52 -463.77046 38.289875 53 − 11.964033 AS 54 233.30662 25.000000 B68 *55 234.22897 13.010023 56 255.52550 45.000000 B7 57 -2621.18382 12.423981 58 181.15092 55.000000 B8 59 3385.66441 57.958719 60 120.24350 33.000000 B9 61 683.24154 5.786488 62 1209.78340 12.000000 B10 63 174.98798 0.101872 64 125.78514 45.000000 B119 65 1885.85548 6.000000 66 ∞ W [非球面データ] No=43 A=-0.619385×10-8 B= 0.120817×10-13 C=-0.197420×10-18 D=-0.295727×10-22 No=55 A= 0.174263×10-7 B= 0.204171×10-12 C= 0.268111×10-17 D= 0.477853×10-22 [Main specifications] λ = 193 nm (ArF excimer laser) β = 1/4 NA = 0.8 H = 70.36 mm D = 176.0 mm D 2 = 20.0 mm L = 1731 mm φ max = 246 mm Exposure area: 25 × 6.6 mm (rectangle) | D / H | = 2.50 | D 2 /H|=0.28 | L / H | = 24.6 [Optical member specifications] Nor d 0 ∞ 176.024677 R 1 ∞ -20.000000 M 2 -1788.71639 -33.000000 A 1 L 4 3 419.30758 -0.097200 4 -268.74569 -40.000000 A 2 L 4 5 -3732.51475 -132.767922 6 239.37693 -27.000000 A 3 7 244.82836 -0.216094 8 -2548.31604 -25.000000 A 4 9 -143.32698 -8.449526 10 -204.90390 -45.000000 A 5 11 -272.57153 -0.100000 12 327.21563 -17.000000 A 6 13 -181.11096 -5.571460 14 -266.20425 -25.000000 A 7 15 -1015.69653 -18.600000 16 194.20523 -17.000000 A 8 L 3 17 997.00876 -6.595016 18 -338.50796 -25.000000 A 9 L 2 19 -3625.68572 -29.822032 20 222.83295 -18.000000 A 10 L 1 21 455.81520 -42.796334 22 295.50430 42.796334 M C 23 455.81520 18.000000 A 10 24 222.83295 29.822032 25 -3625.68572 25.000000 A 9 26 -338.50796 6.595016 27 997.00876 17.000000 A 8 28 194.20523 18.600000 29 -1015.69652 25.000000 A 7 30 -266.20425 5.571460 31 -181.11096 17.000000 A 6 32 327.21563 0.100000 33 272.57153 45.000000 A 5 34 -204.90390 8.449526 35 -143.32698 25.000000 A 4 36 -2458.31604 0.216094 37 244.82836 27.000000 A 3 38 239.37693 132.767922 39 -3732.51475 40.000000 A 2 40 -268.74569 0.097200 41 419.30758 33.000000 A 1 42 -1788.71639 322.860627 * 43 1988.13960 40.000000 B 1 L 5 44 -346.17707 118.096619 45 -314.01518 21.000000 B 2 L 6 46 380.00000 7.483728 47 692.44628 45.000000 B 3 48 -337.77571 215.989100 49 -792.05453 24.000000 B 4 50 285.31369 2.593128 51 316.36067 56.000000 B 5 L 7 52 -463.77046 38.289875 53 - 11.964033 AS 54 233.30662 25.000000 B 6 L 8 * 55 234.22897 13.010023 56 255.52550 45.000000 B 7 57 -2621.18382 12.423981 58 181.15092 55.000000 B 8 59 3385.6644 1 57.958719 60 120.24350 33.000000 B 9 61 683.24154 5.786488 62 1209.78340 12.000000 B 10 63 174.98798 0.101872 64 125.78514 45.000000 B 11 L 9 65 1885.85548 6.000000 66 W W [Aspherical data] No = 43 A = -0.619385 × 10 -8 B = 0.1817 × 10 -13 C = -0.197420 × 10 -18 D = -0.295727 × 10 -22 No = 55 A = 0.174263 × 10 -7 B = 0.204171 × 10 -12 C = 0.268111 × 10 -17 D = 0.477853 × 10 − twenty two

【0034】図3に第1実施例の球面収差、非点収差及
び歪曲収差を示し、図4に第1実施例の横収差を示す。
同様に図6と図7に第2実施例の諸収差を示し、図9と
図10に第3実施例の諸収差を示す。各収差図において
NAは像側開口数を表し、Yは像高を表す。また非点収
差図中、点線Mはメリジオナル像面を表し、実線Sはサ
ジタル像面を表す。各図より明らかなように、193n
mの単波長において、各実施例ともほぼ無収差に近い状
態まで良好に補正された優れた性能を有することが分か
る。
FIG. 3 shows the spherical aberration, astigmatism and distortion of the first embodiment, and FIG. 4 shows the lateral aberration of the first embodiment.
Similarly, FIGS. 6 and 7 show various aberrations of the second embodiment, and FIGS. 9 and 10 show various aberrations of the third embodiment. In each aberration diagram, NA represents the image-side numerical aperture, and Y represents the image height. In the astigmatism diagram, a dotted line M represents a meridional image plane, and a solid line S represents a sagittal image plane. As is clear from each figure, 193n
It can be seen that, at a single wavelength of m, each of the examples has excellent performance that is satisfactorily corrected to a state close to almost no aberration.

【0035】なお、第1実施例と第3実施例では、凹面
鏡MCに向う光束と凹面鏡MCからの反射光束とを分離す
るために反射面Mを用いているが、この反射面Mの形状
としては、凹面鏡MCからの反射光束だけを通過させる
穴開き反射ミラーとしても良い。また、偏光ビームスプ
リッタと1/4波長板とを組み合わせて、レチクルRか
ら入射する偏光光は反射し、凹面鏡MCから入射する偏
光光は透過するように構成してもよい。
[0035] In the first embodiment and the third embodiment uses the reflective surface M to separate the reflected light beam from the light beam and the concave mirror M C toward the concave mirror M C, of the reflective surface M the shape may be a perforated reflecting mirror for passing only the light beam reflected from the concave mirror M C. Further, by combining the polarization beam splitter and a quarter-wave plate, the polarized light incident from the reticle R is reflected, polarized light incident from the concave mirror M C may be configured to transmit.

【0036】[0036]

【発明の効果】以上のように本発明では、結像部分を構
成する光学系を1本の光軸上に配置し、光束分離のため
の反射面は、結像光学系の外側に配置している。そのた
め、光学系全体を光軸中心で調べることができ、各内部
レンズの傾きや位置ずれを検知することができるのであ
る。すなわち、光軸の折り曲げを光学系の内部で行う
と、光学系の調整が非常に困難となるが、本発明では光
路を折り曲げる反射面を光学系の外部に配置しているか
ら、光学系の調整が非常に楽になる。
As described above, according to the present invention, the optical system constituting the image forming portion is arranged on one optical axis, and the reflection surface for separating the light beam is arranged outside the image forming optical system. ing. Therefore, the entire optical system can be examined at the center of the optical axis, and the inclination and displacement of each internal lens can be detected. That is, if the bending of the optical axis is performed inside the optical system, the adjustment of the optical system becomes very difficult. However, in the present invention, since the reflecting surface for bending the optical path is arranged outside the optical system, Adjustment becomes very easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理図である。FIG. 1 is a principle diagram of the present invention.

【図2】第1実施例の投影光学系の光路図である。FIG. 2 is an optical path diagram of a projection optical system according to a first embodiment.

【図3】第1実施例の球面収差、非点収差、及び歪曲収
差図である。
FIG. 3 is a diagram illustrating spherical aberration, astigmatism, and distortion of the first embodiment.

【図4】第1実施例の横収差図である。FIG. 4 is a lateral aberration diagram of the first example.

【図5】第2実施例の投影光学系の光路図である。FIG. 5 is an optical path diagram of a projection optical system according to a second embodiment.

【図6】第2実施例の球面収差、非点収差、及び歪曲収
差図である。
FIG. 6 is a diagram of spherical aberration, astigmatism, and distortion of the second embodiment.

【図7】第2実施例の横収差図である。FIG. 7 is a lateral aberration diagram of the second embodiment.

【図8】第3実施例の投影光学系の光路図である。FIG. 8 is an optical path diagram of a projection optical system according to a third embodiment.

【図9】第3実施例の球面収差、非点収差、及び歪曲収
差図である。
FIG. 9 is a diagram of spherical aberration, astigmatism, and distortion of the third embodiment.

【図10】第3実施例の横収差図である。FIG. 10 is a lateral aberration diagram of the third example.

【符号の説明】[Explanation of symbols]

1…主光軸 z2…副光軸 P1…第1面 P2…第2面 Q1、Q2…交線 C…中間像 M…反射面 MC…凹面鏡 R…レチクル W…ウエハ RA…照明領域 WA…露光領域 A…第1結像光学系 B…第2結像光学系z 1 ... main optical axis z 2 ... Fukuhikarijiku P 1 ... first surface P 2 ... second surface Q 1, Q 2 ... line of intersection C ... intermediate image M ... reflecting surface M C ... concave mirror R ... reticle W ... wafer RA: illumination area WA: exposure area A: first imaging optical system B: second imaging optical system

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】主光軸の一端側に凹面鏡を配置し、主光軸
の他端側に該主光軸と直交する第2面を設け、前記凹面
鏡と第2面との間に反射面を配置し、該反射面と前記凹
面鏡との間に該凹面鏡と共に第1結像光学系を形成する
複数枚のレンズを配置し、前記反射面と前記第2面との
間に第2結像光学系を形成する複数枚のレンズを配置
し、前記第1結像光学系の主光軸が前記反射面によって
折り曲げられる方向を副光軸とし、該副光軸に該副光軸
と直交する第1面を設け、 前記副光軸を含み主光軸と直交する平面と前記第1面と
の交線によって2分される該第1面のいずれか一方の領
域に、物体を配置し又は該物体の像を形成し、 前記主光軸を含み副光軸と直交する平面と前記第2面と
の交線によって2分される該第2面のいずれか一方の領
域に、前記像を形成し又は前記物体を配置し、 前記物体の中間像を前記反射面の近傍に形成したことを
特徴とする直筒型反射屈折光学系。
1. A concave mirror is disposed at one end of a main optical axis, a second surface orthogonal to the main optical axis is provided at the other end of the main optical axis, and a reflecting surface is provided between the concave mirror and the second surface. Are arranged, and a plurality of lenses forming a first imaging optical system together with the concave mirror are arranged between the reflecting surface and the concave mirror, and a second image is formed between the reflecting surface and the second surface. A plurality of lenses forming an optical system are arranged, and a direction in which a main optical axis of the first imaging optical system is bent by the reflection surface is defined as a sub optical axis, and the sub optical axis is orthogonal to the sub optical axis. Providing a first surface, disposing an object in one of the regions of the first surface which is bisected by an intersection line between the plane including the sub optical axis and orthogonal to the main optical axis and the first surface; or Forming an image of the object, any one of the areas of the second surface being bisected by an intersection of a plane including the main optical axis and orthogonal to the sub-optical axis and the second surface; To form the image or the object placed, a straight barrel type catadioptric system, characterized in that an intermediate image of the object formed in the vicinity of the reflecting surface.
【請求項2】前記第1面に前記物体を配置し、前記第2
面に前記像を形成したことを特徴とする請求項1記載の
直筒型反射屈折光学系。
2. The method according to claim 2, further comprising: arranging the object on the first surface;
The catadioptric optical system according to claim 1, wherein the image is formed on a surface.
【請求項3】以下の条件式を満足することを特徴とする
請求項1又は2記載の直筒型反射屈折光学系。 1<|D/H|<3 20<|L/H|<30 但し、H:前記第1面に配置される物体又は第1面に形
成される像の前記副光軸からの最大高さ D :前記第1面から反射面までの前記副光軸上の距離 L:前記凹面鏡から第2面までの前記主光軸上の距離 である。
3. The method according to claim 1, wherein the following conditional expression is satisfied:
The straight-tube catadioptric optical system according to claim 1. 1 <| D / H | <3 20 <| L / H | <30 where H is an object placed on the first surface or a shape on the first surface
The maximum height D of the image formed from the sub-optical axis D : Distance on the sub optical axis from the first surface to the reflecting surface L: distance on the main optical axis from the concave mirror to the second surface
【請求項4】前記第1結像光学系は、前記凹面鏡側から
順に、少なくとも、負メニスカスレンズL1と、正レン
ズL4とを有することを特徴とする請求項1、2又は3
記載の直筒型反射屈折光学系。
Wherein said first imaging optical system comprises, in order from the concave mirror side, at least, according to claim 1, 2 or 3, characterized in that it has a negative meniscus lens L 1, and a positive lens L 4
The straight cylindrical catadioptric optical system as described in the above.
【請求項5】前記第1結像光学系の前記負メニスカスレ
ンズL1と正レンズL4との間に、前記凹面鏡側から順
に、少なくとも正レンズL2と負レンズL3とを有するこ
とを特徴とする請求項4記載の直筒型反射屈折光学系。
During the method according to claim 5 wherein said first imaging optical system and a negative meniscus lens L 1 and the positive lens L 4, in order from the concave mirror side, by having at least a positive lens L 2 and the negative lens L 3 The straight-tube catadioptric optical system according to claim 4, characterized in that:
【請求項6】前記第2結像光学系は、開口絞りを有し、 該開口絞りの近傍に、少なくとも正レンズL7を有し、 前記第2面の直前に、少なくとも前記反射面側に凸面を
向けた正レンズL9を有することを特徴とする請求項
1、2、3、4又は5記載の直筒型反射屈折光学系。
Wherein said second imaging optical system has an aperture stop, in the vicinity of the aperture stop, at least a positive lens L 7, immediately before the second surface, at least on the reflecting surface side claim 1, 2, 3, 4 or 5 straight barrel type catadioptric optical system according to characterized in that it has a positive lens L 9 with a convex surface.
【請求項7】前記第2結像光学系は、前記反射面の後
に、少なくとも正レンズL5を有し、 前記開口絞りの近傍に、少なくとも正レンズL7とメニ
スカスレンズL8とを有し、 前記第2面の直前に、少なくとも前記反射面側に凸面を
向けた正レンズL9を有することを特徴とする請求項6
項記載の直筒型反射屈折光学系。
Wherein said second imaging optical system, after the reflecting surface, at least a positive lens L 5, in the vicinity of the aperture stop, and at least the positive lens L 7 and the meniscus lens L 8 , claim 6 immediately before the second surface, characterized in that it has a positive lens L 9 having a convex surface on at least the reflecting side
Item 10. A straight-tube catadioptric optical system according to Item 7.
【請求項8】以下の条件式を満足することを特徴とする
請求項1〜7のいずれか1項記載の直筒型反射屈折光学
系。 |D2/H|<2.5 但し、H:前記第1面に配置される物体又は第1面に形
成される像の前記副光軸からの最大高さ D2:前記反射面から前記第1結像光学系の第1レンズ
面までの前記主光軸上の距離 である。
8. A straight cylindrical catadioptric optical system according to claim 1, wherein the following conditional expression is satisfied. | D 2 /H|<2.5, where H: the maximum height of the object arranged on the first surface or the image formed on the first surface from the sub optical axis D 2 : the height from the reflection surface This is the distance on the main optical axis to the first lens surface of the first imaging optical system.
【請求項9】非球面を少なくとも2面以上含むことを特
徴とする請求項1〜8のいずれか1項記載の直筒型反射
屈折光学系。
9. The straight cylindrical catadioptric optical system according to claim 1, comprising at least two aspheric surfaces.
【請求項10】すべてのレンズを同一の硝材によって形
成したことを特徴とする請求項1〜9のいずれか1項記
載の直筒型反射屈折光学系。
10. The straight cylindrical catadioptric optical system according to claim 1, wherein all the lenses are formed of the same glass material.
JP10111508A 1998-04-07 1998-04-07 Cylindrical optical reflection and refraction system Pending JPH11295605A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10111508A JPH11295605A (en) 1998-04-07 1998-04-07 Cylindrical optical reflection and refraction system
US09/286,376 US6097537A (en) 1998-04-07 1999-04-05 Catadioptric optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10111508A JPH11295605A (en) 1998-04-07 1998-04-07 Cylindrical optical reflection and refraction system

Publications (1)

Publication Number Publication Date
JPH11295605A true JPH11295605A (en) 1999-10-29

Family

ID=14563095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10111508A Pending JPH11295605A (en) 1998-04-07 1998-04-07 Cylindrical optical reflection and refraction system

Country Status (1)

Country Link
JP (1) JPH11295605A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003043362A (en) * 2001-05-22 2003-02-13 Carl Zeiss Semiconductor Manufacturing Technologies Ag Catadioptric reduction lens
KR20200060804A (en) * 2018-11-23 2020-06-02 한국 천문 연구원 Method to define circular shape off-axis aspheric mirrors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003043362A (en) * 2001-05-22 2003-02-13 Carl Zeiss Semiconductor Manufacturing Technologies Ag Catadioptric reduction lens
KR20200060804A (en) * 2018-11-23 2020-06-02 한국 천문 연구원 Method to define circular shape off-axis aspheric mirrors

Similar Documents

Publication Publication Date Title
US6995918B2 (en) Projection optical system and projection exposure apparatus
USRE38421E1 (en) Exposure apparatus having catadioptric projection optical system
JP3635684B2 (en) Catadioptric reduction projection optical system, catadioptric optical system, and projection exposure method and apparatus
US7006304B2 (en) Catadioptric reduction lens
US5071240A (en) Reflecting optical imaging apparatus using spherical reflectors and producing an intermediate image
USRE39296E1 (en) Catadioptric projection systems
KR100876153B1 (en) Projection exposure lens system with aspherical elements
US6396067B1 (en) Mirror projection system for a scanning lithographic projection apparatus, and lithographic apparatus comprising such a system
EP1069448A1 (en) Catadioptric optical system and projection exposure apparatus equipped with the same
JP2007532938A (en) Catadioptric projection objective
JPH1020195A (en) Cata-dioptric system
JP2000031041A (en) Reduced objective
US7038761B2 (en) Projection exposure apparatus
US6097537A (en) Catadioptric optical system
US4688904A (en) Reflecting optical system
US6069749A (en) Catadioptric reduction optical system
USRE38438E1 (en) Catadioptric reduction projection optical system and exposure apparatus having the same
JP3812051B2 (en) Catadioptric projection optical system
JPH1010429A (en) Double image-formation optical system
JPH1010430A (en) Double image-formation optical system
JPH11295605A (en) Cylindrical optical reflection and refraction system
JP4375826B2 (en) Straight cylindrical catadioptric optical system, scanning exposure apparatus, and scanning exposure method
JP2005512151A (en) Catadioptric reduction objective lens
JP2003233009A (en) Catadioptric projection optical system, catadioptric system, projection exposing device and projection exposing method
US7046459B1 (en) Catadioptric reductions lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20050811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060510

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20060510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080422