[go: up one dir, main page]

JPH11286557A - Conduit having wear resistance and corrosion resistance - Google Patents

Conduit having wear resistance and corrosion resistance

Info

Publication number
JPH11286557A
JPH11286557A JP10411798A JP10411798A JPH11286557A JP H11286557 A JPH11286557 A JP H11286557A JP 10411798 A JP10411798 A JP 10411798A JP 10411798 A JP10411798 A JP 10411798A JP H11286557 A JPH11286557 A JP H11286557A
Authority
JP
Japan
Prior art keywords
density polyethylene
hdpe
polyethylene
test
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10411798A
Other languages
Japanese (ja)
Inventor
Masanobu Matsumura
昌信 松村
Akihiro Yabuki
彰広 矢吹
Masao Hirashima
雅雄 平嶋
Masayuki Tsunaga
正行 津永
Shuichi Matsunami
秀一 松並
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mesco Inc
Original Assignee
Mesco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mesco Inc filed Critical Mesco Inc
Priority to JP10411798A priority Critical patent/JPH11286557A/en
Publication of JPH11286557A publication Critical patent/JPH11286557A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sewage (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conduit having wear resistance and corrosion resistance, flexibility and high wear resistance, neither deforming a pipe wall nor causing a crack on the pipe wall for a long period of time even in the case of transportation of a fluid at a high speed under high pressure. SOLUTION: This conduit having wear resistance and corrosion resistance comprises a polyethylene having 60-80% crystallinity and 2.5×10<5> to 2.5×10<7> weight-average molecular weight. To be concrete, a high-density polyethylene(HDPE) or a cross-linked high-density polyethylene(XL-HDPE) produced by subjecting the high-density polyethylene(HDPE) to a cross-linking reaction is used as the polyethylene.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、汚水、汚泥、スラ
リー等を輸送する下水道用導管、スラリー輸送用導管と
して好適な耐摩耗性耐腐食性導管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wear-resistant and corrosion-resistant conduit suitable for transporting sewage, sludge, slurry, etc., as a conduit for sewage and slurry.

【0002】[0002]

【従来の技術】汚水、汚泥、スラリー等を輸送する下水
道用導管、スラリー輸送用導管としては、従来、鋼管、
鋳鉄管等の金属管が使用されていた。しかし、金属管は
可撓性を有しないため、地震等があった場合には、荷重
を直接受けて亀裂を生じ易かった。又、汚水、汚泥、ス
ラリー等は石、砂等の固体粒子を含むため、これらによ
り金属管内壁面が擦過されて摩耗し易かった。さらに、
地中に浸透する雨水、化学物質等、又、汚水、汚泥、ス
ラリー等に含まれる化学物質等により、金属管内外壁面
が腐食し易かった。
2. Description of the Related Art Conventionally, steel pipes and sewage pipes for transporting sewage, sludge, slurry, etc.
Metal tubes such as cast iron tubes have been used. However, since the metal tube does not have flexibility, when an earthquake or the like occurs, the metal tube is directly subjected to a load and is easily cracked. Further, since sewage, sludge, slurry and the like contain solid particles such as stone and sand, the inner wall surface of the metal pipe is rubbed by these and easily worn. further,
The inner and outer wall surfaces of the metal pipe were easily corroded by rainwater, chemical substances, and the like that penetrate into the ground, and chemical substances contained in sewage, sludge, slurry, and the like.

【0003】そこで、かかる問題点を解消し得る下水道
用導管、スラリー輸送用導管として、最近では、ポリエ
チレン管、特に高密度ポリエチレン(HDPE)製導管
が使用されるようになってきた。高密度ポリエチレン
(HDPE)製導管は、可撓性を有するため、地震等が
あった場合にも、若干変形して荷重を吸収するから、亀
裂が生じ難い。又、耐摩耗性、耐腐食性が高いため、汚
水、汚泥、スラリー等を流動させても、導管壁面は摩
耗、腐食し難い。
Therefore, recently, polyethylene pipes, especially high-density polyethylene (HDPE) pipes have come to be used as sewage pipes and slurry transport pipes that can solve such problems. Since the high-density polyethylene (HDPE) conduit has flexibility, it is slightly deformed and absorbs the load even in the event of an earthquake or the like. In addition, since the abrasion resistance and the corrosion resistance are high, even when sewage, sludge, slurry or the like is caused to flow, the conduit wall surface is hardly worn or corroded.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の高密度
ポリエチレン(HDPE)製導管は、急傾斜地に敷設さ
れる場合、流体を高圧力下で輸送する場合には、長期間
使用時の耐クリープ特性、耐環境応力亀裂特性等におい
て問題を生じることがあった。
However, conventional high-density polyethylene (HDPE) conduits are not suitable for long term use when laid on steep slopes or when transporting fluids under high pressure. In some cases, problems occurred in the properties, environmental stress cracking resistance, and the like.

【0005】本発明は、かかる問題点を解消すべく為さ
れたものであって、その目的とするところは、可撓性を
有するとともに、耐摩耗性、耐腐食性が高く、しかも、
流体を高速、高圧下で輸送する場合にも、長期間に渡っ
て管壁が変形せず、管壁に亀裂も発生しない耐摩耗性耐
腐食性導管を提供することにある。
The present invention has been made in order to solve such a problem, and an object of the present invention is to have flexibility, high abrasion resistance and corrosion resistance, and
An object of the present invention is to provide an abrasion-resistant and corrosion-resistant conduit that does not deform the pipe wall and does not crack the pipe wall for a long time even when the fluid is transported under high speed and high pressure.

【0006】[0006]

【課題を解決するための手段】本発明者等は、上記目的
を達成すべく、種々のポリエチレン管を試作するととも
に、それらの耐摩耗性、耐腐食性、耐クリープ特性、耐
環境応力亀裂特性等について試験し、ポリエチレン管の
耐摩耗性耐腐食性導管としての適性について鋭意研究を
重ねてきた。その結果、ポリエチレンの結晶化度及び重
量平均分子量が上記特性に大きな影響を与えることを知
見し、本発明を完成するに至ったものである。
In order to achieve the above object, the present inventors have made various kinds of polyethylene pipes on a trial basis, and have examined their wear resistance, corrosion resistance, creep resistance, and environmental stress crack resistance. We have been conducting intensive studies on the suitability of polyethylene pipes as wear-resistant and corrosion-resistant conduits. As a result, they have found that the crystallinity and weight average molecular weight of polyethylene greatly affect the above properties, and have completed the present invention.

【0007】すなわち、本発明の耐摩耗性耐腐食性導管
は、結晶化度60〜80%、重量平均分子量2.5×1
5 〜2.5×107 のポリエチレンから成るものであ
る。
That is, the wear-resistant and corrosion-resistant conduit of the present invention has a crystallinity of 60 to 80% and a weight average molecular weight of 2.5 × 1.
It consists of polyethylene of 0 5 to 2.5 × 10 7 .

【0008】前記ポリエチレンとしては、第1に、低圧
法により製造される高密度ポリエチレン(HDPE)が
挙げられる。
As the polyethylene, first, high-density polyethylene (HDPE) produced by a low-pressure method is exemplified.

【0009】高密度ポリエチレン(HDPE)は、一般
に、アルキルアルミニウム又はアルキルアルミニウムク
ロライド及び四塩化チタンを触媒として使用し、所定条
件下、原料であるエチレンをイオン重合させる、いわゆ
るチーグラー法により製造される。そして、高密度ポリ
エチレン(HDPE)は、図1(A)に示すように、ポ
リエチレンの直鎖の部分は結晶性、側鎖の部分は非晶性
であり、非晶性部に存在するタイ分子が結晶性部間を結
合していると考えられている。
[0009] High-density polyethylene (HDPE) is generally produced by a so-called Ziegler process in which alkyl aluminum or alkyl aluminum chloride and titanium tetrachloride are used as catalysts and ion-polymerizing ethylene as a raw material under predetermined conditions. As shown in FIG. 1 (A), the high-density polyethylene (HDPE) is such that the linear part of the polyethylene is crystalline, the side chain part is amorphous, and the tie molecules existing in the amorphous part Are considered to connect the crystalline parts.

【0010】本発明では、図1(B)に示すように、こ
のタイ分子の数を従来の高密度ポリエチレン(HDP
E)より増大させると共に、結晶化度60〜80%、重
量平均分子量2.5×105 〜2.5×107 の高密度
ポリエチレン(HDPE)とする。
In the present invention, as shown in FIG. 1 (B), the number of tie molecules is determined by using a conventional high-density polyethylene (HDP).
E) It is a high-density polyethylene (HDPE) having a degree of crystallinity of 60 to 80% and a weight average molecular weight of 2.5 × 10 5 to 2.5 × 10 7 , as well as higher.

【0011】前記ポリエチレンとしては、第2に、高密
度ポリエチレン(HDPE)を架橋反応させることによ
り製造される架橋高密度ポリエチレン(XL−HDP
E)が挙げられる。
Second, as the polyethylene, a cross-linked high-density polyethylene (XL-HDP) produced by subjecting a high-density polyethylene (HDPE) to a cross-linking reaction is used.
E).

【0012】架橋高密度ポリエチレン(XL−HDP
E)は、一般に、高密度ポリエチレン(HDPE)に過
酸化物を付加、又は電子線を照射し、ポリエチレン分子
同士を共有結合架橋させることにより製造される。
Crosslinked high density polyethylene (XL-HDP)
E) is generally produced by adding a peroxide to high-density polyethylene (HDPE) or irradiating an electron beam to covalently crosslink polyethylene molecules.

【0013】本発明では、結晶化度60〜80%、重量
平均分子量1.5×105 〜3.0×105 の高密度ポ
リエチレン(HDPE)にシラノール基をグラフト重合
させたものを架橋反応させることにより、結晶化度60
〜80%、重量平均分子量2.5×105 〜2.5×1
7 の架橋高密度ポリエチレン(XL−HDPE)とす
る。
In the present invention, a high-density polyethylene (HDPE) having a crystallinity of 60 to 80% and a weight-average molecular weight of 1.5 × 10 5 to 3.0 × 10 5 is graft-polymerized with a silanol group, and is subjected to a crosslinking reaction. By doing so, a crystallinity of 60
8080%, weight average molecular weight 2.5 × 10 5 2.52.5 × 1
And 0 7 of crosslinked high density polyethylene (XL-HDPE).

【0014】[0014]

【発明の実施の形態】以下、本発明に係るポリエチレン
から成る耐摩耗性耐腐食性導管の好適な実施形態につい
て詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of a wear-resistant and corrosion-resistant conduit made of polyethylene according to the present invention will be described below in detail.

【0015】[0015]

【実施例】実施例1 アルキルアルミニウム及び四塩化チタンを触媒として使
用し、温度80〜100℃、圧力10〜20atmとい
う条件下、重量平均分子量を制御しつつ、原料であるエ
チレンをイオン重合させることにより、タイ分子の数を
増大させた結晶化度64%、重量平均分子量2.8×1
5 の高密度ポリエチレン(HDPE)粒子を製造し
た。そして、この高密度ポリエチレン(HDPE)粒子
を押出成形機に供給し、押出成形機内で溶融、混練し、
円形ダイから押出すことにより、本発明の結晶化度64
%、重量平均分子量2.8×105 の高密度ポリエチレ
ン(HDPE)から成る耐摩耗性耐腐食性導管を製造し
た。
Example 1 Ion polymerization of ethylene as a raw material was conducted using alkylaluminum and titanium tetrachloride as catalysts at a temperature of 80 to 100 ° C. and a pressure of 10 to 20 atm while controlling the weight average molecular weight. Increased the number of tie molecules to give a crystallinity of 64% and a weight average molecular weight of 2.8 × 1
0 5 was produced high density polyethylene (HDPE) particles. Then, the high-density polyethylene (HDPE) particles are supplied to an extruder, melted and kneaded in the extruder,
By extruding from a circular die, the crystallinity of the invention of 64
Abrasion-resistant and corrosion-resistant conduits of high-density polyethylene (HDPE) having a weight-average molecular weight of 2.8 × 10 5 were prepared.

【0016】実施例2 結晶化度60〜80%、重量平均分子量1.5×105
〜3.0×105 の高密度ポリエチレン(HDPE)に
シラノール基をグラフト重合させた高密度ポリエチレン
(HDPE)粒子を、触媒とともに押出成形機に供給
し、押出成形機内で溶融、混練し、円形ダイから押出す
ことにより、管状を呈する高密度ポリエチレン(HDP
E)成形品を製造した。そして、この高密度ポリエチレ
ン(HDPE)成形品を温水又は蒸気内に置くことによ
り、ポリエチレン分子同士を共有結合架橋させて、結晶
化度72%、重量平均分子量2.5×106 以上の架橋
高密度ポリエチレン(XL−HDPE)からなる成る耐
摩耗性耐腐食性導管を製造した。
Example 2 Crystallinity 60-80%, weight average molecular weight 1.5 × 10 5
High density polyethylene (HDPE) particles obtained by graft polymerization of silanol groups to high density polyethylene (HDPE) of up to 3.0 × 10 5 are supplied to an extruder together with a catalyst, and are melted and kneaded in the extruder to form a circle. By extruding from a die, a tubular high-density polyethylene (HDP
E) A molded article was manufactured. Then, by placing this high-density polyethylene (HDPE) molded product in warm water or steam, the polyethylene molecules are covalently linked and cross-linked to form a cross-linked polymer having a crystallinity of 72% and a weight average molecular weight of 2.5 × 10 6 or more. An abrasion and corrosion resistant conduit consisting of high density polyethylene (XL-HDPE) was produced.

【0017】次に、本発明の耐摩耗性耐腐食性導管の諸
特性を確認するため、従来の各種導管と比較しつつ、各
種特性評価試験を実施した。
Next, in order to confirm various characteristics of the wear-resistant and corrosion-resistant conduit of the present invention, various characteristic evaluation tests were carried out while comparing with various conventional conduits.

【0018】摩耗腐食試験 試験材料 表1に示す各材料からなる素材を切断して、14×14
×5mmの平板状試験片を作製した。尚、表1に示すポ
リエチレン材料の重量平均分子量及び結晶化度を表2に
示す。
Abrasion corrosion test test material A material composed of each material shown in Table 1 was cut into 14 × 14
× 5 mm flat test pieces were prepared. Table 2 shows the weight average molecular weight and crystallinity of the polyethylene materials shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】試験方法 図2(A)に示すような、上半部を沈降部2、下半部を
流動部3とした液槽4の流動部3に噴出装置5を配置し
た試験装置1を使用した。液槽2内に貯留されたスラリ
ーは、固体粒子が自重により沈降することにより、沈降
部2では試験液と固体粒子とに分離し、上澄液となった
試験液の一部はポンプ6により配管7を介して流動部3
に供給され、又、一部はポンプ8により配管9を介して
噴出装置3に供給される。噴出装置3では、図2(B)
に示すように、試験液流通筒体10の噴出ノズル10a
から試験液が噴出すると、スラリー流通筒体11内が負
圧となるため、周囲の流動部3からスラリー流通筒体1
1内にスラリーが流入してくる。そして、試験液とスラ
リーとが混合され、噴出ノズル11aより噴出して設定
された試験片12に衝突し、流通間隙13から流動部3
へと流出していく。
Test Method As shown in FIG. 2A, a test apparatus 1 in which an ejection device 5 is disposed in a flowing section 3 of a liquid tank 4 having a settling section 2 in the upper half and a flowing section 3 in the lower half. used. The slurry stored in the liquid tank 2 is separated into the test liquid and the solid particles in the settling part 2 by the solid particles settling by its own weight, and a part of the test liquid that has become the supernatant is pumped by the pump 6. Flow section 3 through pipe 7
And a part is supplied to the ejection device 3 via a pipe 9 by a pump 8. In the ejection device 3, FIG.
As shown in the figure, the ejection nozzle 10a of the test liquid flow cylinder 10
When the test liquid is ejected from the cylinder, the inside of the slurry flow cylinder 11 becomes a negative pressure.
Slurry flows into 1. Then, the test liquid and the slurry are mixed, ejected from the ejection nozzle 11 a and collide with the set test piece 12, and flow from the flow gap 13 to the flowing portion 3.
Flows out to

【0022】試験液としては温度20℃、pH7.0の
イオン交換水又は3%塩化ナトリウム水溶液を、固体粒
子としては粒径200〜300μmの珪砂(SiO2
を使用し、これらを均一に混合させて粒子濃度25重量
%のスラリーを作製した。
As a test solution, ion-exchanged water or a 3% aqueous sodium chloride solution at a temperature of 20 ° C. and a pH of 7.0 is used. As solid particles, silica sand (SiO 2 ) having a particle size of 200 to 300 μm is used.
And uniformly mixed to prepare a slurry having a particle concentration of 25% by weight.

【0023】上記試験装置1の液槽4内にこのスラリー
を貯留させ、試験片12への衝突速度を2m/s、衝突
角度を90°とし、60分間試験を継続した後、試験片
の重量変化を測定した。
This slurry is stored in the liquid tank 4 of the test apparatus 1 and the collision speed with the test piece 12 is set to 2 m / s, the collision angle is set to 90 °, and the test is continued for 60 minutes. The change was measured.

【0024】試験結果 各試験片の重量変化及び各材料の密度から、体積減量速
度(mm3 /min)を算出した。試験液としてイオン
交換水又は3%塩化ナトリウム水溶液を使用した場合の
結果を併記して図3に示す。
Test Results The volume reduction rate (mm 3 / min) was calculated from the weight change of each test piece and the density of each material. FIG. 3 also shows the results when ion-exchanged water or a 3% aqueous sodium chloride solution was used as the test solution.

【0025】イオン交換水の場合には耐摩耗性を、3%
塩化ナトリウム水溶液の場合には耐摩耗性及び耐腐食性
を評価することができる。図3よりわかるように、いず
れの場合も、体積減量速度は、ガラス繊維強化樹脂(F
RP)、フェノール樹脂(PF)、塩化ビニル樹脂(P
VC)の樹脂グループが最も大きく、炭素鋼(SG
P)、鋳鉄(FC)の金属グループが次に大きく、ポリ
エチレン(PE)グループが最も小さかった。従って、
耐摩耗性及び耐腐食性に関しては、ポリエチレン(P
E)グループが最も高いことがわかったが、ポリエチレ
ン(PE)間では特に優位性は認められなかった。
In the case of ion-exchanged water, the wear resistance is 3%
In the case of a sodium chloride aqueous solution, the wear resistance and the corrosion resistance can be evaluated. As can be seen from FIG. 3, in each case, the volume loss rate was the same as the glass fiber reinforced resin (F
RP), phenolic resin (PF), vinyl chloride resin (P
VC) is the largest resin group, and carbon steel (SG
P), the metal group of cast iron (FC) was the next largest, and the polyethylene (PE) group was the smallest. Therefore,
Regarding wear resistance and corrosion resistance, polyethylene (P
E) The group was found to be the highest, but there was no particular advantage among polyethylene (PE).

【0026】クリープ試験 試験材料 表1に示す高密度ポリエチレン(HDPE)、高密度ポ
リエチレン(HDPE−PE100)、架橋高密度ポリ
エチレン(XL−HDPE)から成る内径32mm、肉
厚5.5mmの導管を切断して、長さ500mmの供試
管を作製した。
Creep Test Test Material Cut a conduit made of high-density polyethylene (HDPE), high-density polyethylene (HDPE-PE100) and cross-linked high-density polyethylene (XL-HDPE) shown in Table 1 with an inner diameter of 32 mm and a wall thickness of 5.5 mm. Thus, a test tube having a length of 500 mm was produced.

【0027】試験方法 供試管内に圧力0.55MPa(5.6kgf/c
2 )の水を充満させた後、供試管を温度20℃、40
℃、60℃、80℃に保持した水中に浸漬し、所定時間
経過後、供試管の破壊強度(MPa又はkgf/c
2 )を測定した。
Test method A pressure of 0.55 MPa (5.6 kgf / c) was applied to the test tube.
m 2 ), fill the test tube at a temperature of 20 ° C.
C., 60.degree. C., and 80.degree. C., and immersed in water.
m 2 ) was measured.

【0028】試験結果 対数方眼紙に経過時間毎の破壊強度をプロットしたもの
を直線で結んだ結果を、高密度ポリエチレン(HDP
E)から成る導管の場合は図4に、高密度ポリエチレン
(HDPE−PE100)から成る導管の場合は図5
に、架橋高密度ポリエチレン(XL−HDPE)から成
る導管の場合は図6に示す。
Test Results A plot of the breaking strength at each elapsed time on logarithmic graph paper was connected by a straight line, and the result was plotted as a high-density polyethylene (HDP).
FIG. 4 for a conduit made of E) and FIG. 5 for a conduit made of high-density polyethylene (HDPE-PE100).
FIG. 6 shows a conduit made of cross-linked high-density polyethylene (XL-HDPE).

【0029】図4及び図5よりわかるように、温度20
℃における50年相当時間時のクリープ強度は、高密度
ポリエチレン(HDPE−PE100)から成る導管は
10MPa以上、高密度ポリエチレン(HDPE)から
成る導管は8MPa(80kgf/cm2 )以上であっ
た。又、図4、図5及び図6よりわかるように、温度4
0℃における50年相当時間時のクリープ強度は、架橋
高密度ポリエチレン(XL−HDPE)から成る導管が
最も高いことがわかった。従って、耐クリープ特性に関
しては、高密度ポリエチレン(HDPE−PE10
0)、架橋高密度ポリエチレン(XL−HDPE)から
成る導管の方が高密度ポリエチレン(HDPE)から成
る導管よりも優位であることが確認された。
As can be seen from FIG. 4 and FIG.
The creep strength at 50 ° C. for 50 years was 10 MPa or more for the conduit made of high-density polyethylene (HDPE-PE100) and 8 MPa (80 kgf / cm 2 ) for the conduit made of high-density polyethylene (HDPE). Further, as can be seen from FIGS.
It has been found that the creep strength at 0 ° C. for a period corresponding to 50 years is highest for a conduit made of crosslinked high density polyethylene (XL-HDPE). Therefore, regarding the creep resistance, high density polyethylene (HDPE-PE10
0), it was confirmed that the conduit made of crosslinked high-density polyethylene (XL-HDPE) was superior to the conduit made of high-density polyethylene (HDPE).

【0030】環境応力亀裂試験 試験材料 表1に示す高密度ポリエチレン(HDPE)、高密度ポ
リエチレン(HDPE−PE100)、架橋高密度ポリ
エチレン(XL−HDPE)からなる素材を切断して、
38×13×2mmの平板状試験片を作製し、この平板
状試験片の中央部に長さ19.1mm、深さ0.3mm
のノッチを形成した。
Material for Environmental Stress Cracking Test Test Material A material consisting of high-density polyethylene (HDPE), high-density polyethylene (HDPE-PE100), and cross-linked high-density polyethylene (XL-HDPE) shown in Table 1 was cut.
A flat test piece of 38 × 13 × 2 mm was prepared, and the center of the flat test piece was 19.1 mm long and 0.3 mm deep.
Notch was formed.

【0031】試験方法 ノッチを形成した面が外側になるように試験片13をU
字状に湾曲させ、10個の試験片13,13,…を図7
(A)に示す試験片固定具14に装着する。その後、図
7(B)に示すように、試験片固定具14を試験片挿入
管15内に挿入し、試験片13,13,…を試験液中に
浸漬する。試験液としては、ノニル・フェニル・ポリオ
キシエチレン・エタノール10%水溶液を使用し、温度
50℃に保持した。そして、試験片13の外観を目視に
よって観察し、各試験片13,13,…の亀裂発生時間
(hr)を測定した。
Test Method The test piece 13 was placed on the U so that the surface on which the notch was formed was on the outside.
FIG. 7 shows the ten test pieces 13, 13,.
The sample is mounted on the test piece fixture 14 shown in FIG. Thereafter, as shown in FIG. 7B, the test piece fixing device 14 is inserted into the test piece insertion tube 15, and the test pieces 13, 13,... Are immersed in the test solution. As a test solution, a 10% aqueous solution of nonyl-phenyl-polyoxyethylene-ethanol was used, and the temperature was maintained at 50 ° C. Then, the appearance of the test piece 13 was visually observed, and the crack generation time (hr) of each test piece 13, 13,... Was measured.

【0032】試験結果 試験片10個中5個に亀裂が発生する時間(50%亀裂
発生時間:ESCRF50)を表3に示す。
Test Results Table 3 shows the time during which cracks occurred in five of the ten test pieces (50% crack initiation time: ESCRF 50 ).

【0033】[0033]

【表3】 [Table 3]

【0034】表3からわかるように、50%亀裂発生時
間は、高密度ポリエチレン(HDPE−PE100)、
高密度ポリエチレン(HDPE)いずれについても、1
000hr以上、架橋高密度ポリエチレン(XL−HD
PE)については、3500hr以上であった。従っ
て、耐環境応力亀裂特性に関しては、架橋高密度ポリエ
チレン(XL−HDPE)が最も優れており、高密度ポ
リエチレン(HDPE−PE100)、高密度ポリエチ
レン(HDPE)ともに、同等に優れていることが確認
された。
As can be seen from Table 3, the 50% crack initiation time was determined for high density polyethylene (HDPE-PE100),
High density polyethylene (HDPE)
000 hr or more, cross-linked high density polyethylene (XL-HD
PE) was 3500 hr or more. Therefore, regarding environmental stress cracking resistance, it was confirmed that crosslinked high-density polyethylene (XL-HDPE) was the best, and both high-density polyethylene (HDPE-PE100) and high-density polyethylene (HDPE) were equally excellent. Was done.

【0035】[0035]

【発明の効果】本発明の耐摩耗性耐腐食性導管は、可撓
性を有するとともに、耐摩耗性、耐腐食性、耐クリープ
特性、耐環境応力亀裂特性も優秀であるから、地震等が
あった場合にも亀裂が生じ難く、汚水、汚泥、スラリー
等を流動させても導管壁面は摩耗、腐食し難い。又、急
傾斜地に敷設される場合、流体を高圧力下で輸送する場
合等、流体を高速、高圧下で輸送する場合にも、長期間
に渡って管壁が変形せず、管壁に亀裂も発生しない。
The wear-resistant and corrosion-resistant conduit of the present invention has flexibility, and also has excellent wear resistance, corrosion resistance, creep resistance and environmental stress cracking properties, so that it can withstand earthquakes and the like. Even if it is present, cracks are unlikely to occur, and even if sewage, sludge, slurry or the like is made to flow, the pipe wall surface is hardly worn or corroded. Also, when laying on a steep slope or transporting fluid under high pressure, such as when transporting fluid under high pressure, the pipe wall does not deform for a long period of time and cracks on the pipe wall. Also does not occur.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)は従来の高密度ポリエチレン(HDP
E)の分子構造、(B)は本発明の高密度ポリエチレン
(HDPE−PE100)の分子構造を示す説明図であ
る。
FIG. 1A shows a conventional high-density polyethylene (HDP).
(E) Molecular structure and (B) are explanatory diagrams showing the molecular structure of the high-density polyethylene (HDPE-PE100) of the present invention.

【図2】(A)は摩耗腐食試験において使用した試験装
置の概略構成図、(B)は噴出装置の要部断面図であ
る。
FIG. 2A is a schematic configuration diagram of a test device used in a wear corrosion test, and FIG. 2B is a cross-sectional view of a main part of an ejection device.

【図3】各材料の体積減量速度(mm3 /min)を示
す図である。
FIG. 3 is a diagram showing a volume reduction rate (mm 3 / min) of each material.

【図4】従来の高密度ポリエチレン(HDPE)から成
る導管のクリープ強度(kgf/cm2 )を示す図であ
る。
FIG. 4 is a diagram showing the creep strength (kgf / cm 2 ) of a conventional conduit made of high-density polyethylene (HDPE).

【図5】本発明の高密度ポリエチレン(HDPE−PE
100)から成る導管のクリープ強度(MPa)を示す
図である。
FIG. 5 shows a high-density polyethylene (HDPE-PE) of the present invention.
FIG. 4 shows the creep strength (MPa) of a conduit consisting of 100).

【図6】本発明の架橋高密度ポリエチレン(XL−HD
PE)から成る導管のクリープ強度(kgf/cm2
を示す図である。
FIG. 6 shows a cross-linked high-density polyethylene (XL-HD) of the present invention.
Creep strength (kgf / cm 2 ) of conduit made of PE)
FIG.

【図7】環境応力亀裂試験において使用した(A)は試
験片固定具、(B)は試験片挿入管の斜視図である。
FIGS. 7A and 7B are perspective views of a test piece fixture and a test piece insertion tube used in the environmental stress crack test.

【符号の説明】[Explanation of symbols]

1 試験装置 5 噴出装置 12 試験片 13 試験片 14 試験片固定具 15 試験片挿入管 DESCRIPTION OF SYMBOLS 1 Test apparatus 5 Jetting apparatus 12 Test piece 13 Test piece 14 Test piece fixing fixture 15 Test piece insertion tube

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年4月3日[Submission date] April 3, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】全図[Correction target item name] All figures

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【図2】 FIG. 2

【図3】 FIG. 3

【図4】 FIG. 4

【図5】 FIG. 5

【図6】 FIG. 6

【図7】 FIG. 7

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI F16L 11/08 F16L 11/08 B // B29K 23:00 105:24 (72)発明者 津永 正行 大分市大字勢家字春日浦843−18 三井金 属エンジニアリング株式会社大分工場内 (72)発明者 松並 秀一 大分市大字勢家字春日浦843−18 三井金 属エンジニアリング株式会社大分工場内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification symbol FI F16L 11/08 F16L 11/08 B // B29K 23:00 105: 24 (72) Inventor Masayuki Tsunaga Oita City 843--18 Kasugaura, Oita Plant, Mitsui Kinsei Engineering Co., Ltd. (72) Inventor Shuichi Matsunami 843--18, Kasugaura, Oita City

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 結晶化度60〜80%、重量平均分子量
2.5×105 〜2.5×107 のポリエチレンから成
る耐摩耗性耐腐食性導管。
An abrasion-resistant and corrosion-resistant conduit made of polyethylene having a crystallinity of 60 to 80% and a weight average molecular weight of 2.5 × 10 5 to 2.5 × 10 7 .
【請求項2】 前記ポリエチレンは、高密度ポリエチレ
ンであることを特徴とする請求項1に記載の耐摩耗性耐
腐食性導管。
2. The abrasion-resistant and corrosion-resistant conduit according to claim 1, wherein the polyethylene is a high-density polyethylene.
【請求項3】 前記ポリエチレンは、高密度ポリエチレ
ンを架橋反応させて製造される架橋高密度ポリエチレン
であることを特徴とする請求項1に記載の耐摩耗性耐腐
食性導管。
3. The abrasion-resistant and corrosion-resistant conduit according to claim 1, wherein the polyethylene is a cross-linked high-density polyethylene produced by a cross-linking reaction of high-density polyethylene.
JP10411798A 1998-03-31 1998-03-31 Conduit having wear resistance and corrosion resistance Pending JPH11286557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10411798A JPH11286557A (en) 1998-03-31 1998-03-31 Conduit having wear resistance and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10411798A JPH11286557A (en) 1998-03-31 1998-03-31 Conduit having wear resistance and corrosion resistance

Publications (1)

Publication Number Publication Date
JPH11286557A true JPH11286557A (en) 1999-10-19

Family

ID=14372193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10411798A Pending JPH11286557A (en) 1998-03-31 1998-03-31 Conduit having wear resistance and corrosion resistance

Country Status (1)

Country Link
JP (1) JPH11286557A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098700A1 (en) * 2000-06-22 2001-12-27 Idemitsu Petrochemical Co., Ltd. Pipe made of ethylene polymer
JP2002200557A (en) * 2000-12-28 2002-07-16 Kureha Chem Ind Co Ltd Workpiece holding ring for polishing device
JP2006052287A (en) * 2004-08-11 2006-02-23 Sunallomer Ltd Flame-retardant polyolefin-based resin composition
WO2019151449A1 (en) * 2018-01-31 2019-08-08 有限会社川端工業 Water-containing fluid transport pipe and transport method for water-containing fluid
CN113290898A (en) * 2021-05-25 2021-08-24 安徽杰蓝特新材料有限公司 Corrosion-resistant drainage pipeline and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098700A1 (en) * 2000-06-22 2001-12-27 Idemitsu Petrochemical Co., Ltd. Pipe made of ethylene polymer
EP1213523A1 (en) * 2000-06-22 2002-06-12 Idemitsu Petrochemical Co., Ltd. Pipe made of ethylene polymer
US6720048B2 (en) 2000-06-22 2004-04-13 Idemitsu Petrochemical Co., Ltd. Pipe comprising ethylene base polymer
EP1213523A4 (en) * 2000-06-22 2006-04-12 Idemitsu Kosan Co PIPE MADE OF ETHYLENE POLYMER
JP2002200557A (en) * 2000-12-28 2002-07-16 Kureha Chem Ind Co Ltd Workpiece holding ring for polishing device
JP4548936B2 (en) * 2000-12-28 2010-09-22 株式会社クレハ Workpiece holding ring for polishing equipment
JP2006052287A (en) * 2004-08-11 2006-02-23 Sunallomer Ltd Flame-retardant polyolefin-based resin composition
US8313674B2 (en) 2004-08-11 2012-11-20 Sun Allomer Ltd. Flame-retardant polyolefin resin composition
WO2019151449A1 (en) * 2018-01-31 2019-08-08 有限会社川端工業 Water-containing fluid transport pipe and transport method for water-containing fluid
CN112204210A (en) * 2018-01-31 2021-01-08 有限会社川端工业 Piping for transporting aqueous fluid and method for transporting aqueous fluid
JPWO2019151449A1 (en) * 2018-01-31 2021-05-13 有限会社川端工業 Piping for transporting hydrous fluid and transportation method for hydrous fluid
CN113290898A (en) * 2021-05-25 2021-08-24 安徽杰蓝特新材料有限公司 Corrosion-resistant drainage pipeline and preparation method thereof

Similar Documents

Publication Publication Date Title
AU773222B2 (en) Extruded, injection moulded or blow moulded plastic pipe, fitting or formed part to produce pipelines for liquid, pasty and gaseous media
EP1987097B2 (en) Polyethylene compositions and pipe made from same
RU2413615C2 (en) Multilayer polymer antirust coat with improved properties
US20100108173A1 (en) Highly abrasion-resistant polyolefin pipe
US6899141B2 (en) Rehabilitation of water supply pipes
JPH11286557A (en) Conduit having wear resistance and corrosion resistance
JP2000109521A (en) Resin having excellent molding processability useful for polyethylene pipe and joint
JPH0929869A (en) Coolant line
CN105508755A (en) Sound absorption and noise reduction multi-layer blow-off pipe
CN105508746B (en) A kind of anti-blocking PE compound drainages pipe of corrosion resistant
WO2019151449A1 (en) Water-containing fluid transport pipe and transport method for water-containing fluid
CN108463477B (en) High density polyethylene for the production of pipes
US6857451B1 (en) Rehabilitation of water supply pipes
CN1234988C (en) Composite metal net reinforced superhigh molecule weight polyethylene GRP pipe
KR102479204B1 (en) Resin composition for manufacturing polyketone pipe and polyketone pipe having improved abrasion resistance, slip property and scale resistance
KR102032202B1 (en) Coated corrugated steel pipe with a film that is easy to repair the damaged coating layer
JP2022500538A (en) Composite material with thermoplastic matrix
EP2227618B1 (en) Well tubings with polymer liners
CN101725772A (en) Method for preparing ultrahigh molecular weight polyethylene thick-wall tube
Owen et al. Fatigure resistance of carbon fibre rp
US20040037988A1 (en) Composite pipe formed by a metallic pipe with inner lining resistant to aggressive agents, method for manufacturing said pipe and use thereof
WO2012031677A1 (en) Plastics-material pipe moulding
CN104788782A (en) Method for improving slow crack growth resistance of PE (polyethylene) pipe
El Sayed et al. Polyethylene as a material for Water Supply Systems
Hassan et al. Parametric Analysis on the Erosion and Corrosion Behavior of GRP's Hybrid Composite Pipes Used for the Transport of Petroleum Waste-water