[go: up one dir, main page]

JPH11269627A - Alloying furnace for hot-dip galvanized steel sheet and method for controlling degree of alloying of hot-dip galvanized steel sheet - Google Patents

Alloying furnace for hot-dip galvanized steel sheet and method for controlling degree of alloying of hot-dip galvanized steel sheet

Info

Publication number
JPH11269627A
JPH11269627A JP7253698A JP7253698A JPH11269627A JP H11269627 A JPH11269627 A JP H11269627A JP 7253698 A JP7253698 A JP 7253698A JP 7253698 A JP7253698 A JP 7253698A JP H11269627 A JPH11269627 A JP H11269627A
Authority
JP
Japan
Prior art keywords
steel sheet
alloying
hot
galvanized steel
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7253698A
Other languages
Japanese (ja)
Inventor
Jun Morozumi
順 諸住
Hiroshi Kuramoto
浩史 蔵本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7253698A priority Critical patent/JPH11269627A/en
Publication of JPH11269627A publication Critical patent/JPH11269627A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

(57)【要約】 【課題】 溶融亜鉛めっき鋼板の合金化度を、簡易な設
備および制御方法で正確に制御することが可能な溶融亜
鉛めっき鋼板の合金化炉および溶融亜鉛めっき鋼板の合
金化度の制御方法の提供。 【解決手段】 溶融亜鉛めっき鋼板の合金化炉の加熱帯
から均熱帯の領域あるいは均熱帯の領域に、鋼帯長手方
向において連続的に鋼板表面からの放射エネルギーを計
測する機能を有する放射温度計を配設した溶融亜鉛めっ
き鋼板の合金化炉、および、前記した溶融亜鉛めっき鋼
板の合金化炉において、前記した放射温度計を用いて鋼
板温度および放射エネルギーを計測し、得られた計測結
果に基づき合金化炉内の鋼板長手方向における鋼板表面
の放射率の変曲点を検出し、該変曲点に基づき合金化炉
の操業条件を制御する溶融亜鉛めっき鋼板の合金化度の
制御方法。
(57) 【Abstract】 PROBLEM TO BE SOLVED: To provide an alloying furnace for hot-dip galvanized steel sheet and a hot-dip galvanized steel sheet capable of accurately controlling the degree of alloying of the hot-dip galvanized steel sheet with simple equipment and a control method. Providing a degree control method. SOLUTION: A radiation thermometer having a function of continuously measuring radiant energy from a steel sheet surface in a longitudinal direction of a steel strip from a heating zone of an alloying furnace for hot-dip galvanized steel sheet to a zone in a solitary zone or a zone in a solitary zone. In the galvanizing furnace for hot-dip galvanized steel sheet, and in the galvanizing furnace for hot-dip galvanized steel sheet, the steel sheet temperature and radiant energy were measured using the above-mentioned radiation thermometer, and the obtained measurement results were obtained. A method for controlling the degree of alloying of a hot-dip galvanized steel sheet, comprising detecting an inflection point of the emissivity of the steel sheet surface in the longitudinal direction of the steel sheet in the alloying furnace, and controlling operating conditions of the alloying furnace based on the inflection point.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶融亜鉛めっき鋼
板の合金化炉および溶融亜鉛めっき鋼板の合金化度の制
御方法に関し、特に、溶融亜鉛めっき鋼板の合金化度を
簡易な設備で正確に制御することが可能な溶融亜鉛めっ
き鋼板の合金化炉および溶融亜鉛めっき鋼板の合金化度
の制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alloying furnace for hot-dip galvanized steel sheets and a method of controlling the degree of alloying of hot-dip galvanized steel sheets. The present invention relates to a controllable alloying furnace for a hot-dip galvanized steel sheet and a method for controlling the degree of alloying of the hot-dip galvanized steel sheet.

【0002】[0002]

【従来の技術】合金化溶融亜鉛めっき鋼板の合金化度の
制御方法としては、X線を鋼板に照射し、X線回折強度
から合金化度を算出し、合金化度を制御する方法が開示
されている(特公昭56−12314 号公報、特開平1−1773
51号公報参照)。また、溶融亜鉛めっき用合金化炉内の
板温保持帯域に複数個の放射温度計を配設し、各位置の
鋼板の放射率を測定し、予め定めた放射率の範囲となる
位置(:合金化位置と定義)が一定位置となるように、
合金化炉の燃料流量、通板速度を操作することによって
合金化度を制御する制御方法が開示されている(特開平
7−150328号公報参照)。
2. Description of the Related Art As a method of controlling the degree of alloying of an alloyed hot-dip galvanized steel sheet, a method of irradiating the steel sheet with X-rays, calculating the degree of alloying from X-ray diffraction intensity, and controlling the degree of alloying is disclosed. (JP-B-56-12314, JP-A-1-1773)
No. 51). In addition, a plurality of radiation thermometers are disposed in a plate temperature holding zone in the galvannealing alloying furnace, and the emissivity of the steel sheet at each position is measured. Alloying position) is a constant position,
A control method for controlling the degree of alloying by manipulating the fuel flow rate and the passing speed of the alloying furnace is disclosed (see Japanese Patent Application Laid-Open No. 7-150328).

【0003】しかしながら、前記したX線回折方法の場
合、鋼板が充分に冷却された後に測定装置を配設しなけ
れば測定誤差が大きく、測定装置を合金化炉の均熱工程
よりかなり後工程に配設することになり、得られた情報
のフィードバックのタイミングが遅れる問題があった。
また、合金化度を正しく認識するためには、めっき付着
量の情報が必要となり、X線回折の情報とめっき付着量
の情報との組み合わせが必要であり、測定方法および制
御方法が複雑となる。
However, in the case of the above-mentioned X-ray diffraction method, a measurement error is large unless a measuring device is provided after the steel plate is sufficiently cooled, and the measuring device is considerably post-processed after the soaking process of the alloying furnace. Therefore, there is a problem that the timing of feedback of the obtained information is delayed.
Further, in order to correctly recognize the degree of alloying, information on the amount of plating is required, and a combination of information on X-ray diffraction and information on the amount of plating is required, which complicates the measurement method and the control method. .

【0004】一方、前記した複数個の放射温度計を配設
する方法の場合、後記するように、合金化炉内における
鋼板の放射率の変化は急激であり、合金化度の正確な制
御は困難である。また、Zn付着量の変化、母板鋼種の変
化、鋼板の通板速度の変化に対応して合金化度の正確な
制御を行うために、多数の放射温度計を配設する場合、
設備コストが嵩む上、制御方法が複雑となる問題があっ
た。
On the other hand, in the case of the above-described method of disposing a plurality of radiation thermometers, the change in the emissivity of the steel sheet in the alloying furnace is rapid, as described later. Have difficulty. In addition, when a large number of radiation thermometers are provided in order to accurately control the degree of alloying in response to changes in the amount of Zn deposited, changes in the type of base sheet steel, and changes in the speed at which the steel sheet passes,
There are problems that the equipment cost increases and the control method becomes complicated.

【0005】[0005]

【発明が解決しようとする課題】本発明は、前記した従
来技術の問題点を解決し、溶融亜鉛めっき鋼板の合金化
度を、簡易な設備および制御方法で正確に制御すること
が可能な溶融亜鉛めっき鋼板の合金化炉および溶融亜鉛
めっき鋼板の合金化度の制御方法を提供することを目的
とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems of the prior art and provides a molten steel capable of accurately controlling the degree of alloying of a hot-dip galvanized steel sheet with simple equipment and a control method. An object of the present invention is to provide an alloying furnace for a galvanized steel sheet and a method for controlling the degree of alloying of a galvanized steel sheet.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記した
課題を解決するために鋭意検討した結果、放射温度計自
体を移動可能とするか、放射温度計の光軸と鋼板表面と
の角度を可変とすることによって、溶融亜鉛めっき鋼板
の合金化度(:以下合金化度と記す)を簡易な設備およ
び制御方法で制御することが可能となるばかりでなく、
合金化炉内における鋼板の放射率の急激な変化に対応し
て合金化度の正確な制御を行うことが可能となることに
想到し、本発明に至った。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and as a result, have made it possible to move the radiation thermometer itself or to determine whether the optical axis of the radiation thermometer and the steel plate surface can be moved. By making the angle variable, it is possible not only to control the degree of alloying of the hot-dip galvanized steel sheet (hereinafter referred to as the degree of alloying) with simple equipment and a control method,
The present inventors have conceived that accurate control of the degree of alloying can be performed in response to a rapid change in the emissivity of the steel sheet in the alloying furnace, and have led to the present invention.

【0007】すなわち、第1の発明は、溶融亜鉛めっき
鋼板の合金化炉の加熱帯から均熱帯の領域あるいは均熱
帯の領域に、鋼帯長手方向において連続的に鋼板表面か
らの放射エネルギーを計測する機能を有する放射温度計
を配設したことを特徴とする溶融亜鉛めっき鋼板の合金
化炉である。前記した第1の発明においては、前記放射
温度計が、鋼帯長手方向において1m以上に渡って連続
的に鋼板表面からの放射エネルギーを計測する機能を有
する放射温度計であることが好ましい。
That is, the first invention is to measure the radiant energy from the steel sheet surface continuously in the longitudinal direction of the steel strip from the heating zone of the galvanizing furnace for hot-dip galvanized steel sheet to the soaking zone or the soaking zone. A galvanizing furnace for hot-dip galvanized steel sheets, comprising a radiation thermometer having a function of performing the function. In the first aspect, it is preferable that the radiation thermometer is a radiation thermometer having a function of continuously measuring radiation energy from a steel sheet surface over 1 m or more in a longitudinal direction of the steel strip.

【0008】第2の発明は、溶融亜鉛めっき鋼板の合金
化炉の加熱帯11から均熱帯12の領域あるいは均熱帯12の
領域に配設され、鋼帯長手方向において連続的に移動す
る放射温度計14と、該放射温度計14の合金化炉鋼帯長手
方向における位置検出装置17b を有することを特徴とす
る溶融亜鉛めっき鋼板の合金化炉である。前記した第2
の発明においては、前記放射温度計14が、鋼帯長手方向
において1m以上に渡って連続的に移動する放射温度計
であることが好ましい。
According to a second aspect of the present invention, there is provided a radiant temperature which is disposed from a heating zone 11 of an alloying furnace for hot-dip galvanized steel sheet to a zone of a soaking zone 12 or a zone of a soaking zone 12, and moves continuously in the longitudinal direction of the strip. This is a galvanizing furnace for hot-dip galvanized steel sheets, comprising: a thermometer 14; and a position detector 17b for the radiation thermometer 14 in the longitudinal direction of the alloying furnace steel strip. The second mentioned above
In the present invention, the radiation thermometer 14 is preferably a radiation thermometer that continuously moves over 1 m or more in the longitudinal direction of the steel strip.

【0009】第3の発明は、溶融亜鉛めっき鋼板の合金
化炉の加熱帯11から均熱帯12の領域あるいは均熱帯12の
領域に配設され、鋼帯長手方向において連続的に鋼板表
面からの放射エネルギーを計測するために光軸(AX)と鋼
板表面との角度θを可変とした放射温度計30と、該放射
温度計30の鋼板表面の計測箇所を検出するための計測箇
所検出装置31b を有することを特徴とする溶融亜鉛めっ
き鋼板の合金化炉である。
According to a third aspect of the present invention, a hot-dip galvanized steel sheet is arranged in a zone from a heating zone 11 of an alloying furnace to a zone of a soaking zone 12 or a zone of a soaking zone 12, and continuously extends from the steel sheet surface in the longitudinal direction of the strip. A radiation thermometer 30 having a variable angle θ between the optical axis (AX) and the steel sheet surface for measuring radiant energy, and a measurement point detection device 31b for detecting a measurement point on the steel sheet surface of the radiation thermometer 30 It is an alloying furnace for a hot-dip galvanized steel sheet.

【0010】前記した第3の発明においては、前記放射
温度計30が、鋼帯長手方向において1m以上に渡って連
続的に鋼板表面からの放射エネルギーを計測するために
光軸(AX)と鋼板表面との角度θを可変とした放射温度計
であることが好ましい。また、前記した第1の発明〜第
3の発明においては、鋼板表面と放射温度計14、30との
間の放射温度計の光軸を囲む水冷ジャケット式の筒40が
配設されていることが好ましい。
In the third aspect of the present invention, the radiation thermometer 30 measures the radiant energy from the surface of the steel sheet continuously over 1 m or more in the longitudinal direction of the steel strip. It is preferable that the radiation thermometer has a variable angle θ with respect to the surface. In the first to third inventions described above, the water-cooled jacket-type cylinder 40 surrounding the optical axis of the radiation thermometer between the steel plate surface and the radiation thermometers 14 and 30 is provided. Is preferred.

【0011】第4の発明は、前記した第1の発明〜第3
の発明の溶融亜鉛めっき鋼板の合金化炉において、前記
した放射温度計を用いて鋼板温度および放射エネルギー
を計測し、得られた計測結果に基づき合金化炉内の鋼板
長手方向における鋼板表面の放射率の変曲点を検出し、
該変曲点に基づき合金化炉の操業条件を制御することを
特徴とする溶融亜鉛めっき鋼板の合金化度の制御方法で
ある。
A fourth aspect of the present invention is the first to third aspects of the present invention.
In the alloying furnace for hot-dip galvanized steel sheet of the invention, the temperature of the steel sheet and the radiant energy are measured using the above-mentioned radiation thermometer, and the radiation of the steel sheet surface in the steel sheet longitudinal direction in the alloying furnace based on the obtained measurement results Detect the inflection point of the rate,
A method for controlling the degree of alloying of a hot-dip galvanized steel sheet, characterized by controlling operating conditions of an alloying furnace based on the inflection point.

【0012】前記した第4の発明においては、前記した
変曲点が所定の位置となるように、前記した合金化炉の
操業条件を制御することが好ましい。また、前記した第
4の発明においては、前記した合金化炉の操業条件が、
合金化炉への燃料供給量であることが好ましい。
In the fourth aspect of the invention, it is preferable to control the operating conditions of the alloying furnace so that the inflection point is located at a predetermined position. In the fourth aspect, the operating conditions of the alloying furnace are as follows:
The fuel supply amount to the alloying furnace is preferably used.

【0013】[0013]

【発明の実施の形態】以下、本発明をさらに詳細に説明
する。合金化溶融亜鉛めっき鋼板の特徴は、最終的に鋼
板表面に形成される合金層の合金化度による色調変化が
著しいことである。このため、合金化過程において鋼板
表面を放射温度計で測定すると、合金化溶融亜鉛めっき
鋼板の母材や、めっき付着量、通板速度に関わらず、合
金化完了点では放射エネルギーが急激に増える。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The feature of the alloyed hot-dip galvanized steel sheet is that the color tone changes significantly due to the degree of alloying of the alloy layer finally formed on the steel sheet surface. For this reason, when the surface of the steel sheet is measured with a radiation thermometer during the alloying process, the radiant energy sharply increases at the alloying completion point regardless of the base material of the galvannealed steel sheet, the coating weight, and the passing speed. .

【0014】しかしながら、上記した合金化完了点であ
る放射率の変曲点の合金化炉内の鋼板の長手方向におけ
る適正な設定箇所は、先に示した条件によって異なる。
本発明は、合金化炉内における合金化の完了点を正確に
認識するために、合金化炉において、鋼帯長手方向に連
続的に放射温度計自体を移動可能とするか、放射温度計
の光軸と鋼板表面との角度を可変とし、鋼板長手方向に
おいて連続的に全ての箇所の鋼板表面の放射率を測定す
ることによって放射率の変曲点を検出し、得られた検出
結果に基づき合金化度を正確に制御することを特徴とし
ている。
However, the appropriate setting point in the longitudinal direction of the steel sheet in the alloying furnace at the inflection point of the emissivity, which is the above-mentioned alloying completion point, differs depending on the conditions described above.
In order to accurately recognize the completion point of alloying in the alloying furnace, the present invention makes it possible to continuously move the radiation thermometer itself in the steel strip longitudinal direction, The inflection point of the emissivity is detected by measuring the emissivity of the steel sheet surface at all points continuously in the longitudinal direction of the steel sheet by making the angle between the optical axis and the steel sheet surface variable, and based on the obtained detection results. It is characterized by precisely controlling the degree of alloying.

【0015】本発明においては、放射温度計が、鋼帯長
手方向において1m以上に渡って連続的に鋼板表面から
の放射エネルギーを計測する機能を有する放射温度計で
あることが好ましい。これは、連続的に種々のめっき製
品の通板を可能とするためである。図1に、本発明に係
わる溶融亜鉛めっき装置および本発明の溶融亜鉛めっき
鋼板の合金化炉の一例を、側面図によって示す。
In the present invention, the radiation thermometer is preferably a radiation thermometer having a function of continuously measuring the radiation energy from the steel sheet surface over 1 m or more in the longitudinal direction of the steel strip. This is to enable continuous passage of various plated products. FIG. 1 is a side view showing an example of a hot-dip galvanizing apparatus according to the present invention and an example of a hot-dip galvanized steel sheet alloying furnace of the present invention.

【0016】図1において、1は鋼帯、2は溶融亜鉛め
っき槽、3はシンクロール、4は溶融亜鉛、5はガスワ
イピングノズル、6はデフレクタロール、10は合金化
炉、11は合金化炉の加熱帯、12は合金化炉の均熱帯、12
W は合金化炉均熱帯の側壁、13は加熱装置、14は放射温
度計、15は放射温度計移動用のレール、16は放射温度計
移動用の車輪、17a は放射温度計移動用の駆動装置およ
び駆動制御装置、17b は放射温度計14の位置検出装置、
18は放射温度計移動用のワイヤの巻き取り装置、19は放
射温度計移動用のワイヤ、20は放射率および放射率変曲
点演算装置、21は合金化度制御装置、22は燃料流量制御
装置、23は空気流量制御装置、f1 は鋼帯の進行方向、
Yは放射温度計14が鋼帯長手方向に沿って移動可能な始
点P1 (:加熱帯出側)と終点P2 (:均熱帯出側)と
の間の距離、yは始点P1 から終点P2 方向の任意の点
P迄の距離を示す。
In FIG. 1, 1 is a steel strip, 2 is a hot dip galvanizing tank, 3 is a sink roll, 4 is molten zinc, 5 is a gas wiping nozzle, 6 is a deflector roll, 10 is an alloying furnace, and 11 is alloying. Furnace heating zone, 12 is alloying furnace soot, 12
W is the side wall of the alloying furnace, 13 is a heating device, 14 is a radiation thermometer, 15 is a rail for moving the radiation thermometer, 16 is a wheel for moving the radiation thermometer, and 17a is a drive for moving the radiation thermometer. Device and drive control device, 17b is a position detection device for the radiation thermometer 14,
18 is a wire winding device for moving the radiation thermometer, 19 is a wire for moving the radiation thermometer, 20 is an emissivity and emissivity inflection point calculation device, 21 is a alloying degree control device, and 22 is a fuel flow control. apparatus, 23 an air flow control device, f 1 is the traveling direction of the steel strip,
Y is the distance between the starting point P 1 (: heating zone exit side) and the end point P 2 (: solitary exit side) where the radiation thermometer 14 can move along the longitudinal direction of the steel strip, and y is the end point from the starting point P 1. any point P 2 direction indicates the distance to P.

【0017】放射温度計14は、駆動装置および駆動制御
装置17a によってレール15の上を移動し、鋼帯長手方向
に沿って連続的にY=20mの範囲で移動可能な装置構成
となっている。図1に示す溶融亜鉛めっき装置および溶
融亜鉛めっき鋼板の合金化炉においては、鋼帯1は、溶
融亜鉛めっき槽2中の溶融亜鉛4に浸漬され溶融亜鉛め
っきが施され、ガスワイピングノズル5によってめっき
付着量が調整された後、合金化炉10に導入される。
The radiation thermometer 14 is configured so that it can be moved on the rail 15 by a drive device and a drive control device 17a and can be continuously moved within a range of Y = 20 m along the longitudinal direction of the steel strip. . In the hot-dip galvanizing apparatus and the galvanizing furnace for hot-dip galvanized steel sheet shown in FIG. After the amount of plating is adjusted, it is introduced into the alloying furnace 10.

【0018】合金化炉10に導入された鋼帯1は、亜鉛層
と鋼素地との間の金属の相互拡散によって、めっき層が
Fe-Zn 合金化され、塗膜密着性、耐食性などに優れた鋼
板が得られる。合金化炉10に導入された鋼帯1は、合金
化炉10に配設された移動式の放射温度計14によって、板
面から出る放射エネルギーを検出することによって、板
面の放射率が測定される。
The steel strip 1 introduced into the alloying furnace 10 has a plating layer formed by mutual diffusion of metal between the zinc layer and the steel base.
A steel sheet that is Fe-Zn alloyed and has excellent coating film adhesion and corrosion resistance can be obtained. The emissivity of the steel sheet 1 is measured by detecting the radiant energy emitted from the sheet surface of the steel strip 1 introduced into the alloying furnace 10 by the mobile radiation thermometer 14 disposed in the alloying furnace 10. Is done.

【0019】放射率の算出は、下記式(1) によって行わ
れる。 ε=ε0 ・exp{〔C(T−T0 )〕/〔λ・T・T0 〕}………(1) ここで、ε:放射率、ε0 :放射温度計の設定放射率、
C:定数、T:放射温度計の指示値、T0 :板温、λ:
測定波長である。放射温度計14は、鋼帯長手方向に沿っ
てfF 、fB の方向、すなわち、鋼帯長手方向に沿って
前後に移動し、鋼帯板面から出る放射エネルギーを検出
し、合金化炉10の鋼帯長手方向に対してY=20mの範囲
の全ての箇所の鋼帯板面に関して連続的に放射温度計の
指示値Tが得られる。
The emissivity is calculated by the following equation (1). ε = ε 0 · exp {[C (T−T 0 )] / [λ · T · T 0 ]} (1) where ε: emissivity, ε 0 : set emissivity of radiation thermometer ,
C: constant, T: indicated value of radiation thermometer, T 0 : plate temperature, λ:
It is a measurement wavelength. The radiation thermometer 14 moves back and forth in the direction of f F and f B along the steel strip longitudinal direction, that is, in the longitudinal direction of the steel strip, detects radiant energy emitted from the steel strip plate surface, and detects an alloying furnace. The reading value T of the radiation thermometer is continuously obtained with respect to the steel strip plate surfaces at all points in the range of Y = 20 m in the longitudinal direction of the ten steel strips.

【0020】次に、合金化炉10の長手方向の位置yと得
られた指示値Tとの下記関係式(2)から、下記条件(3)
を満足する合金化炉の長手方向の位置Kを求める。 T=f(y)………………(2) 位置K:dT/dy =α………(3) なお、位置Kは、始点P1 (:加熱帯出側)から終点P
2 (:均熱帯出側)に向かって順次距離の変化に対応す
るTの変化を求めた微分値dT/dy がαに到達する位置で
あり、鋼板の合金化に伴う放射率の変動の影響を受けず
に板温を測定する位置である。
Next, from the following relational expression (2) between the position y in the longitudinal direction of the alloying furnace 10 and the obtained indicated value T, the following condition (3) is obtained.
Is determined in the longitudinal direction of the alloying furnace satisfying the following condition. T = f (y)... (2) Position K: dT / dy = α (3) Note that the position K is from the starting point P 1 (: the heating band exit side) to the ending point P.
2 This is the position where the differential value dT / dy obtained from the change in T corresponding to the change in distance sequentially toward the (equivalent tropical side) reaches α, and the effect of the emissivity fluctuation accompanying the alloying of the steel sheet This is the position where the sheet temperature is measured without receiving the temperature.

【0021】上記したαは適宜設定することができる。
上記した位置Kにおける放射温度計の指示値Tまたは該
指示値Tを例えば非合金めっきの放射率(ε0 =0.11)
によって補正した値を板温T0 として、前記した式(1)
に基づき、位置Kから終点P2 迄の間の放射率εを鋼帯
長手方向において連続的に算出し、合金化炉の長手方向
の位置yと位置yにおける放射率εy との関係式である
下記式(4) を求める。
The above-mentioned α can be set as appropriate.
The indicated value T of the radiation thermometer at the position K or the indicated value T is, for example, the emissivity of non-alloy plating (ε 0 = 0.11).
The value corrected in accordance with the above equation (1) is defined as the plate temperature T 0.
The basis of the emissivity epsilon between the position K to the end point P 2 is calculated continuously in the strip longitudinal direction, in relation to the emissivity epsilon y at the position y and position y in the longitudinal direction of the alloying furnace The following equation (4) is obtained.

【0022】εy =g(y)………(4) 次に、d2εy /dy2の符号が変化する位置y、すなわち上
記関係式εy =g(y)の曲線の変曲点y0 を求める。
一方、予め、鋼種、めっき付着量、通板速度が異なる各
種操業条件下で、めっき剥離、合金化ムラの無い最適の
品質の合金化溶融亜鉛めっき鋼板が得られる変曲点y0b
を求めておく。
Ε y = g (y) (4) Next, the position y where the sign of d 2 ε y / dy 2 changes, that is, the inflection of the curve of the above relational expression ε y = g (y) Find the point y 0 .
On the other hand, an inflection point y 0b at which an alloyed hot-dip galvanized steel sheet of optimal quality without plating exfoliation and alloying unevenness is obtained under various operating conditions in which the steel type, the coating weight, and the passing speed are different in advance.
Ask for.

【0023】合金化度の制御においては、上記した変曲
点y0 を随時算出し、変曲点y0 がその時点の操業条件
において最適の変曲点y0bとなるように、例えば合金化
炉への燃料供給量を調節する。すなわち、予め求めた鋼
種、めっき付着量、通板速度などの操業条件と高品質の
合金化溶融亜鉛めっき鋼板が得られる変曲点との関係に
基づき、検出した変曲点が、高品質の合金化溶融亜鉛め
っき鋼板が得られる変曲点に近付くように操業条件を制
御する。
In the control of the degree of alloying, the inflection point y 0 described above is calculated as needed, and the inflection point y 0 becomes the optimum inflection point y 0b under the operating conditions at that time, for example, by alloying. Adjust the fuel supply to the furnace. That is, the inflection point detected based on the relationship between the operating conditions, such as the previously determined steel type, the amount of plating, and the passing speed, and the inflection point at which a high-quality galvannealed steel sheet is obtained, the inflection point detected is a high-quality Operating conditions are controlled so as to approach the inflection point at which an alloyed hot-dip galvanized steel sheet can be obtained.

【0024】本発明によれば、合金化反応の特徴である
鋼板表面状態の変化(色の変化)を、放射温度計による
放射率の変化に基づいて、合金化炉内の長手方向の全て
の箇所について連続的に測定し、放射率の変曲点を検出
することによって、合金化炉のどの箇所で合金化が完了
しているかを正確に捉えることができる。本発明によれ
ば、合金化の完了点を正確に捉えることができるため、
鋼種、めっき付着量、通板速度などの操業条件が変化し
ても、合金化度を正確に制御できる。
According to the present invention, the change in the surface condition of the steel sheet (color change), which is a characteristic of the alloying reaction, is measured based on the change in the emissivity measured by the radiation thermometer. By continuously measuring the locations and detecting the inflection point of the emissivity, it is possible to accurately grasp at which location in the alloying furnace the alloying is completed. According to the present invention, since the completion point of alloying can be accurately grasped,
The degree of alloying can be accurately controlled even when operating conditions such as the type of steel, the amount of coating, and the passing speed change.

【0025】さらに、上記した本発明によれば、放射温
度計が1台でよいため、合金化度を簡易な設備および制
御方法で制御することが可能となった。次に、本発明の
合金化炉および合金化度の制御方法の他の好適態様につ
いて説明する。図2に、本発明の溶融亜鉛めっき鋼板の
合金化炉の他の一例を、側面図によって示す。
Further, according to the present invention, since only one radiation thermometer is required, it is possible to control the degree of alloying with a simple facility and control method. Next, another preferred embodiment of the alloying furnace and the method for controlling the degree of alloying of the present invention will be described. FIG. 2 is a side view showing another example of the galvanizing furnace for a galvanized steel sheet according to the present invention.

【0026】図2において、30は放射温度計、31a は放
射温度計回転用の駆動装置および駆動制御装置、31b は
放射温度計30の鋼板表面の計測箇所を検出するための計
測箇所検出装置、AXは放射温度計30の光軸、fR は放射
温度計30の回転方向、Oは放射温度計30の回転軸、θは
放射温度計30の光軸AXと鋼板表面との角度を示し、その
他の符号は図1と同様の内容を示す。
In FIG. 2, 30 is a radiation thermometer, 31a is a driving device and a drive control device for rotating the radiation thermometer, 31b is a measuring point detecting device for detecting a measuring point on the steel plate surface of the radiation thermometer 30, AX is the optical axis of the radiation thermometer 30, f R is the rotation direction of the radiation thermometer 30, O is the rotation axis of the radiation thermometer 30, θ is the angle between the optical axis AX of the radiation thermometer 30 and the steel plate surface, Other symbols indicate the same contents as in FIG.

【0027】なお、図2に示す本発明の溶融亜鉛めっき
鋼板の合金化炉は、図1に示す合金化炉と同様の溶融亜
鉛めっき装置および付帯装置が配設されている。図2に
示す合金化炉は、合金化炉の均熱帯12の領域に回転式の
放射温度計30が配設されており、放射温度計30の光軸AX
と鋼板表面との角度が可変となっている。
The hot-dip galvanized steel sheet alloying furnace of the present invention shown in FIG. 2 is provided with the same hot-dip galvanizing apparatus and auxiliary equipment as those of the hot-dip galvanizing steel sheet shown in FIG. In the alloying furnace shown in FIG. 2, a rotary radiation thermometer 30 is provided in the region of the soaking zone 12 of the alloying furnace, and the optical axis AX of the radiation thermometer 30 is provided.
And the angle between the steel plate and the surface are variable.

【0028】この結果、鋼帯長手方向に1m以上に渡っ
て連続的に鋼板表面からの放射エネルギーを計測するこ
とができる。また、放射温度計30の鋼板表面の計測箇所
を検出するための計測箇所検出装置31b によって、合金
化炉鋼帯長手方向における放射率の計測箇所を知ること
ができる。
As a result, the radiant energy from the steel sheet surface can be continuously measured over 1 m or more in the longitudinal direction of the steel strip. In addition, the measuring point detecting device 31b for detecting the measuring point on the steel sheet surface of the radiation thermometer 30 can know the measuring point of the emissivity in the longitudinal direction of the steel strip of the alloying furnace.

【0029】図2に示す本発明の溶融亜鉛めっき鋼板の
合金化炉は、上記したように構成されているため、前記
した図1と同様の方法によって、合金化炉鋼帯長手方向
における合金化の完了点を正確に捉えることができ、鋼
種、めっき付着量、通板速度などの操業条件が変化して
も、合金化度を正確に制御できる。さらに、放射温度計
が1台でよいため、合金化度を簡易な設備および制御方
法で制御することができる。
Since the alloying furnace for hot-dip galvanized steel sheet of the present invention shown in FIG. 2 is configured as described above, it is alloyed in the longitudinal direction of the steel strip of the alloying furnace by the same method as in FIG. Can be accurately grasped, and the degree of alloying can be accurately controlled even when the operating conditions such as the type of steel, the coating weight, and the passing speed change. Furthermore, since only one radiation thermometer is required, the degree of alloying can be controlled with simple equipment and a control method.

【0030】次に、本発明の溶融亜鉛めっき鋼板の合金
化炉において、鋼帯の周囲環境の温度の外乱を防止し、
鋼板表面の放射エネルギーを正確に測定するための装置
について説明する。図3は、上記した目的を達成するた
めの移動式放射温度計の配設状況の一例を示す部分斜視
図である。
Next, in the alloying furnace for hot-dip galvanized steel sheet of the present invention, disturbance of the temperature of the surrounding environment of the steel strip is prevented,
An apparatus for accurately measuring radiant energy on a steel sheet surface will be described. FIG. 3 is a partial perspective view showing an example of an arrangement state of a mobile radiation thermometer for achieving the above-described object.

【0031】図3において、40は外周壁面に水冷ジャケ
ットを有する筒、41は筒40の支持台、42は耐熱伸縮蛇
腹、fJF、fJBは筒40の移動方向を示し、その他の符号
は図1と同様の内容を示す。図3に示す移動式放射温度
計においては、鋼帯1と放射温度計14との間の放射温度
計の光軸を囲む水冷ジャケット式の筒40が配設されてい
る。
In FIG. 3, reference numeral 40 denotes a cylinder having a water-cooled jacket on the outer peripheral wall, 41 denotes a support for the cylinder 40, 42 denotes a heat-resistant telescopic bellows, f JF and f JB denote the moving directions of the cylinder 40, and other symbols: It shows the same contents as in FIG. In the mobile radiation thermometer shown in FIG. 3, a water-cooled jacket-type cylinder 40 surrounding the optical axis of the radiation thermometer between the steel strip 1 and the radiation thermometer 14 is provided.

【0032】放射温度計14および筒40は鋼帯長手方向に
沿って合金化炉内を移動するように構成されている。本
発明においては、放射温度計に上記した水冷ジャケット
式の筒40を配設することによって、鋼帯の周囲環境の温
度の外乱を防止し、鋼板表面の放射エネルギーを正確に
測定し、合金化の完了点をさらに正確に知ることができ
る。
The radiation thermometer 14 and the cylinder 40 are configured to move in the alloying furnace along the longitudinal direction of the steel strip. In the present invention, by disposing the above-mentioned water-cooled jacket type cylinder 40 in the radiation thermometer, disturbance of the temperature of the surrounding environment of the steel strip is prevented, the radiation energy on the steel sheet surface is accurately measured, and alloying is performed. Can be known more accurately.

【0033】なお、図3においては、水冷ジャケット式
の筒40を図1に示す鋼帯長手方向に渡って連続的に移動
する放射温度計に適用する場合について説明したが、水
冷ジャケット式の筒40と放射温度計との連動方式、装置
を変更することによって、水冷ジャケット式の筒40を図
2の回転式放射温度計に適用することも可能である。
In FIG. 3, the case where the water-cooled jacket type cylinder 40 is applied to the radiation thermometer continuously moving in the longitudinal direction of the steel strip shown in FIG. 1 has been described. The water-cooled jacket-type cylinder 40 can be applied to the rotary radiation thermometer shown in FIG. 2 by changing the interlocking system of the radiation thermometer and the device.

【0034】[0034]

【実施例】以下、本発明を実施例に基づきさらに具体的
に説明する。 (実施例1)板厚0.7mm の冷延鋼板をアルカリ電解脱
脂、塩酸酸洗し、焼鈍を行った後、図1に示す溶融亜鉛
めっき装置、合金化炉を用いて、下記条件下で連続的合
金化処理溶融亜鉛めっきを行った。
The present invention will be described more specifically below with reference to examples. (Example 1) A cold-rolled steel sheet having a thickness of 0.7 mm is subjected to alkaline electrolytic degreasing, hydrochloric acid pickling, annealing, and then continuous using a galvanizing apparatus and an alloying furnace shown in FIG. 1 under the following conditions. Alloying treatment hot-dip galvanizing was performed.

【0035】(溶融亜鉛めっき条件:) めっき浴組成;Al:0.14wt%、Fe:0.04wt%、Pb:0.00
8 wt%、残:Zn 浴温 ;460 ℃ 進入板温 ;480 ℃ 浸漬時間 ;1sec めっき付着量;50g/m2 (合金化条件:) 合金化炉加熱帯温度;操業条件1:800 ℃、操業条件
2:900 ℃、操業条件3:1000℃ 合金化炉均熱帯温度;操業条件1:500 ℃、操業条件
2:520 ℃、操業条件3:540 ℃ 通板速度;100mpm(一定) 本実施例においては、上記した合金化炉加熱帯への燃料
供給量を変更した操業条件1〜3の各々について、図1
に示す連続移動方式の放射温度計14によって、鋼帯長手
方向に連続的に放射率を測定すると共に、得られた合金
化溶融亜鉛めっき鋼板の品質を評価した。
(Hot-dip galvanizing conditions :) Plating bath composition: Al: 0.14 wt%, Fe: 0.04 wt%, Pb: 0.00
8 wt%, balance: Zn bath temperature; 460 ° C Entry plate temperature; 480 ° C Immersion time: 1 sec Plating weight: 50 g / m 2 (Alloying condition :) Alloying furnace heating zone temperature; Operating condition 1: 800 ° C, Operating condition 2: 900 ° C, operating condition 3: 1000 ° C, soaking temperature of alloying furnace; operating condition 1: 500 ° C, operating condition 2: 520 ° C, operating condition 3: 540 ° C Passing speed; 100 mpm (constant) In the example, in each of the operating conditions 1 to 3 in which the fuel supply amount to the above-mentioned alloying furnace heating zone was changed, FIG.
The emissivity was continuously measured in the longitudinal direction of the steel strip by the continuous movement type radiation thermometer 14 shown in FIG. 1, and the quality of the obtained galvannealed steel sheet was evaluated.

【0036】得られた放射率の測定結果を、めっき品質
と共に図4に示す。操業条件1のめっき鋼板はめっき剥
離が生じ、操業条件3のめっき鋼板は合金化むらが生じ
たのに対して、操業条件2のめっき鋼板はこれらの欠陥
が生ぜずめっき品質が良好であった。すなわち、上記し
ためっき付着量の条件においては、放射率の変曲点を図
4に示すy0bの位置に設定する必要があることが示され
る。
FIG. 4 shows the measurement results of the obtained emissivity together with the plating quality. The plated steel sheet of the operating condition 1 suffered peeling of plating, and the plated steel sheet of the operating condition 3 caused uneven alloying, whereas the plated steel sheet of the operating condition 2 did not have these defects and had good plating quality. . That is, it is shown that the inflection point of the emissivity needs to be set at the position of y 0b shown in FIG.

【0037】(実施例2)図1に示す本発明の合金化炉
において、めっき付着量を50g/m2に設定し、合金化炉に
おける通板速度が変化する条件下で、前記した本発明の
合金化度の制御方法および上記した実施例1の結果に基
づき、溶融亜鉛めっき鋼板の合金化度の制御を行った。
Example 2 In the alloying furnace of the present invention shown in FIG. 1, the coating weight was set to 50 g / m 2 , and the above-described present invention was carried out under the condition that the passing speed in the alloying furnace was changed. The degree of alloying of the hot-dip galvanized steel sheet was controlled based on the method of controlling the degree of alloying and the results of Example 1 described above.

【0038】すなわち、合金化炉10において、放射温度
計14を鋼帯長手方向かつ鋼帯搬送方向に連続的に20m移
動させ、放射率の変化が所定の値の位置Kにおける放射
温度計の指示値Tを板温とし、前記した式(1) から、合
金化炉長手方向の位置yと位置yにおける放射率εy
の関係式である下記式(4) を求め、この関係式の曲線の
変曲点y0 を求めた。
That is, in the alloying furnace 10, the radiation thermometer 14 is continuously moved by 20 m in the longitudinal direction of the steel strip and in the conveying direction of the steel strip, and the change of the emissivity is indicated by the radiation thermometer at the position K at a predetermined value. the value T as a sheet temperature, determined from the equation (1), the following formula is a relation between the emissivity epsilon y at the position y and position y alloying furnace longitudinal direction (4), the curve of the relation The inflection point y 0 was determined.

【0039】εy =g(y)………(4) 次に、変曲点y0 が、実施例1の結果に基づく変曲点の
位置y0bより合金化炉の出側にある場合は、合金化炉加
熱帯への燃料供給量を増加し、逆に、変曲点y 0 が位置
0bより合金化炉の入側にある場合は、燃料供給量を低
下し、変曲点y 0 が位置y0bにほぼ等しい位置となるよ
うに制御した。
Εy= G (y) (4) Next, the inflection point y0Is the inflection point based on the result of Example 1.
Position y0bIf it is on the exit side of the alloying furnace,
Increase the fuel supply to the tropics, and conversely, the inflection point y 0Is located
y0bIf it is closer to the inlet of the alloying furnace, lower the fuel supply
Down, inflection point y 0Is the position y0bIt will be almost equal to
Controlled.

【0040】この結果、1コイル当たりの合金化不良長
さは平均値で0.83mとなり、本発明によって合金化溶融
亜鉛めっき鋼板の合金化度を適切に制御することが可能
であることが分かった。 (比較例)従来技術である複数基の放射温度計固定配置
方式と本発明とを比較するために下記試験を行った。
As a result, the average length of defective alloying per coil was 0.83 m, and it was found that the degree of alloying of the galvannealed steel sheet could be appropriately controlled by the present invention. . (Comparative Example) The following test was conducted in order to compare the present invention with the fixed arrangement method of a plurality of radiation thermometers, which is a conventional technique.

【0041】すなわち、図1に示す合金化炉において、
めっき付着量;50g/m2、通板速度;100mpm(一定)の条
件下で実施例1と同一の操業条件1、操業条件2、操業
条件3で操業し、各操業時に、合金化炉の加熱帯〜均熱
帯において、放射温度計14を移動し5m間隔の位置A,
B,C,D,E,Fで放射率を測定すると共に、得られ
た合金化溶融亜鉛めっき鋼板の品質を評価した。
That is, in the alloying furnace shown in FIG.
Operating under the same operating condition 1, operating condition 2, and operating condition 3 as in Example 1 under the conditions of coating weight: 50 g / m 2 , passing speed: 100 mpm (constant), From the heating zone to the solitary zone, the radiation thermometer 14 was moved to position A at 5 m intervals.
The emissivity was measured by B, C, D, E, and F, and the quality of the obtained galvannealed steel sheet was evaluated.

【0042】この結果、操業条件2の場合、めっき品質
が良好であり、この場合、図5に示す合金化炉長手方向
の位置yと位置yにおける放射率εとの関係式(5本の
直線で構成される関係式)が得られた。次に、めっき付
着量を50g/m2に設定し、合金化炉における通板速度が変
化する条件下で、合金化炉の加熱帯〜均熱帯において、
放射温度計14を移動し5m間隔の位置A,B,C,D,
E,Fで放射率を測定し、得られた図5と同様の関係式
(複数本の直線で構成される関係式)において、図5と
同様に、放射率がεk となる位置が位置yk となるよう
に、合金化炉加熱帯への燃料供給量を制御した。
As a result, in the case of the operating condition 2, the plating quality is good. In this case, the relational expression (the five straight lines) between the position y in the longitudinal direction of the alloying furnace and the emissivity ε at the position y shown in FIG. Is obtained. Then, set the coating weight to 50 g / m 2, under conditions of varying sheet passage speed in the alloying furnace, the heating zone - soaking alloying furnace,
Move the radiation thermometer 14 to position A, B, C, D,
E, the emissivity was measured with F, in the resulting 5 similar relation (composed relationship by a plurality of straight lines), as in FIG. 5, the emissivity is epsilon k position is located The amount of fuel supplied to the alloying furnace heating zone was controlled so as to be y k .

【0043】この結果、1コイル当たりの合金化不良長
さは平均値で1.38mとなった。以上述べた実施例1、実
施例2、比較例の結果から、本発明によれば、複数基の
放射温度計固定配置方式による合金化度の制御方法に対
して、合金化溶融亜鉛めっき鋼板の不良部分の長さを半
減することが可能であることが分かった。
As a result, the average length of defective alloying per coil was 1.38 m. From the results of Example 1, Example 2, and Comparative Example described above, according to the present invention, the method of controlling the degree of alloying by a plurality of radiation thermometer fixed arrangement methods is different from that of the alloyed hot-dip galvanized steel sheet. It has been found that the length of the defective portion can be reduced by half.

【0044】[0044]

【発明の効果】本発明によれば、溶融亜鉛めっき鋼板の
合金化度を簡易な設備および制御方法で正確に制御する
ことが可能となり、従来技術に対して、合金化溶融亜鉛
めっき鋼板の不良部分の長さを半減することが可能とな
った。
According to the present invention, the degree of alloying of a hot-dip galvanized steel sheet can be accurately controlled with simple equipment and a control method. It became possible to reduce the length of the part by half.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる溶融亜鉛めっき装置および本発
明の溶融亜鉛めっき鋼板の合金化炉の一例を示す側面図
である。
FIG. 1 is a side view showing an example of a hot-dip galvanizing apparatus according to the present invention and an example of a hot-dip galvanized steel sheet alloying furnace of the present invention.

【図2】本発明の溶融亜鉛めっき鋼板の合金化炉の一例
を示す側面図である。
FIG. 2 is a side view showing an example of an alloying furnace for a hot-dip galvanized steel sheet according to the present invention.

【図3】本発明における放射温度計の配設状況の一例を
示す部分斜視図である。
FIG. 3 is a partial perspective view showing an example of an arrangement state of a radiation thermometer according to the present invention.

【図4】本発明に係わる、合金化炉長手方向の位置yと
放射率εとの関係を示すグラフである。
FIG. 4 is a graph showing a relationship between a position y in an alloying furnace longitudinal direction and an emissivity ε according to the present invention.

【図5】合金化炉長手方向の位置yと放射率εとの関係
を示すグラフである。
FIG. 5 is a graph showing the relationship between the position y in the longitudinal direction of the alloying furnace and the emissivity ε.

【符号の説明】[Explanation of symbols]

1 鋼帯 2 溶融亜鉛めっき槽 3 シンクロール 4 溶融亜鉛 5 ガスワイピングノズル 6 デフレクタロール 10 合金化炉 11 合金化炉の加熱帯 12 合金化炉の均熱帯 12W 合金化炉均熱帯の側壁 13 加熱装置 14、30 放射温度計 15 放射温度計移動用のレール 16 放射温度計移動用の車輪 17a 放射温度計移動用の駆動装置および駆動制御装置 17b 放射温度計の位置検出装置 18 放射温度計移動用のワイヤの巻き取り装置 19 放射温度計移動用のワイヤ 20 放射率および放射率変曲点演算装置 21 合金化度制御装置 22 燃料流量制御装置 23 空気流量制御装置 31a 放射温度計回転用の駆動装置および駆動制御装置 31b 放射温度計の鋼板表面の計測箇所を検出するため
の計測箇所検出装置 40 外周壁面に水冷ジャケットを有する筒 41 筒の支持台 42 耐熱伸縮蛇腹 AX 放射温度計の光軸 f1 鋼帯の進行方向 fJF、fJB 筒の移動方向 fR 放射温度計の回転方向 O 放射温度計の回転軸 Y 放射温度計が鋼帯長手方向に沿って移動可能な始点
1 と終点P2 との間の距離 y 始点P1 から終点P2 方向の任意の点P迄の距離 θ 放射温度計の光軸AXと鋼板表面との角度
DESCRIPTION OF SYMBOLS 1 Steel strip 2 Hot-dip galvanizing tank 3 Sink roll 4 Hot-dip zinc 5 Gas wiping nozzle 6 Deflector roll 10 Alloying furnace 11 Heating zone of alloying furnace 12 Uniform tropicalization of alloying furnace 12W Alloying furnace uniform tropical side wall 13 Heating device 14, 30 Radiation thermometer 15 Rail for moving the radiation thermometer 16 Wheel for moving the radiation thermometer 17a Drive and drive control device for moving the radiation thermometer 17b Position detection device for the radiation thermometer 18 For moving the radiation thermometer Wire winding device 19 Wire for moving the radiation thermometer 20 Emissivity and emissivity inflection point computing device 21 Alloying degree control device 22 Fuel flow control device 23 Air flow control device 31a Drive device for rotating the radiation thermometer and Drive controller 31b Measurement point detector for detecting the measurement point on the surface of the steel plate of the radiation thermometer 40 Cylinder with a water-cooled jacket on the outer peripheral wall 41 Support for the cylinder 42 Heat-resistant telescopic bellows AX Radiation thermometer The optical axis of f 1 The traveling direction of the steel strip f JF , the moving direction of the f JB cylinder f R The rotation direction of the radiation thermometer O The rotation axis of the radiation thermometer Y The starting point where the radiation thermometer can move along the steel strip longitudinal direction Distance between P 1 and end point P 2 y Distance from start point P 1 to any point P in the direction of end point P 2 θ Angle between optical axis AX of radiation thermometer and steel plate surface

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 溶融亜鉛めっき鋼板の合金化炉の加熱帯
から均熱帯の領域あるいは均熱帯の領域に、鋼帯長手方
向において連続的に鋼板表面からの放射エネルギーを計
測する機能を有する放射温度計を配設したことを特徴と
する溶融亜鉛めっき鋼板の合金化炉。
1. A radiant temperature having a function of continuously measuring radiant energy from the surface of a steel sheet in a longitudinal direction of a steel strip from a heating zone of an alloying furnace for hot-dip galvanized steel sheet to a zone in a solitary zone or a zone in a solitary zone. A galvanizing furnace for hot dip galvanized steel sheets, characterized by having a gauge installed.
【請求項2】 溶融亜鉛めっき鋼板の合金化炉の加熱帯
(11)から均熱帯(12)の領域あるいは均熱帯(12)の領域に
配設され、鋼帯長手方向において連続的に移動する放射
温度計(14)と、該放射温度計(14)の合金化炉鋼帯長手方
向における位置検出装置(17b) を有することを特徴とす
る溶融亜鉛めっき鋼板の合金化炉。
2. A heating zone of a galvanizing furnace for galvanized steel sheet.
A radiation thermometer (14) that is disposed in the region of (11) to the isotropy (12) or the isotropy (12), and moves continuously in the steel strip longitudinal direction, and the radiation thermometer (14). An alloying furnace for hot-dip galvanized steel sheets, comprising a position detecting device (17b) in the longitudinal direction of the steel strip.
【請求項3】 溶融亜鉛めっき鋼板の合金化炉の加熱帯
(11)から均熱帯(12)の領域あるいは均熱帯(12)の領域に
配設され、鋼帯長手方向において連続的に鋼板表面から
の放射エネルギーを計測するために光軸(AX)と鋼板表面
との角度θを可変とした放射温度計(30)と、該放射温度
計(30)の鋼板表面の計測箇所を検出するための計測箇所
検出装置(31b) を有することを特徴とする溶融亜鉛めっ
き鋼板の合金化炉。
3. A heating zone of a galvanizing furnace for galvanized steel sheet.
The optical axis (AX) and the steel plate are installed in the region from (11) to the isotropy (12) or the isotropy (12) to measure the radiant energy from the steel plate surface continuously in the longitudinal direction of the steel strip. Melting characterized by having a radiation thermometer (30) with a variable angle θ with respect to the surface, and a measurement point detection device (31b) for detecting a measurement point on the steel sheet surface of the radiation thermometer (30). An alloying furnace for galvanized steel sheets.
【請求項4】 前記した請求項1〜3いずれかに記載の
溶融亜鉛めっき鋼板の合金化炉において、前記した放射
温度計を用いて鋼板温度および放射エネルギーを計測
し、得られた計測結果に基づき合金化炉内の鋼板長手方
向における鋼板表面の放射率の変曲点を検出し、該変曲
点に基づき合金化炉の操業条件を制御することを特徴と
する溶融亜鉛めっき鋼板の合金化度の制御方法。
4. The galvanizing furnace for hot-dip galvanized steel sheet according to any one of claims 1 to 3, wherein the temperature of the steel sheet and the radiant energy are measured using the radiation thermometer, and the obtained measurement result is obtained. Detecting the inflection point of the emissivity of the steel sheet surface in the longitudinal direction of the steel sheet in the alloying furnace, and controlling the operating conditions of the alloying furnace based on the inflection point; Degree control method.
【請求項5】 前記した変曲点が所定の位置となるよう
に、前記した合金化炉の操業条件を制御することを特徴
とする請求項4記載の溶融亜鉛めっき鋼板の合金化度の
制御方法。
5. The control of the degree of alloying of a galvanized steel sheet according to claim 4, wherein the operating conditions of the alloying furnace are controlled so that the inflection point is at a predetermined position. Method.
【請求項6】 前記した合金化炉の操業条件が、合金化
炉への燃料供給量であることを特徴とする請求項4また
は5記載の溶融亜鉛めっき鋼板の合金化度の制御方法。
6. The method for controlling the degree of alloying of a hot-dip galvanized steel sheet according to claim 4, wherein the operating condition of the alloying furnace is a fuel supply amount to the alloying furnace.
JP7253698A 1998-03-20 1998-03-20 Alloying furnace for hot-dip galvanized steel sheet and method for controlling degree of alloying of hot-dip galvanized steel sheet Pending JPH11269627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7253698A JPH11269627A (en) 1998-03-20 1998-03-20 Alloying furnace for hot-dip galvanized steel sheet and method for controlling degree of alloying of hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7253698A JPH11269627A (en) 1998-03-20 1998-03-20 Alloying furnace for hot-dip galvanized steel sheet and method for controlling degree of alloying of hot-dip galvanized steel sheet

Publications (1)

Publication Number Publication Date
JPH11269627A true JPH11269627A (en) 1999-10-05

Family

ID=13492184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7253698A Pending JPH11269627A (en) 1998-03-20 1998-03-20 Alloying furnace for hot-dip galvanized steel sheet and method for controlling degree of alloying of hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JPH11269627A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010112744A (en) * 2000-06-15 2001-12-22 권수식 Measuring Technique of Alloy Degree of Galvannealed Coating
JP2012136720A (en) * 2010-12-24 2012-07-19 Nippon Steel Corp Method for controlling alloying, and alloying controller
JP5015356B2 (en) * 2010-08-23 2012-08-29 新日本製鐵株式会社 Hot stamping method for galvanized steel sheet
KR101243022B1 (en) 2010-12-27 2013-03-12 주식회사 포스코 How to optimize your alloying process
US9459220B2 (en) 2011-08-26 2016-10-04 Nippon Steel & Sumitomo Metal Corporation Alloyed position determining method, alloyed position determining apparatus, and recording medium

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010112744A (en) * 2000-06-15 2001-12-22 권수식 Measuring Technique of Alloy Degree of Galvannealed Coating
JP5015356B2 (en) * 2010-08-23 2012-08-29 新日本製鐵株式会社 Hot stamping method for galvanized steel sheet
US8926770B2 (en) 2010-08-23 2015-01-06 Nippon Steel & Sumitomo Metal Corporation Method of hot stamping galvanized steel sheet
JP2012136720A (en) * 2010-12-24 2012-07-19 Nippon Steel Corp Method for controlling alloying, and alloying controller
KR101243022B1 (en) 2010-12-27 2013-03-12 주식회사 포스코 How to optimize your alloying process
US9459220B2 (en) 2011-08-26 2016-10-04 Nippon Steel & Sumitomo Metal Corporation Alloyed position determining method, alloyed position determining apparatus, and recording medium

Similar Documents

Publication Publication Date Title
KR102251157B1 (en) Manufacturing process of hot press formed aluminized steel parts
KR0159783B1 (en) On-line alloying degree measuring system of alloyed zinc plating
EP3287541B1 (en) Production apparatus and production method for molten metal plated steel strip
JPH11269627A (en) Alloying furnace for hot-dip galvanized steel sheet and method for controlling degree of alloying of hot-dip galvanized steel sheet
US4171392A (en) Process of producing one-side alloyed galvanized steel strip
JPH08199323A (en) Apparatus and method for controlling coating amount of hot-dipped steel sheet
JPH0645851B2 (en) Method for producing alloyed hot-dip galvanized steel strip
JP2000064019A (en) Monitoring and regulating quality of coating layer subjected to galvannealing treatment of steel strip and apparatus therefor
JPH02254146A (en) Induction heating device, induction heating alloying furnace, and alloying method
JP5403042B2 (en) Alloying treatment apparatus and alloying control method for hot dip galvanized steel sheet
JP4990448B2 (en) Continuous annealing furnace cooling zone in IF steel combined with continuous annealing and hot dipping.
JPH08260122A (en) Method for controlling coating weight of hot-dipped steel sheet
JP5673586B2 (en) Method for calculating degree of alloying of hot-dip galvanized steel sheet and method for controlling alloying
JP5403041B2 (en) Alloying equipment for hot-dip galvanized steel sheet
JP2807156B2 (en) Method for controlling the degree of alloying of galvanized steel sheet
JP3274351B2 (en) Method and apparatus for controlling the basis weight of hot-dip coated steel sheet in the width direction
JP2981290B2 (en) Manufacturing method of galvannealed steel sheet
JPH0533112A (en) Method and apparatus for manufacturing alloyed molten zinc plated steel sheet
JPH0645852B2 (en) Method for producing alloyed hot-dip galvanized steel strip
WO2013084405A1 (en) Device for alloying molten zinc-plated steel plate, method for controlling alloying, and method for calculating degree of alloying
JPS6048586B2 (en) Double-sided hot dip galvanizing equipment
JPH07150329A (en) Method for controlling alloying of hot-dip galvanized steel sheet
JPH05247616A (en) Method for controlling spangle on hot-dip galvanized steel sheet
JP3475832B2 (en) Manufacturing method and apparatus for hot-dip galvanized steel sheet
JP2024048224A (en) Alloying treatment device and alloying treatment method for hot-dip galvanized steel sheet