JPH11279645A - Low core loss and low magnetostriction grain-oriented electrical steel sheet and method for producing the same - Google Patents
Low core loss and low magnetostriction grain-oriented electrical steel sheet and method for producing the sameInfo
- Publication number
- JPH11279645A JPH11279645A JP10096946A JP9694698A JPH11279645A JP H11279645 A JPH11279645 A JP H11279645A JP 10096946 A JP10096946 A JP 10096946A JP 9694698 A JP9694698 A JP 9694698A JP H11279645 A JPH11279645 A JP H11279645A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- laser
- magnetostriction
- low
- grain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
(57)【要約】
【課題】 一方向性電磁鋼板にレーザにより磁区制御を
施した際の、歪みの深さ分布および還流磁区幅と磁気特
性の関係を明確にし、優れた低鉄損、低磁気歪み特性を
有する一方向性電磁鋼板を提供する。
【解決手段】 一方向性電磁鋼板の表面にレーザー光の
照射による磁区制御が施され、前記照射面に生じる還流
磁区の圧延方向の幅が150μm以下で、かつレーザに
よる板厚方向の歪みが30μm以上に達していることを
特徴とする低鉄損、低磁気歪み一方向性電磁鋼板。
(57) [Summary] [PROBLEMS] To clarify the relationship between the magnetic properties and the distribution of the strain depth and the width of the return magnetic domain when performing magnetic domain control on a grain-oriented electrical steel sheet by using a laser. A grain-oriented electrical steel sheet having magnetostriction characteristics is provided. SOLUTION: A magnetic domain control is performed by irradiating a laser beam on a surface of a grain-oriented electrical steel sheet, a width of a return magnetic domain generated on the irradiated surface in a rolling direction is 150 μm or less, and a distortion in a thickness direction by a laser is 30 μm. A low-loss, low-magnetostriction grain-oriented electrical steel sheet characterized by the above.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、トランスの鉄心な
どに利用される鉄損および磁気歪み特性が良好な一方向
性電磁鋼板に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grain-oriented electrical steel sheet having good iron loss and magnetostriction characteristics used for an iron core of a transformer.
【0002】[0002]
【従来の技術】現在、実用化されている一方向性電磁鋼
板は、鋼板の圧延方向に磁化容易軸をもち、主にトラン
スなどの電気機器に使われている。近年ではエネルギー
ロス低減のための鉄損改善や、使用中の騒音低減のため
の磁気歪み改善の要請が高くなっている。2. Description of the Related Art At present, unidirectional electrical steel sheets that have been put to practical use have an axis of easy magnetization in the rolling direction of the steel sheet and are mainly used for electrical equipment such as transformers. In recent years, there has been an increasing demand for improvement of iron loss for reducing energy loss and improvement of magnetostriction for reducing noise during use.
【0003】この鋼板に局所歪みの導入、あるいは溝の
形成による磁区細分化を施すと、鋼板断面に流れる渦電
流が減少し、熱エネルギーの発生が抑えられるため鉄損
が低減し、これにより電気機器のエネルギーロスを減ら
すことができる。例えば、特開昭53−137016号
公報に開示されているように、一方向性電磁鋼板の表面
に線状の微小歪みを形成し、歪み導入間隔を最適にする
ことで、歪み導入前よりも低鉄損を得ている。中でも特
開昭55−18566号公報に開示されるように、鋼板
の表面にパルスYAGレーザビームを集光照射して、被
照射部での被膜の蒸発反力により歪みを導入する方法
は、鉄損改善効果が大きく、かつ非接触加工であること
から信頼性・制御性も高い非常に優れた一方向性電磁鋼
板の製造方法である。When a magnetic domain is subdivided by introducing local strain or forming a groove in the steel sheet, eddy current flowing in the cross section of the steel sheet is reduced, and generation of heat energy is suppressed, so that iron loss is reduced. Energy loss of equipment can be reduced. For example, as disclosed in Japanese Patent Application Laid-Open No. 53-137016, by forming a linear minute strain on the surface of a grain-oriented electrical steel sheet and optimizing the interval of introducing strain, it is possible to improve the strain compared to before strain introduction. Low iron loss. Among them, as disclosed in Japanese Patent Application Laid-Open No. 55-18566, a method of condensing and irradiating a surface of a steel sheet with a pulsed YAG laser beam to introduce distortion by an evaporation reaction force of a film at an irradiated portion is known as iron. This is a method for manufacturing a highly grain-oriented electrical steel sheet which has a great loss-reducing effect and high reliability and controllability because of non-contact processing.
【0004】[0004]
【発明が解決しようとする課題】一方、一方向性電磁鋼
板の磁気歪みは、トランスに使用したときの騒音と相関
し、磁気歪みが大きいほど騒音も大きい。よって、鉄損
と並んで磁気歪みは一方向性電磁鋼板の重要な品質の一
つである。しかしながら、レーザ磁区制御の場合、磁気
歪みはレーザによるトータルの照射エネルギーに正の相
関があることが分かっており、レーザを照射しない場合
と比べると磁気歪みの増加は避けられないものであっ
た。On the other hand, the magnetostriction of a grain-oriented electrical steel sheet correlates with noise when used in a transformer, and the larger the magnetostriction, the greater the noise. Therefore, magnetostriction is one of the important qualities of a grain-oriented electrical steel sheet along with iron loss. However, in the case of laser domain control, it has been found that the magnetostriction has a positive correlation with the total irradiation energy of the laser, and an increase in the magnetostriction is inevitable as compared with the case where no laser is irradiated.
【0005】本発明は、レーザ照射により鉄損を改善
し、さらに磁気歪みを低減させる一方向性電磁鋼板を提
供するものである。The present invention provides a grain-oriented electrical steel sheet which improves iron loss by laser irradiation and further reduces magnetostriction.
【0006】[0006]
【課題を解決するための手段】本発明の要旨とするとこ
ろは、鋼板の還流磁区発生領域、歪みの深さ分布と磁気
特性の関係を最適な条件に合わせることを特徴とする優
れた低鉄損、低磁気歪み特性を有する一方向性電磁鋼板
とその製造方法である。本発明の具体的な手段は、以下
の通りである。SUMMARY OF THE INVENTION The gist of the present invention is to provide an excellent low-iron alloy characterized by adjusting the relationship between the reflux domain generation region, the strain depth distribution and the magnetic properties of a steel sheet to optimal conditions. The present invention relates to a grain-oriented electrical steel sheet having low loss and low magnetostriction characteristics and a method for producing the same. Specific means of the present invention are as follows.
【0007】(1)一方向性電磁鋼板の表面にレーザー
光の照射による磁区制御が施され、前記照射面に生じる
還流磁区の照射方向に直行する幅が150μm以下で、
かつレーザによる板厚方向の歪みが30μm以上に達し
ていることを特徴とする低鉄損、かつ低磁気歪み一方向
性電磁鋼板。 (2)前記レーザがパルス式で、レーザ光による照射痕
が重畳するように、鋼板の圧延方向に対して60〜12
0°の方向に照射されていることを特徴とする(1)記
載の低鉄損、かつ低磁気歪み一方向性電磁鋼板。(1) The magnetic domain is controlled by irradiating the surface of the grain-oriented magnetic steel sheet with a laser beam, and the width of the return magnetic domain generated on the irradiated surface, which is perpendicular to the irradiation direction, is 150 μm or less,
A low iron loss and low magnetostriction unidirectional magnetic steel sheet characterized in that a strain in a thickness direction by laser reaches 30 μm or more. (2) The laser is pulsed, and 60 to 12 with respect to the rolling direction of the steel sheet so that irradiation marks by the laser beam overlap.
The low-loss and low-magnetostriction unidirectional electrical steel sheet according to (1), which is irradiated in a direction of 0 °.
【0008】(3)前記レーザの照射痕が、照射方向に
長軸を持つ楕円形であることを特徴とする(1)および
(2)記載の低鉄損、かつ低磁気歪み一方向性電磁鋼板
の製造方法。[0008] (3) The one-way electromagnetic wave having low iron loss and low magnetostriction according to (1) and (2), wherein the irradiation mark of the laser has an elliptical shape having a long axis in the irradiation direction. Steel plate manufacturing method.
【0009】[0009]
【発明の実施の形態】以下に、本発明について詳細に説
明する。本発明者らは、鋼板に歪みを与えた後の鉄損と
磁気歪み特性を種々検討した結果、鋼板断面における歪
み分布を変えることで、磁区細分化後の鉄損と磁気歪み
が変化しうることを見出した。そこで、歪み分布と磁区
細分化後の鉄損および磁気歪みの関係を見るため以下の
実験を行った。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The present inventors have conducted various studies on the iron loss and magnetostriction characteristics after giving a strain to a steel sheet. As a result, by changing the strain distribution in the cross section of the steel sheet, the iron loss and the magnetostriction after the magnetic domain refinement can be changed. I found that. Therefore, the following experiment was conducted to see the relationship between the strain distribution and the iron loss and the magnetic strain after the magnetic domain refinement.
【0010】公知の製造方法によりグラス被膜が形成さ
れた板厚0.23mmの一方向性電磁鋼板に磁区細分化
のためパルスレーザを照射し、微小歪みを導入した。照
射方向は鋼板の圧延方向(L方向)に対して直角の方向
(C方向)で、照射間隔は従来の知見から鉄損低減の良
好な、圧延方向6,500μm、圧延方向から直角方向
500μmとした。還流磁区の幅はレーザビームのL方
向径を変えて、また歪みの深さはレーザビームのC方向
径を変えて調整した。[0010] A unidirectional magnetic steel sheet having a thickness of 0.23 mm on which a glass film was formed by a known manufacturing method was irradiated with a pulse laser for subdividing magnetic domains to introduce minute strain. The irradiation direction is a direction (C direction) perpendicular to the rolling direction (L direction) of the steel sheet, and the irradiation interval is 6,500 μm in the rolling direction and 500 μm in a direction perpendicular to the rolling direction, which is good in reducing iron loss from the conventional knowledge. did. The width of the return magnetic domain was adjusted by changing the diameter of the laser beam in the L direction, and the depth of the distortion was adjusted by changing the diameter of the laser beam in the C direction.
【0011】処理を行った鋼板について、還流磁区の幅
はSEMの反射電子を用いて観察し、またレーザを照射
した部分の歪みの深さ分布は鋼板表面をエッチングし、
磁性粒子により観察して求めた。また50Hzで励磁し
た時のB=1.7Tにおける鉄損の結果、およびB=
1.9Tにおける磁気歪みを測定した。歪みの深さと鉄
損、およびL方向の還流磁区幅と磁気歪みとの関係をそ
れぞれ図1、図2に示す。なお、歪み深さおよび還流磁
区のL方向幅が0のものは、比較材としてレーザ処理を
施していない材料である。[0011] In the treated steel sheet, the width of the return magnetic domain is observed using reflected electrons of the SEM, and the depth distribution of the strain in the portion irradiated with the laser is obtained by etching the steel sheet surface.
Observed with magnetic particles. Also, the result of iron loss at B = 1.7 T when excited at 50 Hz, and B =
The magnetostriction at 1.9T was measured. FIGS. 1 and 2 show the relationship between the strain depth and iron loss, and the relationship between the return magnetic domain width in the L direction and magnetostriction, respectively. A material having a strain depth of 0 and a width of the return magnetic domain of 0 in the L direction is a material that has not been subjected to laser treatment as a comparative material.
【0012】図1、図2の結果から、還流磁区のL方向
幅が150μm以下で、かつ歪みの深さが30μm以上
の場合に、良好な鉄損と磁気歪み特性を両立できること
がわかる。還流磁区のL方向幅が150μmを超えると
磁気歪みは指数的に増加しており、また歪みの深さが3
0μm未満では、鉄損の向上が殆んど見られない。レー
ザ照射による鉄損改善の原理は、照射点を熱源にした歪
みにより、磁化容易方向に直交する磁気モーメントを有
する還流磁区が発生し、ここでの静磁エネルギーが最小
になるように180°磁壁によって形成されている主磁
区が細分化され、その結果、鉄損のうち磁壁間隔に依存
する渦電流損失が低下することにある。レーザによる歪
みは、鋼板の急速加熱、急速冷却によって導入される。
加熱速度は照射されるレーザの単位時間当たりのエネル
ギー密度、すなわちパワー密度に比例する。従って、レ
ーザによる歪み導入効率は、より高ピークパワーのレー
ザを照射した方が高くなる。From the results shown in FIGS. 1 and 2, it can be seen that when the width of the return magnetic domain in the L direction is 150 μm or less and the strain depth is 30 μm or more, both good iron loss and magnetostriction characteristics can be achieved. When the width of the return magnetic domain in the L direction exceeds 150 μm, the magnetostriction increases exponentially, and the depth of the strain is 3 μm.
If it is less than 0 μm, almost no improvement in iron loss is observed. The principle of iron loss improvement by laser irradiation is that, due to distortion using the irradiation point as a heat source, a return domain having a magnetic moment perpendicular to the direction of easy magnetization is generated, and the 180 ° domain wall is minimized so that the magnetostatic energy here is minimized. The main domain formed by the above is subdivided, and as a result, the eddy current loss depending on the domain wall interval in the iron loss is reduced. Laser distortion is introduced by rapid heating and rapid cooling of the steel sheet.
The heating rate is proportional to the energy density of the irradiated laser per unit time, that is, the power density. Therefore, the strain introduction efficiency by the laser is higher when the laser beam having the higher peak power is irradiated.
【0013】一方、磁気歪みは既に述べたように、レー
ザによるトータルの照射エネルギーが大きいほど大きく
なる。この原因としては、多量の照射エネルギーが鋼板
のL方向、C方向にも拡散して、還流磁区が必要以上に
大きくなり、磁化回転する磁気モーメント量が増え、磁
気歪みが大きくなるためと考えられる。このような熱拡
散を抑制するためには、レーザの導入エネルギーはより
小さい領域に、より短時間、照射する必要がある。On the other hand, as described above, the magnetostriction increases as the total irradiation energy of the laser increases. It is considered that the cause is that a large amount of irradiation energy is diffused also in the L direction and the C direction of the steel sheet, the return magnetic domain becomes unnecessarily large, the amount of magnetic moment for magnetization rotation increases, and the magnetostriction increases. . In order to suppress such thermal diffusion, it is necessary to irradiate a region with a smaller introduced energy of laser for a shorter time.
【0014】以上2つの条件を同時に満足させるレーザ
の照射方法として、照射幅を小さくし、単位面積当たり
の照射エネルギー(エネルギー密度)を、磁区細分化が
生じうる範囲で、数度にわたって照射するのが良いと考
えられる。このような照射方法は、連続波レーザでは同
じ線上を数回照射すればよいが、工業的には難しい。一
方、パルスレーザではレーザビームが重畳するように照
射ればよく、L方向の幅を小さくし、C方向の照射径
を、適正な歪み深さが得られるように適宜調整すること
で、磁性改善と磁気歪み低減を容易に両立させることが
出来るものである。As a laser irradiation method that satisfies the above two conditions at the same time, the irradiation width is reduced and the irradiation energy (energy density) per unit area is irradiated several times within a range in which magnetic domain segmentation can occur. Is considered good. Such an irradiation method may be performed by irradiating the same line several times with a continuous wave laser, but is industrially difficult. On the other hand, a pulsed laser may be irradiated so that the laser beam is superimposed, and the width in the L direction is reduced, and the irradiation diameter in the C direction is appropriately adjusted so as to obtain an appropriate strain depth, thereby improving magnetic properties. And reduction of magnetostriction can be easily achieved at the same time.
【0015】次に、本発明で規定した各数値についてそ
れらの限定の理由を説明する。還流磁区の照射方向に直
行する幅が150μm以下である理由は、これ以上還流
磁区発生領域が拡がると、励磁の際、この磁区内の磁気
モーメントが磁化回転を起こし、体積を変えるため磁気
歪みが大きくなるからである。この下限については特に
定めないが、磁区細分化効果を持たせうる最低の大きさ
として、また現行のレーザの焦点能力上の課題から、5
0μm以上は必要と考えられる。Next, the reasons for the limitations of the respective numerical values specified in the present invention will be described. The reason why the width of the return magnetic domain perpendicular to the irradiation direction is 150 μm or less is that when the return magnetic domain generation region is further expanded, the magnetic moment in the magnetic domain causes magnetization rotation at the time of excitation and changes the volume, so that magnetostriction is generated. It is because it becomes large. Although there is no particular limitation on the lower limit, the lower limit is set as the minimum size that can have the magnetic domain refining effect, and the lower limit of the current laser focus capability is taken into consideration.
It is considered that 0 μm or more is necessary.
【0016】また、歪みの深さが板厚方向で30μm以
上である理由は、還流磁区の圧延方向幅が狭くなると磁
区細分化効果が減少するので、より深い歪みにより磁区
細分化効果を保持し鉄損を低減するためである。上限は
板厚まで可能であるが、磁区細分化効果としては約50
μmでほぼ飽和するため、それ以上はコスト高や処理能
力低下となり、また深くすればするほど表面方向への熱
拡散もまた避け難く、磁気歪みの増加をもたらすことに
なる。The reason why the strain depth is 30 μm or more in the plate thickness direction is that the magnetic domain refining effect is reduced when the width of the return magnetic domain in the rolling direction is reduced, so that the magnetic domain refining effect is maintained by the deeper strain. This is to reduce iron loss. The upper limit can be up to the plate thickness, but the magnetic domain refining effect is about 50
Since the saturation occurs at about μm, the cost and the processing capacity decrease further, and the deeper the depth, the more difficult it is to avoid heat diffusion in the surface direction, resulting in an increase in magnetostriction.
【0017】また、レーザの照射方向を鋼板の圧延方向
に対して60〜120°の方向としたのは、鉄損を低減
させるためには、磁化方向に直角に磁区を細分化させる
必要があるためである。従って、圧延方向に対し90°
とするのが最も効果的であるが、30°以内のずれなら
磁区細分化効果は得られるため、照射方向の限定範囲は
上記のようにしたものである。Further, the laser irradiation direction is set at a direction of 60 to 120 ° with respect to the rolling direction of the steel sheet. In order to reduce iron loss, it is necessary to subdivide magnetic domains at right angles to the magnetization direction. That's why. Therefore, 90 ° to the rolling direction
Is most effective, but if the deviation is within 30 °, the domain refining effect can be obtained, so the limited range of the irradiation direction is as described above.
【0018】[0018]
【実施例】以下、本発明を実施例に基づいて説明する。 <実施例1>公知の方法により製造されグラス被膜が形
成された板厚0.26mmの一方向性電磁鋼板にパルス
式レーザを照射し、鉄損と磁気歪みを測定した。照射方
向は、鋼板の圧延方向に直角で、照射間隔は従来の知見
から鉄損低減の良好な、圧延方向6,500μm、圧延
方向から直角方向500μmとした。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. <Example 1> A pulse-type laser was applied to a 0.26 mm-thick unidirectional electrical steel sheet having a glass coating and manufactured by a known method, and iron loss and magnetostriction were measured. The irradiation direction was perpendicular to the rolling direction of the steel sheet, and the irradiation interval was 6,500 μm in the rolling direction and 500 μm in the perpendicular direction from the rolling direction, which was good for reducing iron loss from conventional knowledge.
【0019】レーザのビーム径として、以下の2種類の
条件を用いた。第1は従来法である直径約500μmの
円形状のレーザースポットであり、第2は鋼板の圧延方
向Lに対し垂直方向Cに長軸を持つL=約200μm、
C=約9,000μmの楕円のレーザスポットである。
このときの鋼板の受けたトータル照射エネルギー密度
は、いずれも約80mJ/mm2 であった。The following two conditions were used as the beam diameter of the laser. The first is a circular laser spot having a diameter of about 500 μm, which is a conventional method.
C = elliptical laser spot of about 9,000 μm.
At this time, the total irradiation energy density received by the steel sheet was about 80 mJ / mm 2 .
【0020】レーザ照射した材料について、50Hzで
励磁した時のB=1.9Tにおける磁気歪み、およびB
=1.7Tにおける鉄損を測定した結果を表1に示す。
本発明法は、従来法と比較し、鉄損は同程度にもかかわ
らず磁気歪みは23%低減した。For the laser-irradiated material, the magnetostriction at B = 1.9 T when excited at 50 Hz, and B
Table 1 shows the results of measuring the iron loss at = 1.7T.
Compared to the conventional method, the method of the present invention reduced magnetostriction by 23% despite the same iron loss.
【0021】[0021]
【表1】 [Table 1]
【0022】図3および図4は、それぞれ従来法および
本発明の磁区の状態を、SEMの反射電子を用いて観察
した結果を示す。レーザを照射した部分にできる還流磁
区の幅は、本発明の方が従来製品と比べ明らかに低減し
ている。図5は、歪みの深さ分布を調べるため、鋼板表
面をエッチングし、磁性粒子により観察する方法による
磁区模様を示す。また、表2はレーザを照射した部分に
できる還流磁区の、エッチング深さ毎の有無を示す。従
来法では、32μmの深さで還流磁区が確認できなくな
ったが、本発明の鋼板では52μmの深さでも還流磁区
を確認できた。FIGS. 3 and 4 show the results of observing the state of the magnetic domains according to the conventional method and the present invention, respectively, using SEM reflected electrons. The width of the return magnetic domain formed in the portion irradiated with the laser is clearly smaller in the present invention than in the conventional product. FIG. 5 shows a magnetic domain pattern obtained by etching the surface of a steel sheet and observing it with magnetic particles in order to examine the depth distribution of strain. Table 2 shows the presence or absence of a return magnetic domain formed in the portion irradiated with the laser at each etching depth. In the conventional method, reflux domains could not be confirmed at a depth of 32 μm, but in the steel sheet of the present invention, reflux domains could be confirmed even at a depth of 52 μm.
【0023】[0023]
【表2】 [Table 2]
【0024】上記の結果から、レーザにより鋼板の照射
面に生じる還流磁区の圧延方向の幅が150μm未満
で、かつ板厚方向の歪みが30μm以上の深さに達する
条件において、すなわち、従来法よりも歪み分布を鋼板
面内に狭く絞り、板厚方向に深く導入することにより、
従来製品と比較し磁気歪みが低減し、かつ鉄損も低減す
る鋼板を得ることができた。 <実施例2>公知の製造方法によりグラス被膜が形成さ
れた板厚0.23mmの一方向性電磁鋼板に磁区細分化
のためパルスレーザを照射した。照射間隔は従来の知見
から鉄損低減の良好な圧延方向6,500μm、圧延方
向から直角方向500μmとした。From the above results, under the condition that the width in the rolling direction of the return magnetic domain generated on the irradiated surface of the steel sheet by the laser is less than 150 μm and the strain in the thickness direction reaches a depth of 30 μm or more, that is, as compared with the conventional method. By narrowing the strain distribution narrowly in the plane of the steel sheet and deeply introducing it in the thickness direction,
A steel sheet with reduced magnetostriction and reduced iron loss compared to conventional products could be obtained. <Example 2> A 0.23 mm-thick unidirectional electromagnetic steel sheet having a glass film formed thereon by a known manufacturing method was irradiated with a pulse laser for subdividing magnetic domains. The irradiation interval was set to 6,500 μm in the rolling direction, which is good for reducing iron loss, and 500 μm in the direction perpendicular to the rolling direction, based on the conventional knowledge.
【0025】レーザのビーム径として、以下の2種類の
条件を用いた。第1は従来法である直径約500μmの
円形状のレーザースポットであり、第2は鋼板の圧延方
向Lに対し垂直方向Cに長軸を持つL=約200μm、
C=約9,000μmの楕円のレーザスポットである。
このときの鋼板の受けたトータル照射エネルギー密度
は、いずれも約80mJ/mm2 であった。The following two conditions were used as the laser beam diameter. The first is a conventional laser spot having a circular shape with a diameter of about 500 μm, the second is L = about 200 μm having a major axis in a direction C perpendicular to the rolling direction L of the steel sheet,
C = elliptical laser spot of about 9,000 μm.
At this time, the total irradiation energy density received by the steel sheet was about 80 mJ / mm 2 .
【0026】処理を行った鋼板について、50Hzで励
磁した時のB=1.9Tにおける磁気歪みの振幅、およ
びB=1.7Tにおける鉄損の結果を表3に示す。本発
明は従来製品と比較し、鉄損は同程度にもかかわらず磁
気歪みが約31%低減した。Table 3 shows the results of the amplitude of the magnetostriction at B = 1.9 T and the iron loss at B = 1.7 T when the treated steel sheet was excited at 50 Hz. In the present invention, the magnetostriction is reduced by about 31% as compared with the conventional product despite the same iron loss.
【0027】[0027]
【表3】 [Table 3]
【0028】図6は、歪みの深さ分布を調べるため、鋼
板表面をエッチングした時の磁区模様を示している。従
来製品では、20μmの深さで歪みによる還流磁区が確
認できないが、本発明の鋼板では44μmの深さでも歪
みによる還流磁区を確認できた。これは、本発明で規定
した条件、30μm以上の深さの歪みを満たしている。FIG. 6 shows a magnetic domain pattern when the steel sheet surface is etched in order to examine the strain depth distribution. In the conventional product, reflux domains due to strain could not be confirmed at a depth of 20 μm, but in the steel sheet of the present invention, reflux domains due to strain could be confirmed even at a depth of 44 μm. This satisfies the conditions specified in the present invention and the strain at a depth of 30 μm or more.
【0029】表4は、歪みの深さ分布を調べるため、鋼
板表面を化学研磨した時の磁区模様の有無を示してい
る。従来法では、33μmの深さで歪みによる還流磁区
が確認できなかったが、本発明の鋼板では50μmの深
さでも歪みによる還流磁区を確認できた。これは、本発
明で規定した条件、30μm以上の深さの歪みを満たし
ている。Table 4 shows the presence or absence of a magnetic domain pattern when the steel sheet surface was chemically polished in order to examine the strain depth distribution. In the conventional method, reflux domains due to strain could not be confirmed at a depth of 33 μm, but in the steel sheet of the present invention, reflux domains due to strain could be confirmed even at a depth of 50 μm. This satisfies the conditions specified in the present invention and the strain at a depth of 30 μm or more.
【0030】[0030]
【表4】 [Table 4]
【0031】以上の結果より、還流磁区幅および歪み分
布が本発明の範囲において、鉄損が低く、かつ磁気歪み
も低い一方向性電磁鋼板を得ることができた。From the above results, it was possible to obtain a grain-oriented electrical steel sheet having a low core loss and a low magnetostriction in the range of the present invention in which the width of the magnetic recirculation domain and the strain distribution are within the range of the present invention.
【0032】[0032]
【発明の効果】以上説明したように、本発明に記載され
た還流磁区幅および歪み分布による磁区細分化の効果を
用いることにより、一方向性電磁鋼板の鉄損、磁気歪み
特性を、従来製品よりさらに向上させることができ、ト
ランスのエネルギー損失および騒音を更に低減させるこ
とが出来るので、その工業的意義は極めて大である。As described above, the iron loss and magnetostriction characteristics of a grain-oriented electrical steel sheet can be reduced by using the effect of domain refining based on the reflux magnetic domain width and strain distribution described in the present invention. Since it can be further improved and the energy loss and noise of the transformer can be further reduced, its industrial significance is extremely large.
【図1】歪みの深さと鉄損との関係を示した図である。FIG. 1 is a diagram showing the relationship between the depth of strain and iron loss.
【図2】還流磁区L方向幅と磁気歪みとの関係を示した
図である。FIG. 2 is a diagram illustrating a relationship between a width of a return magnetic domain L direction and magnetostriction.
【図3】従来法の還流磁区幅を観察した図である。FIG. 3 is a diagram in which a reflux domain width according to a conventional method is observed.
【図4】本発明の還流磁区幅を観察した図である。FIG. 4 is a view showing the reflux domain width of the present invention.
【図5】鋼板深さ方向に残留する歪みを見るために観察
した磁区模様の図である。FIG. 5 is a diagram of a magnetic domain pattern observed to observe distortion remaining in a steel sheet depth direction.
【図6】鋼板深さ方向に残留する歪みを見るために観察
した磁区模様の図である。FIG. 6 is a diagram of a magnetic domain pattern observed to observe distortion remaining in the depth direction of the steel sheet.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 杉山 公彦 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 (72)発明者 熊野 知二 福岡県北九州市戸畑区飛幡町1−1 新日 本製鐵株式会社八幡製鐵所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kimihiko Sugiyama 1-1 Niwahata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka Prefecture Nippon Steel Corporation Yawata Works (72) Inventor Tomoji Kumano Tobata-ku, Kitakyushu-shi, Fukuoka 1-1 Hatabicho Inside Nippon Steel Corporation Yawata Works
Claims (3)
照射による磁区制御が施され、前記照射面に生じる還流
磁区の照射方向に直行する幅が150μm以下で、かつ
レーザによる板厚方向の歪みが30μm以上に達してい
ることを特徴とする低鉄損かつ低磁気歪み一方向性電磁
鋼板。1. A magnetic domain control is performed by irradiating a laser beam on a surface of a grain-oriented electrical steel sheet, and a width of the return magnetic domain generated on the irradiated surface, which is perpendicular to an irradiation direction, is 150 μm or less, and a thickness in a sheet thickness direction by a laser is reduced. A low-loss and low-magnetostriction unidirectional electrical steel sheet, wherein the strain has reached 30 μm or more.
る照射痕が重畳するように、鋼板の圧延方向に対して6
0〜120°の方向に照射されていることを特徴とする
請求項1記載の低鉄損かつ低磁気歪み一方向性電磁鋼
板。2. The method according to claim 1, wherein the laser is of a pulse type and the laser beam is superposed with respect to the rolling direction of the steel sheet so that the irradiation mark by the laser beam is superimposed.
The low-loss and low-magnetostriction grain-oriented electrical steel sheet according to claim 1, wherein the steel sheet is irradiated in a direction of 0 to 120 °.
軸を持つ楕円形であることを特徴とする請求項1または
2記載の低鉄損かつ低磁気歪み一方向性電磁鋼板の製造
方法。3. The method according to claim 1, wherein the spot of the laser has an elliptical shape having a major axis in an irradiation direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09694698A JP3482340B2 (en) | 1998-03-26 | 1998-03-26 | Unidirectional electrical steel sheet and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09694698A JP3482340B2 (en) | 1998-03-26 | 1998-03-26 | Unidirectional electrical steel sheet and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11279645A true JPH11279645A (en) | 1999-10-12 |
JP3482340B2 JP3482340B2 (en) | 2003-12-22 |
Family
ID=14178482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09694698A Expired - Lifetime JP3482340B2 (en) | 1998-03-26 | 1998-03-26 | Unidirectional electrical steel sheet and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3482340B2 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013099219A1 (en) | 2011-12-27 | 2013-07-04 | Jfeスチール株式会社 | Device for improving core loss in grain-oriented electrical steel sheet |
WO2014034128A1 (en) * | 2012-08-30 | 2014-03-06 | Jfeスチール株式会社 | Oriented electromagnetic steel sheet for iron core and method for manufacturing same |
WO2014068962A1 (en) | 2012-10-31 | 2014-05-08 | Jfeスチール株式会社 | Oriented magnetic steel sheet, and production method therefor |
WO2015040799A1 (en) | 2013-09-19 | 2015-03-26 | Jfeスチール株式会社 | Grain-oriented electromagnetic steel sheet, and manufacturing method therefor |
CN105567925A (en) * | 2016-01-14 | 2016-05-11 | 中国科学院理化技术研究所 | Cold and hot circulating treatment process for reducing magnetostriction coefficient of silicon steel sheet |
US9346123B2 (en) | 2010-06-30 | 2016-05-24 | Jfe Steel Corporation | Device to improve iron loss properties of grain oriented electrical steel sheet and method for improving iron loss properties of grain oriented electrical steel sheet |
US9396850B2 (en) | 2010-06-30 | 2016-07-19 | Jfe Steel Corporation | Grain oriented electrical steel sheet and method for manufacturing the same |
WO2016171129A1 (en) * | 2015-04-20 | 2016-10-27 | 新日鐵住金株式会社 | Oriented electromagnetic steel sheet |
US9514868B2 (en) | 2010-06-29 | 2016-12-06 | Jfe Steel Corporation | Grain oriented electrical steel sheet and method for manufacturing the same |
US9536657B2 (en) | 2010-06-29 | 2017-01-03 | Jfe Steel Corporation | Grain oriented electrical steel sheet and method for manufacturing the same |
JP2017106117A (en) * | 2017-01-04 | 2017-06-15 | Jfeスチール株式会社 | Directional electrical steel sheet for transformer core and method of manufacturing the same |
WO2018159390A1 (en) * | 2017-02-28 | 2018-09-07 | Jfeスチール株式会社 | Grain-oriented electrical steel sheet and production method therefor |
JP2018148036A (en) * | 2017-03-06 | 2018-09-20 | 新日鐵住金株式会社 | Wound core |
KR20190121416A (en) | 2015-02-13 | 2019-10-25 | 제이에프이 스틸 가부시키가이샤 | Grain-oriented electrical steel sheet and method for manufacturing same |
WO2020116188A1 (en) | 2018-12-05 | 2020-06-11 | Jfeスチール株式会社 | Grain-oriented electromagnetic steel sheet and production method therefor |
JP2021509152A (en) * | 2017-12-26 | 2021-03-18 | ポスコPosco | Directional electrical steel sheet and its magnetic domain miniaturization method |
WO2022203087A1 (en) * | 2021-03-26 | 2022-09-29 | 日本製鉄株式会社 | Grain-oriented electromagnetic steel sheet and method for producing same |
JPWO2022255172A1 (en) * | 2021-05-31 | 2022-12-08 | ||
US20230175090A1 (en) * | 2020-07-15 | 2023-06-08 | Nippon Steel Corporation | Grain-oriented electrical steel sheet, and method for manufacturing grain-oriented electrical steel sheet |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016063317A1 (en) | 2014-10-23 | 2016-04-28 | Jfeスチール株式会社 | Grain-oriented electromagnetic steel sheet and process for producing same |
CN115989328A (en) | 2020-09-04 | 2023-04-18 | 杰富意钢铁株式会社 | Grain-oriented electromagnetic steel sheet |
-
1998
- 1998-03-26 JP JP09694698A patent/JP3482340B2/en not_active Expired - Lifetime
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9536657B2 (en) | 2010-06-29 | 2017-01-03 | Jfe Steel Corporation | Grain oriented electrical steel sheet and method for manufacturing the same |
US9514868B2 (en) | 2010-06-29 | 2016-12-06 | Jfe Steel Corporation | Grain oriented electrical steel sheet and method for manufacturing the same |
US9346123B2 (en) | 2010-06-30 | 2016-05-24 | Jfe Steel Corporation | Device to improve iron loss properties of grain oriented electrical steel sheet and method for improving iron loss properties of grain oriented electrical steel sheet |
US9396850B2 (en) | 2010-06-30 | 2016-07-19 | Jfe Steel Corporation | Grain oriented electrical steel sheet and method for manufacturing the same |
KR20140111275A (en) | 2011-12-27 | 2014-09-18 | 제이에프이 스틸 가부시키가이샤 | Device to improve iron loss properties of grain-oriented electrical steel sheet |
WO2013099219A1 (en) | 2011-12-27 | 2013-07-04 | Jfeスチール株式会社 | Device for improving core loss in grain-oriented electrical steel sheet |
US10745773B2 (en) | 2011-12-27 | 2020-08-18 | Jfe Steel Corporation | Device to improve iron loss properties of grain-oriented electrical steel sheet |
US11377706B2 (en) | 2011-12-27 | 2022-07-05 | Jfe Steel Corporation | Device to improve iron loss properties of grain-oriented electrical steel sheet |
JPWO2014034128A1 (en) * | 2012-08-30 | 2016-08-08 | Jfeスチール株式会社 | Oriented electrical steel sheet for iron core and method for producing the same |
WO2014034128A1 (en) * | 2012-08-30 | 2014-03-06 | Jfeスチール株式会社 | Oriented electromagnetic steel sheet for iron core and method for manufacturing same |
US10026533B2 (en) | 2012-08-30 | 2018-07-17 | Jfe Steel Corporation | Grain-oriented electrical steel sheet for iron core and method of manufacturing the same |
KR20150060959A (en) | 2012-10-31 | 2015-06-03 | 제이에프이 스틸 가부시키가이샤 | Grain-oriented electrical steel sheet and method for manufacturing the same |
CN104755636A (en) * | 2012-10-31 | 2015-07-01 | 杰富意钢铁株式会社 | Oriented magnetic steel sheet, and production method therefor |
US10535453B2 (en) | 2012-10-31 | 2020-01-14 | Jfe Steel Corporation | Grain-oriented electrical steel sheet and method for manufacturing the same |
WO2014068962A1 (en) | 2012-10-31 | 2014-05-08 | Jfeスチール株式会社 | Oriented magnetic steel sheet, and production method therefor |
KR20160044596A (en) | 2013-09-19 | 2016-04-25 | 제이에프이 스틸 가부시키가이샤 | Grain-oriented electrical steel sheet, and method for manufacturing same |
US9617615B2 (en) | 2013-09-19 | 2017-04-11 | Jfe Steel Corporation | Grain-oriented electrical steel sheet and method for manufacturing same |
WO2015040799A1 (en) | 2013-09-19 | 2015-03-26 | Jfeスチール株式会社 | Grain-oriented electromagnetic steel sheet, and manufacturing method therefor |
US10988822B2 (en) | 2015-02-13 | 2021-04-27 | Jfe Steel Corporation | Grain-oriented electrical steel sheet and method for manufacturing same |
KR20190121416A (en) | 2015-02-13 | 2019-10-25 | 제이에프이 스틸 가부시키가이샤 | Grain-oriented electrical steel sheet and method for manufacturing same |
CN107406903A (en) * | 2015-04-20 | 2017-11-28 | 新日铁住金株式会社 | Grain-oriented electrical steel sheet |
JPWO2016171129A1 (en) * | 2015-04-20 | 2017-11-24 | 新日鐵住金株式会社 | Oriented electrical steel sheet |
US10906134B2 (en) | 2015-04-20 | 2021-02-02 | Nippon Steel Corporation | Grain-oriented electrical steel sheet |
WO2016171129A1 (en) * | 2015-04-20 | 2016-10-27 | 新日鐵住金株式会社 | Oriented electromagnetic steel sheet |
CN105567925A (en) * | 2016-01-14 | 2016-05-11 | 中国科学院理化技术研究所 | Cold and hot circulating treatment process for reducing magnetostriction coefficient of silicon steel sheet |
JP2017106117A (en) * | 2017-01-04 | 2017-06-15 | Jfeスチール株式会社 | Directional electrical steel sheet for transformer core and method of manufacturing the same |
JP6432713B1 (en) * | 2017-02-28 | 2018-12-05 | Jfeスチール株式会社 | Oriented electrical steel sheet and manufacturing method thereof |
WO2018159390A1 (en) * | 2017-02-28 | 2018-09-07 | Jfeスチール株式会社 | Grain-oriented electrical steel sheet and production method therefor |
US11387025B2 (en) | 2017-02-28 | 2022-07-12 | Jfe Steel Corporation | Grain-oriented electrical steel sheet and production method therefor |
JP2018148036A (en) * | 2017-03-06 | 2018-09-20 | 新日鐵住金株式会社 | Wound core |
JP2021509152A (en) * | 2017-12-26 | 2021-03-18 | ポスコPosco | Directional electrical steel sheet and its magnetic domain miniaturization method |
WO2020116188A1 (en) | 2018-12-05 | 2020-06-11 | Jfeスチール株式会社 | Grain-oriented electromagnetic steel sheet and production method therefor |
KR20210088666A (en) | 2018-12-05 | 2021-07-14 | 제이에프이 스틸 가부시키가이샤 | Grain-oriented electrical steel sheet and manufacturing method thereof |
US20230175090A1 (en) * | 2020-07-15 | 2023-06-08 | Nippon Steel Corporation | Grain-oriented electrical steel sheet, and method for manufacturing grain-oriented electrical steel sheet |
WO2022203087A1 (en) * | 2021-03-26 | 2022-09-29 | 日本製鉄株式会社 | Grain-oriented electromagnetic steel sheet and method for producing same |
JPWO2022255172A1 (en) * | 2021-05-31 | 2022-12-08 | ||
WO2022255172A1 (en) * | 2021-05-31 | 2022-12-08 | Jfeスチール株式会社 | Grain-oriented electromagnetic steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JP3482340B2 (en) | 2003-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3482340B2 (en) | Unidirectional electrical steel sheet and manufacturing method thereof | |
JP6200908B2 (en) | Method for producing grain-oriented electrical steel sheet | |
CN101946017B (en) | Method of manufacturing low core loss grain-oriented electrical steel plate | |
RU2440426C1 (en) | Method for obtaining electromagnetic steel plate with orientation grains, magnetic domains of which are controlled by means of application of laser beam | |
KR101345469B1 (en) | Oriented electromagnetic steel sheet and process for production thereof | |
JP4319715B2 (en) | Unidirectional electrical steel sheet with excellent magnetic properties and manufacturing method thereof | |
KR101551782B1 (en) | Grain-oriented electrical steel sheet and method for producing same | |
JP2003129135A (en) | Low iron loss unidirectional electrical steel sheet manufacturing method | |
CN101171651A (en) | Low iron loss grain oriented electrical steel sheet and production method thereof | |
JP4091749B2 (en) | Oriented electrical steel sheet with excellent magnetic properties | |
WO2017111555A1 (en) | Grain-oriented electrical steel sheet and method for manufacturing same | |
JP5822243B2 (en) | Directional flat steel product manufacturing method | |
JPH11293340A (en) | Low iron loss grain-oriented electrical steel sheet and method for producing the same | |
US6482271B2 (en) | Grain-oriented electrical steel sheet excellent in magnetic properties | |
JPS6342332A (en) | Production of low iron loss grain oriented electrical steel sheet | |
JP6838321B2 (en) | Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet | |
JP4598321B2 (en) | Oriented electrical steel sheet with excellent magnetic properties | |
JP2000328139A (en) | Method of manufacturing low iron loss unidirectional electrical steel sheet with large thickness | |
CN113564321B (en) | Magnetic domain refining method and application of oriented silicon steel | |
WO2023195466A1 (en) | Grain-oriented electromagnetic steel sheet and production method for same | |
JPS5836051B2 (en) | Processing method for electrical steel sheets | |
CN114854967A (en) | Laser-scored high-magnetic-induction oriented silicon steel and manufacturing method thereof | |
RU2776383C1 (en) | Anisotropic electrical steel sheet and its production method | |
CN114231987B (en) | Chemical reagent for removing cladding in heat-resistant notch oriented silicon steel and method thereof | |
CN113226617B (en) | Grain-oriented electromagnetic steel sheet and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030909 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071010 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081010 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091010 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101010 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101010 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111010 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111010 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121010 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121010 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131010 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131010 Year of fee payment: 10 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131010 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |