JPH11279761A - Corrosion resistant materials - Google Patents
Corrosion resistant materialsInfo
- Publication number
- JPH11279761A JPH11279761A JP10087582A JP8758298A JPH11279761A JP H11279761 A JPH11279761 A JP H11279761A JP 10087582 A JP10087582 A JP 10087582A JP 8758298 A JP8758298 A JP 8758298A JP H11279761 A JPH11279761 A JP H11279761A
- Authority
- JP
- Japan
- Prior art keywords
- boron carbide
- carbide film
- plasma
- resistant member
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000007797 corrosion Effects 0.000 title claims abstract description 37
- 238000005260 corrosion Methods 0.000 title claims abstract description 37
- 239000000463 material Substances 0.000 title description 7
- 229910052580 B4C Inorganic materials 0.000 claims abstract description 31
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 claims abstract description 31
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 230000003746 surface roughness Effects 0.000 claims abstract description 11
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 8
- 229910052742 iron Inorganic materials 0.000 claims abstract description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 4
- 239000002245 particle Substances 0.000 abstract description 24
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052796 boron Inorganic materials 0.000 abstract description 3
- 230000007774 longterm Effects 0.000 abstract description 3
- 239000000919 ceramic Substances 0.000 abstract description 2
- 239000011195 cermet Substances 0.000 abstract description 2
- 229910002804 graphite Inorganic materials 0.000 abstract description 2
- 239000010439 graphite Substances 0.000 abstract description 2
- 229910018404 Al2 O3 Inorganic materials 0.000 abstract 1
- 229910017083 AlN Inorganic materials 0.000 abstract 1
- 229910007277 Si3 N4 Inorganic materials 0.000 abstract 1
- 125000001309 chloro group Chemical group Cl* 0.000 abstract 1
- 125000001153 fluoro group Chemical group F* 0.000 abstract 1
- 125000005843 halogen group Chemical group 0.000 abstract 1
- 229910003465 moissanite Inorganic materials 0.000 abstract 1
- 229910010271 silicon carbide Inorganic materials 0.000 abstract 1
- 239000000460 chlorine Substances 0.000 description 17
- 239000007789 gas Substances 0.000 description 17
- 229910052731 fluorine Inorganic materials 0.000 description 16
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 15
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 15
- 229910052801 chlorine Inorganic materials 0.000 description 15
- 239000011737 fluorine Substances 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 13
- 239000004065 semiconductor Substances 0.000 description 13
- 238000005530 etching Methods 0.000 description 12
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 238000001020 plasma etching Methods 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- 229910000792 Monel Inorganic materials 0.000 description 1
- HXELGNKCCDGMMN-UHFFFAOYSA-N [F].[Cl] Chemical compound [F].[Cl] HXELGNKCCDGMMN-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000005539 carbonized material Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000010849 ion bombardment Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006557 surface reaction Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Carbon And Carbon Compounds (AREA)
- Chemical Vapour Deposition (AREA)
- Drying Of Semiconductors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、フッ素系や塩素系
などの腐食性ガス、あるいはフッ素系や塩素系ブラズマ
に対し優れた耐食性をもつ耐食性部材に関するものであ
り、このような耐食性部材は、たとえば半導体製造用装
置のスペーサリング、内壁部材または被処理物を支持す
る支持体、さらに他の各種半導体製造用治具に使用され
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a corrosion-resistant member having excellent corrosion resistance to a corrosive gas such as a fluorine-based or chlorine-based gas, or to a fluorine-based or chlorine-based plasma. For example, it is used for a spacer ring of a semiconductor manufacturing apparatus, a support for supporting an inner wall member or an object to be processed, and various other jigs for manufacturing a semiconductor.
【0002】[0002]
【従来の技術】近年、半導体素子などの高集積回路素子
の製造に使用されるドライプロセスやプラズマコーティ
ング等のプラズマ技術が使用されているが、半導体製造
におけるプラズマプロセスとしては、フッ素系等のハロ
ゲン系ガスがエッチングやクリーニングに利用されてい
る。2. Description of the Related Art In recent years, a plasma process such as a dry process and a plasma coating used for manufacturing a highly integrated circuit device such as a semiconductor device has been used. System gases are used for etching and cleaning.
【0003】これらのガスと接触する部材には、高い耐
食性が要求され、そのためにガラスや石英、ステンレス
やモネル等の金属が多用されている。[0003] The members that come into contact with these gases are required to have high corrosion resistance. For this reason, metals such as glass, quartz, stainless steel, and monel are frequently used.
【0004】一方、半導体製造装置におけるウェハ支持
固定用のサセプタ材には、アルミナ焼結体、サファイ
ア、窒化アルミニウム(AlN)焼結体、またはこれら
をCVD法等により表面被覆したもの、さらには炭化珪
素(SiC)焼結体に対しCVD法でもってSiC膜を
被覆したものも使用されている。[0004] On the other hand, a susceptor material for supporting and fixing a wafer in a semiconductor manufacturing apparatus includes an alumina sintered body, sapphire, aluminum nitride (AlN) sintered body, or a material obtained by surface-coating them by a CVD method or the like, and further comprises a carbonized material. A silicon (SiC) sintered body coated with a SiC film by a CVD method is also used.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記の
ガラスや石英からなる部材では、プラズマ中において、
耐食性が不充分であり、そのために消耗が激しく、とく
にフッ素系や塩素系のプラズマにさらされるとエッチン
グされ、表面性状が劣化するという問題点がある。However, in the above-mentioned members made of glass or quartz,
There is a problem that corrosion resistance is inadequate, which leads to severe wear. Especially, when exposed to fluorine-based or chlorine-based plasma, the film is etched and its surface properties are deteriorated.
【0006】また、ステンレスなどの金属部材において
も、耐食性が不充分であり、長期間にわたって使用する
ことがむずかしく、さらに半導体製造において、その製
造装置自体に、あるいはウエハァにも不良が発生する原
因となっていた。さらにアルミナ焼結体やAlN焼結体
からなる部材では、上記の材料と比べフッ素系ガスに対
する耐食性に優れるが、高温下のプラズマにさらされる
と、腐食が徐々に進行し、これにより、焼結体の表面か
ら結晶粒子が脱粒していた。[0006] Metal members such as stainless steel also have insufficient corrosion resistance and are difficult to use for a long period of time. Further, in semiconductor manufacturing, defects may occur in the manufacturing equipment itself or wafers. Had become. Furthermore, members made of an alumina sintered body or an AlN sintered body are superior in corrosion resistance to fluorine-based gas as compared with the above materials, but when exposed to high-temperature plasma, corrosion gradually progresses. Crystal grains were shed from the body surface.
【0007】このようにパーティクルの発生も問題にな
っているが、このパーティクルはイオン衝撃などの物理
的な作用により発生したり、あるいは化学的な気相反応
で生成して、ゴミとなり、真空容器内の各部材に悪影響
を及ぼしている。すなわち、半導体製造装置において、
半導体の高集積化、プロセスのさらなるクリーン化に伴
い、かかるパーティクルによってメタル配線の断線、パ
ターンの欠陥等が発生し、これによって素子特性の劣化
や歩留り低下を引き起こしていた。As described above, the generation of particles is also a problem. However, these particles are generated by a physical action such as ion bombardment, or are generated by a chemical vapor phase reaction, and become dust, thereby forming a vacuum container. Each member inside is adversely affected. That is, in a semiconductor manufacturing apparatus,
With the increase in the degree of integration of semiconductors and the further cleanliness of the process, such particles have caused disconnection of metal wiring, defects in patterns, and the like, thereby causing deterioration in device characteristics and reduction in yield.
【0008】上記問題点を解決するために、フッ素・塩
素系プラズマに対し安定な周期律表第3a族元素を主成
分とする材料でもって耐食性部材となすことが提案され
ている(特開平9−295863号)。In order to solve the above problems, it has been proposed to form a corrosion-resistant member by using a material containing a Group 3a element of the periodic table that is stable against fluorine-chlorine-based plasma as a main component (Japanese Patent Laid-Open No. Hei 9 (1998)). No. 295863).
【0009】しかしながら、このような耐食性部材にお
いても、いまだ満足し得る程度の耐食性が達成されず、
その表面に形成されたハロゲン化物の脱落や気相反応に
よってパーティクルが発生していた。However, even with such a corrosion-resistant member, a satisfactory corrosion resistance has not yet been achieved.
Particles were generated due to dropout of the halide formed on the surface or gas phase reaction.
【0010】本発明者は上記事情に鑑みフッ素系や塩素
系の腐食ガスあるいはプラズマに対し、半導体の性能を
損ねるような元素(Cr、Fe、Zn、Na、K、N
i、Cu、Li、Na)を含まず、かつパーティクルを
発生しない高耐食性材料について、鋭意研究を重ねた結
果、炭化硼素膜であれば、製造上容易に緻密化でき、フ
ッ素や塩素と反応した場合においても、蒸気圧の高い反
応物が生成されることで固体にならず、また、パーティ
クルが発生しないでガスとして系外に放出され、しか
も、フッ素系および塩素系腐食ガスあるいはブラズマと
は反応しにくいために耐食性にも優れるということを見
い出した。In view of the above circumstances, the present inventor has found that an element (Cr, Fe, Zn, Na, K, N) that impairs the performance of a semiconductor against a fluorine-based or chlorine-based corrosive gas or plasma.
As a result of intensive studies on a high corrosion resistant material that does not contain i, Cu, Li, and Na) and does not generate particles, a boron carbide film can be easily densified in production and reacted with fluorine and chlorine. Even in this case, a reactant having a high vapor pressure is not formed into a solid due to generation of the reactant, and is released as a gas without generating particles, and reacts with a fluorine-based and chlorine-based corrosive gas or plasma. It has been found that it is difficult to perform, so it has excellent corrosion resistance.
【0011】したがって本発明は上記知見に基づいて完
成されたものであり、その目的はパーティクルが発生せ
ず、優れた耐食性を達成した長期信頼性の耐食性部材を
提供することにある。Accordingly, the present invention has been completed based on the above findings, and an object of the present invention is to provide a long-term reliable corrosion-resistant member which does not generate particles and achieves excellent corrosion resistance.
【0012】また、本発明の他の目的はフッ素系および
塩素系腐食ガスあるいはブラズマと反応しないことによ
りパーティクルの発生を防止する半導体製造用耐食性部
材を提供することにある。Another object of the present invention is to provide a corrosion-resistant member for semiconductor production which prevents generation of particles by not reacting with fluorine-based and chlorine-based corrosive gas or plasma.
【0013】[0013]
【問題点を解決するための手段】本発明の耐食性部材
は、基体の表面に密度を2.40g/cm3 以上、表面
粗さRa 0.6μm以下の炭化硼素膜を被覆したことを
特徴とする。The corrosion-resistant member of the present invention is characterized in that the surface of the substrate is coated with a boron carbide film having a density of 2.40 g / cm 3 or more and a surface roughness Ra of 0.6 μm or less. I do.
【0014】また、本発明の他の耐食性部材は、上記炭
化硼素膜中の珪素、アルミニウムおよび鉄の少なくとも
1種の元素が合計して3100ppm以下(0を含む)
であることを特徴とする。In another corrosion resistant member of the present invention, the total of at least one element of silicon, aluminum and iron in the boron carbide film is 3100 ppm or less (including 0).
It is characterized by being.
【0015】[0015]
【発明の実施の形態】本発明の耐食性部材は、基体表面
に上記構成の炭化硼素膜を被覆したものであって、これ
によってフッ素系または塩素系等のハロゲン系腐食ガ
ス、ならびにこのガス雰囲気にマイクロ波や高周波電圧
を導入することで、プラズマ化されるが、このようなプ
ラズマであっても優れた耐腐食性が達成される。フッ素
系ガスにはSF6 、CF4 、CHF3 、ClF3 、HF
等があり、塩素系ガスにはCl2、BCl3 、HCl等
がある。BEST MODE FOR CARRYING OUT THE INVENTION The corrosion-resistant member of the present invention has a substrate surface coated with a boron carbide film having the above-described structure. By introducing a microwave or a high-frequency voltage, a plasma is formed. Even with such a plasma, excellent corrosion resistance is achieved. SF 6 , CF 4 , CHF 3 , ClF 3 , HF
And chlorine-based gases include Cl 2 , BCl 3 , and HCl.
【0016】上記基体は炭化硼素焼結体、AlN、Al
2 O3 、Si3 N4 、SiCなどのセラミック焼結体、
サーメット、もしくはグラファイトにより構成する。The substrate is made of a sintered boron carbide, AlN, Al
Ceramic sintered bodies such as 2 O 3 , Si 3 N 4 , SiC,
It is composed of cermet or graphite.
【0017】上記炭化硼素膜については、低密度になる
と気孔が多くなり、そのために腐食ガスやプラズマとの
接触面積が増加し、消耗か速くなるので、密度が2.4
0g/cm3 以上、好適には2.45g/cm3 以上に
高密度にするとよい。With respect to the above-mentioned boron carbide film, when the density becomes low, the number of pores increases, so that the contact area with a corrosive gas or plasma increases, and the consumption becomes faster, so that the density becomes 2.4.
0 g / cm 3 or more, preferably better to high density 2.45 g / cm 3 or more.
【0018】また、膜の構成成分として炭化硼素を96
重量%以上、好適には98重量%以上にすると緻密体と
なり、密度が2.40g/cm3 以上が達成される。こ
のように炭化硼素を96重量%以上にするためには、遊
離炭素、遊離硼素が含まないようにするのがよく、さら
にその他の不純物も含有させないのがよい。Further, as a constituent of the film, boron carbide is added to 96 parts.
If it is at least 98% by weight, preferably at least 98% by weight, a dense body is obtained, and a density of at least 2.40 g / cm 3 is achieved. In order to make the boron carbide 96% by weight or more, it is preferable not to contain free carbon and free boron, and it is also preferable not to contain other impurities.
【0019】このような炭化硼素膜を成膜形成するに
は、公知の成膜技術、たとえばCVD法を用いればよ
く、その場合にはベンゼン(C6 H6))と三塩化硼素
(BCl3)との混合ガスを出発原料ガスにして、約1
050〜1100℃の反応温度にて成膜形成する。In order to form such a boron carbide film, a known film forming technique, for example, a CVD method may be used. In this case, benzene (C 6 H 6 ) and boron trichloride (BCl 3 ) are used. ) As the starting material gas,
A film is formed at a reaction temperature of 050 to 1100 ° C.
【0020】また、炭化硼素膜の厚みは0.5μm以上
が望ましく、これによって耐食性を長期間にわたって維
持することができる。The thickness of the boron carbide film is desirably 0.5 μm or more, so that the corrosion resistance can be maintained for a long period of time.
【0021】さらにまた、炭化硼素膜の表面粗さRa を
0.5μm以下、好適には0.2μm以下にすると、パ
ーティクルの発生が低減され、優れた耐食性が得られる
という点でよい。0.5μm以下の表面粗さRa は、上
記基体の表面粗さRa を0.5μm以下にすることで得
られる。Further, when the surface roughness Ra of the boron carbide film is 0.5 μm or less, preferably 0.2 μm or less, it is advantageous in that generation of particles is reduced and excellent corrosion resistance is obtained. The surface roughness Ra of 0.5 μm or less can be obtained by setting the surface roughness Ra of the substrate to 0.5 μm or less.
【0022】また、本発明によれば、炭化硼素膜の成膜
工程における不純物について、鋭意研究に努めたとこ
ろ、珪素、アルミニウムおよび鉄の各原子が耐食性を劣
化させる要因であることを見出し、そこで、これらの合
計量を3100ppm以下、好適には2000ppm以
下にするとよい。この範囲にすると、フッ素系や塩素系
ブラズマに長時間さらされても、優れた耐食効果が得ら
れる。なお、珪素、アルミニウムおよび鉄の各原子は炭
化硼素膜をCVDコーティングした際に、チャンバ等各
種半導体製造用治具からガス雰囲気中に浮遊し、これに
よって含有されると本発明者は考える。Further, according to the present invention, the inventors of the present invention have conducted intensive studies on impurities in the step of forming a boron carbide film, and have found that each atom of silicon, aluminum and iron is a factor that deteriorates corrosion resistance. And the total amount thereof is 3100 ppm or less, preferably 2000 ppm or less. Within this range, excellent corrosion resistance can be obtained even when exposed to fluorine-based or chlorine-based plasma for a long time. The present inventor considers that each atom of silicon, aluminum and iron floats in a gas atmosphere from various semiconductor manufacturing jigs such as a chamber when the boron carbide film is subjected to CVD coating and is contained by this.
【0023】[0023]
【実施例】(例1)まず、本発明の基体である炭化硼素
焼結体を作製した。この炭化硼素焼結体は焼成温度22
00℃、成形圧力200kgf/cm2 によるホットプ
レスでもって作製した。EXAMPLES (Example 1) First, a boron carbide sintered body as a substrate of the present invention was produced. This boron carbide sintered body has a firing temperature of 22.
It was produced by hot pressing at 00 ° C. and a molding pressure of 200 kgf / cm 2 .
【0024】この基体表面にCVD法により炭化硼素膜
を1.0μmの厚みで形成した。このCVD法は硼素源
として三塩化硼素(BCl3 )、炭素源としてベンゼン
(C6 H6 )を用いて、反応温度を1100℃にしてB
4 C膜を成膜形成した。A boron carbide film having a thickness of 1.0 μm was formed on the surface of the substrate by a CVD method. In this CVD method, boron trichloride (BCl 3 ) is used as a boron source, benzene (C 6 H 6 ) is used as a carbon source, and the reaction temperature is set to 1100 ° C.
A 4 C film was formed.
【0025】そして、表1に示すとおり、炭化硼素膜の
炭化硼素量と密度と表面粗さ(ただし、Si、Al、F
eの不純物含有量は合計で3100ppm以下である)
を幾とおりにも変えて成膜形成し、試料No.1〜6を
作製した。さらに上記基体に対し成膜しないものを試料
No.7とした。As shown in Table 1, the amount, density, and surface roughness of the boron carbide film (i.e., Si, Al, F
e has an impurity content of 3100 ppm or less in total)
Was changed in any number of ways to form a film. 1 to 6 were produced. Further, a sample which was not formed on the above-mentioned substrate was designated as Sample No. 7 was set.
【0026】[0026]
【表1】 [Table 1]
【0027】これら各試料に対する評価をフッ素系プラ
ズマと塩素系プラズマの双方でもっておこなったとこ
ろ、表2に示すとおりの結果が得られた。When the evaluation of each of these samples was performed using both fluorine-based plasma and chlorine-based plasma, the results shown in Table 2 were obtained.
【0028】[0028]
【表2】 [Table 2]
【0029】フッ素系プラズマによる評価であれば、各
試料をRIE(Reactive Ion Etching)プラズマエツチン
グ装置に入れ、ついでCF4 ガスを60sccmの流量
で、Arガスを60sccmの流量で導入し、圧力10
Pa、RF出力lkWに設定し、3時間プラズマ照射す
ることによってフッ素系プラズマとなし、これでもって
室温にて評価し、エツチングレートとパーティクルの発
生有無を調べた。In the case of evaluation using fluorine-based plasma, each sample was placed in a RIE (Reactive Ion Etching) plasma etching apparatus, and then CF 4 gas was introduced at a flow rate of 60 sccm, Ar gas was introduced at a flow rate of 60 sccm, and
By setting the Pa and the RF output to 1 kW and irradiating the plasma for 3 hours, a fluorine-based plasma was formed, and the plasma was evaluated at room temperature to check the etching rate and the generation of particles.
【0030】エツチングレートはテスト前後の重量変化
を基にして、材質の比重と時間でもって算出し、Å/分
の単位であらわす。すなわち、エツチングレート〔Å/
分〕=〔(エツチング前の試料の重量−エツチング後の
試料の重量)/試料の比重〕/(プラズマ照射面積×プ
ラズマ照射時間)である。The etching rate is calculated based on the change in weight before and after the test using the specific gravity of the material and the time, and is expressed in units of Å / min. That is, the etching rate [Å /
Min) = [(weight of sample before etching−weight of sample after etching) / specific gravity of sample] / (plasma irradiation area × plasma irradiation time).
【0031】さらにパーティクルの発生状況を電子顕微
鏡にて各試料の表面を観察し、表面への粒子の付着状況
を観察した。○印はほとんどパーティクルが発生しな
かった場合であり、×印はパーティクルが顕著に発生
した場合である。Further, the state of generation of particles was observed with an electron microscope on the surface of each sample, and the state of adhesion of particles to the surface was observed. The mark “○” indicates that almost no particles were generated, and the mark “X” indicates that particles were significantly generated.
【0032】他方、塩素系プラズマによる評価であれ
ば、各試料をRlEプラズマエツチング装置に入れ、B
Cl3 ガスを導入し(流量l00sccm)、圧力4P
a、RF出力l.8kWのエッチング条件でもってプラ
ズマ照射を3時間おこない、その塩素プラズマ中に室温
にて評価し、エツチングレートとパーティクルとを同様
に測定評価した。On the other hand, in the case of evaluation using chlorine-based plasma, each sample was put into an RIE plasma etching apparatus, and B
Cl 3 gas is introduced (flow rate 100 sccm), pressure 4P
a, RF output l. Plasma irradiation was carried out for 3 hours under the etching condition of 8 kW, and the chlorine plasma was evaluated at room temperature, and the etching rate and particles were similarly measured and evaluated.
【0033】表2に示す結果から明らかなとおり、本発
明の試料No.1〜4については、エツチングレートが
低く、しかも、パーティクルが発生しなかった。As is clear from the results shown in Table 2, the sample No. of the present invention. With respect to Nos. 1 to 4, the etching rate was low and no particles were generated.
【0034】これに対し、試料No.5では膜の密度が
低く、試料No.6では表面粗さが大きく、これによ
り、エツチングレートが高くなり、パーティクルが発生
した。試料No.7についても炭化硼素膜を成膜形成し
ないことで、エツチングレートが高くなり、パーティク
ルが発生した。On the other hand, the sample No. In Sample No. 5, the density of the film was low. In No. 6, the surface roughness was large, thereby increasing the etching rate and generating particles. Sample No. As for No. 7, the etching rate was increased and particles were generated by not forming a boron carbide film.
【0035】(例2)(例1)と同様に基体である炭化
硼素焼結体の表面にCVD法により炭化硼素膜を形成す
るが、さらに表3に示すようにSi、Al、Feの不純
物を混入させ、合計含有量を変えて試料No.8〜13
を作製した。いずれの試料も炭化硼素膜の炭化硼素量を
96重量%、密度を2.45g/cm3 、表面粗さRa
を0.5μmにして、その他は(例1)とまったく同じ
にして成膜形成した。Example 2 A boron carbide film is formed on the surface of a boron carbide sintered body as a substrate by a CVD method in the same manner as in Example 1, and as shown in Table 3, impurities of Si, Al and Fe are further added. And the total content was changed to change the sample No. 8-13
Was prepared. In each sample, the boron carbide content of the boron carbide film was 96% by weight, the density was 2.45 g / cm 3 , and the surface roughness was Ra.
Was set to 0.5 μm, and the others were formed exactly as in Example 1.
【0036】[0036]
【表3】 [Table 3]
【0037】こらら各試料に対する評価をフッ素系プラ
ズマと塩素系プラズマの双方でもっておこなったとこ
ろ、表3に示すとおりの結果が得られた。この結果から
明らかなとおり、本発明の試料No.8〜10について
は、エツチングレートが低く、しかも、パーティクルが
発生しなかった。これに対する試料No.11〜13で
はパーティクルが発生しなかったが、エツチングレート
が高くなった。The evaluation of each sample was performed using both fluorine-based plasma and chlorine-based plasma, and the results shown in Table 3 were obtained. As is clear from the results, the sample No. For Nos. 8 to 10, the etching rate was low and no particles were generated. The sample no. In Nos. 11 to 13, no particles were generated, but the etching rate was high.
【0038】[0038]
【発明の効果】以上のとおり、本発明によれば、基体の
表面に密度2.40g/cm3 以上、表面粗さRa 0.
6μm以下の炭化硼素膜を被覆したことで、パーティク
ルが発生せず、優れた耐食性を達成した長期信頼性の耐
食性部材が提供できた。As described above, according to the present invention, the substrate surface has a density of 2.40 g / cm 3 or more and a surface roughness Ra of 0.
By coating with a boron carbide film having a thickness of 6 μm or less, a long-term reliable corrosion-resistant member which did not generate particles and achieved excellent corrosion resistance could be provided.
【0039】また、本発明によれば、フッ素系および塩
素系の腐食ガスあるいはフッ素系・塩素系ブラズマと反
応せず、さらにパーティクルが発生しない半導体製造用
耐食性部材(たとえばプラズマ処理装置の内壁部材や被
処理物を支持する支持体などの治具部材)が得られ、そ
の結果、半導体製造の歩留りが向上して、生産コストが
低減でき、しかも、高品質かつ高信頼性の半導体素子が
作製できた。Further, according to the present invention, a corrosion-resistant member for semiconductor production which does not react with fluorine-based and chlorine-based corrosive gas or fluorine-based / chlorine-based plasma and does not generate particles (for example, an inner wall member of a plasma processing apparatus, A jig member such as a support for supporting an object to be processed can be obtained. As a result, the yield of semiconductor manufacturing can be improved, the production cost can be reduced, and a high quality and highly reliable semiconductor element can be manufactured. Was.
【0040】しかも、本発明の耐食性部材については、
炭化硼素膜中に珪素、アルミニウムおよび鉄の少なくと
も1種の元素を合計して3100ppm以下にしたこと
で、パーティクルが発生しなくなり、さらに優れた耐食
性を達成できた。Moreover, the corrosion-resistant member of the present invention
By setting at least one element of silicon, aluminum and iron in the boron carbide film to be 3100 ppm or less, no particles were generated, and more excellent corrosion resistance could be achieved.
Claims (2)
上、表面粗さRa 0.6μm以下の炭化硼素膜を被覆し
たことを特徴とする耐食性部材。1. A corrosion-resistant member comprising a substrate having a surface coated with a boron carbide film having a density of at least 2.40 g / cm 3 and a surface roughness Ra of at most 0.6 μm.
よび鉄の少なくとも1種の元素が合計して3100pp
m以下(0を含む)であることを特徴とする請求項1記
載の耐食性部材。2. The method according to claim 1, wherein at least one element selected from the group consisting of silicon, aluminum and iron in said boron carbide film has a total of 3100 pp.
The corrosion-resistant member according to claim 1, wherein m is equal to or less than 0 (including 0).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10087582A JPH11279761A (en) | 1998-03-31 | 1998-03-31 | Corrosion resistant materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10087582A JPH11279761A (en) | 1998-03-31 | 1998-03-31 | Corrosion resistant materials |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11279761A true JPH11279761A (en) | 1999-10-12 |
Family
ID=13919005
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10087582A Pending JPH11279761A (en) | 1998-03-31 | 1998-03-31 | Corrosion resistant materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11279761A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004241598A (en) * | 2003-02-06 | 2004-08-26 | Sumitomo Electric Ind Ltd | Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus equipped with the same |
US7329467B2 (en) | 2003-08-22 | 2008-02-12 | Saint-Gobain Ceramics & Plastics, Inc. | Ceramic article having corrosion-resistant layer, semiconductor processing apparatus incorporating same, and method for forming same |
US8017062B2 (en) | 2004-08-24 | 2011-09-13 | Yeshwanth Narendar | Semiconductor processing components and semiconductor processing utilizing same |
RU2482215C1 (en) * | 2011-11-25 | 2013-05-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) | Method for application of ceramic coating onto parts from cast iron and steel |
US20170211182A1 (en) * | 2014-02-06 | 2017-07-27 | Kgt Graphit Technologie Gmbh | Protective layer for pecvd graphite boats |
EP3611753A1 (en) * | 2018-08-13 | 2020-02-19 | SKC Solmics Co., Ltd. | Ring-shaped element for a plasma etcher and method for etching substrate using the same |
JP2021151949A (en) * | 2018-08-13 | 2021-09-30 | エスケーシー ソルミックス カンパニー,リミテッド | Boron carbide sintered body and etching apparatus containing the same |
-
1998
- 1998-03-31 JP JP10087582A patent/JPH11279761A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004241598A (en) * | 2003-02-06 | 2004-08-26 | Sumitomo Electric Ind Ltd | Wafer holder for semiconductor manufacturing apparatus and semiconductor manufacturing apparatus equipped with the same |
US7329467B2 (en) | 2003-08-22 | 2008-02-12 | Saint-Gobain Ceramics & Plastics, Inc. | Ceramic article having corrosion-resistant layer, semiconductor processing apparatus incorporating same, and method for forming same |
US8017062B2 (en) | 2004-08-24 | 2011-09-13 | Yeshwanth Narendar | Semiconductor processing components and semiconductor processing utilizing same |
RU2482215C1 (en) * | 2011-11-25 | 2013-05-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Алтайский государственный технический университет им. И.И. Ползунова" (АлтГТУ) | Method for application of ceramic coating onto parts from cast iron and steel |
US20170211182A1 (en) * | 2014-02-06 | 2017-07-27 | Kgt Graphit Technologie Gmbh | Protective layer for pecvd graphite boats |
US10151030B2 (en) * | 2014-02-06 | 2018-12-11 | Kgt Graphit Technologie Gmbh | Protective layer for PECVD graphite boats |
EP3611753A1 (en) * | 2018-08-13 | 2020-02-19 | SKC Solmics Co., Ltd. | Ring-shaped element for a plasma etcher and method for etching substrate using the same |
JP2020027945A (en) * | 2018-08-13 | 2020-02-20 | エスケーシー ソルミックス カンパニー,リミテッド | Ring-shaped element for etcher and method for etching substrate using the same |
JP2021151949A (en) * | 2018-08-13 | 2021-09-30 | エスケーシー ソルミックス カンパニー,リミテッド | Boron carbide sintered body and etching apparatus containing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6645585B2 (en) | Container for treating with corrosive-gas and plasma and method for manufacturing the same | |
KR100953707B1 (en) | Semiconductor processing component and semiconductor manufacturing method using same | |
JPH11214365A (en) | Components for semiconductor device manufacturing equipment | |
JP3046288B1 (en) | Components for semiconductor / liquid crystal manufacturing equipment | |
JP3488373B2 (en) | Corrosion resistant materials | |
JP3618048B2 (en) | Components for semiconductor manufacturing equipment | |
JPH11279761A (en) | Corrosion resistant materials | |
JPH05251365A (en) | Corrosion-resistant member | |
JP3623054B2 (en) | Components for plasma process equipment | |
JP3500278B2 (en) | Corrosion resistant materials for semiconductor manufacturing | |
KR20090101245A (en) | Ceramic member and corrosion resistant member | |
JP4373487B2 (en) | Corrosion resistant CVD-SiC coating material and jig for CVD equipment | |
JP3808245B2 (en) | Chamber component for semiconductor manufacturing | |
JP4641609B2 (en) | Corrosion resistant material | |
JP4126461B2 (en) | Components for plasma process equipment | |
JP3078671B2 (en) | Corrosion resistant member, method of using the same and method of manufacturing the same | |
JP2000239066A (en) | Corrosion resistant member, method of manufacturing the same, and member for plasma processing apparatus using the same | |
JP2002222803A (en) | Corrosion resistant materials for semiconductor manufacturing | |
JP2000129388A (en) | Corrosion resistant materials | |
JPH11278944A (en) | Silicon nitride corrosion-resistant member and method of manufacturing the same | |
CN100396647C (en) | Yttrium oxide sintered body and manufacturing method thereof | |
JP2000143348A (en) | Aluminum nitride sintered body, method for manufacturing the same, and member for semiconductor manufacturing apparatus using the same | |
JP4651145B2 (en) | Corrosion resistant ceramics | |
JPH09328382A (en) | Aluminum nitride base material for semiconductor production unit and its production | |
JP2012096931A (en) | Corrosion-resistant member coated with aluminum nitride, and method for producing the same |