JPH11265732A - Nonaqueous electrolyte battery - Google Patents
Nonaqueous electrolyte batteryInfo
- Publication number
- JPH11265732A JPH11265732A JP10067991A JP6799198A JPH11265732A JP H11265732 A JPH11265732 A JP H11265732A JP 10067991 A JP10067991 A JP 10067991A JP 6799198 A JP6799198 A JP 6799198A JP H11265732 A JPH11265732 A JP H11265732A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- negative electrode
- electrolyte battery
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 55
- 239000007774 positive electrode material Substances 0.000 claims abstract description 27
- 239000011149 active material Substances 0.000 claims abstract description 22
- 239000007773 negative electrode material Substances 0.000 claims abstract description 14
- 238000010248 power generation Methods 0.000 claims description 7
- 238000004804 winding Methods 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 229910002804 graphite Inorganic materials 0.000 claims description 5
- 239000010439 graphite Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 3
- 229910001416 lithium ion Inorganic materials 0.000 claims description 3
- 230000005611 electricity Effects 0.000 abstract 3
- 239000010410 layer Substances 0.000 description 29
- 230000000052 comparative effect Effects 0.000 description 11
- -1 polypropylene Polymers 0.000 description 7
- 238000011084 recovery Methods 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 239000004743 Polypropylene Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229920001155 polypropylene Polymers 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000002033 PVDF binder Substances 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 239000002648 laminated material Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 3
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 3
- 238000007600 charging Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910013872 LiPF Inorganic materials 0.000 description 1
- 101150058243 Lipf gene Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000004840 adhesive resin Substances 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000010280 constant potential charging Methods 0.000 description 1
- 238000010277 constant-current charging Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000131 polyvinylidene Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Secondary Cells (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、僅かな電池内圧の
上昇によって変形する外装体を有し、この外装体内に発
電要素が収納された非水電解質電池に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery having an outer casing which is deformed by a slight increase in battery internal pressure, and in which a power generating element is housed.
【0002】[0002]
【従来の技術】従来、非水電解質電池の外装体として
は、全てがステンレス等の金属から成るものが用いられ
ていた。ところが、このような外装体を用いた電池で
は、金属製の外装体を厚くせざるをえず、しかもこれに
伴い電池重量が増大する。この結果、電池の薄型化が困
難になると共に、電池の重量エネルギー密度が小さくな
るという課題を有していた。2. Description of the Related Art Heretofore, as an exterior body of a non-aqueous electrolyte battery, one entirely made of metal such as stainless steel has been used. However, in a battery using such an exterior body, the metal exterior body must be thickened, and the battery weight increases accordingly. As a result, there are problems that it is difficult to reduce the thickness of the battery and that the weight energy density of the battery is reduced.
【0003】そこで、本発明者らは、先に、アルミニウ
ム等から成る金属層の両面に接着剤層を介して樹脂層が
形成されたラミネート材を袋状にしてラミネート外装体
を構成し、このラミネート外装体の収納空間に発電要素
を収納するような薄型電池を提案した。このような構造
の電池であれば、飛躍的に電池の小型化を達成でき、し
かも電池の重量エネルギー密度が大きくなるという利点
を有する。[0003] Therefore, the present inventors previously constructed a laminate outer package by forming a laminate material having a resin layer formed on both sides of a metal layer made of aluminum or the like via an adhesive layer in a bag shape. A thin battery that accommodates power generation elements in the storage space of the laminate exterior body was proposed. A battery having such a structure has the advantages that the size of the battery can be dramatically reduced and the weight energy density of the battery increases.
【0004】しかしながら、上記ラミネート外装体を用
いた電池では、金属製の外装体を用いた電池に比べて、
外装体が柔軟である。このため、発電要素の厚みに応じ
て、外装体も変形するため、発電要素が厚くなると、そ
の分だけ電池の厚みも大きくなる。この結果、体積エネ
ルギー密度が低下するという課題を有していた。[0004] However, the battery using the above-mentioned laminated exterior body has a larger size than the battery using the metal exterior body.
The exterior body is flexible. For this reason, since the exterior body is deformed in accordance with the thickness of the power generating element, the thickness of the battery increases as the power generating element becomes thicker. As a result, there is a problem that the volume energy density is reduced.
【0005】[0005]
【発明が解決しようとする課題】本発明は、以上の事情
に鑑みなされたものであって、発電要素を薄くすること
により、電池の厚みを小さくし、これにより体積エネル
ギー密度を飛躍的に増大することができる非水電解質電
池の提供を目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and reduces the thickness of a battery by reducing the thickness of a power generation element, thereby dramatically increasing the volume energy density. It is intended to provide a nonaqueous electrolyte battery capable of performing the above.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に、本発明のうちで請求項1記載の発明は、帯状の正極
芯体の両面に正極活物質層が形成された正極と、帯状の
負極芯体の両面に負極活物質層が形成された負極とが、
セパレータを介して巻回された偏平渦巻き状の発電要素
を有すると共に、この発電要素が、僅かな電池内圧の上
昇によって変形する外装体内に収納され、しかも上記正
極からは正極タブが、上記負極からは負極タブが、それ
ぞれ上記両芯体の長手方向と略垂直に延設され、且つ上
記両タブが所定の間隔で配置される構造の非水電解質電
池において、上記両極のうち少なくとも一方の極におけ
る少なくとも一方の面には、上記両タブ間の距離以上の
活物質未塗布部が形成されていることを特徴とする。正
極タブが設けられた正極と、負極タブが設けられた負極
とを、セパレータを介して巻回される偏平渦巻き状の発
電要素を有する電池では、両タブが接触することによる
ショートを防止するために、両タブをある程度離して配
置する必要がある。したがって、正負極の巻回終端にお
いて両者が略一致するためには、一方の極を他方の極よ
り長くせざるを得ない。ところが、このような構造であ
ると、長くした電極部分は、充放電に関与しないにも関
わらず、活物質層が形成されているため、その活物質層
の厚み分だけ発電要素が厚くなり、この結果電池の厚み
も増加する。特に、両タブはある程度の厚みを有するた
め、両タブが形成されている部分における厚みが増大す
る。このことから、体積エネルギー密度等が減少する。
しかしながら、上記構成の如く、両極のうち少なくとも
一方の極における少なくとも一方の面には、上記両タブ
間の距離以上の活物質未塗布部が形成されていれば、当
該活物質未塗布部において活物質層の厚み分だけ薄くな
る。特に、活物質未塗布部は両タブ間の距離以上に形成
され、両タブに対応する位置には常に活物質未塗布部が
存在することになるため、特に問題となる両タブにおけ
る発電要素(電池)の厚みが減少する。このことから、
電池の体積エネルギー密度が増大し、しかも活物質未塗
布部の存在により重量エネルギー密度が増大する。加え
て、従来の構造であると、電池を充電状態で保存(特
に、高温で保存)すると、充放電に関与しない長くした
電極部分がある程度充電された状態になる。ところが、
当該部分では放電できないため、その分だけ放電容量の
減少を招き、しかも充放電サイクルを繰り返した後の電
池厚みが増大する。これに対して、上記の構造であれ
ば、充放電に関与しない長くした電極部分には活物質層
が形成されていないので、保存により当該部分が充電状
態となるのを防止できる。したがって、放電容量が減少
せず、しかも理由は定かではないが充放電サイクルを繰
り返した後の電池厚みの増大を抑制できる。また、請求
項2記載の発明は請求項1記載の発明において、上記両
タブは、上記両極の巻回始端に各々設けられていること
を特徴とする。このような構成であれば、正負両極にお
いて両タブの取り付けが容易化するので、電池の製造コ
ストが低減される。また、請求項3記載の発明は請求項
1又は2記載の発明において、上記活物質層未塗布部の
長さは、上記両タブ間の距離の2倍以上となるように構
成されることを特徴とする。このような構成であれば、
一層電池厚みを小さくすることができるので、上記の効
果が一層発揮される。また、請求項4記載の発明は請求
項1、2又は3記載の発明において、上記発電要素は薄
型であることを特徴とする。薄型電池では、特に厚みを
小さくする必要が大きいので、極めて有効である。ま
た、請求項5記載の発明は請求項1、2、3又は4記載
の発明において、上記両極の両活物質層は、リチウムイ
オンを可逆的に吸蔵,放出可能な材料から成ることを特
徴とする。上記の如く本発明を二次電池に適用すれば、
理由は定かではないが充放電サイクルを繰り返した後の
電池厚みの増大を抑制できる。また、請求項6記載の発
明は請求項1、2、3、4又は5記載の発明において、
上記負極活物質として、グラファイトが用いられること
を特徴とする。Means for Solving the Problems In order to achieve the above object, the invention according to claim 1 of the present invention is directed to a positive electrode in which a positive electrode active material layer is formed on both sides of a belt-like positive electrode core, and a belt-like positive electrode. A negative electrode having a negative electrode active material layer formed on both surfaces of the negative electrode core body,
It has a flat spiral power generating element wound through a separator, and this power generating element is housed in an outer casing that is deformed by a slight increase in battery internal pressure, and a positive electrode tab is separated from the negative electrode by the positive electrode tab. In a non-aqueous electrolyte battery having a structure in which the negative electrode tabs are respectively extended substantially perpendicular to the longitudinal direction of the two cores, and the two tabs are arranged at a predetermined interval, at least one of the two electrodes At least one surface is provided with an active material non-applied portion that is longer than the distance between the two tabs. In a battery having a flat spiral power generating element in which a positive electrode provided with a positive electrode tab and a negative electrode provided with a negative electrode tab are wound with a separator interposed therebetween, in order to prevent a short circuit caused by contact between the two tabs. In addition, it is necessary to arrange both tabs to some extent. Therefore, in order for the two to substantially match at the winding end of the positive and negative electrodes, one pole must be longer than the other. However, with such a structure, the elongated electrode portion is not involved in charge / discharge, but because the active material layer is formed, the power generation element becomes thicker by the thickness of the active material layer, As a result, the thickness of the battery also increases. In particular, since both tabs have a certain thickness, the thickness at the portion where both tabs are formed increases. From this, the volume energy density and the like decrease.
However, as in the above configuration, if at least one surface of at least one of the two poles is formed with an active material non-applied portion that is longer than the distance between the tabs, the active material non-applied portion is not used. It becomes thinner by the thickness of the material layer. In particular, the active material non-applied portion is formed more than the distance between both tabs, and the active material non-applied portion always exists at a position corresponding to both tabs. Battery) thickness. From this,
The volume energy density of the battery increases, and the weight energy density increases due to the presence of the uncoated portion of the active material. In addition, according to the conventional structure, when the battery is stored in a charged state (particularly, stored at a high temperature), the elongated electrode portion that is not involved in charging and discharging is charged to some extent. However,
Since discharge cannot be performed in this portion, the discharge capacity is reduced by that much, and the thickness of the battery after repeated charge / discharge cycles is increased. On the other hand, according to the above structure, since the active material layer is not formed in the elongated electrode portion that does not participate in charge and discharge, the charged portion can be prevented from being charged by storage. Therefore, the discharge capacity does not decrease, and the increase in the battery thickness after repeating the charge / discharge cycle can be suppressed although the reason is not clear. According to a second aspect of the present invention, in the first aspect of the present invention, the two tabs are respectively provided at winding start ends of the two poles. With such a configuration, the mounting of both tabs on both the positive and negative electrodes is facilitated, so that the manufacturing cost of the battery is reduced. According to a third aspect of the present invention, in the first or second aspect of the invention, the length of the active material layer uncoated portion is configured to be at least twice the distance between the two tabs. Features. With such a configuration,
Since the thickness of the battery can be further reduced, the above-described effect is further exhibited. According to a fourth aspect of the present invention, in the first, second or third aspect, the power generating element is thin. A thin battery is very effective because it is particularly necessary to reduce the thickness. According to a fifth aspect of the present invention, in the first, second, third or fourth aspect of the present invention, the both active material layers of the two electrodes are made of a material capable of reversibly storing and releasing lithium ions. I do. If the present invention is applied to a secondary battery as described above,
Although the reason is not clear, it is possible to suppress an increase in the battery thickness after repeating the charge / discharge cycle. The invention according to claim 6 is the invention according to claim 1, 2, 3, 4, or 5,
It is characterized in that graphite is used as the negative electrode active material.
【0007】[0007]
【発明の実施の形態】〔第1の形態〕本発明の第1の形
態を、図1〜図8に基づいて、以下に説明する。図1は
第1の形態に係る非水電解質電池の正面図、図2は図1
のA−A線矢視断面図、図3は第1の形態に係る非水電
解質電池に用いるラミネート外装体の断面図、図4は第
1の形態に係る非水電解質電池に用いる正極の正面図、
図5は第1の形態に係る非水電解質電池に用いる正極の
背面図、図6は第1の形態に係る非水電解質電池に用い
る負極の正面図、図7は第1の形態に係る非水電解質電
池を作製する際の工程説明図、図8は第1の形態に係る
非水電解質電池に用いる発電要素の斜視図である。DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment A first embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a front view of the nonaqueous electrolyte battery according to the first embodiment, and FIG.
3 is a cross-sectional view taken along line AA of FIG. 3, FIG. 3 is a cross-sectional view of a laminate exterior body used for the nonaqueous electrolyte battery according to the first embodiment, and FIG. 4 is a front view of a positive electrode used for the nonaqueous electrolyte battery according to the first embodiment. Figure,
5 is a rear view of a positive electrode used in the nonaqueous electrolyte battery according to the first embodiment, FIG. 6 is a front view of a negative electrode used in the nonaqueous electrolyte battery according to the first embodiment, and FIG. FIG. 8 is a perspective view of a power generating element used for a non-aqueous electrolyte battery according to the first embodiment.
【0008】図2に示すように、本発明の薄型電池は発
電要素1を有しており、この発電要素1は収納空間2内
に配置されている。この収納空間2は、図1に示すよう
に、ラミネート外装体3の上下端と中央部とをそれぞれ
封止部4a・4b・4cで封口することにより形成され
る。また、収納空間2には、エチレンカーボネート(E
C)とジエチルカーボネート(DEC)とが体積比で
4:6の割合で混合された混合溶媒に、LiPF6 が1
M(モル/リットル)の割合で溶解された電解液が注入
されている。また、図8に示すように、上記発電要素1
は、LiCoO2から成る正極5と、グラファイトから
成る負極6と、これら両電極を離間するセパレータ(図
8においては図示せず)とを偏平渦巻き状に巻回するこ
とにより作製される。As shown in FIG. 2, the thin battery of the present invention has a power generating element 1, which is disposed in a storage space 2. As shown in FIG. 1, the storage space 2 is formed by sealing the upper and lower ends and the central portion of the laminate exterior body 3 with sealing portions 4a, 4b, and 4c, respectively. Further, the storage space 2 contains ethylene carbonate (E
C) and diethyl carbonate (DEC) in a mixed solvent of 4: 6 in volume ratio, and LiPF 6 in an amount of 1
An electrolyte dissolved at a rate of M (mol / liter) is injected. In addition, as shown in FIG.
Is manufactured by winding a positive electrode 5 made of LiCoO 2 , a negative electrode 6 made of graphite, and a separator (not shown in FIG. 8) separating these two electrodes in a flat spiral shape.
【0009】また、図3に示すように、上記ラミネート
外装体3の具体的な構造は、アルミニウム層11(厚
み:30μm)の両面に、各々、変性ポリプロピレンか
ら成る接着剤層12・12(厚み:5μm)を介してポ
リプロピレンから成る樹脂層13・13(厚み:30μ
m)が接着される構造である。As shown in FIG. 3, a specific structure of the laminate outer casing 3 is such that adhesive layers 12 and 12 (thickness) made of modified polypropylene are respectively provided on both sides of an aluminum layer 11 (thickness: 30 μm). : 5 μm) through a resin layer 13 made of polypropylene (thickness: 30 μm)
m) is a structure to be bonded.
【0010】更に、上記正極5はアルミニウムから成る
正極集電タブ7に、また上記負極6は銅から成る負極集
電端タブ8にそれぞれ接続され、電池内部で生じた化学
エネルギーを電気エネルギーとして外部へ取り出し得る
ようになっている。尚、この電池の大きさは、図1及び
図2に示すように、幅L1 が35mm、長さL2 が80
mm、厚みL3 が3mmとなるように構成されている。Further, the positive electrode 5 is connected to a positive electrode current collecting tab 7 made of aluminum, and the negative electrode 6 is connected to a negative electrode current collecting end tab 8 made of copper. To be taken out. As shown in FIGS. 1 and 2, the size of this battery is 35 mm in width L 1 and 80 mm in length L 2.
mm and a thickness L3 of 3 mm.
【0011】ここで、上記構造の電池を、以下のように
して作製した。先ず、正極活物質としてのLiCoO2
と導電剤としてのアセチレンブラックとグラファイトと
結着剤としてのポリフッ化ビニリデン(PVdF)とを
重量比で、90:2:3:5の割合で混合して正極合剤
を作製した後、図4及び図5(尚、図4及び図5におい
ては、理解の容易のため、後工程で正極5に取り付ける
正極タブ7も実線で図示している)に示すように、この
正極合剤をアルミニウムから成る帯状の正極芯体10の
両面に塗着し、更に圧延、乾燥して正極活物質層9a・
9bを形成した。これにより、正極5が作製される。こ
の際、上記正極タブ7の近傍における上記正極芯体10
の両面には、正極活物質層9a・9bを形成しない正極
活物質未塗布部14a・14bを形成すると共に、上記
正極タブ7とは反対側の端部近傍における上記正極芯体
10の一方の面には、正極活物質層9bを形成しない正
極活物質未塗布部14cを形成した。尚、この正極5の
長さL4 は253mm、正極5の幅L5 は55.5m
m、正極活物質未塗布部14a・14bの長さL6 ・L
7 は36mm、正極活物質未塗布部14cの長さL8 は
70mm、正極活物質層9aの長さL9 は217mm、
正極活物質層9bの長さL10は147mm、正極タブ7
の幅L11は4mmとした。Here, the battery having the above structure was manufactured as follows. First, LiCoO 2 as a positive electrode active material
After a positive electrode mixture was prepared by mixing acetylene black as a conductive agent, graphite, and polyvinylidene fluoride (PVdF) as a binder at a weight ratio of 90: 2: 3: 5, FIG. As shown in FIG. 5 and FIG. 5 (in FIGS. 4 and 5, the positive electrode tab 7 attached to the positive electrode 5 in a later step is also shown by a solid line for easy understanding), and this positive electrode mixture is made of aluminum. The positive electrode active material layer 9a is coated on both sides of the strip-shaped positive electrode core body 10 and further rolled and dried.
9b was formed. Thereby, the positive electrode 5 is manufactured. At this time, the positive electrode core 10 near the positive electrode tab 7
On both surfaces of the positive electrode active material layers 9a and 9b, the positive electrode active material uncoated portions 14a and 14b are not formed, and one of the positive electrode cores 10 near the end opposite to the positive electrode tab 7 is formed. On the surface, a positive electrode active material non-coated portion 14c in which the positive electrode active material layer 9b was not formed was formed. The length L 4 of the positive electrode 5 was 253 mm, and the width L 5 of the positive electrode 5 was 55.5 m.
m, length L 6 · L of positive electrode active material-uncoated portions 14a and 14b
7 is 36 mm, the length L 8 of the positive electrode active material uncoated portion 14 c is 70 mm, the length L 9 of the positive electrode active material layer 9 a is 217 mm,
The length L 10 of the positive electrode active material layer 9b is 147 mm, the positive electrode tab 7
Width L 11 of was 4mm.
【0012】これと並行して、負極活物質としての天然
黒鉛と結着剤としてのポリフッ化ビニリデンとを重量比
で、90:10の割合で混合して負極合剤を作製した
後、図6(尚、図6においては、理解の容易のため、後
工程で負極6に取り付ける負極タブ8も実線で図示して
いる)に示すように、この負極合剤を銅から成る帯状の
負極芯体17の両面における全面に塗着し、更に乾燥、
圧延して負極活物質層21aを形成した。これにより、
負極6が作製される。尚、上記負極6の長さL12は22
5mm、負極6の幅L13は57.5mm、負極タブ8の
幅L14は4mmとした。また、負極6は両面とも同一の
構成であるので、他方の面の図面及びその説明は省略す
る。次に、これら正負極5・6に、それぞれ正極集電タ
ブ7と負極集電タブ8とを取り付けた後、図7(図7に
おいては、セパレータは省略している)に示すように、
両タブ7・8のタブ間距離L15が18mmとなるよう
に、正負極5・6をセパレータを介して配置する。しか
る後、巻回用の薄板15を用いて正負両極5・6及びセ
パレータを偏平渦巻状に巻回して、図8(図8において
は、セパレータは省略している)に示すような発電要素
1を作製した。At the same time, natural graphite as a negative electrode active material and polyvinylidene fluoride as a binder were mixed at a weight ratio of 90:10 to prepare a negative electrode mixture. (In FIG. 6, for easy understanding, the negative electrode tab 8 attached to the negative electrode 6 in a later step is also shown by a solid line.) As shown in FIG. 17, apply to the entire surface on both sides, and further dry,
The negative electrode active material layer 21a was formed by rolling. This allows
The negative electrode 6 is manufactured. The length L 12 of the negative electrode 6 is 22
5 mm, the width L 13 of the negative electrode 6 is 57.5 mm, the width L 14 of the negative electrode tab 8 was 4 mm. Also, since both surfaces of the negative electrode 6 have the same configuration, drawings and description of the other surface are omitted. Next, after attaching a positive electrode current collecting tab 7 and a negative electrode current collecting tab 8 to these positive and negative electrodes 5 and 6, respectively, as shown in FIG. 7 (separator is omitted in FIG. 7),
As tab distance L 15 between both tabs 7, 8 is 18 mm, arranging the positive and negative electrodes 5, 6 via the separator. Thereafter, the positive and negative electrodes 5 and 6 and the separator are wound in a flat spiral shape using the winding thin plate 15, and the power generating element 1 shown in FIG. 8 (the separator is omitted in FIG. 8). Was prepared.
【0013】次いで、樹脂層(ポリプロピレン)/接着
剤層/アルミニウム合金層/接着剤層/樹脂層(ポリプ
ロピレン)の5層構造から成るシート状のラミネート材
を用意した後、このラミネート材における端部近傍同士
を重ね合わせ、更に、重ね合わせ部を溶着して、封止部
4cを形成した。次に、この筒状のラミネート材の収納
空間2内に発電要素1を挿入した。この際、筒状のラミ
ネート材の一方の開口部から両集電タブ7・8が突出す
るように発電要素1を配置した。次に、この状態で、両
集電タブ7・8が突出している開口部のラミネート材を
溶着して封止し、封止部4aを形成した。この際、溶着
は高周波誘導溶着装置を用いて行った。Next, a sheet-like laminated material having a five-layered structure of a resin layer (polypropylene) / adhesive layer / aluminum alloy layer / adhesive layer / resin layer (polypropylene) is prepared. Neighboring parts were overlapped, and the overlapped part was welded to form a sealing part 4c. Next, the power generating element 1 was inserted into the storage space 2 for the cylindrical laminate. At this time, the power generating element 1 was arranged so that both the current collecting tabs 7 and 8 protruded from one opening of the cylindrical laminated material. Next, in this state, the laminated material in the opening from which the current collecting tabs 7 and 8 protruded was welded and sealed to form a sealed portion 4a. At this time, welding was performed using a high frequency induction welding apparatus.
【0014】次いで、この状態で、真空加熱乾燥(温
度:105℃)を2時間行い、ラミネート材及び発電要
素1の水分を除去した。この後、エチレンカーボネート
とジエチルカーボネートとが体積比で4:6の割合で混
合された混合溶媒に、LiPF 6 が1M(モル/リット
ル)の割合で溶解された電解液を注入した後、この状態
で1時間放置した。しかる後、発電要素1に対応するラ
ミネート材を金属板にて加圧しつつ、上記封止部4aと
は反対側のラミネート材の端部を超音波溶着装置を用い
て溶着し、封止部4bを形成することにより非水電解質
電池を作製した。尚、上記電解液注入工程以降の工程
は、アルゴン雰囲気のドライボックス内で行った。Next, in this state, drying by heating under vacuum (temperature
(Degree: 105 ° C) for 2 hours.
The water of element 1 was removed. After this, ethylene carbonate
And diethyl carbonate at a volume ratio of 4: 6
LiPF is added to the mixed solvent 6Is 1M (mol / litre)
After injecting the electrolyte dissolved in the ratio of
For 1 hour. After that, the LA corresponding to power generation element 1
While pressing the minate material with a metal plate, the sealing portion 4a
Is the other end of the laminate using ultrasonic welding equipment
The non-aqueous electrolyte by forming
A battery was manufactured. In addition, the process after the above-mentioned electrolyte injection process
Was performed in a dry box in an argon atmosphere.
【0015】ここで、ラミネート外装体の樹脂層として
は上記ポリプロピレンに限定されるものではなく、例え
ば、ポリエチレン等のポリオレフィン系高分子、ポリエ
チレンテレフタレート等のポリエステル系高分子、ポリ
フッ化ビニリデン、ポリ塩化ビニリデン等のポリビニリ
デン系高分子、ナイロン6、ナイロン66、ナイロン7
等のポリアミド系高分子等が挙げられる。また、ラミネ
ート外装体の構造としては、上記の5層構造に限定され
るものではない。更に、外装体としては、ラミネート外
装体に限定されるものではなく、僅かな電池内圧の上昇
によって変形する外装体であれば、本発明を適用しうる
ことは勿論である。Here, the resin layer of the laminate exterior body is not limited to the above-mentioned polypropylene, but may be, for example, a polyolefin polymer such as polyethylene, a polyester polymer such as polyethylene terephthalate, polyvinylidene fluoride, polyvinylidene chloride. Such as polyvinylidene polymer, nylon 6, nylon 66, nylon 7
And the like. Further, the structure of the laminate exterior body is not limited to the above five-layer structure. Furthermore, the exterior body is not limited to a laminate exterior body, and it goes without saying that the present invention can be applied to any exterior body that is deformed by a slight increase in battery internal pressure.
【0016】更に、正極材料としては上記LiCoO2
の他、例えば、LiNiO2 、LiMn2 O4 或いはこ
れらの複合体、又はポリアニリン、ポリピロール等の導
電性高分子等が好適に用いられ、また負極材料としては
上記グラファイトの他、カーボンブラック、コークス、
ガラス状炭素、炭素繊維或いはこれらの焼成体等が好適
に用いられる。更に、本発明は上記リチウムイオン電池
に限定されるものではなく、正負極間に固体電解質が存
在するポリマー電池等の他の電池にも適用しうる。Further, as the positive electrode material, the above LiCoO 2
In addition, for example, LiNiO 2 , LiMn 2 O 4 or a composite thereof, or a conductive polymer such as polyaniline or polypyrrole is suitably used.In addition to the above graphite, carbon black, coke,
Glassy carbon, carbon fiber, or a fired body thereof is preferably used. Further, the present invention is not limited to the above-mentioned lithium ion battery, but can be applied to other batteries such as a polymer battery in which a solid electrolyte exists between the positive and negative electrodes.
【0017】加えて、用いられる電解質としては、上記
LiPF6 に限定するものではなく、LiN(CF3 S
O2 )2 、LiClO4 、LiBF4 等を用いることも
可能である。 〔第2の形態〕本発明の第2の形態を、図9〜図11に
基づいて、以下に説明する。図9は第2の形態に係る非
水電解質電池に用いる正極の正面図、図10は第2の形
態に係る非水電解質電池に用いる正極の背面図、図11
は第2の形態に係る非水電解質電池に用いる負極の正面
図である。尚、上記第1の形態と同様の機能を有する部
材についてはその説明を省略し、また、上記第1の形態
と同様の長さ及び幅(L4 等)であるものについてもそ
の説明を省略する。このことは、下記の形態についても
同様である。図9及び図10に示すように、正極5の正
極活物質未塗布部14a・14bの幅L6 を6mmと短
くする(この場合には、正極活物質未塗布部14a・1
4bは正極リード7により略覆われるので、正極活物質
未塗布部本来の役割は有しない)と共に、図11に示す
ように、負極6の巻回始端(負極タブ8の近傍)におけ
る両面に負極活物質未塗布部20aを形成する他は、上
記第1の形態の非水電解質電池と同様の構成である。
尚、負極6は両面とも同一の構成であるので、他方の面
の図面及びその説明は省略する。ここで、正極5の正極
活物質未塗布部14a・14bの幅L6 を短くしたこと
に伴って、正極5の長さL4 を223mmとすると共
に、負極6の長さL12を255mm、負極活物質層21
aの長さL16を223mmとし、且つ負極活物質未塗布
部20aの長さL17を32mmとした。 〔第3の形態〕本発明の第3の形態を、図12〜図15
に基づいて、以下に説明する。図12は第3の形態に係
る非水電解質電池に用いる正極の正面図、図13は第3
の形態に係る非水電解質電池に用いる正極の背面図、図
14は第3の形態に係る非水電解質電池に用いる負極の
正面図、図15は第3の形態に係る非水電解質電池に用
いる負極の背面図である。図15に示すように、負極6
の巻回始端(負極タブ8の近傍)における一方の面に負
極活物質未塗布部20bを形成する他は、上記第1の形
態の非水電解質電池と同様の構成である。ここで、負極
活物質層21bの長さL18を160mmとし、且つ負極
活物質未塗布部20bの長さL19を65mmとした。 〔第4の形態〕本発明の第4の形態を、図16〜図18
に基づいて、以下に説明する。図16は第4の形態に係
る非水電解質電池に用いる正極の正面図、図17は第4
の形態に係る非水電解質電池に用いる正極の背面図、図
18は第4の形態に係る非水電解質電池に用いる負極の
正面図である。図16及び図17に示すように、正極5
の正極活物質未塗布部14a・14bの幅L6 を6mm
と短くする(この場合には、正極活物質未塗布部14a
・14bは正極リード7により略覆われるので、正極活
物質未塗布部本来の役割は有しない)他は、上記第1の
形態の非水電解質電池と同様の構成である。尚、負極6
は両面とも同一の構成であるので、他方の面の図面及び
その説明は省略する。ここで、正極5の正極活物質未塗
布部14a・14bの幅L6 を短くしたことに伴って、
正極5の長さL4 を223mmとすると共に、負極6の
長さL12を255mmとした。In addition, the electrolyte used is not limited to the above-mentioned LiPF 6 , but may be LiN (CF 3 S
O 2 ) 2 , LiClO 4 , LiBF 4 and the like can also be used. Second Embodiment A second embodiment of the present invention will be described below with reference to FIGS. FIG. 9 is a front view of a positive electrode used in the nonaqueous electrolyte battery according to the second embodiment. FIG. 10 is a rear view of a positive electrode used in the nonaqueous electrolyte battery according to the second embodiment.
FIG. 4 is a front view of a negative electrode used for a nonaqueous electrolyte battery according to a second embodiment. The above for the first member having the same function as the embodiment and the description is omitted, also omitted also the description for those it is the first embodiment and the same length and width (L 4, etc.) I do. This is the same for the following embodiments. As shown in FIGS. 9 and 10, the width L 6 of the positive electrode active material non-coated portions 14 a and 14 b of the positive electrode 5 is reduced to 6 mm (in this case, the positive electrode active material non-coated portions 14 a and 1
4b is substantially covered by the positive electrode lead 7 and thus does not have the original role of the uncoated portion of the positive electrode active material), and also has the negative electrode 6 on both sides at the winding start end (near the negative electrode tab 8) as shown in FIG. The configuration is the same as that of the nonaqueous electrolyte battery of the first embodiment except that the active material non-applied portion 20a is formed.
Since the negative electrode 6 has the same configuration on both surfaces, the drawings and description of the other surface are omitted. Here, as the width L 6 of the positive electrode active material uncoated portions 14a and 14b of the positive electrode 5 is reduced, the length L 4 of the positive electrode 5 is set to 223 mm, the length L 12 of the negative electrode 6 is set to 255 mm, Negative electrode active material layer 21
The length L 16 of a was set to 223 mm, and the length L 17 of the negative electrode active material non-applied portion 20 a was set to 32 mm. [Third Embodiment] FIGS. 12 to 15 show a third embodiment of the present invention.
This will be described below based on FIG. 12 is a front view of a positive electrode used in the nonaqueous electrolyte battery according to the third embodiment, and FIG.
Rear view of the positive electrode used in the nonaqueous electrolyte battery according to the embodiment, FIG. 14 is a front view of the negative electrode used in the nonaqueous electrolyte battery according to the third embodiment, and FIG. 15 is used for the nonaqueous electrolyte battery according to the third embodiment. It is a rear view of a negative electrode. As shown in FIG.
The non-aqueous electrolyte battery according to the first embodiment has the same configuration as that of the first embodiment except that the negative electrode active material non-applied portion 20b is formed on one surface at the winding start end (near the negative electrode tab 8). Here, the length L 18 of the negative electrode active material layer 21b and 160 mm, the length L 19 of the negative electrode active material uncoated portion 20b was set to 65mm and. [Fourth Embodiment] A fourth embodiment of the present invention will be described with reference to FIGS.
This will be described below based on FIG. 16 is a front view of a positive electrode used in the nonaqueous electrolyte battery according to the fourth embodiment, and FIG.
FIG. 18 is a rear view of a positive electrode used in the nonaqueous electrolyte battery according to the fourth embodiment, and FIG. 18 is a front view of a negative electrode used in the nonaqueous electrolyte battery according to the fourth embodiment. As shown in FIG. 16 and FIG.
The width L 6 of the positive electrode active material non-coated portions 14a and 14b is 6 mm.
(In this case, the positive electrode active material uncoated portion 14a
14b is substantially covered by the positive electrode lead 7, so that it does not have the original role of the non-coated portion of the positive electrode active material). The negative electrode 6
Have the same configuration on both sides, and the drawings and description of the other side are omitted. Here, as the width L 6 of the positive electrode active material uncoated portions 14a and 14b of the positive electrode 5 is reduced,
The length L 4 of the positive electrode 5 with a 223 mm, the length L 12 of the negative electrode 6 was set to 255 mm.
【0018】[0018]
【実施例】〔実施例1〕実施例1としては上記第1の形
態に示す電池を用いた。このようにして作製した電池
を、以下、本発明電池A1と称する。EXAMPLES Example 1 In Example 1, the battery shown in the first embodiment was used. The battery fabricated in this manner is hereinafter referred to as Battery A1 of the invention.
【0019】〔実施例2〕実施例2としては上記第2の
形態に示す電池を用いた。このようにして作製した電池
を、以下、本発明電池A2と称する。 〔実施例3〕実施例3としては上記第3の形態に示す電
池を用いた。このようにして作製した電池を、以下、本
発明電池A3と称する。 〔実施例4〕実施例4としては上記第4の形態に示す電
池を用いた。このようにして作製した電池を、以下、本
発明電池A4と称する。Example 2 In Example 2, the battery shown in the second embodiment was used. The battery fabricated in this manner is hereinafter referred to as Battery A2 of the invention. Example 3 In Example 3, the battery described in the third embodiment was used. The battery fabricated in this manner is hereinafter referred to as Battery A3 of the invention. Example 4 In Example 4, the battery described in the fourth embodiment was used. The battery fabricated in this manner is hereinafter referred to as Battery A4 of the invention.
【0020】〔比較例〕本発明の比較例を、図19及び
図20に基づいて、以下に説明する。図19は比較例に
係る非水電解質電池に用いる正極の正面図、図20は比
較例に係る非水電解質電池に用いる負極の正面図であ
る。尚、上記第1実施例と同様の機能を有する部材につ
いてはその説明を省略し、また、上記第1実施例と同様
の長さ及び幅(L4 等)であるものについてもその説明
を省略する。図19に示すように、正極5の正極活物質
未塗布部14aの幅L6 を6mmと短くする(この場合
には、正極活物質未塗布部14aは正極リード7により
略覆われるので、正極活物質未塗布部本来の役割は有し
ない)と共に、正極活物質未塗布部14cを形成しない
他は、上記第1実施例の非水電解質電池と同様の構成で
ある。尚、正極5及び負極6は両面とも同一の構成であ
るので、他方の面の図面及びその説明は省略する。ここ
で、正極5の正極活物質未塗布部14aの幅L6 を短く
したことに伴って、正極5の長さL4 を223mmとす
ると共に、負極6の長さL12を325mmとした。 〔実験1〕上記本発明電池A1〜A4及び比較電池Xに
おいて、体積エネルギー密度、重量エネルギー密度を調
べると共に、下記の条件で充電し、更に60℃で20日
間電池を保存した後の容量回復率を調べたので、それら
の結果を表1に示す。尚、容量回復率は下記数1により
算出される。また、容量維持率及び容量回復率を算出す
る際の充放電条件は、下記の条件である。Comparative Example A comparative example of the present invention will be described below with reference to FIGS. FIG. 19 is a front view of a positive electrode used for a nonaqueous electrolyte battery according to a comparative example, and FIG. 20 is a front view of a negative electrode used for a nonaqueous electrolyte battery according to a comparative example. The above for the first embodiment member having the same function as the description is omitted, also omitted also the description for those is the first embodiment and the same length and width (L 4, etc.) I do. As shown in FIG. 19, the width L 6 of the positive electrode active material non-applied portion 14a of the positive electrode 5 is shortened to 6 mm (in this case, the positive electrode active material non-applied portion 14a is almost covered by the positive electrode lead 7; The non-aqueous electrolyte battery according to the first embodiment has the same configuration as that of the non-aqueous electrolyte battery of the first embodiment except that the positive electrode active material non-coated portion 14c is not formed together with the active material non-coated portion. Since the positive electrode 5 and the negative electrode 6 have the same configuration on both surfaces, drawings and description of the other surface are omitted. Here, with the fact that a shorter width L 6 of the positive electrode active material uncoated portion 14a of the positive electrode 5, the length L 4 of the positive electrode 5 with a 223 mm, the length L 12 of the negative electrode 6 was set to 325 mm. [Experiment 1] In the batteries A1 to A4 of the present invention and the comparative battery X, the volume energy density and the weight energy density were examined, and the capacity recovery rate after the battery was charged under the following conditions and further stored at 60 ° C. for 20 days. The results are shown in Table 1. The capacity recovery rate is calculated by the following equation (1). The charge / discharge conditions for calculating the capacity retention rate and the capacity recovery rate are as follows.
【0021】充電条件:定電流、定電圧充電であり、具
体的には、500mAの電流で電池電圧が4.1Vにな
った後、電流値が25mAに低下した時点で充電を終了
する。 放電条件:定電流放電であり、具体的には、500mA
の電流で電池電圧が2.75Vになった時点で放電を終
了する。Charging conditions: Constant current and constant voltage charging. More specifically, after the battery voltage reaches 4.1 V at a current of 500 mA, the charging is terminated when the current value drops to 25 mA. Discharge conditions: constant current discharge, specifically, 500 mA
When the battery voltage reaches 2.75 V with the current of 2, the discharge is terminated.
【0022】[0022]
【数1】 (Equation 1)
【0023】[0023]
【表1】 [Table 1]
【0024】表1から明らかなように、比較電池Xでは
体積エネルギー密度が188Wh/L、重量エネルギー
密度が110Wh/kg、容量回復率が83%であるの
に対して、本発明電池A1〜A4では体積エネルギー密
度が207Wh/L以上、重量エネルギー密度が117
Wh/kg以上、容量回復率が84%以上であり、全て
比較電池Xに比べて優れることが認められる。特に、正
負両極に活物質未塗布部を設けた本発明電池A3では、
体積エネルギー密度が237Wh/L、重量エネルギー
密度が133Wh/kg、容量回復率が89%で、極め
て優れていることが認められる。As apparent from Table 1, the comparative battery X has a volume energy density of 188 Wh / L, a weight energy density of 110 Wh / kg, and a capacity recovery rate of 83%, whereas the batteries A1 to A4 of the present invention have a volume energy density of 110 Wh / kg and a capacity recovery rate of 83%. Has a volume energy density of 207 Wh / L or more and a weight energy density of 117
Wh / kg or more, the capacity recovery rate was 84% or more, and it was recognized that all were superior to Comparative Battery X. In particular, in the battery A3 of the present invention in which the active material-uncoated portions are provided on both the positive and negative electrodes,
The volume energy density is 237 Wh / L, the weight energy density is 133 Wh / kg, and the capacity recovery rate is 89%.
【0025】また、上記表1には示していないが、上記
本発明電池A1〜A4及び比較電池Xのサイクル特性を
調べたところ、本発明電池A1〜A4は比較電池Xに比
べて充放電サイクル終了後の電池の膨れが格段に小さく
なっていることを実験により確認した。Although not shown in Table 1, when the cycle characteristics of the batteries A1 to A4 of the present invention and the comparative battery X were examined, the batteries A1 to A4 of the present invention showed a higher charge / discharge cycle than the comparative battery X. It was confirmed by an experiment that the swelling of the battery after completion was significantly reduced.
【0026】[0026]
【発明の効果】以上説明したように、本発明によれば、
発電要素(電池)の厚みが減少するので、電池の体積エ
ネルギー密度が増大し、しかも活物質未塗布部の存在に
より重量エネルギー密度が増大すると共に、充放電に関
与しない電極部分には活物質層が形成されていないの
で、放電容量の減少を抑制でき、しかも充放電サイクル
を繰り返した後の電池厚みの増大を抑制することができ
るといった優れた効果を奏する。As described above, according to the present invention,
Since the thickness of the power generating element (battery) is reduced, the volume energy density of the battery is increased, and the weight energy density is increased due to the presence of the uncoated portion of the active material. Is not formed, so that an excellent effect of suppressing a decrease in discharge capacity and suppressing an increase in battery thickness after repeated charge / discharge cycles can be achieved.
【図1】図1は第1の形態に係る非水電解質電池の正面
図である。FIG. 1 is a front view of a nonaqueous electrolyte battery according to a first embodiment.
【図2】図2は図1のA−A線矢視断面図である。FIG. 2 is a sectional view taken along line AA of FIG. 1;
【図3】図3は第1の形態に係る非水電解質電池に用い
るラミネート外装体の断面図である。FIG. 3 is a cross-sectional view of a laminate exterior body used for the nonaqueous electrolyte battery according to the first embodiment.
【図4】図4は第1の形態に係る非水電解質電池に用い
る正極の正面図である。FIG. 4 is a front view of a positive electrode used in the nonaqueous electrolyte battery according to the first embodiment.
【図5】図5は第1の形態に係る非水電解質電池に用い
る正極の背面図である。FIG. 5 is a rear view of a positive electrode used in the nonaqueous electrolyte battery according to the first embodiment.
【図6】図6は第1の形態に係る非水電解質電池に用い
る負極の正面図である。FIG. 6 is a front view of a negative electrode used in the nonaqueous electrolyte battery according to the first embodiment.
【図7】図7は第1の形態に係る非水電解質電池を作製
する際の工程説明図である。FIG. 7 is an explanatory diagram of a process when manufacturing the nonaqueous electrolyte battery according to the first embodiment.
【図8】図8は第1の形態に係る非水電解質電池に用い
る発電要素の斜視図である。FIG. 8 is a perspective view of a power generating element used in the nonaqueous electrolyte battery according to the first embodiment.
【図9】図9は第2の形態に係る非水電解質電池に用い
る正極の正面図である。FIG. 9 is a front view of a positive electrode used for a nonaqueous electrolyte battery according to a second embodiment.
【図10】図10は第2の形態に係る非水電解質電池に
用いる正極の背面図である。FIG. 10 is a rear view of a positive electrode used in the nonaqueous electrolyte battery according to the second embodiment.
【図11】図11は第2の形態に係る非水電解質電池に
用いる負極の正面図である。FIG. 11 is a front view of a negative electrode used in a nonaqueous electrolyte battery according to a second embodiment.
【図12】図12は第3の形態に係る非水電解質電池に
用いる正極の正面図である。FIG. 12 is a front view of a positive electrode used for a nonaqueous electrolyte battery according to a third embodiment.
【図13】図13は第3の形態に係る非水電解質電池に
用いる正極の背面図である。FIG. 13 is a rear view of the positive electrode used in the nonaqueous electrolyte battery according to the third embodiment.
【図14】図14は第3の形態に係る非水電解質電池に
用いる負極の正面図である。FIG. 14 is a front view of a negative electrode used for a nonaqueous electrolyte battery according to a third embodiment.
【図15】図15は第3の形態に係る非水電解質電池に
用いる負極の背面図である。FIG. 15 is a rear view of the negative electrode used in the nonaqueous electrolyte battery according to the third embodiment.
【図16】図16は第4の形態に係る非水電解質電池に
用いる正極の正面図である。FIG. 16 is a front view of a positive electrode used for a nonaqueous electrolyte battery according to a fourth embodiment.
【図17】図17は第4の形態に係る非水電解質電池に
用いる正極の背面図である。FIG. 17 is a rear view of the positive electrode used in the nonaqueous electrolyte battery according to the fourth embodiment.
【図18】図18は第4の形態に係る非水電解質電池に
用いる負極の正面図である。FIG. 18 is a front view of a negative electrode used for a nonaqueous electrolyte battery according to a fourth embodiment.
【図19】図19は比較例の非水電解質電池に用いる正
極の正面図である。FIG. 19 is a front view of a positive electrode used for a nonaqueous electrolyte battery of a comparative example.
【図20】図20は比較例の非水電解質電池に用いる負
極の正面図である。FIG. 20 is a front view of a negative electrode used for a nonaqueous electrolyte battery of a comparative example.
1:発電要素 2:収納空間 3:ラミネート外装体 5:正極 6:負極 7:正極タブ 8:負極タブ 9a:正極活物質層 9b:正極活物質層 10:正極芯体 14a:活物質未塗布部 14b:活物質未塗布部 14c:活物質未塗布部 20a:活物質未塗布部 17:負極芯体 21a:負極活物質層 21b:負極活物質層 1: Power generation element 2: Storage space 3: Laminated exterior body 5: Positive electrode 6: Negative electrode 7: Positive electrode tab 8: Negative electrode tab 9a: Positive electrode active material layer 9b: Positive electrode active material layer 10: Positive electrode core 14a: No active material applied Part 14b: Active material non-coated part 14c: Active material non-coated part 20a: Active material non-coated part 17: Negative electrode core 21a: Negative electrode active material layer 21b: Negative electrode active material layer
Claims (6)
形成された正極と、帯状の負極芯体の両面に負極活物質
層が形成された負極とが、セパレータを介して巻回され
た偏平渦巻き状の発電要素を有すると共に、この発電要
素が、僅かな電池内圧の上昇によって変形する外装体内
に収納され、しかも上記正極からは正極タブが、上記負
極からは負極タブが、それぞれ上記両芯体の長手方向と
略垂直に延設され、且つ上記両タブが所定の間隔で配置
される構造の非水電解質電池において、 上記両極のうち少なくとも一方の極における少なくとも
一方の面には、上記両タブ間の距離以上の活物質未塗布
部が形成されていることを特徴とする非水電解質電池。1. A positive electrode having a positive electrode active material layer formed on both sides of a belt-shaped positive electrode core and a negative electrode having a negative electrode active material layer formed on both surfaces of a band-shaped negative electrode core are wound via a separator. A flat spiral-shaped power generating element is provided, and the power generating element is housed in an outer casing that is deformed by a slight increase in battery internal pressure, and a positive electrode tab is formed from the positive electrode, and a negative electrode tab is formed from the negative electrode. In a non-aqueous electrolyte battery having a structure extending substantially perpendicular to the longitudinal direction of the two cores and having the two tabs arranged at a predetermined interval, at least one surface of at least one of the two electrodes has A non-aqueous electrolyte battery, wherein an active material non-applied portion that is longer than the distance between the two tabs is formed.
々設けられている、請求項1記載の非水電解質電池。2. The non-aqueous electrolyte battery according to claim 1, wherein said tabs are respectively provided at winding start ends of said electrodes.
タブ間の距離の2倍以上となるように構成される、請求
項1又は2記載の非水電解質電池。3. The non-aqueous electrolyte battery according to claim 1, wherein the length of the uncoated portion of the active material layer is at least twice the distance between the tabs.
2又は3記載の非水電解質電池。4. The power generation element according to claim 1, wherein the power generation element is thin.
4. The non-aqueous electrolyte battery according to 2 or 3.
ンを可逆的に吸蔵,放出可能な材料から成る、請求項
1、2、3又は4記載の非水電解質電池。5. The non-aqueous electrolyte battery according to claim 1, wherein said both active material layers are made of a material capable of reversibly occluding and releasing lithium ions.
用いられる、請求項1、2、3、4又は5記載の非水電
解質電池。6. The non-aqueous electrolyte battery according to claim 1, wherein graphite is used as the negative electrode active material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06799198A JP4245205B2 (en) | 1998-03-18 | 1998-03-18 | Non-aqueous electrolyte battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06799198A JP4245205B2 (en) | 1998-03-18 | 1998-03-18 | Non-aqueous electrolyte battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11265732A true JPH11265732A (en) | 1999-09-28 |
JP4245205B2 JP4245205B2 (en) | 2009-03-25 |
Family
ID=13360954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06799198A Expired - Lifetime JP4245205B2 (en) | 1998-03-18 | 1998-03-18 | Non-aqueous electrolyte battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4245205B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11329408A (en) * | 1998-05-13 | 1999-11-30 | Fuji Film Celltec Kk | Nonaqueous secondary battery electrode sheet and nonaqueous secondary battery using this |
JP2001176460A (en) * | 1999-12-17 | 2001-06-29 | Dainippon Printing Co Ltd | Packaging material for polymer battery |
JP2001313009A (en) * | 2000-02-24 | 2001-11-09 | Sanyo Electric Co Ltd | Sealed battery with convection promoting film |
US6387562B1 (en) * | 1998-10-30 | 2002-05-14 | Sony Corporation | Non-aqueous electrolyte cell comprising electrode terminal leads attached to the innermost end of a wound electrode assembly |
US6797429B1 (en) | 1998-11-06 | 2004-09-28 | Japan Storage Battery Co, Ltd. | Non-aqueous electrolytic secondary cell |
JP2005071865A (en) * | 2003-08-26 | 2005-03-17 | Sony Corp | Non-aqueous electrolyte secondary battery |
JP2005209529A (en) * | 2004-01-23 | 2005-08-04 | Toshiba Corp | Nonaqueous electrolyte secondary battery |
JP2005209530A (en) * | 2004-01-23 | 2005-08-04 | Toshiba Corp | Nonaqueous electrolyte secondary battery |
JP2005209531A (en) * | 2004-01-23 | 2005-08-04 | Toshiba Corp | Non-aqueous electrolyte secondary battery |
CN109802187A (en) * | 2019-03-07 | 2019-05-24 | 安普瑞斯(无锡)有限公司 | A kind of coiled battery |
CN113039662A (en) * | 2018-12-19 | 2021-06-25 | 三洋电机株式会社 | Electrode plate for secondary battery and secondary battery using the same |
CN113169428A (en) * | 2018-12-27 | 2021-07-23 | 三洋电机株式会社 | Secondary battery |
CN115173000A (en) * | 2022-06-28 | 2022-10-11 | 江苏正力新能电池技术有限公司 | Electrode assembly, preparation method of electrode assembly, battery and battery module |
-
1998
- 1998-03-18 JP JP06799198A patent/JP4245205B2/en not_active Expired - Lifetime
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11329408A (en) * | 1998-05-13 | 1999-11-30 | Fuji Film Celltec Kk | Nonaqueous secondary battery electrode sheet and nonaqueous secondary battery using this |
US6706080B2 (en) | 1998-10-30 | 2004-03-16 | Sony Corporation | Non-aqueous electrolyte cell and manufacturing method therefor |
US7157179B2 (en) | 1998-10-30 | 2007-01-02 | Sony Corporation | Non-aqueous electrolyte cell and manufacturing method therefor |
US6387562B1 (en) * | 1998-10-30 | 2002-05-14 | Sony Corporation | Non-aqueous electrolyte cell comprising electrode terminal leads attached to the innermost end of a wound electrode assembly |
US7348099B2 (en) | 1998-11-06 | 2008-03-25 | Gs Yuasa Corporation | Nonaqueous secondary electrolytic battery |
US6797429B1 (en) | 1998-11-06 | 2004-09-28 | Japan Storage Battery Co, Ltd. | Non-aqueous electrolytic secondary cell |
US7267904B2 (en) | 1998-11-06 | 2007-09-11 | Gs Yuasa Corporation | Nonaqueous secondary electrolytic battery |
JP2001176460A (en) * | 1999-12-17 | 2001-06-29 | Dainippon Printing Co Ltd | Packaging material for polymer battery |
JP2001313009A (en) * | 2000-02-24 | 2001-11-09 | Sanyo Electric Co Ltd | Sealed battery with convection promoting film |
JP2005071865A (en) * | 2003-08-26 | 2005-03-17 | Sony Corp | Non-aqueous electrolyte secondary battery |
JP2005209530A (en) * | 2004-01-23 | 2005-08-04 | Toshiba Corp | Nonaqueous electrolyte secondary battery |
JP2005209531A (en) * | 2004-01-23 | 2005-08-04 | Toshiba Corp | Non-aqueous electrolyte secondary battery |
JP2005209529A (en) * | 2004-01-23 | 2005-08-04 | Toshiba Corp | Nonaqueous electrolyte secondary battery |
CN113039662A (en) * | 2018-12-19 | 2021-06-25 | 三洋电机株式会社 | Electrode plate for secondary battery and secondary battery using the same |
CN113039662B (en) * | 2018-12-19 | 2023-05-05 | 三洋电机株式会社 | Electrode plate for secondary battery and secondary battery using the same |
CN113169428A (en) * | 2018-12-27 | 2021-07-23 | 三洋电机株式会社 | Secondary battery |
CN113169428B (en) * | 2018-12-27 | 2023-03-28 | 三洋电机株式会社 | Secondary battery |
CN109802187A (en) * | 2019-03-07 | 2019-05-24 | 安普瑞斯(无锡)有限公司 | A kind of coiled battery |
CN115173000A (en) * | 2022-06-28 | 2022-10-11 | 江苏正力新能电池技术有限公司 | Electrode assembly, preparation method of electrode assembly, battery and battery module |
Also Published As
Publication number | Publication date |
---|---|
JP4245205B2 (en) | 2009-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100515572B1 (en) | Stacked electrochemical cell and method for preparing the same | |
JP3547952B2 (en) | Lithium secondary battery | |
JP2001176497A (en) | Nonaqueous electrolyte secondary battery | |
EP3067958A1 (en) | Electrode assembly and secondary battery having the electrode assembly | |
KR20140091480A (en) | Energy storage device, energy storage system, and method | |
KR20060059716A (en) | Lithium secondary battery | |
JP3338071B2 (en) | Battery | |
WO2021192289A1 (en) | Current collector, power storage element, and power storage module | |
CN111801829B (en) | Secondary battery, battery module, vehicle, and flying body | |
US6258487B1 (en) | Lithium secondary battery including a divided electrode base layer | |
JP4245205B2 (en) | Non-aqueous electrolyte battery | |
JP2001283927A (en) | Nonaqueous secondary battery and its manufacturing method | |
JP3033563B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2001155779A (en) | Nonaqueous electrolyte battery | |
JPH11307081A (en) | Lithium ion secondary battery and method of manufacturing the same | |
JP3119259B2 (en) | Non-aqueous electrolyte secondary battery | |
JP6070691B2 (en) | Nonaqueous electrolyte secondary battery | |
JPH0574496A (en) | Secondary battery | |
JP4360022B2 (en) | Li-ion battery electrode material and Li-ion battery | |
JP2002298827A (en) | Nonaqueous secondary battery | |
JP3343097B2 (en) | Prismatic non-aqueous electrolyte secondary battery | |
JP2020077492A (en) | Nonaqueous electrolyte secondary battery | |
JP4297711B2 (en) | Electrochemical element | |
CN112335091B (en) | Lithium ion secondary battery | |
JPH0855637A (en) | Nonaqueous electrolytic secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040802 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080507 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080630 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080819 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080918 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20081024 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081209 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090106 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120116 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130116 Year of fee payment: 4 |
|
EXPY | Cancellation because of completion of term |