[go: up one dir, main page]

JPH11279761A - Corrosion resistant materials - Google Patents

Corrosion resistant materials

Info

Publication number
JPH11279761A
JPH11279761A JP10087582A JP8758298A JPH11279761A JP H11279761 A JPH11279761 A JP H11279761A JP 10087582 A JP10087582 A JP 10087582A JP 8758298 A JP8758298 A JP 8758298A JP H11279761 A JPH11279761 A JP H11279761A
Authority
JP
Japan
Prior art keywords
boron carbide
carbide film
plasma
resistant member
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10087582A
Other languages
Japanese (ja)
Inventor
Michihiko Koshida
充彦 越田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10087582A priority Critical patent/JPH11279761A/en
Publication of JPH11279761A publication Critical patent/JPH11279761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the corrosion resistant member of long term reliability achieving excellent corrosion resistance by covering a boron carbide film, in which a density is higher than a specified value and a surface roughness is less than a specified value, on a surface of a substrate so as not to generate a particle. SOLUTION: This corrosion resistant member is made so that a surface of a substrate is covered with a boron carbide film having a density of >=2.40g/cm<3> and a surface roughness Ra of <=0.6 μm. The content of at least one of elements among boron, aluminum, iron in the boron carbide film is totally <=3,100 ppm (including 0). The corrosion resistant member, on the surface of which the boron carbide film of this constitution is covered is made plasmatic, under a fluorine group, a chlorine group, a halogen group corrosion gas, and by introducing a micro wave/high frequency voltage into the gas atmosphere, and excellent corrosion resistance can be attained under such plasma. Further, the substrate is constituted of a ceramic sintered body of boron carbide sintered body, AlN, Al2 O3 , Si3 N4 , SiC, etc., cermet and graphite.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フッ素系や塩素系
などの腐食性ガス、あるいはフッ素系や塩素系ブラズマ
に対し優れた耐食性をもつ耐食性部材に関するものであ
り、このような耐食性部材は、たとえば半導体製造用装
置のスペーサリング、内壁部材または被処理物を支持す
る支持体、さらに他の各種半導体製造用治具に使用され
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a corrosion-resistant member having excellent corrosion resistance to a corrosive gas such as a fluorine-based or chlorine-based gas, or to a fluorine-based or chlorine-based plasma. For example, it is used for a spacer ring of a semiconductor manufacturing apparatus, a support for supporting an inner wall member or an object to be processed, and various other jigs for manufacturing a semiconductor.

【0002】[0002]

【従来の技術】近年、半導体素子などの高集積回路素子
の製造に使用されるドライプロセスやプラズマコーティ
ング等のプラズマ技術が使用されているが、半導体製造
におけるプラズマプロセスとしては、フッ素系等のハロ
ゲン系ガスがエッチングやクリーニングに利用されてい
る。
2. Description of the Related Art In recent years, a plasma process such as a dry process and a plasma coating used for manufacturing a highly integrated circuit device such as a semiconductor device has been used. System gases are used for etching and cleaning.

【0003】これらのガスと接触する部材には、高い耐
食性が要求され、そのためにガラスや石英、ステンレス
やモネル等の金属が多用されている。
[0003] The members that come into contact with these gases are required to have high corrosion resistance. For this reason, metals such as glass, quartz, stainless steel, and monel are frequently used.

【0004】一方、半導体製造装置におけるウェハ支持
固定用のサセプタ材には、アルミナ焼結体、サファイ
ア、窒化アルミニウム(AlN)焼結体、またはこれら
をCVD法等により表面被覆したもの、さらには炭化珪
素(SiC)焼結体に対しCVD法でもってSiC膜を
被覆したものも使用されている。
[0004] On the other hand, a susceptor material for supporting and fixing a wafer in a semiconductor manufacturing apparatus includes an alumina sintered body, sapphire, aluminum nitride (AlN) sintered body, or a material obtained by surface-coating them by a CVD method or the like, and further comprises a carbonized material. A silicon (SiC) sintered body coated with a SiC film by a CVD method is also used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ガラスや石英からなる部材では、プラズマ中において、
耐食性が不充分であり、そのために消耗が激しく、とく
にフッ素系や塩素系のプラズマにさらされるとエッチン
グされ、表面性状が劣化するという問題点がある。
However, in the above-mentioned members made of glass or quartz,
There is a problem that corrosion resistance is inadequate, which leads to severe wear. Especially, when exposed to fluorine-based or chlorine-based plasma, the film is etched and its surface properties are deteriorated.

【0006】また、ステンレスなどの金属部材において
も、耐食性が不充分であり、長期間にわたって使用する
ことがむずかしく、さらに半導体製造において、その製
造装置自体に、あるいはウエハァにも不良が発生する原
因となっていた。さらにアルミナ焼結体やAlN焼結体
からなる部材では、上記の材料と比べフッ素系ガスに対
する耐食性に優れるが、高温下のプラズマにさらされる
と、腐食が徐々に進行し、これにより、焼結体の表面か
ら結晶粒子が脱粒していた。
[0006] Metal members such as stainless steel also have insufficient corrosion resistance and are difficult to use for a long period of time. Further, in semiconductor manufacturing, defects may occur in the manufacturing equipment itself or wafers. Had become. Furthermore, members made of an alumina sintered body or an AlN sintered body are superior in corrosion resistance to fluorine-based gas as compared with the above materials, but when exposed to high-temperature plasma, corrosion gradually progresses. Crystal grains were shed from the body surface.

【0007】このようにパーティクルの発生も問題にな
っているが、このパーティクルはイオン衝撃などの物理
的な作用により発生したり、あるいは化学的な気相反応
で生成して、ゴミとなり、真空容器内の各部材に悪影響
を及ぼしている。すなわち、半導体製造装置において、
半導体の高集積化、プロセスのさらなるクリーン化に伴
い、かかるパーティクルによってメタル配線の断線、パ
ターンの欠陥等が発生し、これによって素子特性の劣化
や歩留り低下を引き起こしていた。
As described above, the generation of particles is also a problem. However, these particles are generated by a physical action such as ion bombardment, or are generated by a chemical vapor phase reaction, and become dust, thereby forming a vacuum container. Each member inside is adversely affected. That is, in a semiconductor manufacturing apparatus,
With the increase in the degree of integration of semiconductors and the further cleanliness of the process, such particles have caused disconnection of metal wiring, defects in patterns, and the like, thereby causing deterioration in device characteristics and reduction in yield.

【0008】上記問題点を解決するために、フッ素・塩
素系プラズマに対し安定な周期律表第3a族元素を主成
分とする材料でもって耐食性部材となすことが提案され
ている(特開平9−295863号)。
In order to solve the above problems, it has been proposed to form a corrosion-resistant member by using a material containing a Group 3a element of the periodic table that is stable against fluorine-chlorine-based plasma as a main component (Japanese Patent Laid-Open No. Hei 9 (1998)). No. 295863).

【0009】しかしながら、このような耐食性部材にお
いても、いまだ満足し得る程度の耐食性が達成されず、
その表面に形成されたハロゲン化物の脱落や気相反応に
よってパーティクルが発生していた。
However, even with such a corrosion-resistant member, a satisfactory corrosion resistance has not yet been achieved.
Particles were generated due to dropout of the halide formed on the surface or gas phase reaction.

【0010】本発明者は上記事情に鑑みフッ素系や塩素
系の腐食ガスあるいはプラズマに対し、半導体の性能を
損ねるような元素(Cr、Fe、Zn、Na、K、N
i、Cu、Li、Na)を含まず、かつパーティクルを
発生しない高耐食性材料について、鋭意研究を重ねた結
果、炭化硼素膜であれば、製造上容易に緻密化でき、フ
ッ素や塩素と反応した場合においても、蒸気圧の高い反
応物が生成されることで固体にならず、また、パーティ
クルが発生しないでガスとして系外に放出され、しか
も、フッ素系および塩素系腐食ガスあるいはブラズマと
は反応しにくいために耐食性にも優れるということを見
い出した。
In view of the above circumstances, the present inventor has found that an element (Cr, Fe, Zn, Na, K, N) that impairs the performance of a semiconductor against a fluorine-based or chlorine-based corrosive gas or plasma.
As a result of intensive studies on a high corrosion resistant material that does not contain i, Cu, Li, and Na) and does not generate particles, a boron carbide film can be easily densified in production and reacted with fluorine and chlorine. Even in this case, a reactant having a high vapor pressure is not formed into a solid due to generation of the reactant, and is released as a gas without generating particles, and reacts with a fluorine-based and chlorine-based corrosive gas or plasma. It has been found that it is difficult to perform, so it has excellent corrosion resistance.

【0011】したがって本発明は上記知見に基づいて完
成されたものであり、その目的はパーティクルが発生せ
ず、優れた耐食性を達成した長期信頼性の耐食性部材を
提供することにある。
Accordingly, the present invention has been completed based on the above findings, and an object of the present invention is to provide a long-term reliable corrosion-resistant member which does not generate particles and achieves excellent corrosion resistance.

【0012】また、本発明の他の目的はフッ素系および
塩素系腐食ガスあるいはブラズマと反応しないことによ
りパーティクルの発生を防止する半導体製造用耐食性部
材を提供することにある。
Another object of the present invention is to provide a corrosion-resistant member for semiconductor production which prevents generation of particles by not reacting with fluorine-based and chlorine-based corrosive gas or plasma.

【0013】[0013]

【問題点を解決するための手段】本発明の耐食性部材
は、基体の表面に密度を2.40g/cm3 以上、表面
粗さRa 0.6μm以下の炭化硼素膜を被覆したことを
特徴とする。
The corrosion-resistant member of the present invention is characterized in that the surface of the substrate is coated with a boron carbide film having a density of 2.40 g / cm 3 or more and a surface roughness Ra of 0.6 μm or less. I do.

【0014】また、本発明の他の耐食性部材は、上記炭
化硼素膜中の珪素、アルミニウムおよび鉄の少なくとも
1種の元素が合計して3100ppm以下(0を含む)
であることを特徴とする。
In another corrosion resistant member of the present invention, the total of at least one element of silicon, aluminum and iron in the boron carbide film is 3100 ppm or less (including 0).
It is characterized by being.

【0015】[0015]

【発明の実施の形態】本発明の耐食性部材は、基体表面
に上記構成の炭化硼素膜を被覆したものであって、これ
によってフッ素系または塩素系等のハロゲン系腐食ガ
ス、ならびにこのガス雰囲気にマイクロ波や高周波電圧
を導入することで、プラズマ化されるが、このようなプ
ラズマであっても優れた耐腐食性が達成される。フッ素
系ガスにはSF6 、CF4 、CHF3 、ClF3 、HF
等があり、塩素系ガスにはCl2、BCl3 、HCl等
がある。
BEST MODE FOR CARRYING OUT THE INVENTION The corrosion-resistant member of the present invention has a substrate surface coated with a boron carbide film having the above-described structure. By introducing a microwave or a high-frequency voltage, a plasma is formed. Even with such a plasma, excellent corrosion resistance is achieved. SF 6 , CF 4 , CHF 3 , ClF 3 , HF
And chlorine-based gases include Cl 2 , BCl 3 , and HCl.

【0016】上記基体は炭化硼素焼結体、AlN、Al
2 3 、Si3 4 、SiCなどのセラミック焼結体、
サーメット、もしくはグラファイトにより構成する。
The substrate is made of a sintered boron carbide, AlN, Al
Ceramic sintered bodies such as 2 O 3 , Si 3 N 4 , SiC,
It is composed of cermet or graphite.

【0017】上記炭化硼素膜については、低密度になる
と気孔が多くなり、そのために腐食ガスやプラズマとの
接触面積が増加し、消耗か速くなるので、密度が2.4
0g/cm3 以上、好適には2.45g/cm3 以上に
高密度にするとよい。
With respect to the above-mentioned boron carbide film, when the density becomes low, the number of pores increases, so that the contact area with a corrosive gas or plasma increases, and the consumption becomes faster, so that the density becomes 2.4.
0 g / cm 3 or more, preferably better to high density 2.45 g / cm 3 or more.

【0018】また、膜の構成成分として炭化硼素を96
重量%以上、好適には98重量%以上にすると緻密体と
なり、密度が2.40g/cm3 以上が達成される。こ
のように炭化硼素を96重量%以上にするためには、遊
離炭素、遊離硼素が含まないようにするのがよく、さら
にその他の不純物も含有させないのがよい。
Further, as a constituent of the film, boron carbide is added to 96 parts.
If it is at least 98% by weight, preferably at least 98% by weight, a dense body is obtained, and a density of at least 2.40 g / cm 3 is achieved. In order to make the boron carbide 96% by weight or more, it is preferable not to contain free carbon and free boron, and it is also preferable not to contain other impurities.

【0019】このような炭化硼素膜を成膜形成するに
は、公知の成膜技術、たとえばCVD法を用いればよ
く、その場合にはベンゼン(C6 6))と三塩化硼素
(BCl3)との混合ガスを出発原料ガスにして、約1
050〜1100℃の反応温度にて成膜形成する。
In order to form such a boron carbide film, a known film forming technique, for example, a CVD method may be used. In this case, benzene (C 6 H 6 ) and boron trichloride (BCl 3 ) are used. ) As the starting material gas,
A film is formed at a reaction temperature of 050 to 1100 ° C.

【0020】また、炭化硼素膜の厚みは0.5μm以上
が望ましく、これによって耐食性を長期間にわたって維
持することができる。
The thickness of the boron carbide film is desirably 0.5 μm or more, so that the corrosion resistance can be maintained for a long period of time.

【0021】さらにまた、炭化硼素膜の表面粗さRa を
0.5μm以下、好適には0.2μm以下にすると、パ
ーティクルの発生が低減され、優れた耐食性が得られる
という点でよい。0.5μm以下の表面粗さRa は、上
記基体の表面粗さRa を0.5μm以下にすることで得
られる。
Further, when the surface roughness Ra of the boron carbide film is 0.5 μm or less, preferably 0.2 μm or less, it is advantageous in that generation of particles is reduced and excellent corrosion resistance is obtained. The surface roughness Ra of 0.5 μm or less can be obtained by setting the surface roughness Ra of the substrate to 0.5 μm or less.

【0022】また、本発明によれば、炭化硼素膜の成膜
工程における不純物について、鋭意研究に努めたとこ
ろ、珪素、アルミニウムおよび鉄の各原子が耐食性を劣
化させる要因であることを見出し、そこで、これらの合
計量を3100ppm以下、好適には2000ppm以
下にするとよい。この範囲にすると、フッ素系や塩素系
ブラズマに長時間さらされても、優れた耐食効果が得ら
れる。なお、珪素、アルミニウムおよび鉄の各原子は炭
化硼素膜をCVDコーティングした際に、チャンバ等各
種半導体製造用治具からガス雰囲気中に浮遊し、これに
よって含有されると本発明者は考える。
Further, according to the present invention, the inventors of the present invention have conducted intensive studies on impurities in the step of forming a boron carbide film, and have found that each atom of silicon, aluminum and iron is a factor that deteriorates corrosion resistance. And the total amount thereof is 3100 ppm or less, preferably 2000 ppm or less. Within this range, excellent corrosion resistance can be obtained even when exposed to fluorine-based or chlorine-based plasma for a long time. The present inventor considers that each atom of silicon, aluminum and iron floats in a gas atmosphere from various semiconductor manufacturing jigs such as a chamber when the boron carbide film is subjected to CVD coating and is contained by this.

【0023】[0023]

【実施例】(例1)まず、本発明の基体である炭化硼素
焼結体を作製した。この炭化硼素焼結体は焼成温度22
00℃、成形圧力200kgf/cm2 によるホットプ
レスでもって作製した。
EXAMPLES (Example 1) First, a boron carbide sintered body as a substrate of the present invention was produced. This boron carbide sintered body has a firing temperature of 22.
It was produced by hot pressing at 00 ° C. and a molding pressure of 200 kgf / cm 2 .

【0024】この基体表面にCVD法により炭化硼素膜
を1.0μmの厚みで形成した。このCVD法は硼素源
として三塩化硼素(BCl3 )、炭素源としてベンゼン
(C6 6 )を用いて、反応温度を1100℃にしてB
4 C膜を成膜形成した。
A boron carbide film having a thickness of 1.0 μm was formed on the surface of the substrate by a CVD method. In this CVD method, boron trichloride (BCl 3 ) is used as a boron source, benzene (C 6 H 6 ) is used as a carbon source, and the reaction temperature is set to 1100 ° C.
A 4 C film was formed.

【0025】そして、表1に示すとおり、炭化硼素膜の
炭化硼素量と密度と表面粗さ(ただし、Si、Al、F
eの不純物含有量は合計で3100ppm以下である)
を幾とおりにも変えて成膜形成し、試料No.1〜6を
作製した。さらに上記基体に対し成膜しないものを試料
No.7とした。
As shown in Table 1, the amount, density, and surface roughness of the boron carbide film (i.e., Si, Al, F
e has an impurity content of 3100 ppm or less in total)
Was changed in any number of ways to form a film. 1 to 6 were produced. Further, a sample which was not formed on the above-mentioned substrate was designated as Sample No. 7 was set.

【0026】[0026]

【表1】 [Table 1]

【0027】これら各試料に対する評価をフッ素系プラ
ズマと塩素系プラズマの双方でもっておこなったとこ
ろ、表2に示すとおりの結果が得られた。
When the evaluation of each of these samples was performed using both fluorine-based plasma and chlorine-based plasma, the results shown in Table 2 were obtained.

【0028】[0028]

【表2】 [Table 2]

【0029】フッ素系プラズマによる評価であれば、各
試料をRIE(Reactive Ion Etching)プラズマエツチン
グ装置に入れ、ついでCF4 ガスを60sccmの流量
で、Arガスを60sccmの流量で導入し、圧力10
Pa、RF出力lkWに設定し、3時間プラズマ照射す
ることによってフッ素系プラズマとなし、これでもって
室温にて評価し、エツチングレートとパーティクルの発
生有無を調べた。
In the case of evaluation using fluorine-based plasma, each sample was placed in a RIE (Reactive Ion Etching) plasma etching apparatus, and then CF 4 gas was introduced at a flow rate of 60 sccm, Ar gas was introduced at a flow rate of 60 sccm, and
By setting the Pa and the RF output to 1 kW and irradiating the plasma for 3 hours, a fluorine-based plasma was formed, and the plasma was evaluated at room temperature to check the etching rate and the generation of particles.

【0030】エツチングレートはテスト前後の重量変化
を基にして、材質の比重と時間でもって算出し、Å/分
の単位であらわす。すなわち、エツチングレート〔Å/
分〕=〔(エツチング前の試料の重量−エツチング後の
試料の重量)/試料の比重〕/(プラズマ照射面積×プ
ラズマ照射時間)である。
The etching rate is calculated based on the change in weight before and after the test using the specific gravity of the material and the time, and is expressed in units of Å / min. That is, the etching rate [Å /
Min) = [(weight of sample before etching−weight of sample after etching) / specific gravity of sample] / (plasma irradiation area × plasma irradiation time).

【0031】さらにパーティクルの発生状況を電子顕微
鏡にて各試料の表面を観察し、表面への粒子の付着状況
を観察した。○印はほとんどパーティクルが発生しな
かった場合であり、×印はパーティクルが顕著に発生
した場合である。
Further, the state of generation of particles was observed with an electron microscope on the surface of each sample, and the state of adhesion of particles to the surface was observed. The mark “○” indicates that almost no particles were generated, and the mark “X” indicates that particles were significantly generated.

【0032】他方、塩素系プラズマによる評価であれ
ば、各試料をRlEプラズマエツチング装置に入れ、B
Cl3 ガスを導入し(流量l00sccm)、圧力4P
a、RF出力l.8kWのエッチング条件でもってプラ
ズマ照射を3時間おこない、その塩素プラズマ中に室温
にて評価し、エツチングレートとパーティクルとを同様
に測定評価した。
On the other hand, in the case of evaluation using chlorine-based plasma, each sample was put into an RIE plasma etching apparatus, and B
Cl 3 gas is introduced (flow rate 100 sccm), pressure 4P
a, RF output l. Plasma irradiation was carried out for 3 hours under the etching condition of 8 kW, and the chlorine plasma was evaluated at room temperature, and the etching rate and particles were similarly measured and evaluated.

【0033】表2に示す結果から明らかなとおり、本発
明の試料No.1〜4については、エツチングレートが
低く、しかも、パーティクルが発生しなかった。
As is clear from the results shown in Table 2, the sample No. of the present invention. With respect to Nos. 1 to 4, the etching rate was low and no particles were generated.

【0034】これに対し、試料No.5では膜の密度が
低く、試料No.6では表面粗さが大きく、これによ
り、エツチングレートが高くなり、パーティクルが発生
した。試料No.7についても炭化硼素膜を成膜形成し
ないことで、エツチングレートが高くなり、パーティク
ルが発生した。
On the other hand, the sample No. In Sample No. 5, the density of the film was low. In No. 6, the surface roughness was large, thereby increasing the etching rate and generating particles. Sample No. As for No. 7, the etching rate was increased and particles were generated by not forming a boron carbide film.

【0035】(例2)(例1)と同様に基体である炭化
硼素焼結体の表面にCVD法により炭化硼素膜を形成す
るが、さらに表3に示すようにSi、Al、Feの不純
物を混入させ、合計含有量を変えて試料No.8〜13
を作製した。いずれの試料も炭化硼素膜の炭化硼素量を
96重量%、密度を2.45g/cm3 、表面粗さRa
を0.5μmにして、その他は(例1)とまったく同じ
にして成膜形成した。
Example 2 A boron carbide film is formed on the surface of a boron carbide sintered body as a substrate by a CVD method in the same manner as in Example 1, and as shown in Table 3, impurities of Si, Al and Fe are further added. And the total content was changed to change the sample No. 8-13
Was prepared. In each sample, the boron carbide content of the boron carbide film was 96% by weight, the density was 2.45 g / cm 3 , and the surface roughness was Ra.
Was set to 0.5 μm, and the others were formed exactly as in Example 1.

【0036】[0036]

【表3】 [Table 3]

【0037】こらら各試料に対する評価をフッ素系プラ
ズマと塩素系プラズマの双方でもっておこなったとこ
ろ、表3に示すとおりの結果が得られた。この結果から
明らかなとおり、本発明の試料No.8〜10について
は、エツチングレートが低く、しかも、パーティクルが
発生しなかった。これに対する試料No.11〜13で
はパーティクルが発生しなかったが、エツチングレート
が高くなった。
The evaluation of each sample was performed using both fluorine-based plasma and chlorine-based plasma, and the results shown in Table 3 were obtained. As is clear from the results, the sample No. For Nos. 8 to 10, the etching rate was low and no particles were generated. The sample no. In Nos. 11 to 13, no particles were generated, but the etching rate was high.

【0038】[0038]

【発明の効果】以上のとおり、本発明によれば、基体の
表面に密度2.40g/cm3 以上、表面粗さRa 0.
6μm以下の炭化硼素膜を被覆したことで、パーティク
ルが発生せず、優れた耐食性を達成した長期信頼性の耐
食性部材が提供できた。
As described above, according to the present invention, the substrate surface has a density of 2.40 g / cm 3 or more and a surface roughness Ra of 0.
By coating with a boron carbide film having a thickness of 6 μm or less, a long-term reliable corrosion-resistant member which did not generate particles and achieved excellent corrosion resistance could be provided.

【0039】また、本発明によれば、フッ素系および塩
素系の腐食ガスあるいはフッ素系・塩素系ブラズマと反
応せず、さらにパーティクルが発生しない半導体製造用
耐食性部材(たとえばプラズマ処理装置の内壁部材や被
処理物を支持する支持体などの治具部材)が得られ、そ
の結果、半導体製造の歩留りが向上して、生産コストが
低減でき、しかも、高品質かつ高信頼性の半導体素子が
作製できた。
Further, according to the present invention, a corrosion-resistant member for semiconductor production which does not react with fluorine-based and chlorine-based corrosive gas or fluorine-based / chlorine-based plasma and does not generate particles (for example, an inner wall member of a plasma processing apparatus, A jig member such as a support for supporting an object to be processed can be obtained. As a result, the yield of semiconductor manufacturing can be improved, the production cost can be reduced, and a high quality and highly reliable semiconductor element can be manufactured. Was.

【0040】しかも、本発明の耐食性部材については、
炭化硼素膜中に珪素、アルミニウムおよび鉄の少なくと
も1種の元素を合計して3100ppm以下にしたこと
で、パーティクルが発生しなくなり、さらに優れた耐食
性を達成できた。
Moreover, the corrosion-resistant member of the present invention
By setting at least one element of silicon, aluminum and iron in the boron carbide film to be 3100 ppm or less, no particles were generated, and more excellent corrosion resistance could be achieved.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】基体の表面に密度2.40g/cm3
上、表面粗さRa 0.6μm以下の炭化硼素膜を被覆し
たことを特徴とする耐食性部材。
1. A corrosion-resistant member comprising a substrate having a surface coated with a boron carbide film having a density of at least 2.40 g / cm 3 and a surface roughness Ra of at most 0.6 μm.
【請求項2】前記炭化硼素膜中の珪素、アルミニウムお
よび鉄の少なくとも1種の元素が合計して3100pp
m以下(0を含む)であることを特徴とする請求項1記
載の耐食性部材。
2. The method according to claim 1, wherein at least one element selected from the group consisting of silicon, aluminum and iron in said boron carbide film has a total of 3100 pp.
The corrosion-resistant member according to claim 1, wherein m is equal to or less than 0 (including 0).
JP10087582A 1998-03-31 1998-03-31 Corrosion resistant materials Pending JPH11279761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10087582A JPH11279761A (en) 1998-03-31 1998-03-31 Corrosion resistant materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10087582A JPH11279761A (en) 1998-03-31 1998-03-31 Corrosion resistant materials

Publications (1)

Publication Number Publication Date
JPH11279761A true JPH11279761A (en) 1999-10-12

Family

ID=13919005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10087582A Pending JPH11279761A (en) 1998-03-31 1998-03-31 Corrosion resistant materials

Country Status (1)

Country Link
JP (1) JPH11279761A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241598A (en) * 2003-02-06 2004-08-26 Sumitomo Electric Ind Ltd Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus equipped with the same
US7329467B2 (en) 2003-08-22 2008-02-12 Saint-Gobain Ceramics & Plastics, Inc. Ceramic article having corrosion-resistant layer, semiconductor processing apparatus incorporating same, and method for forming same
US8017062B2 (en) 2004-08-24 2011-09-13 Yeshwanth Narendar Semiconductor processing components and semiconductor processing utilizing same
RU2482215C1 (en) * 2011-11-25 2013-05-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) Method for application of ceramic coating onto parts from cast iron and steel
US20170211182A1 (en) * 2014-02-06 2017-07-27 Kgt Graphit Technologie Gmbh Protective layer for pecvd graphite boats
EP3611753A1 (en) * 2018-08-13 2020-02-19 SKC Solmics Co., Ltd. Ring-shaped element for a plasma etcher and method for etching substrate using the same
JP2021151949A (en) * 2018-08-13 2021-09-30 エスケーシー ソルミックス カンパニー,リミテッド Boron carbide sintered body and etching apparatus containing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241598A (en) * 2003-02-06 2004-08-26 Sumitomo Electric Ind Ltd Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus equipped with the same
US7329467B2 (en) 2003-08-22 2008-02-12 Saint-Gobain Ceramics & Plastics, Inc. Ceramic article having corrosion-resistant layer, semiconductor processing apparatus incorporating same, and method for forming same
US8017062B2 (en) 2004-08-24 2011-09-13 Yeshwanth Narendar Semiconductor processing components and semiconductor processing utilizing same
RU2482215C1 (en) * 2011-11-25 2013-05-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) Method for application of ceramic coating onto parts from cast iron and steel
US20170211182A1 (en) * 2014-02-06 2017-07-27 Kgt Graphit Technologie Gmbh Protective layer for pecvd graphite boats
US10151030B2 (en) * 2014-02-06 2018-12-11 Kgt Graphit Technologie Gmbh Protective layer for PECVD graphite boats
EP3611753A1 (en) * 2018-08-13 2020-02-19 SKC Solmics Co., Ltd. Ring-shaped element for a plasma etcher and method for etching substrate using the same
JP2020027945A (en) * 2018-08-13 2020-02-20 エスケーシー ソルミックス カンパニー,リミテッド Ring-shaped element for etcher and method for etching substrate using the same
JP2021151949A (en) * 2018-08-13 2021-09-30 エスケーシー ソルミックス カンパニー,リミテッド Boron carbide sintered body and etching apparatus containing the same

Similar Documents

Publication Publication Date Title
US6645585B2 (en) Container for treating with corrosive-gas and plasma and method for manufacturing the same
KR100953707B1 (en) Semiconductor processing component and semiconductor manufacturing method using same
JPH11214365A (en) Components for semiconductor device manufacturing equipment
JP3046288B1 (en) Components for semiconductor / liquid crystal manufacturing equipment
JP3488373B2 (en) Corrosion resistant materials
JP3618048B2 (en) Components for semiconductor manufacturing equipment
JPH11279761A (en) Corrosion resistant materials
JPH05251365A (en) Corrosion-resistant member
JP3623054B2 (en) Components for plasma process equipment
JP3500278B2 (en) Corrosion resistant materials for semiconductor manufacturing
KR20090101245A (en) Ceramic member and corrosion resistant member
JP4373487B2 (en) Corrosion resistant CVD-SiC coating material and jig for CVD equipment
JP3808245B2 (en) Chamber component for semiconductor manufacturing
JP4641609B2 (en) Corrosion resistant material
JP4126461B2 (en) Components for plasma process equipment
JP3078671B2 (en) Corrosion resistant member, method of using the same and method of manufacturing the same
JP2000239066A (en) Corrosion resistant member, method of manufacturing the same, and member for plasma processing apparatus using the same
JP2002222803A (en) Corrosion resistant materials for semiconductor manufacturing
JP2000129388A (en) Corrosion resistant materials
JPH11278944A (en) Silicon nitride corrosion-resistant member and method of manufacturing the same
CN100396647C (en) Yttrium oxide sintered body and manufacturing method thereof
JP2000143348A (en) Aluminum nitride sintered body, method for manufacturing the same, and member for semiconductor manufacturing apparatus using the same
JP4651145B2 (en) Corrosion resistant ceramics
JPH09328382A (en) Aluminum nitride base material for semiconductor production unit and its production
JP2012096931A (en) Corrosion-resistant member coated with aluminum nitride, and method for producing the same