JPH1126872A - Manufacture of semiconductor laser element - Google Patents
Manufacture of semiconductor laser elementInfo
- Publication number
- JPH1126872A JPH1126872A JP16666898A JP16666898A JPH1126872A JP H1126872 A JPH1126872 A JP H1126872A JP 16666898 A JP16666898 A JP 16666898A JP 16666898 A JP16666898 A JP 16666898A JP H1126872 A JPH1126872 A JP H1126872A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- gaas
- grown
- semiconductor laser
- face
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光通信、光ディス
クなどの情報映像分野における光源等として利用される
もので、高出力で安定な半導体レーザ素子の製造方法に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a high-output and stable semiconductor laser device, which is used as a light source in the field of information video such as optical communication and optical disks.
【0002】[0002]
【従来の技術】光ディスク装置等の光源として半導体レ
ーザは幅広く使用されてきているが、書き込みの可能な
追記型ディスクや消去も可能な書き換え可能型光ディス
クの光源として用いるためには20〜40mWという高
い光出力が必要とされる。現在比較的高出力の半導体レ
ーザが実用化されているが半導体レーザの信頼性を同一
構造の素子で比較した場合光出力の4乗に反比例するこ
とが報告されており、高出力化は極めて難しいと考えら
れる。2. Description of the Related Art Semiconductor lasers have been widely used as light sources for optical disk devices and the like. However, in order to use them as light sources for writable write-once disks and erasable rewritable optical disks, a high power of 20 to 40 mW is required. Light output is required. Currently, semiconductor lasers having relatively high output are put to practical use, but it has been reported that the reliability of semiconductor lasers is inversely proportional to the fourth power of optical output when compared with devices having the same structure. it is conceivable that.
【0003】高出力半導体レーザの劣化の要因の1つに
光出射端面の劣化があることはよく知られている。図9
に従来の半導体レーザの構造図の一例を示す。It is well known that one of the causes of deterioration of a high power semiconductor laser is deterioration of a light emitting end face. FIG.
FIG. 1 shows an example of a structure diagram of a conventional semiconductor laser.
【0004】この構造はVSIS(V-channeled Substr
ate Inner Stripe)レーザと呼ばれるものである。This structure is called VSIS (V-channeled Substr
ate Inner Stripe) This is called a laser.
【0005】この従来の構造では、p−GaAs基板1
1上に電流を遮断するためのn−GaAs電流ブロッキ
ング層12が堆積された後、GaAs基板に到達するV
型溝が形成される。その上にp−GaAlAsクラッド
層13、GaAs又はGaAlAs活性層14、n−G
aAlAsクラッド層15、n−GaAsキャップ層1
6が順次堆積されている。この場合レーザ発振のための
電流はn−GaAs層12によって閉じ込められ幅W1
のチャネル部のみに流れる。活性層14は平坦に形成さ
れているが、チャネル両側でのn−GaAs層12への
光吸収により実効屈折率が下がるため光導波路が形成さ
れ、基本横モード発振が安定して得られている。即ち、
損失導波機構の要素を有している。In this conventional structure, the p-GaAs substrate 1
After an n-GaAs current blocking layer 12 for interrupting current is deposited on the
A mold groove is formed. A p-GaAlAs cladding layer 13, a GaAs or GaAlAs active layer 14, an n-G
aAlAs cladding layer 15, n-GaAs cap layer 1
6 are sequentially deposited. In this case, the current for laser oscillation is confined by the n-GaAs layer 12 and has a width W 1.
Flows only in the channel section of Although the active layer 14 is formed flat, the effective refractive index is lowered by light absorption into the n-GaAs layer 12 on both sides of the channel, so that an optical waveguide is formed, and stable fundamental transverse mode oscillation is obtained. . That is,
It has an element of a loss guiding mechanism.
【0006】上記VSISレーザは、安定した基本横モ
ード発振が得られ低光出力レベルでは高い信頼性を有す
るが高出力レベルになると信頼性は大きく低下し長時間
の使用に耐えないという欠点があった。The above-mentioned VSIS laser has a drawback that stable fundamental transverse mode oscillation is obtained and the reliability is high at a low optical output level, but the reliability is greatly reduced at a high output level, and the laser cannot be used for a long time. Was.
【0007】[0007]
【発明が解決しようとする課題】上述の劣化原因を詳し
く調べてみると、素子の劣化は端面V溝肩部の劣化に起
因しており、V溝肩部のn−GaAs層12の光吸収に
よる発熱が大きな原因であることが明らかになった。When the cause of the above-mentioned deterioration is examined in detail, the deterioration of the device is caused by the deterioration of the shoulder of the V-groove at the end face, and the light absorption of the n-GaAs layer 12 at the shoulder of the V-groove. It became clear that heat generation was a major cause.
【0008】即ち、従来の損失導波機構の要素を有する
半導体レーザ素子においては、特に共振器端面部近傍の
チャネル両側での光吸収によりレーザ端面部の温度が上
昇し高出力状態では、この温度上昇が端面劣化を引き起
こすことになり、高出力状態での信頼性を低下させてい
た。That is, in a conventional semiconductor laser device having an element of the loss guiding mechanism, the temperature of the laser end face rises due to light absorption on both sides of the channel near the end face of the resonator. The rise causes deterioration of the end face, and reduces reliability in a high output state.
【0009】[0009]
【課題を解決するための手段】請求項1に記載の発明
は、基板上方に積層された光吸収層に共振器端面部近傍
で幅が拡大されたストライプ状の貫通溝を形成する工程
と、前記貫通溝を埋め込むように液相成長させてクラッ
ド層を形成する工程と、前記クラッド層上に均一な厚さ
を有する平板状の活性層を積層する工程と、を含むこと
を特徴とするものである。According to a first aspect of the present invention, there is provided a light absorbing layer laminated above a substrate, wherein a stripe-shaped through groove having a width increased near a resonator end face is formed; A step of forming a clad layer by liquid phase growth so as to fill the through-groove, and a step of laminating a plate-shaped active layer having a uniform thickness on the clad layer. It is.
【0010】以上の本発明の製造方法で作製された半導
体素子は、少なくとも一方のレーザ共振器端面部近傍に
おいて、チャネル幅を中央に比べて広く形成することに
より、端面での光の吸収を抑え、発熱を可及的に抑制さ
せるように構成されている。それゆえに、本発明の主た
る目的は半導体レーザ端面での劣化を抑え、高出力状態
でも安定に動作する半導体レーザ素子を提供することに
ある。In the semiconductor device manufactured by the manufacturing method of the present invention described above, the absorption of light at the end face is suppressed by forming a channel width wider than at the center near at least one laser resonator end face. , Is configured to suppress heat generation as much as possible. Therefore, a main object of the present invention is to provide a semiconductor laser device that suppresses deterioration at the semiconductor laser end face and operates stably even in a high output state.
【0011】本発明に係る製造方法で作製した半導体レ
ーザ素子はレーザの共振器端面部の構造を従来のものと
変えることによって端面部の温度上昇が小さくなり、そ
のため劣化が抑制され、高出力状態でも高い信頼性を有
し、かつ安定な基本横モード発振が得られる。In the semiconductor laser device manufactured by the manufacturing method according to the present invention, the temperature rise at the end face portion is reduced by changing the structure of the end face portion of the laser from that of the conventional one, so that the deterioration is suppressed and the high output state is suppressed. However, stable and stable fundamental transverse mode oscillation can be obtained with high reliability.
【0012】[0012]
【発明の実施の形態】図1は本発明の1実施例を示す半
導体レーザ素子を模式的に分解して示す斜視図であり、
共振方向に沿って配置される端面部A,Cと中央部Bか
ら構成されている。FIG. 1 is a perspective view schematically showing a semiconductor laser device according to an embodiment of the present invention in an exploded manner.
It is composed of end portions A and C and a center portion B arranged along the resonance direction.
【0013】図2は本実施例のチャネル形成状態を模式
的に示したものである。以下、本実施例の作製手順につ
いて詳細に延べる。まず、p−GaAs基板11上に液
相エピタキシャル成長法によりn−GaAs電流ブロッ
キング層12を約0.7μm厚に堆積させた後、通常の
ホトリソグラフィー技術とエッチング技術により図1に
示すような端面近傍で幅W2=10μm共振器中央部で
幅W1=4μm、深さ1μmの溝を形成する。n−Ga
As電流ブロッキング層12の成長方法としては他に気
相成長法等を用いてもよい。FIG. 2 schematically shows a channel forming state of the present embodiment. Hereinafter, the manufacturing procedure of this example will be described in detail. First, an n-GaAs current blocking layer 12 is deposited to a thickness of about 0.7 μm on a p-GaAs substrate 11 by a liquid phase epitaxial growth method, and then the vicinity of an end face as shown in FIG. To form a groove having a width W 2 = 10 μm and a width W 1 = 4 μm and a depth 1 μm at the center of the resonator. n-Ga
As a growth method of the As current blocking layer 12, a vapor phase growth method or the like may be used.
【0014】その後、液相エピタキシャル成長法を用い
て、図1に示すようなp−Al0.42Ga0.58Asクラッ
ド層13を溝外側部で0.15μm厚にpまたはn−A
l0. 14Ga0.86As活性層14を0.08μm厚に、さ
らにn−Al0.42Ga0.58Asクラッド層15を0.8
μm厚にn−GaAs−コンタクト層16を1.5μm
厚にそれぞれ成長させる。液相エピタキシャル成長法に
おいては陥没部を平坦化するように成長が行われるため
p−Al0.42Ga0.58Asクラッド層13の成長後は成
長表面は平坦であり続いて成長されるAl0.14Ga0.86
As活性層14も全面で平坦かつ均一な厚さに成長させ
ることができる。Thereafter, a p-Al 0.42 Ga 0.58 As clad layer 13 as shown in FIG. 1 is formed to a thickness of 0.15 μm on the outer side of the groove by a liquid phase epitaxial growth method.
The l 0. 14 Ga 0.86 As active layer 14 to 0.08μm thickness, further n-Al 0.42 Ga 0.58 As clad layer 15 0.8
The thickness of the n-GaAs-contact layer 16 is 1.5 μm
Each is grown thick. In the liquid phase epitaxial growth method, the growth is performed so as to flatten the depressed portion. Therefore, after the p-Al 0.42 Ga 0.58 As clad layer 13 is grown, the growth surface is flat and Al 0.14 Ga 0.86 to be subsequently grown.
The As active layer 14 can also be grown to a flat and uniform thickness over the entire surface.
【0015】その後、ウェハの両面に抵抗性全面電極を
つけ、合金化処理を行った後、ストライプ幅が広い領域
で劈開を行い共振器を形成する。本実施例においてはレ
ーザ共振器長は250μm、ストライプ幅が広い領域は
両端面に各々10μmとしている。After that, a resistive full surface electrode is provided on both surfaces of the wafer, an alloying process is performed, and cleavage is performed in a region having a wide stripe width to form a resonator. In this embodiment, the length of the laser resonator is 250 μm, and the region where the stripe width is wide is 10 μm on each end face.
【0016】従って、半導体レーザの両端面のn−Ga
As電流ブロッキング層12による光吸収がなく、端面
の温度上昇が抑えられ、高い信頼性を示し、出射側端面
4%裏面側97%の反射率のコーティングを施したとこ
ろ80mWの高光出力状態でも殆ど無劣化の特性を示し
た。Therefore, n-Ga on both end surfaces of the semiconductor laser is
There is no light absorption by the As current blocking layer 12, the temperature rise of the end face is suppressed, high reliability is exhibited, and the coating on the output side end face 4% and the reflectivity on the back side 97% is applied. It showed no deterioration characteristics.
【0017】本実施例においては幅広チャネル部の長さ
を両端に10μmとしたが、この長さが30μm以内で
あると、共振器中央部で導波されてきた光は幅広チャネ
ル部で完全にはモード変形されず、安定な横モード特性
を示す。また幅広チャネル部を出射側端面部のみに形成
した場合でも効果は発揮される。In this embodiment, the length of the wide channel portion is set to 10 μm at both ends. If the length is within 30 μm, light guided at the central portion of the resonator is completely removed by the wide channel portion. Does not undergo mode deformation and exhibits stable transverse mode characteristics. In addition, the effect is exhibited even when the wide channel portion is formed only on the emission side end face portion.
【0018】図3は、本発明の他の実施例を示す半導体
レーザ素子を模式的に分解した斜視図である。本実施例
共振器端面近傍のチャネル幅が基板の側壁面まで広げた
1実施例である。FIG. 3 is an exploded perspective view schematically showing a semiconductor laser device according to another embodiment of the present invention. This embodiment is an embodiment in which the channel width near the end face of the resonator is extended to the side wall surface of the substrate.
【0019】以下にこの実施例の作製手順について図4
に沿って説明する。まず、p−GaAs基板11上にn
−GaAs電流ブロッキング層12を図4(a)のよう
に約0.7μm厚に堆積させる。その後、スパッタ法に
より0.3μm厚のSiO2膜31を形成し、それをマ
スクとしてレーザ共振器の両端面となる部分の長さを1
0μmにわたり0.8μmの深さの溝を形成する。これ
が図4(b)の状態である。その後、前記SiO2膜を
そのままマスクとして用いて有機金属熱分解法(MOC
VD法)を用いてp−Al0.42Ga0.58As層32を
0.8μm厚に、さらに後の成長を円滑にするためのア
ンドープGaAsエッチバック層33を0.05μm厚
に堆積させる(図4(c))。この状態でn−GaAs
電流ブロッキング層12とp−Al0.42Ga0.58As層
32の表面の高さは整って一致している。次にSiO2
膜31をエッチングにより除去した後、図4(e)に示
すようなp−GaAs基板11に達するV型溝を幅W1
=4μm、深さ1μmに形成する。その後、従来のVS
ISレーザの成長方法と同じように液相成長を用いてp
−Al0.42Ga0.58Asクラッド層13を溝外側部で
0.15μm厚に、p又はn−Al0.14Ga0.86As活
性層14を0.08μm厚に、n−Al0.42Ga0.58A
sクラッド層15を0.8μm厚に、n−GaAsコン
タクト層16を1.5μm厚にそれぞれ成長させる。FIG. 4 shows a manufacturing procedure of this embodiment.
It is explained along. First, n is formed on the p-GaAs substrate 11.
A GaAs current blocking layer 12 is deposited to a thickness of about 0.7 μm as shown in FIG. Thereafter, an SiO 2 film 31 having a thickness of 0.3 μm is formed by a sputtering method, and the length of a portion serving as both end faces of the laser resonator is set to 1 using the mask as a mask.
A groove having a depth of 0.8 μm is formed over 0 μm. This is the state shown in FIG. Then, using the SiO 2 film as a mask as it is, an organic metal thermal decomposition method (MOC)
Using a VD method, a p-Al 0.42 Ga 0.58 As layer 32 is deposited to a thickness of 0.8 μm, and an undoped GaAs etch-back layer 33 is deposited to a thickness of 0.05 μm to facilitate subsequent growth (FIG. c)). In this state, n-GaAs
The surface heights of the current blocking layer 12 and the p-Al 0.42 Ga 0.58 As layer 32 are uniform and coincide with each other. Next, SiO 2
After the film 31 is removed by etching, FIG width V-shaped grooves reaching the p-GaAs substrate 11 as shown in (e) W 1
= 4 μm and depth 1 μm. Then, the conventional VS
P using liquid phase growth in the same manner as the IS laser growth method
-Al 0.42 Ga 0.58 As clad layer 13 is 0.15 μm thick outside the groove, p or n-Al 0.14 Ga 0.86 As active layer 14 is 0.08 μm thick, n-Al 0.42 Ga 0.58 A
The s cladding layer 15 is grown to a thickness of 0.8 μm, and the n-GaAs contact layer 16 is grown to a thickness of 1.5 μm.
【0020】液相エピタキシャル成長法においては陥没
部を平坦化するように成長が行われるため、p−Al
0.42Ga0.58Asクラッド層13の成長後は成長表面は
平坦であり、続いて成長されるAl0.14Ga0.86As活
性層14も全面で平坦かつ均一に成長させることができ
る。In the liquid phase epitaxial growth method, since the growth is performed so as to flatten the depression, p-Al
After the growth of the 0.42 Ga 0.58 As cladding layer 13, the growth surface is flat, and the subsequently grown Al 0.14 Ga 0.86 As active layer 14 can also be grown flat and uniform over the entire surface.
【0021】また、アンドープGaAsエッチバック層
33はp−Al0.42Ga0.58As層32の酸化を有効に
防ぎ、液相成長時にはエッチバックにより消失するため
共振器端面部はp−クラッド層が0.95μm厚に一様
に形成されたことになり、この部分での光の吸収は存在
しない。その後ウェハの両面に抵抗性全面電極をつけ、
合金化処理を行った後、n−GaAs電流ブロッキング
層12の存在しない部分で劈開を行い共振器を形成す
る。The undoped GaAs etch-back layer 33 effectively prevents the oxidation of the p-Al 0.42 Ga 0.58 As layer 32 and disappears by the etch-back during liquid phase growth. This means that the film was uniformly formed to a thickness of 95 μm, and there was no light absorption at this portion. Then, apply resistive full surface electrodes on both sides of the wafer,
After performing the alloying treatment, the portion where the n-GaAs current blocking layer 12 does not exist is cleaved to form a resonator.
【0022】このレーザは両端面部での光吸収がなく端
面の温度上昇が抑えられ高い信頼性を示し出射側端面4
%裏面側97%の反射率のコーティングを施したところ
80mWの高出力状態でも殆ど無劣化の特性を示した。This laser does not absorb light at both end faces, suppresses temperature rise at the end faces, exhibits high reliability, and exhibits an emission end face 4.
When a coating having a reflectance of 97% on the back surface side was applied, almost no deterioration was exhibited even in a high output state of 80 mW.
【0023】本実施例では端面のn−GaAs電流ブロ
ッキング層12の存在しない部分の長さを共振器両端に
10μmずつとしたが、この長さが30μm以内であれ
ば共振器中央部で導波されてきた光は端面部においても
モード変形されず、安定な横モード特性を示す。In this embodiment, the length of the end face where the n-GaAs current blocking layer 12 is not present is set to 10 μm at both ends of the resonator. If this length is within 30 μm, the waveguide is guided at the center of the resonator. The emitted light does not undergo mode deformation even at the end face, and exhibits stable transverse mode characteristics.
【0024】また、このn−GaAs電流ブロッキング
層12の存在しない部分を出射側端面部のみに形成した
場合でも効果は発揮される。Further, the effect can be exerted even when the portion where the n-GaAs current blocking layer 12 does not exist is formed only on the end face on the emission side.
【0025】上記実施例においてはVSIS型の半導体
レーザに適用した場合を示したが、次に他の構造に適用
した場合について示す。他の構造の一つにCPSレーザ
(Transverse Mode Stabilized AlxGa1-xAs Injection
Lasers with Channeled-Planar Structure;IEEE JOURNA
L OF QUANTUM ELECTRONICS,vol,QE-14,No.2,February19
87,p89)がある。図5は本発明をCSPレーザに適用し
た実施例を示している。本実施例ではn−GaAs基板
11にチャネルを形成するが、その際、中央部のチャネ
ル幅W1より端面部のチャネル幅W2が大きくなるように
する。その後、n−AlxGa1-xAsクラッド層42、
GaAs活性層43、p−AlxGa1-xAsクラッド層
44、n−GaAs層45を形成した後Znの拡散領域
48を形成して電流通路を作成する。この場合も、チャ
ネルの外部では、n−GaAs基板の光吸収があり、チ
ャネル肩部の発熱がおこるが端面でチャネル幅を広げる
ことによりこの発熱は緩和され、信頼性が向上する。こ
の場合も端面部で全面にわたりチャネルと同じ深さに基
板をエッチングしてもよいし、このような構造を片方の
端面のみに形成しても両側に形成しても効果は発揮され
る。In the above embodiment, a case where the present invention is applied to a VSIS type semiconductor laser is shown. Next, a case where the present invention is applied to another structure will be described. One of the other structures is a CPS laser (Transverse Mode Stabilized Al x Ga 1-x As Injection
Lasers with Channeled-Planar Structure; IEEE JOURNA
L OF QUANTUM ELECTRONICS, vol, QE-14, No.2, February19
87, p89). FIG. 5 shows an embodiment in which the present invention is applied to a CSP laser. In this embodiment, a channel is formed n-GaAs substrate 11, but this time, so that the channel width W 2 of the end face than the channel width W 1 of the central portion is increased. Thereafter, the n-Al x Ga 1 -x As clad layer 42,
Creating a current path by forming a GaAs active layer 43, p-Al x Ga 1 -x As cladding layer 44, the diffusion region 48 of the Zn after the formation of the n-GaAs layer 45. Also in this case, light is absorbed by the n-GaAs substrate outside the channel and heat is generated at the shoulder of the channel. However, by increasing the channel width at the end face, the heat is reduced and reliability is improved. Also in this case, the substrate may be etched to the same depth as the channel over the entire surface at the end face portion, and the effect is exhibited even if such a structure is formed only on one end face or on both sides.
【0026】また、上記実施例においてはダブルヘテロ
接合構造の半導体レーザについて説明したが他の構造、
たとえばLOC(Large Optical Cavity)構造、SCH
(Separate Confinement Heterostructure)構造量子井
戸構造等他の構造を用いた場合についても適用可能であ
る。In the above embodiment, a semiconductor laser having a double hetero junction structure has been described.
For example, LOC (Large Optical Cavity) structure, SCH
(Separate Confinement Heterostructure) Structure The present invention is also applicable to a case where another structure such as a quantum well structure is used.
【0027】例えば、図6は本発明をLOC構造に適用
したもので、活性層14に隣接して光導波層18が積層
されているが、上記実施例と同様の効果が認められる。
また、図7は量子井戸構造に本発明を適用した場合の1
実施例であるGRIN−SCH−SQW(Graded Index
-Separate Confinement Hetetostructure-Single Quant
um Well)構造を示す構成図であり、上記実施例と同様
の効果が認められる。図8には図7の実施例の活性層の
混晶比の分布を示している。For example, FIG. 6 shows an example in which the present invention is applied to an LOC structure, in which an optical waveguide layer 18 is laminated adjacent to an active layer 14, but the same effect as in the above embodiment can be recognized.
FIG. 7 shows one example of the case where the present invention is applied to the quantum well structure.
GRIN-SCH-SQW (Graded Index
-Separate Confinement Hetetostructure-Single Quant
FIG. 3 is a configuration diagram showing a um well) structure, and the same effects as in the above embodiment are observed. FIG. 8 shows the distribution of the mixed crystal ratio of the active layer in the embodiment of FIG.
【0028】[0028]
【発明の効果】本発明によれば端面部のチャネル幅を広
げることにより出射端面の光吸収による温度上昇を防ぐ
ことができ、かつ、高出力状態においても高い信頼性を
有する半導体レーザ素子を製造することができる。ま
た、本発明の製造方法によれば、幅の異なるストライプ
状の貫通溝でも容易に埋め込むことができる。According to the present invention, by increasing the channel width at the end face, it is possible to prevent a temperature rise due to light absorption at the emission end face, and to manufacture a semiconductor laser device having high reliability even in a high output state. can do. Further, according to the manufacturing method of the present invention, it is possible to easily fill even the stripe-shaped through grooves having different widths.
【図1】本発明の1実施例を示す半導体レーザ素子の分
解構成図である。FIG. 1 is an exploded configuration diagram of a semiconductor laser device according to an embodiment of the present invention.
【図2】チャネル形成後の構造斜視図である。FIG. 2 is a structural perspective view after a channel is formed.
【図3】本発明の他の実施例を示す半導体レーザ素子の
分解構成図である。FIG. 3 is an exploded configuration diagram of a semiconductor laser device according to another embodiment of the present invention.
【図4】素子の作製工程を模式的に示した断面図であ
る。FIG. 4 is a cross-sectional view schematically showing a manufacturing process of the element.
【図5】本発明の他の実施例を示す半導体レーザ素子の
分解構成図である。FIG. 5 is an exploded configuration diagram of a semiconductor laser device showing another embodiment of the present invention.
【図6】本発明の他の実施例を示す半導体レーザ素子の
分解構成図である。FIG. 6 is an exploded configuration diagram of a semiconductor laser device showing another embodiment of the present invention.
【図7】本発明の他の実施例を示す半導体レーザ素子の
分解構成図である。FIG. 7 is an exploded configuration diagram of a semiconductor laser device showing another embodiment of the present invention.
【図8】図7に示す半導体レーザ素子の活性層の構造を
模式的に示した説明図である。FIG. 8 is an explanatory diagram schematically showing a structure of an active layer of the semiconductor laser device shown in FIG. 7;
【図9】従来の半導体レーザ素子の構造図である。FIG. 9 is a structural view of a conventional semiconductor laser device.
11 p−GaAs基板 12 n−GaAs電流ブロッキング層 13 p−Al0.42Ga0.58Asクラッド層 14 pまたはn−Al0.14Ga0.86As活性層 15 n−Al0.42Ga0.58Asクラッド層 16 n−GaAsコンタクト層 17 p−Al0.4Ga0.6Asクラッド層 18 p−Al0.3Ga0.7Asガイド層 19 n−Al0.7Ga0.3Asクラッド層 21、22 抵抗性電極 31 SiO2膜 32 p−Al0.42Ga0.58As層 33 アンドープGaAsエッチバック層 41 n−GaAs基板 42 n−AlxGa1-xAsクラッド層 43 GaAs活性層 44 p−AlxGa1-xAsクラッド層 45 n−GaAs層 46、47 抵抗性電極 48 Zn拡散領域 51 p−Al0.7Ga0.3Asクラッド層 52 GRIN−SCH−SQW活性層 53 n−Al0.7Ga0.3Asクラッド層 Reference Signs List 11 p-GaAs substrate 12 n-GaAs current blocking layer 13 p-Al 0.42 Ga 0.58 As cladding layer 14 p or n-Al 0.14 Ga 0.86 As active layer 15 n-Al 0.42 Ga 0.58 As cladding layer 16 n-GaAs contact layer Reference Signs List 17 p-Al 0.4 Ga 0.6 As clad layer 18 p-Al 0.3 Ga 0.7 As guide layer 19 n-Al 0.7 Ga 0.3 As clad layer 21, 22 Resistive electrode 31 SiO 2 film 32 p-Al 0.42 Ga 0.58 As layer 33 Undoped GaAs etch-back layer 41 n-GaAs substrate 42 n-Al x Ga 1 -x As clad layer 43 GaAs active layer 44 p-Al x Ga 1 -x As clad layer 45 n-GaAs layer 46, 47 Resistive electrode 48 Zn diffusion region 51 p-Al 0.7 Ga 0.3 As cladding layer 52 GRIN-SCH-SQW active Layer 53 n-Al 0.7 Ga 0.3 As cladding layer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 兼岩 進治 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 山口 雅広 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shinji Kaneiwa 22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka Inside Sharp Corporation (72) Inventor Masahiro Yamaguchi 22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka Sharp Corporation
Claims (1)
端面部近傍で幅が拡大されたストライプ状の貫通溝を形
成する工程と、前記貫通溝を埋め込むように液相成長さ
せてクラッド層を形成する工程と、前記クラッド層上に
均一な厚さを有する平板状の活性層を積層する工程と、
を含むことを特徴とする半導体レーザ素子の製造方法。1. A step of forming a stripe-shaped through groove having an increased width in the vicinity of an end face of a resonator in a light absorbing layer laminated above a substrate, and performing a liquid phase growth so as to fill the through groove. Forming a layer, and laminating a plate-shaped active layer having a uniform thickness on the cladding layer,
A method for manufacturing a semiconductor laser device, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10166668A JP3038186B2 (en) | 1987-08-04 | 1998-06-15 | Method for manufacturing semiconductor laser device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19572287 | 1987-08-04 | ||
JP62-195722 | 1987-08-04 | ||
JP10166668A JP3038186B2 (en) | 1987-08-04 | 1998-06-15 | Method for manufacturing semiconductor laser device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08081457A Division JP3075512B2 (en) | 1987-08-04 | 1996-04-03 | Semiconductor laser device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1126872A true JPH1126872A (en) | 1999-01-29 |
JP3038186B2 JP3038186B2 (en) | 2000-05-08 |
Family
ID=26490952
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10166668A Expired - Lifetime JP3038186B2 (en) | 1987-08-04 | 1998-06-15 | Method for manufacturing semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3038186B2 (en) |
-
1998
- 1998-06-15 JP JP10166668A patent/JP3038186B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP3038186B2 (en) | 2000-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5920586A (en) | Semiconductor laser | |
US6018539A (en) | Semiconductor laser and method of fabricating semiconductor laser | |
JP2001345514A (en) | Semiconductor laser and its manufacturing method | |
JPH10233556A (en) | Ridge-type semiconductor laser diode and its manufacturing method | |
JP3183683B2 (en) | Window type semiconductor laser device | |
US4926431A (en) | Semiconductor laser device which is stable for a long period of time | |
JP2863677B2 (en) | Semiconductor laser and method of manufacturing the same | |
JP2004165383A (en) | Semiconductor laser device, second harmonic generator, and optical pickup apparatus | |
JP3075512B2 (en) | Semiconductor laser device | |
JP3038186B2 (en) | Method for manufacturing semiconductor laser device | |
JP2001257431A (en) | Semiconductor laser | |
WO2002021578A1 (en) | Semiconductor laser element | |
JPH0671121B2 (en) | Semiconductor laser device | |
JPH0671122B2 (en) | Semiconductor laser device | |
US6707835B2 (en) | Process for producing semiconductor laser element including S-ARROW structure formed by etching through mask having pair of parallel openings | |
JP2723888B2 (en) | Semiconductor laser device | |
JPH10209553A (en) | Semiconductor laser device | |
JPH0856051A (en) | Semiconductor laser element | |
JPH10154843A (en) | Semiconductor laser device and optical disk device using the same | |
JP3785429B2 (en) | Semiconductor laser device and manufacturing method thereof | |
JPH09246664A (en) | Semiconductor laser | |
Endo et al. | High-power buried coarctate mesa-structure AlGaAs lasers | |
JP3761130B2 (en) | Surface emitting laser device | |
JPH09129967A (en) | Semiconductor laser | |
JPH10223970A (en) | Semiconductor laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |