[go: up one dir, main page]

JPH11265717A - Spinel type lithium manganese oxide for secondary battery and its manufacture - Google Patents

Spinel type lithium manganese oxide for secondary battery and its manufacture

Info

Publication number
JPH11265717A
JPH11265717A JP10068544A JP6854498A JPH11265717A JP H11265717 A JPH11265717 A JP H11265717A JP 10068544 A JP10068544 A JP 10068544A JP 6854498 A JP6854498 A JP 6854498A JP H11265717 A JPH11265717 A JP H11265717A
Authority
JP
Japan
Prior art keywords
manganese oxide
nitrate
lithium manganese
aqueous solution
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10068544A
Other languages
Japanese (ja)
Inventor
Takeshi Tonomura
毅 外村
Hisashi Takahashi
恒 高橋
Hiroki Hashiba
裕樹 橋場
Takumi Murai
匠 村井
Masaya Ootani
賢哉 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP10068544A priority Critical patent/JPH11265717A/en
Publication of JPH11265717A publication Critical patent/JPH11265717A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide lithium manganese oxide for secondary battery superior in both of a capacity maintaining rate and high temperature characteristics without largely deteriorating the initial discharge capacity. SOLUTION: This lithium manganese oxide for secondary battery is expresses by a formula LiMnx-y My O4 (where, (x) is 1.8 to 2.1, (y) is 0.01 to 0.1, and M is transition metal except A1 or Mn). A peak intensity ratio in X-ray diffraction is a 311 face <400 face and a lattice constant is 8.200 to 8.250. The metal is any at least one kind selected among Fe, Cr and Al.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、リチウム二次電池
用正極材に用いて有利なスピネル型リチウムマンガン酸
化物とその合成法についての提案である。
The present invention relates to a spinel-type lithium manganese oxide which is advantageous for use as a positive electrode material for a lithium secondary battery and a method for synthesizing the same.

【0002】[0002]

【従来の技術】リチウムマンガン酸化物は、資源量が豊
富で価格面からも有利なマンガン化合物を原料とするの
で、高電圧・高エネルギー密度型のリチウム二次電池用
正極材であるLiCoO2の代替材料として、最近注目を浴び
ている。
2. Description of the Related Art Lithium manganese oxide is made from a manganese compound, which has abundant resources and is advantageous in terms of price, so that LiCoO 2 , which is a positive electrode material for lithium secondary batteries of high voltage and high energy density, is used. As an alternative material, it has recently attracted attention.

【0003】従来、リチウムマンガン酸化物は、リチウ
ム塩とマンガン塩,例えば炭酸リチウムとMn2O3 や炭酸
リチウムと炭酸マンガンを、1:2の原子比で乾式混合
し、得られた混合粉を酸化性雰囲気中で焼成することに
より合成されていた。しかし、このようにしてリチウム
マンガン酸化物を製造する従来のプロセスでは、以下に
示す課題があり、かかるプロセスによって得られるリチ
ウムマンガン酸化物は、二次電池の正極材として充分な
充放電サイクル特性を有するものではなかった。「上記
の乾式混合は、固体−固体混合であり原子あるいは分子
レベルのミクロ的な均一混合が不可能であるため、この
方法によって得られたリチウムマンガン酸化物の結晶構
造は欠陥が生じやすい。」
Conventionally, a lithium manganese oxide has been dry-mixed with a lithium salt and a manganese salt, for example, lithium carbonate and Mn 2 O 3 or lithium carbonate and manganese carbonate at an atomic ratio of 1: 2, and the resulting mixed powder is obtained. It was synthesized by firing in an oxidizing atmosphere. However, the conventional process for producing a lithium manganese oxide in this way has the following problems, and the lithium manganese oxide obtained by such a process has sufficient charge / discharge cycle characteristics as a cathode material of a secondary battery. Did not have. "Since the above-mentioned dry mixing is a solid-solid mixing and it is impossible to perform microscopic uniform mixing at the atomic or molecular level, the crystal structure of the lithium manganese oxide obtained by this method tends to have defects."

【0004】そこで発明者らは、従来のリチウムマンガ
ン酸化物が有する上記課題を解消すべく、先に特開平8
−208231公報に記載された発明を提案した。この提案の
方法は、水溶性リチウム塩、硝酸マンガン(Mn(NO3)2
に水を添加し、ついで、得られた混合水溶液に、金属イ
オンを含まない水溶性高分子をカチオン担持体として添
加し、その後、前記混合水溶液の水分を加熱除去してス
ピネル型リチウムマンガン酸化物を製造する方法であ
る。
[0004] In order to solve the above-mentioned problems of the conventional lithium manganese oxide, the present inventors first disclosed in Japanese Patent Laid-Open No.
The invention described in -208231 was proposed. The proposed method uses a water-soluble lithium salt, manganese nitrate (Mn (NO 3 ) 2 )
To the resulting mixed aqueous solution, a water-soluble polymer containing no metal ions is added as a cation carrier, and then the water content of the mixed aqueous solution is removed by heating to obtain a spinel-type lithium manganese oxide. It is a method of manufacturing.

【0005】この方法によれば、確かに、従来よりも低
温度でスピネル型リチウムマンガン酸化物の合成が可能
となり、しかも、結晶性スピネル型リチウムマンガン酸
化物を欠陥を生じることなく安定して製造することがで
きる。したがって、得られたスピネル型リチウムマンガ
ン酸化物は、充分な充放電サイクル特性を有するリチウ
ム二次電池用正極材やリチウム吸着材用母材等として利
用することができる。
According to this method, it is possible to synthesize a spinel-type lithium manganese oxide at a lower temperature than before, and to produce a crystalline spinel-type lithium manganese oxide stably without causing defects. can do. Therefore, the obtained spinel-type lithium manganese oxide can be used as a cathode material for a lithium secondary battery, a base material for a lithium adsorbent, or the like having sufficient charge / discharge cycle characteristics.

【0006】しかしながら、上記方法によって得られる
リチウムマンガン酸化物は、電池の正極材とした場合
に、初期放電容量が 130 mAh/gと容量が高くサイクル
特性の優れた正極材が得られるものの、高温時のサイク
ル特性が十分ではなかった。そのため、最近では、高温
特性に優れたスピネル型リチウムマンガン酸化物の開発
が求められている。
[0006] However, when the lithium manganese oxide obtained by the above method is used as a cathode material of a battery, a cathode material having an initial discharge capacity of 130 mAh / g and a high capacity and excellent cycle characteristics can be obtained. The cycle characteristics at the time were not enough. Therefore, recently, development of a spinel-type lithium manganese oxide having excellent high-temperature characteristics has been demanded.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記要求に
応えるためになされたものであり、その主たる目的は、
初期放電容量を大きく低下させることなく、高温特性が
優れた二次電池用リチウムマンガン酸化物を提供するこ
とにある。
SUMMARY OF THE INVENTION The present invention has been made to meet the above-mentioned demands, and its main objects are as follows.
An object of the present invention is to provide a lithium manganese oxide for a secondary battery having excellent high-temperature characteristics without significantly lowering the initial discharge capacity.

【0008】[0008]

【課題を解決するための手段】発明者らは、上記目的の
実現に向け鋭意研究した結果、リチウムマンガン酸化物
中に、Mnよりも格子エネルギーの高い(結晶格子を安定
化させる力が強い)元素、即ち、Al,あるいはMn以外の
遷移金属を微量添加配位させることによって、初期放電
容量を大きく低下させることなく容量維持率と高温サイ
クル特性を共に向上させることができることを見出し、
以下の内容を要旨構成とする発明に想到した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies for realizing the above-mentioned object, and as a result, have a higher lattice energy in lithium manganese oxide than Mn (a strong force for stabilizing the crystal lattice). It has been found that by coordinating a small amount of an element, that is, a transition metal other than Al or Mn, it is possible to improve both the capacity retention ratio and the high-temperature cycle characteristics without greatly reducing the initial discharge capacity.
The present invention has been conceived of the invention having the following contents as its gist.

【0009】即ち、本発明の二次電池用スピネル型リチ
ウムマンガン酸化物は、下記一般式からなる二次電池用
スピネル型リチウムマンガン酸化物であって、X線回析
におけるピーク強度比が311面<400面であり、か
つ格子定数が 8.200〜8.250Åであることを特徴とす
る。 一般式:LiMnx-y y 4 x:1.8 〜2.1 y:0.01〜0.1 M:Al、あるいはMn以外の遷移金属 なお、上記金属Mは、Fe、CrおよびAlの中から選
ばれるいずれか少なくとも1種であることが好ましい。
That is, the spinel-type lithium manganese oxide for a secondary battery of the present invention is a spinel-type lithium manganese oxide for a secondary battery represented by the following general formula, and has a peak intensity ratio in X-ray diffraction of 311 planes. <400 planes and a lattice constant of 8.200 to 8.250 °. General formula: LiMn xy M y O 4 x : 1.8 ~2.1 y: 0.01~0.1 M: Al or a transition metal other than Mn Incidentally, the metal M is either at least one member selected from among Fe, Cr and Al, Preferably it is a seed.

【0010】また本発明は、上記スピネル型リチウムマ
ンガン酸化物の製造方法として、水溶性リチウム塩水溶
液、硝酸マンガン(Mn(NO3)2)水溶液と、アルミニウム
の硝酸塩水溶液またはマンガンを除く遷移金属の硝酸塩
水溶液を混合し、ついで、得られた混合水溶液に、金属
イオンを含まない水溶性高分子をカチオン担持体として
添加し、その後、前記混合水溶液の水分を加熱除去し、
反応させることを特徴とする方法を提案する。なお、上
記アルミニウムの硝酸塩水溶液またはマンガンを除く遷
移金属の硝酸塩水溶液は、その金属の量が、上記硝酸マ
ンガン水溶液のMn純分に対して 0.5〜5.5mol%であるこ
とが好ましく、上記アルミニウムの硝酸塩水溶液または
マンガンを除く遷移金属の硝酸塩水溶液としては、Fe,
CrおよびAlの中から選ばれるいずれか少なくとも1種の
硝酸塩水溶液を用いることが好ましい。
The present invention also provides a method for producing the above spinel-type lithium manganese oxide, which comprises an aqueous solution of a water-soluble lithium salt, an aqueous solution of manganese nitrate (Mn (NO 3 ) 2 ), an aqueous solution of aluminum nitrate or a transition metal other than manganese. A nitrate aqueous solution is mixed, and then, to the obtained mixed aqueous solution, a water-soluble polymer containing no metal ion is added as a cation carrier, and thereafter, the water content of the mixed aqueous solution is removed by heating.
A method characterized by reacting is proposed. The aqueous aluminum nitrate solution or the aqueous transition metal nitrate solution excluding manganese preferably has an amount of metal of 0.5 to 5.5 mol% with respect to the pure Mn content of the aqueous manganese nitrate solution. As an aqueous solution or an aqueous solution of a nitrate of a transition metal excluding manganese, Fe,
It is preferable to use at least one kind of aqueous solution of nitrate selected from Cr and Al.

【0011】[0011]

【発明の実施の形態】本発明の二次電池用リチウムマン
ガン酸化物は、該リチウムマンガン酸化物の結晶構造中
に、アルミニウム、あるいはマンガンを除く遷移金属の
特定量を均一に配位させることにより、その結晶構造を
更に安定化させた点に特徴がある。具体的には、一般
式:LiMnx-y y 4 (x:1.8 〜2.1 、y:0.01
〜0.1 、M;Al、あるいはMn以外の遷移金属)からなる
構造を有し、X線回析におけるピーク強度比が311面
<400面であり、かつ格子定数が 8.200〜8.250 Åで
ある。
BEST MODE FOR CARRYING OUT THE INVENTION The lithium manganese oxide for a secondary battery according to the present invention is obtained by uniformly coordinating a specific amount of a transition metal other than aluminum or manganese in the crystal structure of the lithium manganese oxide. It is characterized in that its crystal structure is further stabilized. Specifically, the general formula: LiMn xy M y O 4 ( x: 1.8 ~2.1, y: 0.01
, 0.1; M; a transition metal other than Al or Mn), the peak intensity ratio in X-ray diffraction is 311 <400, and the lattice constant is 8.200 to 8.250 °.

【0012】このような本発明のリチウムマンガン酸化
物によれば、 .ピーク強度比が311面<400面であることによ
り、リチウムとマンガンおよびそれ以外の金属はスピネ
ル格子が欠陥なく配位され、 .しかも、格子定数が 8.200〜8.250 Åの範囲内にあ
ることにより、リチウムとマンガン以外の元素が添加配
位されていても、リチウムマンガンスピネル構造の基本
的な格子定数(8.240 Å)と極めて近似した値の定数を
もつので、基本的な格子欠陥がなく、 .さらに、添加元素Mを、Mnx (x:1.8 〜2.1 )
に対して0.01〜0.1 の割合で配位させたことにより、こ
のような構造のリチウムマンガン酸化物を二次電池の正
極材として利用すると、初期放電容量を大きく低下させ
ることなく容量維持率および高温安定性を向上させるこ
とができる。即ち、従来のリチウムマンガン酸化物は、
Li, Mn以外の元素を配位させると、リチウム電極材とし
ての初期放電容量が大きく低下すると一般的にいわれて
いたが、本発明のリチウムマンガン酸化物によれば、初
期放電容量を大きく低下させることなく容量維持率およ
び高温特性を改善することができるのである。
According to the lithium manganese oxide of the present invention, When the peak intensity ratio is 311 plane <400 plane, lithium and manganese and other metals are coordinated without defects in the spinel lattice, and. In addition, since the lattice constant is within the range of 8.200 to 8.250 て も, even if elements other than lithium and manganese are added and coordinated, the lattice constant is very close to the basic lattice constant of the lithium manganese spinel structure (8.240Å). Since it has a constant value, there are no basic lattice defects. In addition, the added element M, Mn x (x: 1.8 ~2.1)
When the lithium manganese oxide having such a structure is used as a positive electrode material of a secondary battery, the capacity retention ratio and the high temperature can be reduced without significantly lowering the initial discharge capacity. Stability can be improved. That is, the conventional lithium manganese oxide is
It was generally said that the coordination of elements other than Li and Mn greatly reduced the initial discharge capacity as a lithium electrode material.However, according to the lithium manganese oxide of the present invention, the initial discharge capacity was greatly reduced. Thus, the capacity retention and the high-temperature characteristics can be improved without the need.

【0013】このような本発明のリチウムマンガン酸化
物において、上記Mnを除く遷移金属としては、Coや
Mo等の遷移金属であればいかなるものであってもよ
い。特に本発明では、Fe、CrおよびAlの中から選
ばれるいずれか少なくとも1種は、置換するMnとほぼ
イオン半径が同じ元素であり、上記格子定数の範囲とす
るのに好ましく、また後述する製造方法において3価の
硝酸塩を安定した形態でとりうることから、選択元素と
して最も適している。
In the lithium manganese oxide of the present invention, any transition metal other than Mn may be used as long as it is a transition metal such as Co or Mo. In particular, in the present invention, at least one selected from Fe, Cr and Al is an element having substantially the same ionic radius as that of Mn to be substituted, and is preferably in the range of the above-mentioned lattice constant. The method is most suitable as the selected element because the method can take trivalent nitrate in a stable form.

【0014】また本発明において、上記添加元素Mを、
Mnx (x:1.8 〜2.1 )に対して0.01〜0.1 の割合で
置換するのは、0.01未満だと容量維持率および高温特性
の改善が見られず、一方、0.1 を超えると初期放電容量
の低下が大きいため実用的でないからである。
In the present invention, the additive element M is
Mn x: is to replace a proportion of 0.01 to 0.1 with respect to (x 1.8 to 2.1), it showed no improvement in capacity retention ratio and high temperature properties that it is less than 0.01, whereas, the initial discharge capacity exceeding 0.1 This is because the reduction is so large that it is not practical.

【0015】本発明にかかるリチウムマンガン酸化物の
製造方法は、水溶性リチウム塩水溶液、硝酸マンガン
(Mn(NO3)2)水溶液と、アルミニウムの硝酸塩水溶液ま
たはマンガンを除く遷移金属の硝酸塩水溶液を混合し、
ついで、得られた混合水溶液に、金属イオンを含まない
水溶性高分子をカチオン担持体として添加し、その後、
前記混合水溶液の水分を好ましくは 100℃以上の温度に
て加熱除去し、反応させる点に特徴がある。
The method for producing a lithium manganese oxide according to the present invention comprises mixing an aqueous solution of a water-soluble lithium salt, an aqueous solution of manganese nitrate (Mn (NO 3 ) 2 ) and an aqueous solution of aluminum nitrate or an aqueous solution of a transition metal nitrate other than manganese. And
Then, to the obtained mixed aqueous solution, a water-soluble polymer containing no metal ion was added as a cation carrier, and then,
It is characterized in that the water content of the mixed aqueous solution is preferably removed by heating at a temperature of 100 ° C. or higher to cause a reaction.

【0016】これにより、混合水溶液中のLiイオン、Mn
イオンおよびそれ以外の金属イオンは共に、水分の蒸発
に伴い、カチオン担持体に固定されて反応しやすい均一
な状態となる。一方で、硝酸イオンは、カチオン担持体
と加熱反応してニトロ化合物を生成する。その結果、上
記加熱を続けると、上記ニトロ化合物が分解燃焼し、そ
の熱エネルギーによってLiイオン、Mnイオンおよびそれ
以外の金属イオンが反応し、Li,Mn以外の金属が規則た
だしく配位した結晶性スピネル型リチウムマンガン酸化
物を容易に合成することが可能になる。なお、本発明で
は、Li,Mn以外の元素置換による初期放電容量の低下を
微量添加によって抑制しているが、上述の如き特殊な液
相合成方法を採用しているので、微量な置換量でも均一
に配位され、結晶安定化の効果が大きくなる。
Thus, Li ions and Mn in the mixed aqueous solution
Both the ions and the other metal ions are fixed to the cation carrier as water evaporates, resulting in a uniform state in which the ions easily react. On the other hand, nitrate ions react with the cation carrier by heating to generate nitro compounds. As a result, if the heating is continued, the nitro compound decomposes and burns, and its thermal energy causes the reaction of Li ions, Mn ions and other metal ions, and the crystallinity in which metals other than Li and Mn are regularly coordinated. Spinel-type lithium manganese oxide can be easily synthesized. In the present invention, the decrease in the initial discharge capacity due to the substitution of elements other than Li and Mn is suppressed by adding a small amount. However, since a special liquid phase synthesis method as described above is employed, even a small amount of substitution is required. Coordination is uniform, and the effect of crystal stabilization is increased.

【0017】なお、上記加熱の温度は、100 ℃未満で
は、ニトロ化合物の分解・燃焼が起こらず、リチウムマ
ンガン酸化物を合成することができないので、 100℃以
上とすることが望ましい。
If the heating temperature is lower than 100 ° C., decomposition and combustion of the nitro compound do not occur, and lithium manganese oxide cannot be synthesized.

【0018】このような本発明の方法において、水溶性
リチウム塩としては、硝酸リチウムや硫酸リチウム、塩
化リチウムなどを用いることができ、好ましくは、硝酸
リチウム(LiNO3 )を用いる。この理由は、硝酸イオン
は、低温で分解するために他のアニオン(硫酸イオン、
塩素イオンなど)と比較して除去が容易であり、焼成品
中に残らないためである。
In the method of the present invention, lithium nitrate, lithium sulfate, lithium chloride and the like can be used as the water-soluble lithium salt, and lithium nitrate (LiNO 3 ) is preferably used. The reason for this is that nitrate ions are decomposed at low temperatures, causing other anions (sulfate,
(E.g., chlorine ions), because they are easier to remove and do not remain in the fired product.

【0019】本発明の方法において、Mn源として硝酸マ
ンガン(Mn(NO3)2)を用いる必要があるのは、硝酸マン
ガンの硝酸イオンが、カチオン担持体である水溶性高分
子と反応して、容易にニトロ化合物を生成するからであ
る。
In the method of the present invention, it is necessary to use manganese nitrate (Mn (NO 3 ) 2 ) as a Mn source because nitrate ions of manganese nitrate react with a water-soluble polymer as a cation carrier. This is because a nitro compound is easily generated.

【0020】本発明の方法において、アルミニウム、あ
るいはマンガン以外の遷移金属として、それらの硝酸塩
水溶液を用いる理由は、上記リチウム塩またはマンガン
塩と均一混合させるためであり、場合によっては硫酸塩
や塩酸の形態の金属塩、例えば硫酸コバルトのような塩
であってもよいが、好ましくは3価の金属硝酸塩がよ
い。特に本発明では、このような3価の形態をとる金属
として、Mnと格子定数のほぼ同様なFe、Crおよび
Alの中から選ばれるいずれか少なくとも1種を用いる
ことが好ましい。
In the method of the present invention, the reason why an aqueous nitrate solution thereof is used as a transition metal other than aluminum or manganese is to uniformly mix with the above-mentioned lithium salt or manganese salt. It may be in the form of a metal salt, for example a salt such as cobalt sulfate, but preferably a trivalent metal nitrate. In particular, in the present invention, it is preferable to use at least one selected from Fe, Cr and Al having substantially the same lattice constant as Mn as such a trivalent metal.

【0021】本発明の方法において、上記アルミニウム
の硝酸塩水溶液またはマンガンを除く遷移金属の硝酸塩
水溶液は、その金属の量が、上記硝酸マンガン水溶液の
Mn純分に対して 0.5〜5.5mol%であることが望ましい。
この理由は、0.5mol%未満では容量維持率および高温特
性の改善が見られず、一方、5.5mol%を超えると初期放
電容量の低下が大きいからである。
In the method of the present invention, the aqueous solution of aluminum nitrate or the aqueous solution of nitrate of a transition metal other than manganese is used when the amount of the metal is less than that of the aqueous solution of manganese nitrate.
It is desirable that the content is 0.5 to 5.5 mol% based on the pure Mn content.
The reason for this is that when less than 0.5 mol%, the capacity retention ratio and the high temperature characteristics are not improved, while when it exceeds 5.5 mol%, the initial discharge capacity is greatly reduced.

【0022】本発明の方法において、カチオン担持体を
用いる理由は、カチオン担持体を添加しないと、加熱に
よる混合水溶液中の水分蒸発に伴って、溶解度の差によ
りLi塩と硝酸マンガンが分離析出してしまうからであ
る。このカチオン担持体は、LiイオンやMnイオン等の金
属イオンを担持・固定する機能を有する物質であり、金
属イオンを含まない水溶性高分子であればよく、例え
ば、小麦デンプンなどのデンプン質、マンナン(こんに
ゃく等)、アガー(寒天)などの海藻類、トロロアオイ
やアラビアゴムなどの植物粘質物、デキストランなどの
微生物による粘質物、にかわやゼラチンなどのタンパク
質に代表される天然高分子、ビスコースやメチルセルロ
ース(MC)などのセルロース系、可溶性デンプンやジ
アルデヒドデンプンなどのデンプン系に代表される半合
成品、およびポリビニルアルコール(PVA)などに代
表される合成品がある。なかでも、ニトロ化しやすい有
機物でOH基を有する,例えば、PVAやMC、アガーな
どから選ばれるいずれか1種以上を用いることが好まし
い。なお、金属イオンを含まない水溶性高分子を用いる
理由は、カリウムやナトリウムなどの金属イオンが残留
すると、リチウムマンガン酸化物以外の他の化合物を合
成してしまうからである。
The reason for using a cation carrier in the method of the present invention is that, unless a cation carrier is added, Li salt and manganese nitrate are separated and precipitated due to a difference in solubility due to the evaporation of water in the mixed aqueous solution by heating. It is because. This cation carrier is a substance having a function of supporting and fixing metal ions such as Li ions and Mn ions, and may be any water-soluble polymer containing no metal ions, for example, starch such as wheat starch, Seaweeds such as mannan (konjac), agar (agar), plant mucilage such as trolley mallow and arabic gum, mucous microbes such as dextran, natural polymers represented by proteins such as glue and gelatin, viscose and There are cellulosic products such as methylcellulose (MC), semi-synthetic products such as starches such as soluble starch and dialdehyde starch, and synthetic products such as polyvinyl alcohol (PVA). Among them, it is preferable to use at least one selected from the group consisting of PVA, MC, agar and the like, which is an organic substance which is easily nitrated and has an OH group. The reason why a water-soluble polymer containing no metal ion is used is that if metal ions such as potassium and sodium remain, compounds other than lithium manganese oxide are synthesized.

【0023】本発明の方法において、結晶性スピネル型
リチウムマンガン酸化物は、以下のような反応機構で合
成されるものと考えられる。すなわち、 .まず、水溶性リチウム塩と硝酸マンガン(Mn(N
O3)2)の混合水溶液中のLiイオンとMnイオンが、加熱に
よる水分の蒸発に伴い、徐々にカチオン担持体に担持・
固定され、反応し易い均一な状態となる。 .一方で、混合水溶液中の硝酸イオンは、カチオン担
持体と加熱により反応してニトロ化合物を生成する。 .そして、上記のカチオンを担持したニトロ化合物
は、 100℃以上で加熱することにより分解・燃焼して発
熱し、この分解・燃焼による熱エネルギーによりLiイオ
ンとMnイオンが反応してリチウムマンガン酸化物を容易
に合成することができる。
In the method of the present invention, the crystalline spinel-type lithium manganese oxide is considered to be synthesized by the following reaction mechanism. That is,. First, a water-soluble lithium salt and manganese nitrate (Mn (N
The Li ions and Mn ions in the mixed aqueous solution of O 3 ) 2 ) gradually become supported on the cation carrier as water evaporates due to heating.
It is fixed and becomes a uniform state that is easy to react. . On the other hand, nitrate ions in the mixed aqueous solution react with the cation carrier by heating to generate a nitro compound. . The nitro compound carrying the above cations is decomposed and burned by heating at 100 ° C. or more to generate heat, and the heat energy from the decomposition and combustion causes Li ions and Mn ions to react to form lithium manganese oxide. It can be easily synthesized.

【0024】このようにして合成された本発明のスピネ
ル型リチウムマンガン酸化物は、その後さらに、 750℃
×5hrs 程度の条件で焼成し、完全なスピネル形態とし
たのち、粉砕し、二次電池用正極材として用いられる。
The spinel-type lithium manganese oxide of the present invention thus synthesized is then further heated to 750 ° C.
It is fired under conditions of about × 5 hrs to form a complete spinel form, and then pulverized, and used as a positive electrode material for a secondary battery.

【0025】[0025]

【実施例】(実施例1)LiMn2-y y 4 におい
て、置換元素M(Fe, Cr, Al)の置換量yがそれぞれ0.
05, 0.10になるように、まず、LiNO3 、Mn(NO3)2・6H2O
と、Fe、Cr、あるいはAlの3価硝酸塩(Fe(NO3)3・6H2O
,Cr(NO3)3・9H2O ,Al(NO3)3・9H2O)を混合し、混合水
溶液とした。次いで、この混合水溶液を加熱し、カチオ
ン担持体としてPVAを8g添加した。その後、加熱を
継続し、ある程度の水分を蒸発させた後、150 ℃の乾燥
器に移して反応させ、黒色粉末の反応物を得た。
EXAMPLES (Example 1) in LiMn 2-y M y O 4 , the substitution amount y of substituting element M (Fe, Cr, Al) are respectively 0.
First, LiNO 3 , Mn (NO 3 ) 2・ 6H 2 O
If, Fe, Cr or trivalent nitrate (Fe (NO 3 of Al,) 3 · 6H 2 O
, Cr (NO 3) 3 · 9H 2 O, Al a (NO 3) 3 · 9H 2 O) were mixed, and the mixed aqueous solution. Next, this mixed aqueous solution was heated, and 8 g of PVA was added as a cation carrier. Thereafter, the heating was continued to evaporate a certain amount of water, and the mixture was transferred to a dryer at 150 ° C. and reacted to obtain a reaction product as a black powder.

【0026】この黒色粉末の反応物を、 750℃×5hrs
焼成し、X線回折にて同定したところ、表1に示す成分
組成と格子定数を有する LiMn2O4スピネル単一相である
ことが確認できた。また、図1に示す上記反応物のX線
回折チャートから明らかなように、本発明のスピネル型
リチウムマンガン酸化物は、ピーク強度比が311面<
400面であることがわかる。
The reaction product of the black powder was heated at 750 ° C. for 5 hours.
When calcined and identified by X-ray diffraction, it was confirmed that it was a LiMn 2 O 4 spinel single phase having a component composition and a lattice constant shown in Table 1. In addition, as is clear from the X-ray diffraction chart of the reactant shown in FIG. 1, the spinel-type lithium manganese oxide of the present invention has a peak intensity ratio of 311 planes <
It can be seen that there are 400 surfaces.

【0027】(実施例2)実施例1で得られた表1に示
す物性を有するスピネル型リチウムマンガン酸化物の製
品粉末(焼成粉砕品)を、導電材およびバインダーと混
合し、混練した後シート化し、SUSメッシュで挟むこ
とにより、正極材とした。次いで、この正極材を3極式
ガラスセルに収納し、対極(参照極)にLi箔を用い、1
MのLiClO4を電解液として、充放電を繰り返した。な
お、この充放電の電圧は3〜4.4 Vとし、放電レートは
0.5Cとした。また、高温サイクル試験を、市販の密閉
型セルを用いて60℃で行った。
(Example 2) The product powder (calcined and crushed product) of the spinel-type lithium manganese oxide having the physical properties shown in Table 1 obtained in Example 1 was mixed with a conductive material and a binder, kneaded, and then sheeted. And sandwiched between SUS meshes to obtain a positive electrode material. Next, this positive electrode material was housed in a three-electrode glass cell, and Li foil was used as a counter electrode (reference electrode).
Charge and discharge were repeated using M LiClO 4 as an electrolyte. The charge / discharge voltage is 3 to 4.4 V, and the discharge rate is
0.5C. The high-temperature cycle test was performed at 60 ° C. using a commercially available closed cell.

【0028】その結果として、25℃での初期放電容量、
30回繰り返し後および 100回繰り返し後の放電容量を表
2に示す。この表に示す結果から明らかなように、比較
例(添加元素Fe、Cr、Alを添加しないこと以外は、実施
例と同様の方法にて製造したスピネル型リチウムマンガ
ン酸化物を用いた例)の容量維持率に比べ、容量維持率
が向上していることがわかる。なお、初期放電容量は、
比較例と比べて若干低いものもあるが同等であり、添加
物を添加すると容量が大きく低下すると従来いわれてい
たが、本発明においては、その容量の顕著な低下はみら
れなかった。また、高温特性として、60℃における放電
容量および容量維持率を測定した値を表2に併せて示
す。この表に示す結果から明らかなように、従来品に比
べ大きな改善が見られた。
As a result, the initial discharge capacity at 25 ° C.
Table 2 shows the discharge capacities after 30 and 100 repetitions. As is clear from the results shown in this table, the comparative example (an example using a spinel-type lithium manganese oxide manufactured by the same method as in the example except that the additional elements Fe, Cr, and Al were not added) was used. It can be seen that the capacity maintenance ratio is improved as compared with the capacity maintenance ratio. The initial discharge capacity is
Although there are some cases where the content is slightly lower than that of the comparative example, it is the same, and it has been conventionally said that the capacity is greatly reduced when the additive is added. However, in the present invention, the capacity was not significantly reduced. Table 2 also shows the measured values of the discharge capacity and the capacity retention at 60 ° C. as the high-temperature characteristics. As is clear from the results shown in this table, a significant improvement was observed as compared with the conventional product.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【発明の効果】以上説明したように本発明によれば、初
期放電容量を大きく低下させることなく、容量維持率と
高温特性が共に優れた二次電池用リチウムマンガン酸化
物を提供することができる。
As described above, according to the present invention, it is possible to provide a lithium manganese oxide for a secondary battery having both excellent capacity retention ratio and high temperature characteristics without significantly lowering the initial discharge capacity. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得られたスピネル型リチウムマンガ
ン酸化物(Cr 0.1置換)のX線回折チャートである。
FIG. 1 is an X-ray diffraction chart of a spinel-type lithium manganese oxide (substituted with Cr 0.1) obtained in Example 1.

フロントページの続き (72)発明者 村井 匠 富山県高岡市吉久1−1−1 日本重化学 工業株式会社高岡事業所内 (72)発明者 大谷 賢哉 富山県高岡市吉久1−1−1 日本重化学 工業株式会社高岡事業所内Continued on the front page (72) Inventor Takumi Murai 1-1-1 Yoshihisa, Takaoka City, Toyama Prefecture Nippon Heavy Chemical Industry Co., Ltd. Takaoka Office (72) Inventor Kenya 1-1-1 Yoshihisa, Takaoka City, Toyama Prefecture Nippon Heavy Chemical Industrial Co., Ltd. Inside Takaoka Office

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式からなる二次電池用スピネル
型リチウムマンガン酸化物であって、X線回析における
ピーク強度比が311面<400面であり、かつ格子定
数が 8.200〜8.250 Åであることを特徴とする二次電池
用スピネル型リチウムマンガン酸化物。 一般式:LiMnx-y y 4 x:1.8 〜2.1 y:0.01〜0.1 M:Al、あるいはMn以外の遷移金属
1. A spinel-type lithium manganese oxide for a secondary battery represented by the following general formula, wherein the peak intensity ratio in X-ray diffraction is 311 <400, and the lattice constant is 8.200 to 8.250 °. A spinel-type lithium manganese oxide for a secondary battery. General formula: LiMn xy M y O 4 x : 1.8 ~2.1 y: 0.01~0.1 M: Al or a transition metal other than Mn,
【請求項2】 上記金属Mは、Fe、CrおよびAlの
中から選ばれるいずれか少なくとも1種であることを特
徴とする請求項1に記載の二次電池用スピネル型リチウ
ムマンガン酸化物。
2. The spinel-type lithium manganese oxide for a secondary battery according to claim 1, wherein the metal M is at least one selected from the group consisting of Fe, Cr and Al.
【請求項3】 水溶性リチウム塩水溶液、硝酸マンガン
(Mn(NO3)2)水溶液と、アルミニウムの硝酸塩水溶液ま
たはマンガンを除く遷移金属の硝酸塩水溶液を混合し、
ついで、得られた混合水溶液に、金属イオンを含まない
水溶性高分子をカチオン担持体として添加し、その後、
前記混合水溶液の水分を加熱除去し、反応させることを
特徴とする二次電池用スピネル型リチウムマンガン酸化
物の製造方法。
3. An aqueous solution of a water-soluble lithium salt, an aqueous solution of manganese nitrate (Mn (NO 3 ) 2 ) and an aqueous solution of aluminum nitrate or an aqueous solution of a transition metal except for manganese are mixed.
Then, to the obtained mixed aqueous solution, a water-soluble polymer containing no metal ion was added as a cation carrier, and then,
A method for producing a spinel-type lithium manganese oxide for a secondary battery, wherein a water content of the mixed aqueous solution is removed by heating.
【請求項4】 上記アルミニウムの硝酸塩水溶液または
マンガンを除く遷移金属の硝酸塩水溶液は、その金属の
量が、上記硝酸マンガン水溶液のMn純分に対して 0.5〜
5.5mol%であることを特徴とする請求項3に記載の製造
方法。
4. The aqueous nitrate solution of aluminum or the aqueous nitrate solution of a transition metal other than manganese has a metal content of 0.5 to 0.5% based on the pure Mn content of the aqueous manganese nitrate solution.
The method according to claim 3, wherein the amount is 5.5 mol%.
【請求項5】 上記アルミニウムの硝酸塩水溶液または
マンガンを除く遷移金属の硝酸塩水溶液として、Fe,Cr
およびAlの中から選ばれるいずれか少なくとも1種の硝
酸塩水溶液を用いることを特徴とする請求項3または4
に記載の製造方法。
5. An aqueous nitrate solution of aluminum or an aqueous nitrate solution of a transition metal other than manganese, wherein Fe or Cr is used.
5. An aqueous solution of at least one nitrate selected from the group consisting of Al and Al.
The production method described in 1.
JP10068544A 1998-03-18 1998-03-18 Spinel type lithium manganese oxide for secondary battery and its manufacture Pending JPH11265717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10068544A JPH11265717A (en) 1998-03-18 1998-03-18 Spinel type lithium manganese oxide for secondary battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10068544A JPH11265717A (en) 1998-03-18 1998-03-18 Spinel type lithium manganese oxide for secondary battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH11265717A true JPH11265717A (en) 1999-09-28

Family

ID=13376815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10068544A Pending JPH11265717A (en) 1998-03-18 1998-03-18 Spinel type lithium manganese oxide for secondary battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH11265717A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001151511A (en) * 1999-11-24 2001-06-05 Mitsubishi Chemicals Corp Lithium manganese composite oxide and lithium secondary battery using the same
JP2001266880A (en) * 2000-03-17 2001-09-28 Sumitomo Metal Mining Co Ltd Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2002093462A (en) * 2000-07-14 2002-03-29 Mitsubishi Chemicals Corp Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
WO2009011157A1 (en) 2007-07-19 2009-01-22 Nippon Mining & Metals Co., Ltd. Lithium-manganese double oxide for lithium ion batteries and process for the production of the double oxide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001151511A (en) * 1999-11-24 2001-06-05 Mitsubishi Chemicals Corp Lithium manganese composite oxide and lithium secondary battery using the same
JP2001266880A (en) * 2000-03-17 2001-09-28 Sumitomo Metal Mining Co Ltd Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP2002093462A (en) * 2000-07-14 2002-03-29 Mitsubishi Chemicals Corp Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
WO2009011157A1 (en) 2007-07-19 2009-01-22 Nippon Mining & Metals Co., Ltd. Lithium-manganese double oxide for lithium ion batteries and process for the production of the double oxide
US8114309B2 (en) 2007-07-19 2012-02-14 Jx Nippon Mining & Metals Corporation Lithium-manganese composite oxides for lithium ion battery and process for preparing same

Similar Documents

Publication Publication Date Title
JP4253142B2 (en) Lithium manganese composite oxide for secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
US5783332A (en) Positive electrode active material for lithium battery and a method for manufacturing the same
JP3130813B2 (en) Lithium nickel composite oxide, method for producing the same, and positive electrode active material for secondary battery
US8021783B2 (en) Lithium manganese-based composite oxide and method for preparing the same
US5993998A (en) Positive active material for lithium battery, lithium battery having the same and method for producing the same
US7713662B2 (en) Lithium-manganese-based composite oxide containing titanium and nickel
EP1035075A1 (en) Novel process for preparing spinel type lithium manganese composite oxide and cathode active material for rechargeable battery
KR20030028447A (en) Cathod intercalation compositions, production methods and rechargeable lithium batteries containing the same
JP2001048547A (en) Spinel-type lithium-manganese multiple oxide, its production and use
Shaju et al. Lithiated O2 phase, Li (2/3)+ x (Co0. 15Mn0. 85) O2 as cathode for Li-ion batteries
WO2012060085A1 (en) Lithium silicate compound and method for producing same
Iqbal et al. Effect of bication (Cu-Cr) substitution on the structure and electrochemical performance of LiMn2O4 spinel cathodes at low and high current rates
US5807532A (en) Method of producing spinel type limn204
KR20230054639A (en) A method for manufacturing 3-dimensional porous cathode material as sodium ion batteries
JP2002158007A (en) Lithium manganese nickel complex oxide, and manufacturing method of the same
US11127939B2 (en) Electrode material, use of an electrode material for a lithium-ion-based electrochemical cell, lithium-ion-based electrochemical cell
Zhu et al. Li4Mn5O12 Cathode for Both 3 V and 4 V Lithium-ion Batteries
JPH11265717A (en) Spinel type lithium manganese oxide for secondary battery and its manufacture
JP2001508391A (en) Preparation method of lithium manganese oxide
JP2001185148A5 (en)
JP2001185148A (en) Positive electrode material for 5 v-class lithium secondary battery and manufacturing method therefor
JPH0696769A (en) Positive electrode for non-aqueous electrolyte lithium secondary battery
WO2006126854A1 (en) Processes of preparing manganese oxides and processes of preparing spinel type cathode active material using the same
JP3564322B2 (en) Method for producing lithium manganese composite oxide for secondary battery
JP2024547074A (en) Solid electrolyte material with increased water content

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909