JPH11285520A - Film for chemical containers - Google Patents
Film for chemical containersInfo
- Publication number
- JPH11285520A JPH11285520A JP10088374A JP8837498A JPH11285520A JP H11285520 A JPH11285520 A JP H11285520A JP 10088374 A JP10088374 A JP 10088374A JP 8837498 A JP8837498 A JP 8837498A JP H11285520 A JPH11285520 A JP H11285520A
- Authority
- JP
- Japan
- Prior art keywords
- film
- oxygen
- gas
- less
- silicon oxynitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000126 substance Substances 0.000 title claims abstract description 24
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000001301 oxygen Substances 0.000 claims abstract description 25
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 25
- 238000001802 infusion Methods 0.000 claims abstract description 20
- 150000002484 inorganic compounds Chemical class 0.000 claims abstract description 15
- 229910010272 inorganic material Inorganic materials 0.000 claims abstract description 15
- 230000035699 permeability Effects 0.000 claims abstract description 15
- 239000002985 plastic film Substances 0.000 claims abstract description 15
- 229920006255 plastic film Polymers 0.000 claims abstract description 13
- 238000002834 transmittance Methods 0.000 claims abstract description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 40
- 229910052757 nitrogen Inorganic materials 0.000 claims description 18
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 14
- 239000003814 drug Substances 0.000 claims description 7
- 230000000704 physical effect Effects 0.000 claims description 4
- 239000007789 gas Substances 0.000 abstract description 33
- 239000010408 film Substances 0.000 description 111
- 238000000034 method Methods 0.000 description 17
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 14
- -1 polyethylene Polymers 0.000 description 14
- 230000004888 barrier function Effects 0.000 description 13
- 229910052710 silicon Inorganic materials 0.000 description 13
- 239000010703 silicon Substances 0.000 description 13
- 239000000758 substrate Substances 0.000 description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 8
- 229910001882 dioxygen Inorganic materials 0.000 description 8
- 238000004544 sputter deposition Methods 0.000 description 7
- 238000001816 cooling Methods 0.000 description 6
- 208000028659 discharge Diseases 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229920003023 plastic Polymers 0.000 description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 description 6
- 239000005020 polyethylene terephthalate Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 239000004743 Polypropylene Substances 0.000 description 4
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000002504 physiological saline solution Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000012460 protein solution Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000004125 X-ray microanalysis Methods 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000002528 anti-freeze Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- GPTXWRGISTZRIO-UHFFFAOYSA-N chlorquinaldol Chemical compound ClC1=CC(Cl)=C(O)C2=NC(C)=CC=C21 GPTXWRGISTZRIO-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- UQEAIHBTYFGYIE-UHFFFAOYSA-N hexamethyldisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)C UQEAIHBTYFGYIE-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000003978 infusion fluid Substances 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- POPACFLNWGUDSR-UHFFFAOYSA-N methoxy(trimethyl)silane Chemical compound CO[Si](C)(C)C POPACFLNWGUDSR-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006289 polycarbonate film Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000005001 rutherford backscattering spectroscopy Methods 0.000 description 1
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
- Medical Preparation Storing Or Oral Administration Devices (AREA)
Abstract
(57)【要約】
【目的】 気体透過性を低減させ輸液等の薬品の保存性
を高めるとともに、透明性、シール性及び耐衝撃性に優
れた輸液容器等を作成するために用いる薬品容器用フィ
ルムを提供する。
【構成】 プラスチックフィルムの少なくとも片面に、
無機化合物膜が形成されてなり、酸素透過度が1cc/
m2・24hr・atm以下、透湿度が1g/m2・24
hr以下、光線透過率が80%以上、色相 b値が5以下
の薬品容器用フィルム。(57) [Summary] [Purpose] For chemical containers used to create infusion containers and the like that reduce gas permeability and increase the preservability of chemicals such as infusions, and have excellent transparency, sealability, and impact resistance. Provide a film. [Constitution] At least one side of the plastic film,
An inorganic compound film is formed, and oxygen permeability is 1 cc /
m 2 · 24 hr · atm or less, moisture permeability 1 g / m 2 · 24
hr or less, a light transmittance of 80% or more, and a hue b value of 5 or less.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、薬品容器、とりわ
けぶどう糖液、生理食塩水、リンゲル液、蛋白液、アミ
ノ酸液、血漿、人工透析剤、脂肪剤等の輸液を収納、保
存する輸液容器の材料となる薬品容器用フィルムに関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material for a medicine container, especially for an infusion container for storing and storing infusion solutions such as glucose solution, physiological saline, Ringer's solution, protein solution, amino acid solution, plasma, artificial dialysis agent, and fat agent. And a film for a chemical container.
【0002】[0002]
【従来の技術】従来より、薬品容器、特に輸液容器とし
ては、ガラス製のものが多用されてきた。しかし近年で
は、これらは破損しやすく、また重いため輸送コストが
かさむ等の理由で、プラスチック製のものの使用が増え
てきている。2. Description of the Related Art Conventionally, glass containers have been frequently used as chemical containers, particularly, infusion containers. However, in recent years, plastics have been increasingly used because they are easily broken and heavy, which increases transportation costs.
【0003】プラスチックは、気体遮断性、特に酸素遮
断性、水蒸気遮断性が必ずしも十分ではなく、このため
プラスチック製輸液容器の輸液保存性がガラス製のもの
に比べて劣るという問題があった。この問題点を解決す
るため、ガスバリアー性の高い材料を種々選択して輸液
容器を作成する試みがなされているが、それらの材料か
らなる輸液容器の中には、材料成分が輸液中に溶出する
等の問題を生じるものがあった。[0003] Plastics do not always have sufficient gas barrier properties, in particular, oxygen barrier properties and water vapor barrier properties. Therefore, there has been a problem that the infusion preservability of plastic infusion containers is inferior to that of glass. In order to solve this problem, attempts have been made to create an infusion container by selecting various materials having high gas barrier properties.However, in the infusion container made of these materials, material components are eluted into the infusion. There was a problem such as doing.
【0004】また、輸液容器はガスバリアー性だけでは
なく、耐ピンホール性、落下強さや圧縮強さなどの物理
的強度が良好であることも要求される。そのため、ポリ
エチレン、ポリプロピレンなどのシール性に優れしかも
耐衝撃性にも優れた樹脂が用いられ、たとえば、特開平
3−4870号公報には、ポリエチレン、ポリプロピレ
ンなどのプラスチックスフィルムの片面または両面にセ
ラミックスの薄層を設けた透明な積層フィルムを用いて
なる輸液用容器が開示されている。しかしながら、この
輸液用容器では十分なガスバリアー性は得られていな
い。Infusion containers are required to have not only gas barrier properties but also good physical properties such as pinhole resistance, drop strength and compressive strength. For this reason, resins having excellent sealing properties and excellent impact resistance, such as polyethylene and polypropylene, are used. For example, Japanese Patent Application Laid-Open No. H3-4870 discloses that a ceramics film is provided on one or both sides of a plastic film such as polyethylene or polypropylene. An infusion container using a transparent laminated film provided with a thin layer is disclosed. However, this infusion container does not have sufficient gas barrier properties.
【0005】[0005]
【発明が解決しようとする課題】本発明は、上述の実情
に鑑みてなされたものであり、気体透過性を低減させ輸
液等の薬品の保存性を高めるとともに、透明性、シール
性及び耐衝撃性に優れた輸液容器等を作成するために用
いる薬品容器用フィルムを提供する。DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and has been made to reduce gas permeability and enhance the preservability of chemicals such as infusions, and to improve transparency, sealability and impact resistance. Provided is a film for a chemical container used for producing an infusion container or the like having excellent properties.
【0006】[0006]
【課題を解決するための手段】本発明に係る薬品容器用
フィルムは、プラスチックフィルムの少なくとも片面
に、無機化合物膜が形成されてなり、以下の物性を有し
ている。 (1) 酸素透過度が1cc/m2・24hr・atm以
下; (2) 透湿度が1g/m2・24hr以下; (3) 光線透過率が80%以上; (4) 色相 b値が5以下; また、上記無機化合物が、酸素濃度4〜64原子%、窒
素濃度3〜56原子%、かつ酸素と窒素の濃度の和が7
5原子%以下を含む非晶質の酸窒化珪素であることが好
ましい。また、本発明によれば上記フィルムからなる輸
液容器用フィルムが提供される。The film for a chemical container according to the present invention is obtained by forming an inorganic compound film on at least one surface of a plastic film and has the following physical properties. (1) Oxygen permeability is 1 cc / m 2 · 24 hr · atm or less; (2) Moisture permeability is 1 g / m 2 · 24 hr or less; (3) Light transmittance is 80% or more; (4) Hue b value is 5 The inorganic compound has an oxygen concentration of 4 to 64 atomic%, a nitrogen concentration of 3 to 56 atomic%, and a sum of oxygen and nitrogen concentrations of 7 to
It is preferably amorphous silicon oxynitride containing 5 atomic% or less. Further, according to the present invention, there is provided a film for an infusion container comprising the above film.
【0007】[0007]
【発明の実施の形態】以下、本発明に係る薬品容器とり
わけ輸液容器用フィルムについて詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION The chemical container according to the present invention, in particular, the film for an infusion container will be described in detail below.
【0008】本発明に係る薬品容器用フィルムは、プラ
スチックフィルムの少なくとも片面に、無機化合物膜が
形成されてなるものである。また、上記無機化合物は、
酸素および窒素を後述する原子濃度で含有する非晶質の
酸窒化珪素であることが好ましい。The chemical container film according to the present invention is obtained by forming an inorganic compound film on at least one surface of a plastic film. Further, the inorganic compound,
It is preferably amorphous silicon oxynitride containing oxygen and nitrogen at an atomic concentration described later.
【0009】<プラスチックフィルム>本発明で用いら
れるプラスチックスフィルム基材としては、透明性、シ
ール性及び耐衝撃性に優れた樹脂からなるフィルムであ
り、例えば、ポリエチレンテレフタレート等のポリエス
テルフィルム;ポリエチレン、ポリプロピレン、ポリ1
−ブテン等のポリオレフィンフィルム;ポリスチレンフ
ィルム;ポリアミドフィルム;ポリカーボネートフィル
ム;ポリアクリロニトリルフィルムなどが挙げられる。<Plastic Film> The plastic film substrate used in the present invention is a film made of a resin having excellent transparency, sealability and impact resistance. Examples thereof include a polyester film such as polyethylene terephthalate; Polypropylene, poly 1
-Polyolefin films such as butene; polystyrene films; polyamide films; polycarbonate films; polyacrylonitrile films, and the like.
【0010】上記プラスチックフィルム基材は、延伸フ
ィルムまたは未延伸フィルムでも良いが、本発明の薬品
容器用フィルムの光線透過率を満たすためには、フィル
ム基材の光線透過率が少なくとも80%以上のものを用
いる必要がある。また、本発明においてフィルム厚さ
は、0.01〜1mmが好ましく用いられる。また、上
記プラスチックフィルム表面の平滑性は可能なかぎり良
いものが好ましい。表面平滑性が劣ると、本発明に係わ
る薬品容器用フィルムとしてのガスバリアー性が低下す
るおそれがあるためである。表面平滑性は、表面粗さを
表すRmax (山と谷の差の最大値、表面粗度計の測定
値)が50nm以下であることが好ましく、さらには1
0nm以下であることが好ましい。The plastic film substrate may be a stretched film or an unstretched film, but in order to satisfy the light transmittance of the film for a chemical container of the present invention, the film substrate has a light transmittance of at least 80% or more. You need to use something. In the present invention, a film thickness of 0.01 to 1 mm is preferably used. Further, it is preferable that the smoothness of the surface of the plastic film is as good as possible. This is because if the surface smoothness is poor, the gas barrier properties of the film for a chemical container according to the present invention may be reduced. The surface smoothness is preferably such that Rmax (the maximum value of the difference between peaks and valleys, measured by a surface roughness meter) representing the surface roughness is 50 nm or less.
It is preferably 0 nm or less.
【0011】さらに、後述する無機化合物膜の上記プラ
スチックフィルム基材表面に対する密着性を高めるため
に、必要に応じて該基材表面に、脱脂、脱水するための
洗浄等の清浄化処理、真空容器内でHe等の不活性ガス
や酸素ガス等によるプラズマ処理などの公知の処理を行
っても良い。Further, in order to enhance the adhesion of the inorganic compound film described later to the surface of the plastic film substrate, the surface of the substrate may be subjected to cleaning treatment such as cleaning for degreasing and dewatering, if necessary, and vacuum container. A known process such as a plasma process using an inert gas such as He, an oxygen gas, or the like may be performed therein.
【0012】<無機化合物膜>本発明の無機化合物膜と
しては、非晶質の酸窒化珪素膜が好ましい。本発明でい
う非晶質の酸窒化珪素膜とは、酸素と窒素を含有し珪素
を主成分とするガラス状の薄膜のことである。膜中の成
分元素の割合は膜形成条件により連続的に変化させるこ
とができ、それにともなって膜の性質が変化する。酸化
珪素膜や酸化アルミなどの膜に比べて優れたガスバリア
ー性を示すためには、酸素濃度4〜64原子%、窒素濃
度3〜56原子%、かつ酸素と窒素の濃度の和が75原
子%以下である非晶質の酸窒化珪素であることが好まし
い。この元素組成範囲の膜は、酸素及び水蒸気のバリア
ー性に優れるとともに、高い光線透過率を示す。<Inorganic Compound Film> As the inorganic compound film of the present invention, an amorphous silicon oxynitride film is preferable. The amorphous silicon oxynitride film referred to in the present invention is a glassy thin film containing oxygen and nitrogen and containing silicon as a main component. The ratio of the component elements in the film can be continuously changed depending on the film forming conditions, and the properties of the film change accordingly. In order to exhibit excellent gas barrier properties as compared with films such as silicon oxide films and aluminum oxide films, an oxygen concentration of 4 to 64 atomic%, a nitrogen concentration of 3 to 56 atomic%, and a sum of oxygen and nitrogen concentrations of 75 atoms % Or less of amorphous silicon oxynitride. A film having this elemental composition range has excellent barrier properties against oxygen and water vapor and shows high light transmittance.
【0013】<非晶質酸窒化珪素膜の生成方法>上記の
非晶質の酸窒化珪素膜を形成するためには、Siを含有
する原料ガスが使用される。Siと水素を含有する原料
ガスとしては、例えば、シラン、ジシラン等があり、こ
れらは真空容器に、アンモニアや窒素ガス等の窒素を含
有したガス及び酸素ガスとともに導入され、プラズマを
発生させてプラスチックフィルム上に非晶質の酸窒化珪
素膜が形成される。また、 Siを含有する原料ガスと
しては、テトラメチルシロキサン、ヘキサメチルジシロ
キサン、トリメチルメトキシシラン等の有機珪素化合物
も使用される。これらは、窒素ガス及び酸素ガスとの混
合ガスとして真空容器に導入され、プラズマを発生させ
てプラスチックフィルム上に酸窒化珪素膜を形成する。<Method for Forming Amorphous Silicon Oxynitride Film> In order to form the above-mentioned amorphous silicon oxynitride film, a source gas containing Si is used. Examples of the raw material gas containing Si and hydrogen include silane, disilane, and the like. These are introduced into a vacuum vessel together with a nitrogen-containing gas such as ammonia or nitrogen gas and an oxygen gas, and generate plasma to generate a plastic gas. An amorphous silicon oxynitride film is formed on the film. Organic silicon compounds such as tetramethylsiloxane, hexamethyldisiloxane, and trimethylmethoxysilane are also used as the source gas containing Si. These are introduced into a vacuum vessel as a mixed gas of nitrogen gas and oxygen gas, and generate plasma to form a silicon oxynitride film on a plastic film.
【0014】真空容器中に導入された上記の原料ガスを
プラズマによって励起する手段としては、例えば、直流
を印加してプラズマ分解する方法;高周波を印加してプ
ラズマ分解する方法;マイクロ波放電によってプラズマ
分解する方法;電子サイクロトロン共鳴によってプラズ
マ分解する方法;熱フィラメントによる加熱によって熱
分解する方法等が挙げられる。本発明では、基材として
プラスチックフィルムを用いるため低温で成膜すること
が望ましく、直流を印加するプラズマCVD法や高周波
を印加するマイクロ波CVD法が好ましい。Means for exciting the above-mentioned raw material gas introduced into the vacuum vessel by plasma include, for example, a method of applying a direct current to decompose a plasma; a method of applying a high frequency to decompose a plasma; Decomposition method; plasma decomposition method by electron cyclotron resonance; and thermal decomposition method by heating with a hot filament. In the present invention, since a plastic film is used as the substrate, it is desirable to form the film at a low temperature, and a plasma CVD method applying a direct current or a microwave CVD method applying a high frequency is preferable.
【0015】また、非晶質の酸窒化珪素膜を形成する方
法として、直流スパッタリング、高周波スパッタリン
グ、イオンビームスパッタリング等の物理蒸着法を採用
することができる。この場合は、ターゲット材として膜
組成に合わせた無機化合物が用いられる。As a method for forming an amorphous silicon oxynitride film, a physical vapor deposition method such as direct current sputtering, high frequency sputtering, or ion beam sputtering can be employed. In this case, an inorganic compound suitable for the film composition is used as the target material.
【0016】非晶質の酸窒化珪素膜の厚さは、ガスバリ
アー性を確保しながら透明性を損ねない範囲であること
が重要であり、本発明では10〜300nmが好まし
く、より好ましくは20〜100nmである。さらに、
同じ厚みであれば酸窒化珪素膜を両面に分けて設ける方
がガスバリアー性の点で好ましい。例えば厚さ200n
mの膜を片面に設けるよりも、厚さ100nmの膜を両
面に設ける方がガスバリアー性が高くなる傾向を示す。It is important that the thickness of the amorphous silicon oxynitride film is in a range that does not impair transparency while ensuring gas barrier properties. In the present invention, the thickness is preferably 10 to 300 nm, more preferably 20 nm. 100100 nm. further,
If the thickness is the same, it is preferable to provide a silicon oxynitride film separately on both sides in terms of gas barrier properties. For example, thickness 200n
The gas barrier property tends to be higher when a film having a thickness of 100 nm is provided on both surfaces than when a film having a thickness of m is provided on one surface.
【0017】上記の非晶質の酸窒化珪素膜中には、本発
明の目的を損ねない範囲で、鉄、ニッケル、クロム、チ
タン、マグネシウム、アルミニウム、インジウム、亜
鉛、錫、アンチモン、タングステン、モリブデン、銅等
が含まれていてもよい。また、膜の柔軟性を改善する目
的で、炭素やフッ素または水素を含有させることもでき
る。酸窒化珪素膜の組成は、X線光電子分光法や、X線
マイクロ分析法、オージェ電子分光法、ラザフォード後
方散乱法を用いて分析することができる。In the above-mentioned amorphous silicon oxynitride film, iron, nickel, chromium, titanium, magnesium, aluminum, indium, zinc, tin, antimony, tungsten, molybdenum are used as long as the object of the present invention is not impaired. , Copper and the like. Further, carbon, fluorine or hydrogen can be contained for the purpose of improving the flexibility of the film. The composition of the silicon oxynitride film can be analyzed using X-ray photoelectron spectroscopy, X-ray microanalysis, Auger electron spectroscopy, or Rutherford backscattering.
【0018】以下、図面を参照しながら、非晶質の酸窒
化珪素膜の形成に使用されるスパッタリング装置を例に
とって説明する。図1は、酸窒化珪素膜の形成装置の1
例を示す模式図である。図1において、1は真空容器、
2は冷却ロール、3は基材フィルム、4はグロー放電装
置、5はターゲット装置、6は巻き出し用ロール、7は
巻き取り用ロール、8は搬送ロールである。Hereinafter, a sputtering apparatus used for forming an amorphous silicon oxynitride film will be described with reference to the drawings. FIG. 1 shows an apparatus 1 for forming a silicon oxynitride film.
It is a schematic diagram which shows an example. In FIG. 1, 1 is a vacuum vessel,
2 is a cooling roll, 3 is a base film, 4 is a glow discharge device, 5 is a target device, 6 is an unwinding roll, 7 is a winding roll, and 8 is a transport roll.
【0019】スパッタリング法による酸窒化珪素膜の形
成は、基材フィルム表面を酸素グロー処理した後、直流
スパッタリングする方法により行う。成膜操作として
は、まず、真空容器1内の冷却ロール2にプラスチック
フィルム基材を設置した後、真空容器内を高真空とす
る。このときの真空度は、不純物ガス残留による膜中へ
の不純物混入の影響を少なくするために0.2Pa以下
が好ましい。次に所定圧力になるように酸素を導入し、
所定の直流を印加してグロー放電を発生させ基材フィル
ム表面を酸素グロー放電中にさらす。このとき、酸素ガ
スの圧力は0.5〜15Pa、電流は0.2〜0.5A、
電圧は500〜2000Vであることが好ましい。The formation of the silicon oxynitride film by a sputtering method is performed by a method in which the surface of the base film is subjected to an oxygen glow treatment and then subjected to DC sputtering. As a film forming operation, first, a plastic film substrate is placed on the cooling roll 2 in the vacuum container 1, and then the inside of the vacuum container is set to a high vacuum. The degree of vacuum at this time is preferably 0.2 Pa or less in order to reduce the influence of impurity contamination on the film due to the residual impurity gas. Next, oxygen is introduced to a predetermined pressure,
A predetermined direct current is applied to generate glow discharge, and the substrate film surface is exposed to oxygen glow discharge. At this time, the pressure of the oxygen gas is 0.5 to 15 Pa, the current is 0.2 to 0.5 A,
The voltage is preferably between 500 and 2000V.
【0020】次に直流スパッタリングによって酸窒化珪
素膜を作製する。真空容器を一旦排気後、アルゴンガス
および酸素ガスを所定の圧力になるように導入し、さら
に窒素ガス、アンモニア等の窒素発生ガスを所定の圧力
になるまで導入する。酸素および窒素発生ガスの導入量
は、目的とする酸窒化珪素膜の酸素と窒素の割合によっ
て異なる。すべてのガスを導入したあとの真空容器内の
圧力は、通常0.2〜10Paである。Next, a silicon oxynitride film is formed by DC sputtering. After evacuation of the vacuum vessel, argon gas and oxygen gas are introduced so as to have a predetermined pressure, and nitrogen gas such as nitrogen gas and ammonia are further introduced until the pressure becomes a predetermined pressure. The introduction amount of the oxygen and nitrogen generation gas differs depending on the ratio of oxygen and nitrogen in the target silicon oxynitride film. The pressure in the vacuum vessel after introducing all the gases is usually 0.2 to 10 Pa.
【0021】次に所定の直流を印加し、混合ガスのプラ
ズマを発生させる。直流は、電流5〜20A、電圧50
0〜2000Vの範囲であることが好ましい。混合ガス
のプラズマは金属シリコンからなるターゲットに衝突
し、プラズマの衝撃により叩き出されたシリコン原子が
酸素、窒素と反応して基材フィルム表面に堆積し、酸窒
化珪素膜が形成される。Next, a predetermined direct current is applied to generate a plasma of the mixed gas. DC current is 5-20A, voltage 50
It is preferably in the range of 0-2000V. The plasma of the mixed gas collides with a target made of metallic silicon, and the silicon atoms struck out by the impact of the plasma react with oxygen and nitrogen to deposit on the surface of the base film to form a silicon oxynitride film.
【0022】プラズマ化された原料ガス原子が基材フィ
ルムに衝突するため、基材フィルムの温度が上昇する。
これにより基材フィルム3が変質しないようにするため
に、基材フィルム3をそのガラス転移点以下に保持する
ことが好ましい。この温度制御は、基材フィルム3の支
持体である冷却ロール2に所定の温度に冷却された液体
を循環させて、冷却ロールを制御することで実現され
る。この循環させる液体としては、水、エチレングリコ
ール(不凍液)、アルコール類、さらに低温化が必要な
場合には、液体窒素、液体ヘリウム等が好適に使用され
る。他の冷却方法として、気体を循環させる方法も用い
得るが、熱容量が大きい点から液体を循環させる方法が
好ましい。The temperature of the substrate film rises because the plasma-converted raw gas atoms collide with the substrate film.
In order to prevent the base film 3 from being deteriorated by this, it is preferable to keep the base film 3 at or below its glass transition point. This temperature control is realized by circulating a liquid cooled to a predetermined temperature through a cooling roll 2 which is a support of the base film 3 and controlling the cooling roll. As the liquid to be circulated, water, ethylene glycol (antifreeze), alcohols, and liquid nitrogen, liquid helium, and the like are preferably used when a lower temperature is required. As another cooling method, a method of circulating a gas may be used, but a method of circulating a liquid is preferable because of its large heat capacity.
【0023】<薬品容器用フィルム>本発明の薬品容器
用フィルムは、 (1)酸素透過度が1cc/m2・24hr・atm以
下; (2) 透湿度が1g/m2・24hr以下; であるため気体の透過性が低く、また、無機化合物が膜
形成されているので耐熱性があり、さらにフィルムとし
て柔軟性にも優れるため、液体を輸送するための薬品容
器を作成する材料として好適である。<Film for Chemical Container> The film for a chemical container of the present invention comprises: (1) oxygen permeability of 1 cc / m 2 · 24 hr · atm or less; (2) moisture permeability of 1 g / m 2 · 24 hr or less; Because of its low gas permeability, it also has heat resistance because the inorganic compound is formed as a film, and since it has excellent flexibility as a film, it is suitable as a material for making a chemical container for transporting liquid. is there.
【0024】形成された非晶質の酸窒化珪素膜の上に、
さらに基材フィルムと同じか、もしくは異なるヒートシ
ール性のよい透明性プラスチックフィルムをラミネート
しておくと、ヒートシール等の加工時に膜の欠陥が生じ
るのを防止できるので好ましい。ヒートシール性に優れ
る透明性プラスチックフィルムとしては、ポリエチレ
ン、ポリプロピレンなどのポリオレフィン系樹脂フィル
ムが例示される。また、ラミネート方法としては、無機
化合物膜の形成された基材フィルムを加熱し、無機化合
物を挟むようにラミネート用のフィルムを押し出し成形
し熱圧着する方法、無機化合物膜の上に接着剤を塗布
し、ラミネート用のフィルムを貼り付ける方法などを採
用できる。ラミネート後の薬品容器用フィルムの厚さ
は、5〜1000μm、好ましくは10〜700μm、
より好ましくは10〜300μmである。On the formed amorphous silicon oxynitride film,
Further, it is preferable to laminate a transparent plastic film having the same or different heat sealing property from that of the base film, since it is possible to prevent a film defect from occurring during processing such as heat sealing. Examples of the transparent plastic film having excellent heat sealing properties include polyolefin resin films such as polyethylene and polypropylene. In addition, as a laminating method, a method of heating a base film on which an inorganic compound film is formed, extruding and laminating a film for lamination so as to sandwich the inorganic compound, and applying an adhesive on the inorganic compound film Then, a method of attaching a film for lamination or the like can be adopted. The thickness of the film for a chemical container after lamination is 5 to 1000 μm, preferably 10 to 700 μm,
More preferably, it is 10 to 300 μm.
【0025】また、本発明の薬品容器用フィルムは、 (3)光線透過率が80%以上; (4)色相 b値が5以下; であるので、輸液容器の内容液の液面や色の識別が容易
であるとともに、薬品の保存中に異物の混入などによる
内容物の変化を容易に発見することができる。Further, the film for a medicine container of the present invention has (3) a light transmittance of 80% or more; (4) a hue b value of 5 or less; It is easy to identify, and it is possible to easily find a change in the contents due to the entry of a foreign substance during storage of the medicine.
【0026】さらに、本発明のフィルムを用いて得られ
る薬品容器は、上記の物性を有するため、ぶどう糖、生
理食塩水、リンゲル液、蛋白液、アミノ酸液、血漿、人
工透析剤、脂肪剤などの輸液の長期保存安定性に優れ
る。また軽量であるため、内容物の輸送性にも優れる。Further, since the drug container obtained by using the film of the present invention has the above-mentioned physical properties, infusion of glucose, physiological saline, Ringer's solution, protein solution, amino acid solution, plasma, artificial dialysis agent, fatty agent, etc. Has excellent long-term storage stability. In addition, since it is lightweight, it is excellent in the transportability of contents.
【0027】[0027]
【実施例】以下、本発明の実施例を説明するが、本発明
はこれら実施例に限定されるものではない。EXAMPLES Examples of the present invention will be described below, but the present invention is not limited to these examples.
【0028】(実施例1)厚さ50μmのポリエチレン
テレフタレートフィルム(東レ株式会社製登録商標「ル
ミラー」高透明タイプ)を図1に示す真空容器1内のロ
ール上に設置し、真空容器内を0.0133Paに減圧
した。グロー放電装置4に酸素ガスを導入し圧力を1P
aに設定し、電流0.5A、電圧1000Vの直流を印
加しグロー放電処理を行った。次いで原料ガスとしてア
ルゴンを82cc/分、窒素を56cc/分に設定・導
入し、反応室の圧力を0.3Paとした。ターゲットと
してSi単結晶を用い、7A、1000Vの直流を印加
した。0.9m/分の速度でフィルムを巻き取りながら
成膜を行った。この時の膜厚は48nmであった。ま
た、X線光電子分光法を用いて膜の組成を分析した結
果、窒素および酸素がそれぞれ44原子%および13原
子%含まれた酸窒化珪素膜であった。この基材フィルム
表面を原子間力顕微鏡(AFM)を用いて測定した結
果、最大高低差Rmax は17nmであった(測定範囲は
5μm×5μm)。Example 1 A 50 μm-thick polyethylene terephthalate film (registered trademark “Lumirror” made by Toray Industries, Inc., highly transparent type) was placed on a roll in a vacuum vessel 1 shown in FIG. The pressure was reduced to 0.0133 Pa. Oxygen gas is introduced into the glow discharge device 4 to reduce the pressure to 1P.
The current was set to a, and a direct current of 0.5 A and a voltage of 1000 V was applied to perform glow discharge treatment. Next, as a source gas, argon was set and introduced at 82 cc / min and nitrogen at 56 cc / min, and the pressure in the reaction chamber was set at 0.3 Pa. Using a single crystal of Si as a target, a direct current of 7 A and 1000 V was applied. The film was formed while winding the film at a speed of 0.9 m / min. The film thickness at this time was 48 nm. The composition of the film was analyzed using X-ray photoelectron spectroscopy. As a result, the film was a silicon oxynitride film containing 44 atomic% and 13 atomic% of nitrogen and oxygen, respectively. As a result of measuring the surface of the substrate film using an atomic force microscope (AFM), the maximum height difference Rmax was 17 nm (measurement range: 5 μm × 5 μm).
【0029】(実施例2)厚さ50μmのポリエチレン
テレフタレートフィルム(東レ株式会社製「ルミラー高
透明タイプ」)を図1に示す真空容器1内のロール上に
設置し、真空容器内を0.0133Paに減圧した。グ
ロー放電装置4に酸素ガスを導入し圧力を1Paに設定
し、電流0.5A、電圧1000Vの直流を印加しグロ
ー放電処理を行った。次いで原料ガスとしてアルゴンを
82cc/分、窒素を56cc/分に設定・導入し、反
応室の圧力を0.3Paとした。ターゲットとしてSi
単結晶を用い、7A、1000Vの直流を印加した。
1.8m/分の速度でフィルムを巻き取りながら成膜を
行った。この時の、膜厚は、24nmであった。また、
X線光電子分光法を用いて膜の組成を分析した結果、窒
素が44原子%、酸素が13原子%含まれた酸窒化珪素
膜であった。Example 2 A 50 μm thick polyethylene terephthalate film (“Lumirror highly transparent type” manufactured by Toray Industries, Inc.) was placed on a roll in a vacuum vessel 1 shown in FIG. The pressure was reduced. Oxygen gas was introduced into the glow discharge device 4, the pressure was set to 1 Pa, and a DC current of 0.5 A and a voltage of 1000 V was applied to perform glow discharge treatment. Next, as a source gas, argon was set and introduced at 82 cc / min and nitrogen at 56 cc / min, and the pressure in the reaction chamber was set at 0.3 Pa. Si as target
Using a single crystal, a direct current of 7 A and 1000 V was applied.
Film formation was performed while winding the film at a speed of 1.8 m / min. At this time, the film thickness was 24 nm. Also,
The composition of the film was analyzed by X-ray photoelectron spectroscopy. As a result, the film was a silicon oxynitride film containing 44 atomic% of nitrogen and 13 atomic% of oxygen.
【0030】(実施例3)厚さ38μmのポリエチレン
テレフタレートフィルム(東レ株式会社製「ルミラー高
透明タイプ」)を図1に示す真空容器1内のロール上に
設置し、真空容器内を0.0133Paに減圧した。グ
ロー放電装置4に酸素ガスを導入し圧力を1Paに設定
し、電流0.5A、電圧1000Vの直流を印加しグロ
ー放電処理を行った。次いで原料ガスとしてアルゴンを
82cc/分、窒素を56cc/分に設定・導入し、反
応室の圧力を0.3Paとした。ターゲットとしてSi
単結晶を用い、7A、1000Vの直流を印加した。
0.9m/分の速度でフィルムを巻き取りながら両面に
成膜を行った。この時の、各面の膜厚は24nmであっ
た。また、X線光電子分光法を用いて膜の組成を分析し
た結果、窒素が44原子%、酸素が13原子%含まれた
酸窒化珪素膜であった。Example 3 A 38 μm-thick polyethylene terephthalate film (“Lumirror highly transparent type” manufactured by Toray Industries, Inc.) was placed on a roll in the vacuum vessel 1 shown in FIG. The pressure was reduced. Oxygen gas was introduced into the glow discharge device 4, the pressure was set to 1 Pa, and a DC current of 0.5 A and a voltage of 1000 V was applied to perform glow discharge treatment. Next, as a source gas, argon was set and introduced at 82 cc / min and nitrogen at 56 cc / min, and the pressure in the reaction chamber was set at 0.3 Pa. Si as target
Using a single crystal, a direct current of 7 A and 1000 V was applied.
Film formation was performed on both sides while winding the film at a speed of 0.9 m / min. At this time, the thickness of each surface was 24 nm. The composition of the film was analyzed by X-ray photoelectron spectroscopy. As a result, the film was a silicon oxynitride film containing 44 atomic% of nitrogen and 13 atomic% of oxygen.
【0031】(比較例1)厚さ50μmのポリエチレン
テレフタレートフィルム(東レ株式会社製「ルミラー高
透明タイプ」)Comparative Example 1 A polyethylene terephthalate film having a thickness of 50 μm (“Lumirror highly transparent type” manufactured by Toray Industries, Inc.)
【0032】(比較例2)厚さ38μmのポリエチレン
テレフタレートフィルム(東レ株式会社製「ルミラー高
透明タイプ」)Comparative Example 2 Polyethylene terephthalate film having a thickness of 38 μm (“Lumirror highly transparent type” manufactured by Toray Industries, Inc.)
【0033】上記実施例および比較例のフィルムについ
て、下記の方法で評価を行った。 (1)透湿度 Mocon社製ガス透過率測定装置を使用して、40
℃、相対湿度90%の条件で測定した。 (2)酸素透過度 ヤナコ社製ガス透過率測定装置を使用して、23℃の酸
素雰囲気下で測定した。 (3)光線透過率、かすみ度(HAZE)およびb値
(黄、青の割合) 積分球式ヘイズメータ(日本電色社製ND−1001
D)を用いて測定した。測定光の波長は550nmであ
る。The films of the above Examples and Comparative Examples were evaluated by the following methods. (1) Moisture permeability Using a gas permeability measuring device manufactured by Mocon, 40
The measurement was performed under the conditions of ° C and 90% relative humidity. (2) Oxygen permeability Measured under an oxygen atmosphere at 23 ° C. using a gas permeability measuring device manufactured by Yanaco. (3) Light transmittance, haze (haze) and b value (ratio of yellow and blue) Integrating sphere haze meter (ND-1001 manufactured by Nippon Denshoku Co., Ltd.)
It measured using D). The wavelength of the measurement light is 550 nm.
【0034】[0034]
【表1】 [Table 1]
【0035】[0035]
【発明の効果】本発明に係る薬品容器用フィルムは、ガ
スバリアー性に優れるので、長期保存安定性に優れた輸
液容器等の薬品容器を提供することができる。さらに、
上記薬品容器用フィルムは透明性が高く、軽量であるた
め、例えば異物の混入などによる内容物の変化を容易に
発見することが可能となり、かつ薬液の輸送性に優れた
輸液容器等を提供することができる。さらにこの性質を
応用した太陽電池の保護フィルムとしても有用である。Since the film for a chemical container according to the present invention has excellent gas barrier properties, it is possible to provide a chemical container such as an infusion container having excellent long-term storage stability. further,
Since the film for a medicine container has high transparency and is lightweight, it is possible to easily find a change in the contents due to, for example, mixing of a foreign substance, and to provide an infusion container or the like excellent in transportability of a medicine solution. be able to. Further, it is also useful as a protective film for a solar cell utilizing this property.
【図1】本発明に係わる積層フィルムを生成するための
スパッタ装置を示す概略図である。FIG. 1 is a schematic view showing a sputtering apparatus for producing a laminated film according to the present invention.
1 真空容器 2 冷却用ロール 3 基材フィルム 4 グロー放電処理装置 5 ターゲット装置 6 巻き出し用ロール 7 巻き取り用ロール 8 搬送ロール DESCRIPTION OF SYMBOLS 1 Vacuum container 2 Cooling roll 3 Base film 4 Glow discharge treatment device 5 Target device 6 Unwinding roll 7 Take-up roll 8 Transport roll
フロントページの続き (72)発明者 八木 和雄 愛知県名古屋市南区丹後通2丁目1番地 三井化学株式会社内Continued on the front page (72) Inventor Kazuo Yagi 2-1-1 Tangodori, Minami-ku, Nagoya-shi, Aichi Mitsui Chemicals, Inc.
Claims (3)
に、無機化合物膜が形成されてなる、以下の物性を有す
ることを特徴とする薬品容器用フィルム。 (1)酸素透過度が1cc/m2・24hr・atm以
下; (2)透湿度が1g/m2・24hr以下; (3)光線透過率が80%以上; (4)色相 b値が5以下;1. A film for a chemical container, comprising an inorganic compound film formed on at least one surface of a plastic film and having the following physical properties. (1) Oxygen permeability is 1 cc / m 2 · 24 hr · atm or less; (2) Moisture permeability is 1 g / m 2 · 24 hr or less; (3) Light transmittance is 80% or more; (4) Hue b value is 5 Less than;
子%、窒素濃度3〜56原子%、かつ酸素と窒素の濃度
の和が75原子%以下である非晶質の酸窒化珪素である
ことを特徴とする請求項1に記載の薬品容器用フィル
ム。2. The inorganic compound is an amorphous silicon oxynitride having an oxygen concentration of 4 to 64 at%, a nitrogen concentration of 3 to 56 at%, and a sum of oxygen and nitrogen concentrations of 75 at% or less. The film for a chemical container according to claim 1, wherein:
または2に記載の薬品容器用フィルム。3. The container according to claim 1, wherein the medicine container is an infusion container.
Or the film for a chemical container according to 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10088374A JPH11285520A (en) | 1998-04-01 | 1998-04-01 | Film for chemical containers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10088374A JPH11285520A (en) | 1998-04-01 | 1998-04-01 | Film for chemical containers |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11285520A true JPH11285520A (en) | 1999-10-19 |
Family
ID=13941029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10088374A Pending JPH11285520A (en) | 1998-04-01 | 1998-04-01 | Film for chemical containers |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11285520A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002028999A (en) * | 2000-05-11 | 2002-01-29 | Mitsui Chemicals Inc | Gas barrier film laminate |
WO2003002139A1 (en) * | 2001-06-29 | 2003-01-09 | Asahi Kasei Kabushiki Kaisha | Method for improving stability of protein preparation |
JP2003140123A (en) * | 2001-11-02 | 2003-05-14 | Nippon Shokubai Co Ltd | Substrate for liquid crystal display device |
WO2006118034A1 (en) | 2005-04-28 | 2006-11-09 | Otsuka Pharmaceutical Factory, Inc. | Housing body for medical liquid container and process for producing the same |
US9901513B2 (en) | 2006-10-27 | 2018-02-27 | Otsuka Pharmaceutical Factory, Inc. | Drug solution having reduced dissolved oxygen content, method of producing the same and drug solution containing unit having reduced dissolved oxygen content |
-
1998
- 1998-04-01 JP JP10088374A patent/JPH11285520A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002028999A (en) * | 2000-05-11 | 2002-01-29 | Mitsui Chemicals Inc | Gas barrier film laminate |
WO2003002139A1 (en) * | 2001-06-29 | 2003-01-09 | Asahi Kasei Kabushiki Kaisha | Method for improving stability of protein preparation |
JP2003140123A (en) * | 2001-11-02 | 2003-05-14 | Nippon Shokubai Co Ltd | Substrate for liquid crystal display device |
WO2006118034A1 (en) | 2005-04-28 | 2006-11-09 | Otsuka Pharmaceutical Factory, Inc. | Housing body for medical liquid container and process for producing the same |
US8465819B2 (en) | 2005-04-28 | 2013-06-18 | Otsuka Pharmaceutical Factory, Inc. | Drug solution container package and method for manufacturing the same |
US9901513B2 (en) | 2006-10-27 | 2018-02-27 | Otsuka Pharmaceutical Factory, Inc. | Drug solution having reduced dissolved oxygen content, method of producing the same and drug solution containing unit having reduced dissolved oxygen content |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1134073B1 (en) | Gas barrier film | |
US7931955B2 (en) | Composite material made from a substrate material and a barrier layer material | |
KR100864612B1 (en) | Deposition film | |
EP2902189B1 (en) | Transparent vapor-deposited film | |
US20040166239A1 (en) | Barrier-forming film and manufacturing method thereof | |
JP2004314599A (en) | Barrier film | |
JP2002192646A (en) | Gas-barrier film | |
EP2799225A1 (en) | Translucent gas barrier film, method for producing translucent gas barrier film, organic el element, solar cell, and thin-film cell | |
JPH07304127A (en) | Gas barrier packaging material and production thereof | |
JP2017177343A (en) | Laminate film and method for manufacturing the same | |
WO2016190284A1 (en) | Gas barrier film and method for manufacturing same | |
JP2000141535A (en) | Laminated body | |
JPH11285520A (en) | Film for chemical containers | |
JPH1126155A (en) | Protection film for electroluminescent element | |
JP4291682B2 (en) | Barrier film manufacturing method | |
JPS6386860A (en) | Production of continuously vapor-deposited film | |
JP2006096046A (en) | Gas barrier film | |
JP4028339B2 (en) | Method for forming laminate with gas barrier film | |
JPH1158587A (en) | Antioxidizing packaging film | |
JP2006116703A (en) | Barrier film and laminated material using it | |
JP3097312B2 (en) | Laminated film | |
JPH02250953A (en) | Production of vapor deposited film | |
JP2006116731A (en) | Barrier film and laminated material using it | |
JPH1170152A (en) | Film for pharmaceutical container | |
JP4992324B2 (en) | Transparent gas barrier packaging material and method for producing the same |