[go: up one dir, main page]

JPH11268922A - Forming of glass plate - Google Patents

Forming of glass plate

Info

Publication number
JPH11268922A
JPH11268922A JP7084798A JP7084798A JPH11268922A JP H11268922 A JPH11268922 A JP H11268922A JP 7084798 A JP7084798 A JP 7084798A JP 7084798 A JP7084798 A JP 7084798A JP H11268922 A JPH11268922 A JP H11268922A
Authority
JP
Japan
Prior art keywords
glass
support
forming agent
forming
vapor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7084798A
Other languages
Japanese (ja)
Inventor
Gen Kojima
弦 小島
Osamu Sakamoto
修 酒本
Takashi Mukai
隆司 向井
Tsutomu Koyama
勉 小山
Isamu Kaneko
勇 金子
Toru Shimoyama
徹 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP7084798A priority Critical patent/JPH11268922A/en
Publication of JPH11268922A publication Critical patent/JPH11268922A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/061Forming glass sheets by lateral drawing or extrusion
    • C03B17/062Forming glass sheets by lateral drawing or extrusion combined with flowing onto a solid or gaseous support from which the sheet is drawn
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B13/00Rolling molten glass, i.e. where the molten glass is shaped by rolling
    • C03B13/04Rolling non-patterned sheets continuously
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B13/00Rolling molten glass, i.e. where the molten glass is shaped by rolling
    • C03B13/18Auxiliary means for rolling glass, e.g. sheet supports, gripping devices, hand-ladles, means for moving glass pots
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B35/00Transporting of glass products during their manufacture, e.g. hot glass lenses, prisms
    • C03B35/14Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands
    • C03B35/22Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands on a fluid support bed, e.g. on molten metal
    • C03B35/24Transporting hot glass sheets or ribbons, e.g. by heat-resistant conveyor belts or bands on a fluid support bed, e.g. on molten metal on a gas support bed
    • C03B35/246Transporting continuous glass ribbons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the flatness of a glass plate by relatively sliding a support introducing a specific vapor film-forming agent into a support of a material or structure, capable of containing liquid in the interior and passing liquid and glass through a thin layer of vapor film-forming agent. SOLUTION: Melted glass heated in a glass-melting tank is make to have a viscosity suitable for forming by controlling the temperature and is passed through plural rolls and formed into ribbon-like shape to provide glass plate. The glass is heated to glass transition point or above and then, a support containing 5-300 wt.% vapor film-forming agent which is a liquid at a temp. of 20 deg.C±5 deg.C in a carbon substrate in which maximum diameter of passage capable of containing liquid, through which a liquid can be passed is <=1,000 μm is slid through a thin film of vapor film-forming agent to provide the objective glass plate in which flatness of the surfaces close to each other through the thin film of the vapor film-forming agent which exists as gas to glass is <=1 mm per unit surface area of 10 cm×10 cm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、液体を内部に包含
しうる支持体と、ガラス転移点以上の温度にあるガラス
とを、蒸気膜形成剤が気化して生成した蒸気の薄層を介
して相対的に摺動させる工程を含むガラス板の成形方法
に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method in which a support capable of containing a liquid therein and glass at a temperature equal to or higher than the glass transition point are provided through a thin layer of vapor generated by vaporization of a vapor film forming agent. The present invention relates to a method for forming a glass sheet including a step of relatively sliding the glass sheet.

【0002】[0002]

【従来の技術】現在最も普及しているガラス板の製法
は、所定原料を溶融窯の中で溶解した後に、ガラスの粘
度が約1万ポアズとなる温度で、還元性雰囲気下に溶融
した金属スズ浴上に導入し、機械的な外力を用いて縦横
方向に延展・移動せしめ、ガラス転移点付近まで徐々に
冷却し、平滑な表面を有する平面状のガラスとする、い
わゆるスズ浴フロート法である。この方法はそれまでの
ロールアウト法等に比べ、製品の平滑度が格段に向上す
るため、それまで必須であった磨きの工程を不要にし
た。
2. Description of the Related Art At present, the most widely used method for manufacturing a glass sheet is to melt a predetermined raw material in a melting furnace and then melt the molten metal in a reducing atmosphere at a temperature at which the viscosity of the glass becomes about 10,000 poise. Introduced onto a tin bath, spread and moved in the vertical and horizontal directions using mechanical external force, gradually cooled to near the glass transition point, and made into a flat glass with a smooth surface, the so-called tin bath float method is there. In this method, the smoothness of the product is remarkably improved as compared with the conventional roll-out method or the like.

【0003】しかし、このスズ浴フロート法にも次のよ
うな問題がある。すなわちスズ浴フロート法では大量の
スズを用いるので潤沢とはいえないスズ資源の枯渇が懸
念されること、金属スズを酸化させないために水素ガス
を用いて還元性の雰囲気に保つ必要があり、したがって
使用できる清澄剤が限られ、コストや安全性の面での負
担も増大すること、スズと接触した面から内部にスズが
浸透したりして製品の品質に影響すること、地震等の揺
れに弱く地震後の生産回復に時間がかかること、設備が
大型となり設備投資が甚大になること、ガラスの加熱保
温に大量のエネルギーを費やすこと、等である。
However, the tin bath float method has the following problems. In other words, the tin bath float method uses a large amount of tin, so there is concern about depletion of tin resources, which cannot be said to be abundant, and it is necessary to maintain a reducing atmosphere using hydrogen gas to prevent oxidation of metal tin. The fining agents that can be used are limited, and the burden on costs and safety is increased. Tin penetrates into the interior from the surface that comes in contact with tin, affecting the quality of the product. The reason is that it takes a long time to recover production after an earthquake, the equipment becomes large and the investment becomes huge, and a large amount of energy is used for heating and keeping the glass.

【0004】これに対して、いわゆるフュージョン法等
の製法も提案されているが、製品の表面平滑性、安定し
た生産性・品質、得られる製品の寸法等の点で満足でき
るものではなかった。また、支持体表面の細孔から空気
等の気体を供給し、その上に溶融ガラスを延展してガラ
ス板の成形を行う提案(特公昭50−36445)があ
るが、このように気体を直接連続的に供給するためには
莫大な量の気体を必要とする。また、細孔に通すために
必要な圧力や安定した流量や温度のバランスとコントロ
ールの点で大きな困難である。したがってこの方法は現
実的ではない。
[0004] On the other hand, production methods such as the so-called fusion method have been proposed, but they have not been satisfactory in terms of surface smoothness of products, stable productivity and quality, dimensions of obtained products, and the like. There is also a proposal (Japanese Patent Publication No. 50-36445) in which a gas such as air is supplied from pores on the surface of a support, and molten glass is spread thereon to form a glass plate. An enormous amount of gas is required for continuous supply. In addition, it is very difficult to balance and control the pressure required for passing through the pores, the stable flow rate, and the temperature. Therefore, this method is not practical.

【0005】本発明者らはこれらの課題を解決するため
に、ガラスを板状に連続的に成形する方法であって、液
体を内部に包含しうる、かつ液体が通過しうる材質また
は構造からなる支持体中に、該ガラスのガラス転移点以
上では気体となっている蒸気膜形成剤を導入する工程
と、該支持体とガラス転移点以上の温度にあるガラスと
を、気体となっている蒸気膜形成剤の薄層を介して相対
的に摺動させる工程と、を含むガラス板の成形方法を先
に提案した(特開平9−295819)。
[0005] In order to solve these problems, the present inventors have proposed a method of continuously forming glass into a plate shape. The method uses a material or structure capable of containing a liquid therein and through which the liquid can pass. A step of introducing a vapor film forming agent which is in a gas state at a temperature equal to or higher than the glass transition point of the glass into the support, and converting the support and glass at a temperature equal to or higher than the glass transition point into a gas. A method of forming a glass sheet including a step of relatively sliding through a thin layer of a vapor film forming agent has been previously proposed (JP-A-9-295819).

【0006】ここでいう蒸気膜形成剤は、支持体への供
給などの操作性の点から、融点が40℃以下で、大気圧
下における沸点が50〜500℃であり、200℃以下
においても分解しない安定な不燃性の物質であることが
好ましい、とされる。
The vapor film forming agent mentioned here has a melting point of 40 ° C. or less, a boiling point of 50 to 500 ° C. under atmospheric pressure, and a temperature of 200 ° C. or less from the viewpoint of operability such as supply to a support. It is said that a stable non-combustible substance that does not decompose is preferable.

【0007】[0007]

【発明が解決しようとする課題】しかし、前記特開平9
−295819の成形方法には、ガラス板の平坦性をよ
り優れたものにしなければならない、という課題があっ
た。本発明の目的は、上記の問題を解決しようとするも
のである。
However, the method disclosed in Japanese Patent Application Laid-Open No.
The -295819 molding method had a problem that the flatness of the glass plate had to be improved. An object of the present invention is to solve the above problems.

【0008】[0008]

【課題を解決するための手段】本発明は、ガラスを板状
に連続的に成形する方法であって、液体を内部に包含し
うる、かつ液体が通過しうる材質または構造からなる支
持体中に、該ガラスのガラス転移点以上では気体となっ
ている蒸気膜形成剤を導入する工程と、該支持体とガラ
ス転移点以上の温度にあるガラスとを、気体となってい
る蒸気膜形成剤の薄層を介して相対的に摺動させる工程
と、を含むガラス板の成形方法において、該支持体とし
て、蒸気膜形成剤をカーボン基体に対し5〜300重量
%含有しうるカーボン基体を用いるガラス板の成形方法
を提供する。
SUMMARY OF THE INVENTION The present invention relates to a method for continuously forming glass into a plate-like shape, comprising a support made of a material or a structure capable of containing a liquid therein and allowing the liquid to pass therethrough. Introducing a vapor film forming agent which is gaseous at or above the glass transition point of the glass; and And a step of relatively sliding through a thin layer of a glass substrate, wherein a carbon substrate capable of containing a vapor film forming agent in an amount of 5 to 300% by weight based on the carbon substrate is used as the support. Provided is a method for forming a glass plate.

【0009】[0009]

【発明の実施の形態】発明の実施の形態としては、前記
特開平9−295819に記載の実施形態に対応して種
々のものが存在する。ここではその1つについて述べる
が、本発明はこれに限定されない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS There are various embodiments of the invention corresponding to the embodiments described in the above-mentioned Japanese Patent Application Laid-Open No. 9-295819. Here, one of them will be described, but the present invention is not limited to this.

【0010】支持体内部に包含する液体としては、液体
状態の蒸気膜形成剤が好ましく用いられる。蒸気膜形成
剤は常温付近で液体であるものが好ましく、例えば20
℃±5℃では液体であるものが好ましい。また、蒸気膜
形成剤はその凝固点が10℃以下であるものが好まし
い。蒸気膜形成剤が気化した蒸気としては、ガラスの品
質を損なうほどにはガラスと化学的に反応せず、また毒
性が低く、使用される雰囲気の温度で安定な不燃性のも
のが好ましい。こうした要求を満たす蒸気膜形成剤とし
ては、水を主成分とする液体が好ましい。以下では、蒸
気膜形成剤として水を用い、蒸気が水蒸気である場合に
ついて述べる。
As the liquid contained in the support, a vapor film forming agent in a liquid state is preferably used. The vapor film forming agent is preferably a liquid at around normal temperature.
At a temperature of 5 ° C. ± 5 ° C., a liquid is preferable. The vapor film forming agent preferably has a freezing point of 10 ° C. or less. The vaporized vapor of the vapor film forming agent is preferably a non-flammable vapor which does not chemically react with glass to the extent that glass quality is impaired, has low toxicity, and is stable at the temperature of the atmosphere in which it is used. As a vapor film forming agent satisfying such requirements, a liquid containing water as a main component is preferable. Hereinafter, a case will be described in which water is used as the vapor film forming agent and the vapor is steam.

【0011】ガラス溶解炉内で加熱された溶融ガラス
を、温度を調節して成形に適した粘度にした後、複数の
ロールを通過させてリボン状に成形する。次に、リボン
状に成形されたガラス(以下、ガラスリボンという)
を、5〜300重量%の範囲で水を含有でき、水または
水蒸気またはそれらの混合物が通過しうる板状のカーボ
ン基体を一定の間隔で配置し概ね水平状態に設置したベ
ルトコンベア上に流下させる。ベルトコンベア上に流下
したガラスリボンにはベルトの進行方向と同じ方向に引
張り力を加え、冷却工程である徐冷ゾーンにガラスリボ
ンを移動させる。前記引張り力に加え、ベルトの進行方
向と垂直な、ガラスリボンの幅方向に機械的な外力を加
え、ガラスリボンを延展してもよい。
After the molten glass heated in the glass melting furnace is adjusted to a temperature suitable for forming by adjusting the temperature, the molten glass is passed through a plurality of rolls and formed into a ribbon shape. Next, glass shaped into a ribbon (hereinafter referred to as a glass ribbon)
Is made to flow down onto a belt conveyor which is arranged at regular intervals and has a plate-like carbon substrate which can contain water in the range of 5 to 300% by weight and through which water or steam or a mixture thereof can be passed, and which is placed in a substantially horizontal state. . A tensile force is applied to the glass ribbon flowing down on the belt conveyor in the same direction as the traveling direction of the belt, and the glass ribbon is moved to a slow cooling zone which is a cooling step. In addition to the tensile force, a mechanical external force may be applied in the width direction of the glass ribbon perpendicular to the traveling direction of the belt to extend the glass ribbon.

【0012】ベルトコンベアのベルトの進行速度は、ベ
ルトコンベア上に流下したガラスリボンの移動速度とは
異なるように設定し、ベルトとガラスリボンとが相対的
に運動(摺動)するようにする。支持体への水の供給
は、水蒸気の薄層を介してガラスと近接している支持体
の面を除けば、支持体のいずれの部分でも可能である。
例えば、ガラスと摺動していない、ベルトコンベアの裏
側(ベルトの戻り部)において鉛直下方に向いたベルト
面(カーボン板面)に水を含有する湿潤ロールを接触さ
せることによって行う。
The traveling speed of the belt on the belt conveyor is set to be different from the moving speed of the glass ribbon flowing down on the belt conveyor, so that the belt and the glass ribbon relatively move (slide). The supply of water to the support is possible at any part of the support except for the surface of the support which is in close proximity to the glass via a thin layer of water vapor.
For example, it is carried out by bringing a wet roll containing water into contact with a belt surface (carbon plate surface) facing vertically downward on the back side (return portion of the belt) of the belt conveyor that does not slide with the glass.

【0013】支持体として使用するカーボン基体は水を
5〜300重量%の範囲で水を含有可能でなければなら
ない。水の含有可能量が5%より少ないと、水蒸気発生
に伴う支持体からの水の逸出量が、支持体への水の供給
量を上回り、水蒸気薄層の定常的な形成が困難となる。
300%より多いと、水の突沸が起こってガラスが不要
な変形を受け、ガラス板の平坦性が悪化するおそれがあ
る。カーボン基体が含有しうる水の量は、カーボン基体
に水を含浸させて含浸前後のカーボン基体重量の差を求
め、これと含浸前のカーボン基体重量の比を算出し、そ
の結果を%表示で表したものである。
The carbon substrate used as the support must be able to contain water in the range of 5 to 300% by weight of water. If the water content is less than 5%, the amount of water that escapes from the support due to the generation of water vapor exceeds the amount of water supplied to the support, making it difficult to form a thin water vapor layer constantly. .
If it is more than 300%, bumping of water occurs, and the glass undergoes unnecessary deformation, and the flatness of the glass plate may be deteriorated. The amount of water that can be contained in the carbon substrate is determined by calculating the difference between the weight of the carbon substrate before and after impregnation by impregnating the carbon substrate with water, and calculating the ratio of the difference between the weight of the carbon substrate and the weight before impregnation. It is a representation.

【0014】支持体として使用するカーボン基体には、
水が通る通路、または水が蒸発して発生した水蒸気が通
る通路、または水と水蒸気の混合物が通る通路が存在す
るが、この通路の最大径は1000μm以下であること
が好ましい。1000μmより大きいと、水の突沸が起
こってガラスが不要な変形を受け、成形されたガラス板
の平坦性が悪化する。前記通路の最大径は光学顕微鏡等
によって測定する。
The carbon substrate used as a support includes
There is a passage through which water passes, a passage through which water vapor generated by evaporation of water, or a passage through which a mixture of water and water vapor passes. The maximum diameter of this passage is preferably 1000 μm or less. If it is larger than 1000 μm, bumping of water occurs and the glass undergoes unnecessary deformation, and the flatness of the formed glass plate deteriorates. The maximum diameter of the passage is measured by an optical microscope or the like.

【0015】支持体として使用するカーボン基体中の前
記通路が占める体積は、カーボン基体の体積の5%以上
であることが好ましい。5%より小さいと、水蒸気発生
にともなうカーボン基体からの水の逸出量が、カーボン
基体への水の供給量を上回り、水蒸気薄層の定常的な形
成が困難となる。カーボン基体中の通路が占める体積
は、カーボン基体の見かけ比重と真比重の差を求め、こ
れと見かけ比重の比を算出し、その結果を%表示で表し
たものである。
The volume occupied by the passages in the carbon substrate used as the support is preferably at least 5% of the volume of the carbon substrate. If it is less than 5%, the amount of water that escapes from the carbon substrate due to the generation of water vapor exceeds the amount of water supplied to the carbon substrate, making it difficult to form a water vapor thin layer constantly. The volume occupied by the passage in the carbon substrate is obtained by calculating the difference between the apparent specific gravity and the true specific gravity of the carbon substrate, calculating the ratio of this to the apparent specific gravity, and expressing the result in%.

【0016】水蒸気薄層を介してガラスリボンと近接す
るカーボン基体の面の凹凸は、10cm×10cmの範
囲において1mm以下であることが好ましい。1mmよ
り大きいと、凸部においてガラスリボンに傷がつく、ガ
ラスリボンが不要な変形を受けてガラス板の平坦性が悪
化する、等の問題が生じる。なだらかな凹部よりも急峻
な凸部の方がガラス板の平坦性をより悪化させるので、
急峻な凸部がないことがより好ましい。表面凹凸は触針
法により測定する。ここでいうカーボン基体表面の凹凸
には種々のものがあるが、段差、くぼみ、等を含むあら
ゆる形状の凹凸である。
The unevenness of the surface of the carbon substrate adjacent to the glass ribbon via the thin water vapor layer is preferably 1 mm or less in a range of 10 cm × 10 cm. If it is larger than 1 mm, problems such as damage to the glass ribbon at the convex portion, deterioration of the flatness of the glass plate due to unnecessary deformation of the glass ribbon, and the like occur. Since a steep convex part deteriorates the flatness of a glass plate more than a gentle concave part,
More preferably, there is no sharp projection. The surface irregularities are measured by a stylus method. There are various types of irregularities on the surface of the carbon substrate referred to here, but irregularities of any shape including steps, dents, and the like.

【0017】さらに、カーボン基体には、水蒸気薄層を
介してガラスリボンと近接する面の1000cm2 当り
1cm2 以上の蒸気排出部を設けることが好ましい。こ
のような蒸気排出部を設けないと、カーボン基体中で、
またはガラスリボンとカーボン基体との間で発生した水
蒸気を円滑に排出できない。その結果、水蒸気薄層内に
圧力が高い部分が局所的に発生し、ガラスリボンが不要
な変形を受けてガラス板の平坦性が悪化する。
Further, it is preferable that the carbon substrate is provided with a steam discharge portion of 1 cm 2 or more per 1000 cm 2 of the surface adjacent to the glass ribbon via the thin steam layer. Without such a steam discharge part, in the carbon substrate,
Alternatively, water vapor generated between the glass ribbon and the carbon substrate cannot be discharged smoothly. As a result, a high pressure portion is locally generated in the thin steam layer, and the glass ribbon is subjected to unnecessary deformation, thereby deteriorating the flatness of the glass plate.

【0018】蒸気排出部としては、例えば1個以上の溝
(以下、蒸気排出溝という。)、1個以上の孔(以下、
蒸気排出孔という。)、またはそれらの組合せ、が用い
られる。
As the steam discharging portion, for example, one or more grooves (hereinafter, referred to as steam discharging grooves), one or more holes (hereinafter, referred to as steam discharging grooves).
It is called a steam exhaust hole. ) Or combinations thereof.

【0019】蒸気排出溝としては、支持体として並べら
れた、カーボン基体とカーボン基体の隙間を使用でき
る。この場合、ガラスリボンとカーボン基体との間で発
生した水蒸気は前記溝がガラスリボン等によって覆われ
ていない部分から排出される。また、蒸気排出溝として
カーボン基体表面に溝を設けてもよい。
As the vapor discharge groove, a gap between carbon substrates arranged as a support can be used. In this case, the water vapor generated between the glass ribbon and the carbon substrate is discharged from a portion where the groove is not covered by the glass ribbon or the like. Further, a groove may be provided on the surface of the carbon substrate as a vapor discharge groove.

【0020】蒸気排出孔としては、カーボン基体に貫通
させた孔を使用できる。この場合、ガラスリボンとカー
ボン基体との間で発生した水蒸気は、前記孔がガラスリ
ボン等によって覆われていない側から排出される。
As the vapor discharge hole, a hole penetrating a carbon substrate can be used. In this case, the water vapor generated between the glass ribbon and the carbon substrate is discharged from the side where the holes are not covered by the glass ribbon or the like.

【0021】[0021]

【実施例】ソーダライムシリカガラス(SiO2 :70
重量%、Al23 :1.8重量%、CaO:9.8重
量%、MgO:4.2重量%、Na2 O:13.0重量
%、K2 O:0.7重量%)のカレット300gを白金
るつぼで1500℃にて30分溶融後、カーボン板で敷
きつめられ毎秒5cmで水平に移動する移動床の上に設
置した10cm角の鉄枠内に流下させる。前記カーボン
板は1枚の寸法が20cm×5cm×厚み5mmであ
り、重量%表示で水を18%含有する。
EXAMPLE Soda lime silica glass (SiO 2 : 70)
Wt%, Al 2 O 3: 1.8 wt%, CaO: 9.8 wt%, MgO: 4.2 wt%, Na 2 O: 13.0 wt%, K 2 O: 0.7 wt%) Is melted in a platinum crucible at 1500 ° C. for 30 minutes, and then poured down into a 10 cm square iron frame laid on a carbon plate and placed horizontally on a moving floor at 5 cm per second. The carbon plate has a size of 20 cm × 5 cm × 5 mm in thickness, and contains 18% of water in terms of% by weight.

【0022】前記カーボン板への水の供給は、カーボン
板と接触する親水性不織布(幅20cm)に水を供給す
ることにより行う。前記カーボン板中を水または水蒸気
が通過する通路の平均径は20μm、最大径は100μ
mであり、該通路の体積はカーボン板の体積の30%で
ある。前記カーボン板の10cm×10cmの範囲にお
ける表面の凹凸は50μm以下である。
The supply of water to the carbon plate is performed by supplying water to a hydrophilic nonwoven fabric (20 cm in width) that comes into contact with the carbon plate. The average diameter of the passage through which water or steam passes through the carbon plate is 20 μm, and the maximum diameter is 100 μm.
m, and the volume of the passage is 30% of the volume of the carbon plate. The unevenness of the surface of the carbon plate in a range of 10 cm × 10 cm is 50 μm or less.

【0023】移動床のそれぞれのカーボン板の間には、
蒸気排出部として2mmの開放溝(蒸気排出溝)が設け
られている。これはカーボン板1000cm2 当り40
cm2 の蒸気排出部に相当する。また移動床の水平方向
の平坦度は、それぞれのカーボン板の表面間のレベル差
が±40μm以下であるように設定されている。
[0023] Between each carbon plate of the moving bed,
An open groove (steam discharge groove) of 2 mm is provided as a steam discharge part. This is 40 per 1000 cm 2 of carbon plate
Corresponds to a cm 2 vapor outlet. The horizontal flatness of the moving bed is set so that the level difference between the surfaces of the respective carbon plates is ± 40 μm or less.

【0024】流下時のガラスの温度は約1200℃であ
る。ガラスの温度はカーボン板上に流下後50秒で約7
00℃まで低下し、その時点でガラス板を移動床から取
り上げ、500℃に設定した徐冷炉に入れ、24時間か
けて常温まで冷却する。得られた10cm角のガラス板
のカーボン板に近接した表面は、中央部分の8cm角内
の平坦度が±50μmであり、火炙り面と同等の平坦性
を有するガラス板が得られた。
The temperature of the glass when flowing is about 1200 ° C. The temperature of the glass is about 7 in 50 seconds after flowing down on the carbon plate.
The temperature is lowered to 00 ° C., at which point the glass plate is taken out of the moving bed, placed in a lehr set at 500 ° C., and cooled to room temperature over 24 hours. The surface of the obtained 10 cm square glass plate close to the carbon plate had a flatness of ± 50 μm within the 8 cm square of the central portion, and a glass plate having the same flatness as the fired surface was obtained.

【0025】[0025]

【発明の効果】本発明によれば、平坦性が良好なガラス
板の成形方法を提供できる。
According to the present invention, it is possible to provide a method for forming a glass plate having good flatness.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小山 勉 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内 (72)発明者 金子 勇 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内 (72)発明者 下山 徹 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tsutomu Koyama 1150 Hazawa-machi, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture Inside Asahi Glass Co., Ltd. 72) Inventor Toru Shimoyama 1150 Hazawa-cho, Kanagawa-ku, Yokohama-shi, Kanagawa

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ガラスを板状に連続的に成形する方法であ
って、 液体を内部に包含しうる、かつ液体が通過しうる材質ま
たは構造からなる支持体中に、該ガラスのガラス転移点
以上では気体となっている蒸気膜形成剤を導入する工程
と、 該支持体とガラス転移点以上の温度にあるガラスとを、
気体となっている蒸気膜形成剤の薄層を介して相対的に
摺動させる工程と、を含むガラス板の成形方法におい
て、 該支持体として、蒸気膜形成剤をカーボン基体に対し5
〜300重量%含有しうるカーボン基体を用いるガラス
板の成形方法。
1. A method for continuously forming glass into a plate-like shape, wherein a glass transition point of the glass is provided in a support made of a material or structure capable of containing a liquid therein and through which the liquid can pass. In the above, a step of introducing a vapor film forming agent which is gaseous, and the support and glass at a temperature equal to or higher than the glass transition point,
A step of relatively sliding through a thin layer of a gaseous film-forming agent in the form of a gas, comprising the steps of:
A method for forming a glass sheet using a carbon substrate which may contain from 300 to 300% by weight.
【請求項2】前記支持体として、蒸気膜形成剤が該支持
体中を通過する通路の最大径が1000μm以下であ
り、該支持体中の該通路の体積が該支持体の体積の5%
以上であるカーボン基体を用いる請求項1記載のガラス
板の成形方法。
2. The support, wherein the maximum diameter of a passage through which the vapor film forming agent passes through the support is 1000 μm or less, and the volume of the passage in the support is 5% of the volume of the support.
The method for forming a glass sheet according to claim 1, wherein the above-mentioned carbon substrate is used.
【請求項3】前記支持体として、気体となっている蒸気
膜形成剤の薄層を介してガラスと近接する面の、10c
m×10cmの単位表面積当り、この表面の凹凸が1m
m以下であるカーボン基体を用いる請求項1または2記
載のガラス板の成形方法。
3. The support according to claim 1, wherein said support has a thin film of a vapor film forming agent, and a surface of 10c which is close to glass.
1 m per unit surface area of mx 10 cm
3. The method for forming a glass sheet according to claim 1, wherein a carbon substrate having a diameter of not more than m is used.
【請求項4】前記支持体として、気体となっている蒸気
膜形成剤の薄層を介してガラスと近接する面の1000
cm2 当り1cm2 以上の蒸気排出部を有するカーボン
基体を用いる請求項1、2または3記載のガラス板の成
形方法。
4. The support according to claim 1, wherein said support has a thin film of a vapor film-forming agent, and has a surface close to said glass.
claim 1, 2 or 3 forming method for a glass plate according using carbon substrate having a cm 2 per 1 cm 2 or more steam discharge portion.
【請求項5】蒸気膜形成剤が水を主成分とする液体から
なる請求項1、2、3または4記載のガラス板の成形方
法。
5. The method for forming a glass sheet according to claim 1, wherein the vapor film forming agent comprises a liquid containing water as a main component.
JP7084798A 1998-03-19 1998-03-19 Forming of glass plate Withdrawn JPH11268922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7084798A JPH11268922A (en) 1998-03-19 1998-03-19 Forming of glass plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7084798A JPH11268922A (en) 1998-03-19 1998-03-19 Forming of glass plate

Publications (1)

Publication Number Publication Date
JPH11268922A true JPH11268922A (en) 1999-10-05

Family

ID=13443379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7084798A Withdrawn JPH11268922A (en) 1998-03-19 1998-03-19 Forming of glass plate

Country Status (1)

Country Link
JP (1) JPH11268922A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047020A (en) * 2000-07-28 2002-02-12 Asahi Glass Co Ltd Method of continuously manufacturing wide plate glass
JP2002047017A (en) * 2000-07-28 2002-02-12 Asahi Glass Co Ltd Improvement of method of manufacturing wide glass plate
JP2002249329A (en) * 2001-02-22 2002-09-06 Asahi Glass Co Ltd Method for producing patterned plate glass

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047020A (en) * 2000-07-28 2002-02-12 Asahi Glass Co Ltd Method of continuously manufacturing wide plate glass
JP2002047017A (en) * 2000-07-28 2002-02-12 Asahi Glass Co Ltd Improvement of method of manufacturing wide glass plate
JP4506919B2 (en) * 2000-07-28 2010-07-21 旭硝子株式会社 Wide plate glass manufacturing method
JP2002249329A (en) * 2001-02-22 2002-09-06 Asahi Glass Co Ltd Method for producing patterned plate glass

Similar Documents

Publication Publication Date Title
US3637361A (en) Process for the manufacture and sizing of float glass
JP3335291B2 (en) Method and apparatus for manufacturing glass plate
JP4306877B2 (en) Manufacturing method of glass plate having irregularities on surface
US6101845A (en) Process for forming a glass sheet
JP3217176B2 (en) Method and apparatus for manufacturing float glass
CN104671643B (en) Float glass manufacturing device and float glass making process
US11964895B2 (en) Apparatus for, and method of, roll forming sheets of high refractive index glass
JP2001180949A (en) Roll-molding method for sheet glass product
US20240368017A1 (en) Method of treating a glass ribbon and apparatus therefor
JPH11268922A (en) Forming of glass plate
JP2006096658A (en) Method for reinforcing flat sheet glass for display
JPH09295819A (en) Forming of flat glass
JP6115466B2 (en) Method for producing float glass sheet
JP3385539B2 (en) Apparatus and method for manufacturing float glass sheet
JP4560909B2 (en) Continuous production of wide sheet glass
JP4506919B2 (en) Wide plate glass manufacturing method
JP2010235357A (en) Method for molding sheet glass
JP2001180950A (en) Improved manufacturing method for continuous thin sheet glass
JP2001180951A (en) Continuous manufacturing method improved in support moving method for sheet glass
JP2001192217A (en) Method for rapid and continuous manufacture of sheet glass
JP2010235354A (en) Sheet glass forming method
US20090235693A1 (en) Manufacturing Method of Plate Glass
JPS5920607B2 (en) Method of manufacturing plate glass
JP2001192219A (en) Method for continuous manufacture of thin sheet glass
JP2003146675A (en) Apparatus for manufacturing float glass and method of manufacturing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071024

A131 Notification of reasons for refusal

Effective date: 20071113

Free format text: JAPANESE INTERMEDIATE CODE: A131

A761 Written withdrawal of application

Effective date: 20071204

Free format text: JAPANESE INTERMEDIATE CODE: A761