JPH11269849A - Breakwater and revetment structure - Google Patents
Breakwater and revetment structureInfo
- Publication number
- JPH11269849A JPH11269849A JP10078698A JP7869898A JPH11269849A JP H11269849 A JPH11269849 A JP H11269849A JP 10078698 A JP10078698 A JP 10078698A JP 7869898 A JP7869898 A JP 7869898A JP H11269849 A JPH11269849 A JP H11269849A
- Authority
- JP
- Japan
- Prior art keywords
- mound
- specific gravity
- breakwater
- body block
- block
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A10/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
- Y02A10/11—Hard structures, e.g. dams, dykes or breakwaters
Landscapes
- Revetment (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、防波堤及び護岸構
造物に関する。[0001] The present invention relates to a breakwater and a seawall structure.
【0002】[0002]
【従来の技術】防波堤及び護岸構造物としては、混成堤
または傾斜堤等の構造様式の堤体が用いられており、こ
の混成堤は、例えば、図2に示したように、海底にマウ
ンド20を形成し、このマウンド20の上にケーソン1
1等の直立部を設け、この直立部の周りに根固めブロッ
ク13を設置し、必要に応じてマウンド20の法面を被
覆材14で被って構築している。従来、上記マウンド2
0はコンクリートブロックや割石を積み上げて形成して
おり、このコンクリートブロックの比重は2.1〜2.4
程度、自然石の比重は2.5〜3.0程度であり、比重が
大きいため海底地盤が軟弱な場合には、予め砂等を用い
て改良地盤21を構築する必要が有って、この地盤改良
作業には多大な施工費が掛かるという欠点があった。ま
た、環境保護や資源枯渇のために、マウンドの構築に用
いる石材や骨材の価格が上昇する傾向があり、安定的な
供給も次第に困難になりつつある。2. Description of the Related Art As a breakwater and a revetment structure, a structure body such as a hybrid embankment or a sloped embankment is used, and this hybrid embankment is, for example, as shown in FIG. And a caisson 1 on this mound 20
An upright portion such as 1 is provided, a consolidation block 13 is installed around the upright portion, and the slope of the mound 20 is covered with a covering material 14 as necessary. Conventionally, the mound 2
0 is formed by stacking concrete blocks and split stones, and the specific gravity of this concrete block is 2.1 to 2.4.
Degree, the specific gravity of natural stone is about 2.5 to 3.0, and when the seabed ground is soft because the specific gravity is large, it is necessary to construct the improved ground 21 using sand or the like in advance. The ground improvement work has a drawback that a large construction cost is required. Also, due to environmental protection and resource depletion, the price of stone and aggregate used for mound construction tends to increase, and stable supply is becoming increasingly difficult.
【0003】[0003]
【発明が解決しようとする課題】本発明は、かかる従来
の問題点に着目してなされたものであり、その課題は、
軟弱地盤であっても地盤改良を必要としない防波堤及び
護岸構造物を提供することである。SUMMARY OF THE INVENTION The present invention has been made in view of such a conventional problem.
It is an object of the present invention to provide a breakwater and a revetment structure that does not require ground improvement even in soft ground.
【0004】また本発明の別の課題は、マウンド構築の
ために石材や骨材を必要としない防波堤及び護岸構造物
を提供することである。Another object of the present invention is to provide a breakwater and seawall structure that does not require stone or aggregate for mound construction.
【0005】[0005]
【課題を解決するための手段】本発明では、前記課題を
解決するために、比重1.3〜1.9の硬化体ブロックに
より形成したマウンドを備える防波堤及び護岸構造物を
提供する。このように、従来のマウンド材料よりも比重
の小さい硬化体ブロックを用いれば、海底地盤が軟弱で
あっても、地盤改良を行うことなく防波堤及び護岸構造
物を構築することができる。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a breakwater and a seawall having a mound formed by a hardened block having a specific gravity of 1.3 to 1.9. As described above, by using a hardened material block having a smaller specific gravity than a conventional mound material, a breakwater and a seawall can be constructed without performing ground improvement even if the seabed ground is soft.
【0006】本発明において、前記比重1.3〜1.9の
硬化体ブロックは、セメントと乾燥微粉体とを含む水硬
性材料と、比重1.6以下の軽量材料と、{最適含水比
+(0〜5)}%の範囲内の水または海水とで形成した
ブロックを用いることができる。この硬化体ブロック
は、上記材料を充分混練した後、ブロック用の型枠に打
設し、この打設された水硬性材料の電気抵抗値が低下す
るまで前記型枠を振動させて締め固めれば形成すること
ができる。In the present invention, the hardened material block having a specific gravity of 1.3 to 1.9 is composed of a hydraulic material containing cement and dry fine powder, a lightweight material having a specific gravity of 1.6 or less, and {optimum water content + A block formed of water or seawater within the range of (0 to 5)% can be used. This hardened body block is kneaded sufficiently after kneading the above-mentioned material, and is poured into a block formwork, and the formwork is vibrated until the electric resistance value of the hydraulic material thus placed is reduced. Can be formed.
【0007】ここで、前記比重1.6以下の軽量材料と
しては、例えば、発泡スチロール、ポリエチレン、ポリ
スチレン、ゴム又はポリ塩化ビニル等の樹脂材料から形
成した粒径1〜10mm程度の粒状物、または5〜100
mm程度の切削片又は繊維を用いることができて、さら
に、上記樹脂材料は廃棄されたものであっても良い。ま
た前記乾燥微粉体としては、石炭灰、鉱炉スラグ、乾燥
汚泥、火山灰等を挙げることができ、特に石炭灰が好ま
しく、石炭灰中でも微粉炭燃焼により発生したものを電
気集塵機で集めた、いわゆるEP灰、あるいはこれを粗
粒化した既成灰などを挙げることができる。本発明にお
いて、水硬性材料は、乾燥微粉体100重量部に対し、
上記セメントを3〜150重量部、好ましくは10〜5
0重量部添加したものを用いる。セメントの添加量が、
3重量部未満では強度が発現せず、また150重量部を
越えて添加しても強度発現がさほど上昇しないばかり
か、ひび割れ等の問題を生ずる。本発明ではセメント及
び乾燥微粉体の他に石こう、減水剤、混和剤等の添加剤
を加えてもよく、更に、無機塩類を添加することもでき
る。The lightweight material having a specific gravity of 1.6 or less is, for example, a granular material having a particle diameter of about 1 to 10 mm formed from a resin material such as styrene foam, polyethylene, polystyrene, rubber or polyvinyl chloride, or 5 ~ 100
Cut pieces or fibers of about mm can be used, and the resin material may be discarded. Examples of the dry fine powder include coal ash, furnace slag, dry sludge, volcanic ash, and the like.Particularly, coal ash is preferable, and so-called coal ash generated by pulverized coal combustion is collected by an electrostatic precipitator. EP ash or preformed ash obtained by coarsening the EP ash can be used. In the present invention, the hydraulic material is 100 parts by weight of the dry fine powder,
3 to 150 parts by weight of the above cement, preferably 10 to 5 parts by weight
The one added with 0 parts by weight is used. If the amount of cement added is
If the amount is less than 3 parts by weight, no strength is exhibited, and if added in an amount exceeding 150 parts by weight, not only the strength does not increase so much but also problems such as cracks occur. In the present invention, besides cement and dry fine powder, additives such as gypsum, a water reducing agent and an admixture may be added, and furthermore, inorganic salts may be added.
【0008】上述したように海水及び/又は水を{最適
含水比+(0〜5)}%の範囲内にて水硬性材料に添加
しても、この海水及び/又は水の添加量は、従来のコン
クリートやセメントモルタルの添加水量よりも非常に少
量であるので、水硬性材料には、コンクリート等のよう
な流動性は生じず、湿り気を帯びた粉体状態になる。し
たがって、比重1.6以下の軽量材料であっても、水等
を添加後の水硬性材料にほぼ均一に分散させて混ぜ加え
ることが可能であり、さらに、軽量材料は硬化体ブロッ
クにおいても偏在すること無く、ほぼ均一に分散させて
形成することができる。As described above, even if seawater and / or water is added to the hydraulic material within the range of {optimum water content + (0-5)}%, the amount of seawater and / or water added is Since the amount of water added is extremely smaller than the amount of water added to conventional concrete or cement mortar, the hydraulic material does not have fluidity unlike concrete and the like, and becomes a wet powder state. Therefore, even with a lightweight material having a specific gravity of 1.6 or less, it is possible to disperse and add water and the like almost uniformly to the hydraulic material after addition, and furthermore, the lightweight material is unevenly distributed also in the hardened material block. Without dispersing, it can be formed to be substantially uniformly dispersed.
【0009】なお、前記最適含水比とは、含水比を変化
させながら各含水比の供試体を所定回数だけ突固め、乾
燥密度を測定して最大の乾燥密度が得られる含水比をい
い、例えば、JIS A 1210の突き固め試験では、10cmモ
ールドに試料を3層に分けて入れ、2.5kgランマーで各
層ごとにそれぞれ25回ずつ突き固めて最適含水比を求
める。(最適含水比+5)%を越える含水比を用いると、
ブリージングが大きくなり、乾燥時にひび割れを生じた
り又は硬化体中に水分が残りヘアクラックが生ずる恐れ
がある。一方、(最適含水比+0%)未満の含水比では
締固めが非常に困難であり、作業性が悪くなるので打設
困難となり、充分な強度が発現しないおそれが有る。混
練に当っては一般の生コンクリートを混練する強制練り
ミキサー、二軸強制練りミキサー、低含水比用強制連続
練りミキサーなどの機器を用いると充分混練されるので
好ましい。The above-mentioned optimum water content ratio means a water content ratio at which the maximum dry density is obtained by squeezing a specimen having each water content ratio a predetermined number of times while changing the water content ratio, and measuring the dry density. In the tamping test of JIS A 1210, a sample is divided into three layers in a 10 cm mold, and tamped 25 times for each layer with a 2.5 kg rammer to obtain an optimum water content. If a water content exceeding (optimum water content + 5)% is used,
Breathing may increase and cracks may occur during drying, or moisture may remain in the cured product and hair cracks may occur. On the other hand, if the water content is less than (optimum water content + 0%), compaction is extremely difficult, and workability is deteriorated, so that casting is difficult, and sufficient strength may not be exhibited. For kneading, it is preferable to use a device such as a forced kneading mixer, a biaxial forced kneading mixer, or a low water content forced continuous kneading mixer for kneading general ready-mixed concrete, since sufficient kneading is performed.
【0010】水硬性材料は充分に混練した後、正負の電
極を所定長離隔して型枠内に設置し、水硬性材料の混練
物を打設する。そして、打設後、各電極に通電して得ら
れる電極間の電気抵抗値を測定しながら、この電気抵抗
値の絶対値は問題とせず、それぞれの混練物自体の経時
的な相対変化の傾向において、電気抵抗値が低下するま
で型枠を振動させて混練物を締め固める。ここで、振動
は例えば油圧テーブルバイブレータ「HST 10F 18C」(エ
クセン(株))を用いて遠心力を5〜10トン程度、振動
数を1000〜5000rpm程度、好ましくは4000
〜4500rpm程度に設定して行なえば良い。After the hydraulic material is sufficiently kneaded, the positive and negative electrodes are placed in a mold with a predetermined distance therebetween, and a kneaded material of the hydraulic material is poured. Then, after the casting, while measuring the electric resistance between the electrodes obtained by energizing each electrode, the absolute value of this electric resistance does not matter, and the tendency of the relative change of each kneaded material itself over time. In the above, the kneaded material is compacted by vibrating the mold until the electric resistance value decreases. Here, the vibration is, for example, using a hydraulic table vibrator “HST 10F 18C” (Exen Co., Ltd.) with a centrifugal force of about 5 to 10 tons and a vibration frequency of about 1000 to 5000 rpm, preferably 4000
What is necessary is just to set it to about 4500 rpm.
【0011】[0011]
【実施例】以下に、本発明の実施例を添付図面に基づい
て詳細に説明する。図1は混成堤形式の防波堤又は護岸
構造物を示す断面図であり、この混成堤は、比重1.3
〜1.9の硬化体ブロックを海底地盤22のうえに積み
上げてマウンド15を形成し、このマウンド15の上に
ケーソン11等の直立部を載せて、この直立部の周りに
根固めブロック13を設置し、マウンド15の法面を被
覆材14で被い、外海側12の前記マウンド15の法裾
に洗掘防止マット16を配置して形成したものである。
このように比重1.3〜1.9の硬化体ブロックを用いて
マウンド15を構築すれば、海底地盤が軟弱であって
も、地盤改良を行うこと無く防波堤又は護岸構造物を構
築することが可能になる。Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing a breakwater or seawall structure of a hybrid embankment type, which has a specific gravity of 1.3.
The 1.9-hardened body blocks are stacked on the seabed ground 22 to form a mound 15, and an upright portion such as a caisson 11 is placed on the mound 15, and a stiffening block 13 is placed around the upright portion. The mound 15 is installed, the slope of the mound 15 is covered with the covering material 14, and the scouring prevention mat 16 is arranged at the bottom of the mound 15 on the open sea side 12.
If the mound 15 is constructed using the hardened body blocks having a specific gravity of 1.3 to 1.9 in this way, it is possible to construct a breakwater or a seawall without improving the ground even if the seabed ground is soft. Will be possible.
【0012】ここで、例えば、乾燥微粉体としての石炭
灰を85重量部と、普通ポルトランドセメント15重量
部と、混和剤としてのNaClを3重量部と、{最適含水比
+(0〜5)}%の水と、軽量材料としての粒径1〜1
0mm程度の発泡スチロールを30%とにより硬化体ブロ
ックを形成すれば、硬化体ブロックの比重は1.2〜1.
3程度になる。Here, for example, 85 parts by weight of coal ash as dry fine powder, 15 parts by weight of ordinary Portland cement, 3 parts by weight of NaCl as an admixture, {optimum water content + (0-5) }% Water and particle size 1-1 as light weight material
If the cured body block is formed by 30% of styrene foam of about 0 mm, the specific gravity of the cured body block is 1.2 to 1.0.
It will be about 3.
【0013】次に、前記硬化体ブロックの製造方法につ
いて説明する。最初に、乾燥微粉体としての石炭灰を8
5重量部と、普通ポルトランドセメント15重量部と、
混和剤としてのNaClを3重量部とを強制練りミキサーを
用いて混合し、得られた混合物に対して{最適含水比+
(0〜5)}%の水を加えて十分混練し、含水混練物を
作成する。次いで、内側がほぼ立方体形状で、内法寸法
が1600×1600×1600mmの硬化体ブロック用
型枠(図示せず)を、油圧テーブルバイブレーター(図
示せず)のうえに載置し、この型枠内に電極を配置して
電気抵抗測定装置(図示せず)に接続し、硬化体ブロッ
ク用型枠内に前記含水混練物を打設する。そして、硬化
体ブロック用型枠を油圧テーブルバイブレーターにて遠
心力10〜40トン重、振動数3000〜4000rpm
程度の振動を加えながら、電気抵抗値が急低下するまで
締め固める。締め固めて24〜48時間後に硬化体ブロ
ック用型枠を脱型すれば、硬化体ブロックが完成する。Next, a method for manufacturing the cured body block will be described. First, coal ash as dry fine powder was
5 parts by weight, 15 parts by weight of ordinary Portland cement,
3 parts by weight of NaCl as an admixture were mixed using a forced kneading mixer, and the resulting mixture was mixed with {optimum water content +
(0-5)% water is added and kneaded sufficiently to prepare a water-containing kneaded product. Next, a mold (not shown) for a hardened block having a substantially cubic inner shape and an inner dimension of 1600 × 1600 × 1600 mm is placed on a hydraulic table vibrator (not shown). An electrode is arranged in the inside, connected to an electric resistance measuring device (not shown), and the above-mentioned hydrated kneaded material is poured into a cured body block mold. Then, the cured body block form is centrifuged by a hydraulic table vibrator with a centrifugal force of 10 to 40 tons and a vibration frequency of 3000 to 4000 rpm.
While applying a certain degree of vibration, compact it until the electrical resistance drops sharply. If the mold for the cured body block is released after 24 to 48 hours after compaction, the cured body block is completed.
【0014】次に、本発明の効果について比較検討する
ため、捨石により傾斜堤を構築する場合と、硬化体ブロ
ックにより傾斜堤を構築する場合とにおける、地盤の所
要改良率、所要改良幅および所要改良体積を計算により
求めた。Next, in order to compare and examine the effects of the present invention, the required improvement ratio, required improvement width and required improvement of the ground in the case of constructing the inclined levee with rubble and the case of constructing the inclined levee with the hardened block are described. The improved volume was calculated.
【0015】ここで、傾斜堤は、図4に示した材質の捨
石と硬化体ブロックと改良用砂とを用いて、図5に示し
たような3水準の粘着力を有する基礎地盤のうえに、図
3の断面寸法で構築するものと仮定する。また安定に対
する安全率は1.3以上とし、この安全率を満たすため
の地盤の所要改良率、所要改良幅および所要改良体積を
「港湾の施設の技術上の基準・同解説改訂版」(平成元
年6月、社団法人日本港湾協会)に基づいて計算し、図
6に示した。Here, the sloping embankment is formed on a foundation ground having three levels of adhesive strength as shown in FIG. 5 using rubble, a hardened material block, and sand for improvement using the material shown in FIG. , The cross-sectional dimensions of FIG. In addition, the safety factor for stability shall be 1.3 or more, and the required improvement rate, required improvement width and required improved volume of the ground to satisfy this safety factor shall be described in "Technical Standards for Port Facilities and Revised Explanations" (Heisei Heisei). It was calculated based on the Japan Port Association in June of the first year, and is shown in FIG.
【0016】図6において、ケースNo.1とケースNo.4と
の結果を比較すると、同じ粘着力を有する基礎地盤であ
りながら、硬化体ブロックを用いて傾斜堤を構築した場
合には、捨石を用いた場合よりも、地盤の所要改良率、
所要改良幅及び所要改良体積を低減可能なことが判る。
またケースNo.5とケースNo.6との結果からは、硬化体ブ
ロックを用いれば、軟弱地盤であっても安全率1.3を
満たし、地盤改良すること無く傾斜堤を構築可能なこと
が判る。In FIG. 6, a comparison between the results of Case No. 1 and Case No. 4 shows that when a sloped embankment is constructed by using a hardened block while the foundation ground has the same adhesive strength, Required improvement rate of the ground,
It can be seen that the required improvement width and the required improvement volume can be reduced.
Also, from the results of Case No. 5 and Case No. 6, it can be seen that the use of a hardened block satisfies the safety factor of 1.3 even on soft ground and that an inclined levee can be constructed without ground improvement. I understand.
【図1】本発明の防波堤を簡略に示した断面図である。FIG. 1 is a sectional view schematically showing a breakwater of the present invention.
【図2】従来の防波堤を示した断面図である。FIG. 2 is a sectional view showing a conventional breakwater.
【図3】傾斜堤の断面図である。FIG. 3 is a sectional view of an inclined levee.
【図4】図3の傾斜堤に用いる捨石、硬化体ブロック及
び改良用砂の材質を示した図表である。FIG. 4 is a table showing materials of rubble, hardened material blocks, and sand for improvement used in the sloped dike of FIG. 3;
【図5】図3の傾斜堤を構築する基礎地盤の条件を示し
た図表である。FIG. 5 is a table showing conditions of a foundation ground for constructing the sloped levee of FIG. 3;
【図6】図4及び図5の条件で図3の傾斜堤を構築する
場合に要する、地盤の改良率、改良幅および改良体積を
示した図表である。FIG. 6 is a table showing a ground improvement ratio, an improvement width, and an improvement volume required for constructing the inclined levee of FIG. 3 under the conditions of FIGS. 4 and 5;
11 ケーソン 12 外海側 13 根固めブロック 14 被覆材 15 マウンド 16 洗掘防止マット 22 海底地盤 DESCRIPTION OF SYMBOLS 11 Caisson 12 Open sea side 13 Rooting block 14 Coating material 15 Mound 16 Scour prevention mat 22 Submarine ground
フロントページの続き (72)発明者 福留 和人 東京都港区北青山2−5−8 株式会社間 組内Continued on the front page (72) Inventor Kazuto Fukudome 2-5-8 Kitaaoyama, Minato-ku, Tokyo
Claims (2)
り形成したマウンドを備える防波堤及び護岸構造物。1. A breakwater and a seawall comprising a mound formed of a cured block having a specific gravity of 1.3 to 1.9.
微粉体とを含む水硬性材料と、比重1.6以下の軽量材
と、{最適含水比+(0〜5)}%の範囲内の水または
海水とからなることを特徴とする請求項1記載の防波堤
及び護岸構造物。2. A hardened material block comprising: a hydraulic material containing cement and dry fine powder; a lightweight material having a specific gravity of 1.6 or less; and an optimum water content ratio of + (0 to 5)%. 2. The breakwater and seawall structure according to claim 1, wherein the breakwater and seawall are made of water or seawater.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10078698A JPH11269849A (en) | 1998-03-26 | 1998-03-26 | Breakwater and revetment structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10078698A JPH11269849A (en) | 1998-03-26 | 1998-03-26 | Breakwater and revetment structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11269849A true JPH11269849A (en) | 1999-10-05 |
Family
ID=13669097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10078698A Pending JPH11269849A (en) | 1998-03-26 | 1998-03-26 | Breakwater and revetment structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11269849A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040014126A (en) * | 2002-11-26 | 2004-02-14 | (주) 지. 알. 지 | Fly Ash Tetrafoot (TTP) Manufacturing Method |
JP2010143793A (en) * | 2008-12-19 | 2010-07-01 | Hojun:Kk | Low water permeability crushed stone material of natural clay mineral and method for measuring density of the same |
GB2468041A (en) * | 2009-02-24 | 2010-08-25 | Robert Henry Durrant | Anti-scour system |
JP2013019132A (en) * | 2011-07-08 | 2013-01-31 | Toyo Constr Co Ltd | Breakwater |
JP2013019134A (en) * | 2011-07-08 | 2013-01-31 | Toyo Constr Co Ltd | Breakwater |
CN103669284A (en) * | 2013-12-04 | 2014-03-26 | 天津港(集团)有限公司 | Box-barrel-type foundation breakwater structure assembled over water and assembling method thereof |
JP2023110892A (en) * | 2022-01-28 | 2023-08-09 | 鹿島建設株式会社 | Scouring prevention structure, and construction method of scouring prevention structure |
-
1998
- 1998-03-26 JP JP10078698A patent/JPH11269849A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040014126A (en) * | 2002-11-26 | 2004-02-14 | (주) 지. 알. 지 | Fly Ash Tetrafoot (TTP) Manufacturing Method |
JP2010143793A (en) * | 2008-12-19 | 2010-07-01 | Hojun:Kk | Low water permeability crushed stone material of natural clay mineral and method for measuring density of the same |
GB2468041A (en) * | 2009-02-24 | 2010-08-25 | Robert Henry Durrant | Anti-scour system |
GB2468041B (en) * | 2009-02-24 | 2011-06-29 | Robert Henry Durrant | Anti-scour system |
GB2476784A (en) * | 2009-02-24 | 2011-07-06 | Robert Henry Durrant | Cable or pipeline scour protection mat |
GB2476784B (en) * | 2009-02-24 | 2012-02-08 | Robert Henry Durrant | Anti-scour system |
US9869069B2 (en) | 2009-02-24 | 2018-01-16 | Scour Prevention Systems Ltd. | Anti-scour system |
JP2013019132A (en) * | 2011-07-08 | 2013-01-31 | Toyo Constr Co Ltd | Breakwater |
JP2013019134A (en) * | 2011-07-08 | 2013-01-31 | Toyo Constr Co Ltd | Breakwater |
CN103669284A (en) * | 2013-12-04 | 2014-03-26 | 天津港(集团)有限公司 | Box-barrel-type foundation breakwater structure assembled over water and assembling method thereof |
JP2023110892A (en) * | 2022-01-28 | 2023-08-09 | 鹿島建設株式会社 | Scouring prevention structure, and construction method of scouring prevention structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106227976B (en) | A kind of laboratory mixing proportion design method of permeable regenerated aggregate concrete | |
JP3452330B2 (en) | Solidified material mixed with crushed stone powder and construction method using solidified material mixed with crushed stone powder | |
CN100448790C (en) | building material curing agent | |
JPH11269849A (en) | Breakwater and revetment structure | |
CN106702845B (en) | One kind preventing saline and alkaline permeable pavement structure | |
CN107032660A (en) | A kind of preparation method for the composite for laying porous pavement | |
JP5533690B2 (en) | Granular materials for civil engineering work | |
CN101269520B (en) | Method for producing concrete building block by using pipe pile wastewater slurry | |
JP7242254B2 (en) | Stacking block manufacturing method | |
JPH11172679A (en) | Concrete method | |
JP4491812B2 (en) | Embankment method using high water content specific viscosity soil | |
CN206829086U (en) | A kind of dykes and dams disappear unrestrained erosion control mask | |
JP2022109572A (en) | Sandbags, methods of manufacturing sandbags, methods of constructing earthworks, methods of constructing embankments, and methods of constructing holding embankments | |
JP2001201596A (en) | Material for waste disposal, vessel for waste, disposal, waste disposed body, and method for waste disposal | |
JP2005264718A (en) | Ground foundation reinforcing structure | |
JPS63234085A (en) | Artificial ground material made of fly ash | |
JP2001323436A (en) | Wave-dissipating block | |
JP2004285605A (en) | Construction method of structure with kneaded material containing large amount of coal ash | |
JP2003002725A (en) | Construction material using site generated rock material | |
JPH0912348A (en) | Production of cured body of fine powder | |
JPS6250505A (en) | seawall structure | |
JPH0557225B2 (en) | ||
JP4468660B2 (en) | Offshore structure construction method | |
JP2802815B2 (en) | Embankment structure | |
JP2008254987A (en) | Mortar composition and lightweight hardened mortar using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20050202 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070703 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070828 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070925 |