JPH1126206A - Ptc composition, ptc element, and overcurrent protective element using the ptc element - Google Patents
Ptc composition, ptc element, and overcurrent protective element using the ptc elementInfo
- Publication number
- JPH1126206A JPH1126206A JP17920297A JP17920297A JPH1126206A JP H1126206 A JPH1126206 A JP H1126206A JP 17920297 A JP17920297 A JP 17920297A JP 17920297 A JP17920297 A JP 17920297A JP H1126206 A JPH1126206 A JP H1126206A
- Authority
- JP
- Japan
- Prior art keywords
- ptc
- composition
- metal carbide
- polymer
- resistivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Thermistors And Varistors (AREA)
- Emergency Protection Circuit Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は,PTC(Positive
Temperature Coefficient:正温度係数)を有する導電
性組成物(以下,PTC組成物という)に関し,詳しく
は,面状発熱体や,電池,電子機器の異常発生時に流れ
る過電流を防止する過電流保護素子に用いられるPTC
組成物に関するものである。TECHNICAL FIELD The present invention relates to a PTC (Positive
More specifically, the present invention relates to a conductive composition having a positive temperature coefficient (hereinafter, referred to as a PTC composition). More specifically, an overcurrent protection element for preventing an overcurrent flowing when an abnormality occurs in a sheet heating element, a battery, or an electronic device. Used for PTC
It relates to a composition.
【0002】[0002]
【従来の技術】従来からPTC特性を有するものとし
て,Y2 O3 を微量添加したBaTiO3 等の無機導電
性組成物(セラミックPTC)やポリエチレンのような
結晶性高分子に導電性をもつカーボンブラック等の粉末
を混練した有機導電性組成物(高分子PTC)が知られ
ている。従来のPTC組成物は,材料固有の抵抗値Rと
素子に流された電流値Iとで,いわゆるジュール熱加熱
(I2 R加熱)により発熱する。そのため,PTC組成
物に比較的大きな電流が流れると発熱が起こり,抵抗が
上昇するものである。2. Description of the Related Art Conventionally, as a material having a PTC characteristic, an inorganic conductive composition (ceramic PTC) such as BaTiO 3 to which a trace amount of Y 2 O 3 is added or a carbon material having conductivity with a crystalline polymer such as polyethylene. An organic conductive composition (polymer PTC) obtained by kneading a powder such as black is known. The conventional PTC composition generates heat by so-called Joule heating (I 2 R heating) with a resistance value R unique to the material and a current value I passed through the element. Therefore, when a relatively large current flows through the PTC composition, heat is generated and the resistance increases.
【0003】[0003]
【発明が解決しようとする課題】しかしながら,セラミ
ック系のPTC組成物は定常状態での抵抗率が〜100
Ω・cm程度と高いために,数A程度の比較的大きな電
流を流すことができない。このことは,セラミックPT
C組成物が電池又は電子機器の異常発生時に流れる過電
流を防止する過電流保護素子として用いることが出来な
いことを意味している。However, ceramic-based PTC compositions have a steady state resistivity of ~ 100.
Since it is as high as about Ω · cm, a relatively large current of about several A cannot flow. This is because ceramic PT
This means that the C composition cannot be used as an overcurrent protection element for preventing an overcurrent flowing when an abnormality occurs in a battery or an electronic device.
【0004】一方,半導体材料は,通常温度上昇と共に
抵抗が小さくなるので,異常発生時過電流が流れ易くな
る。回路に過電流が流れた場合,環境温度は更に上昇し
て発火を引き起こし,最悪の場合,火災に発展する恐れ
がある。従つて,過電流保護素子としては,室温で低抵
抗であり,温度上昇と共に抵抗が増大して電流を制限す
る特性が要求される。On the other hand, since the resistance of a semiconductor material usually decreases with an increase in temperature, an overcurrent easily flows when an abnormality occurs. If an overcurrent flows through the circuit, the ambient temperature will rise further, causing ignition and, in the worst case, a fire. Therefore, the overcurrent protection element is required to have a low resistance at room temperature and a characteristic that the resistance increases as the temperature rises to limit the current.
【0005】また,セラミックPTC組成物は,所望形
状に加工,成型することが困難であり,耐衝撃性にも問
題があるため,一般的に面状発熱体としては用いられな
い。これに対して結晶性高分子に導電性粉末を混練した
高分子PTC組成物は,室温抵抗を低く設定できるこ
と,加工,成型が容易であること,耐衝撃性に優れてい
ることから,過電流保護素子や面状発熱体等に広く用い
られている。[0005] Further, the ceramic PTC composition is difficult to process and mold into a desired shape and has a problem in impact resistance, so that it is not generally used as a sheet heating element. On the other hand, a polymer PTC composition in which a conductive powder is kneaded with a crystalline polymer has a low room temperature resistance, is easy to process and mold, and has excellent impact resistance. It is widely used for protection elements and sheet heating elements.
【0006】ここで,過電流保護素子として要求される
特性としては,室温で概ね2Ω・cm以下程度の十分小
さな抵抗率であることである。また,面状発熱体におい
ても,室温抵抗が高い場合,急激な発熱による取り扱い
上の危険が生じる。Here, the characteristic required for the overcurrent protection element is that it has a sufficiently small resistivity of about 2 Ω · cm or less at room temperature. Also, in the case of the sheet heating element, if the room temperature resistance is high, there is a danger of handling due to rapid heat generation.
【0007】最も一般的な導電性粉末であるカーボンブ
ラック等の比較的粒径の小さな導電性粉末を用いた高分
子PTC組成物においては,ポリマーマトリックスの結
晶融点より低い温度にある間は,導電性粒子は,ポリマ
ーマトリックスの非晶質領域にのみ存在し,導電性粒子
相互に接続されたネットワークを通って移動する電子に
より低い抵抗率を示す。この高分子PTC素子におい
て,温度上昇によりポリマーマトリックスが融解し始め
ると,ポリマーマトリックスの粘度を保ったまま非結晶
相の体積が相対的に増加し,更に結晶相の融解で非晶質
にのみ存在した導電性粒子がマトリックス全体に拡散す
るため,導電性粒子間のネットワークが切断され,抵抗
率が急激に上昇する(正温度特性)。その後,PTC組
成物の温度が常温に戻ると,導電性粒子は,ポリマーマ
トリックスの非晶質領域に再び集中し粒子間ネットワー
クが再編成されるため,低い抵抗率を示す。In a polymer PTC composition using a conductive powder having a relatively small particle size, such as carbon black, which is the most common conductive powder, while the temperature is lower than the crystal melting point of the polymer matrix, the conductivity of the polymer is reduced. The conductive particles are present only in the amorphous regions of the polymer matrix and exhibit a lower resistivity for electrons traveling through a network of interconnected conductive particles. In this polymer PTC element, when the polymer matrix begins to melt due to a rise in temperature, the volume of the non-crystalline phase relatively increases while maintaining the viscosity of the polymer matrix, and is present only in the amorphous state due to the melting of the crystalline phase. Since the conductive particles thus diffused throughout the matrix, the network between the conductive particles is cut and the resistivity sharply increases (positive temperature characteristic). Thereafter, when the temperature of the PTC composition returns to normal temperature, the conductive particles exhibit a low resistivity because they re-concentrate in the amorphous region of the polymer matrix and the interparticle network is rearranged.
【0008】ところで,室温抵抗率を低下させるために
は,PTC組成物に分散させる導電性粉末分散量を増加
させる必要がある。しかし,室温抵抗率を低下させるた
め,高分子PTC組成物においてカーボンブラック等の
比較的粒径の小さな導電性粉末の分散量を増加させる
と,ポリマーマトリックス非晶質領域での部分的な導電
性粉末の凝集がおき,部分的な導電経路が形成される。
そこへ正温度特性を生じさせるため比較的大きな電流が
流れると,以下の様に高分子PTC組成物の発火が生じ
る。まず,高分子PTC組成物の温度上昇し,次に高分
子PTC組成物の平均抵抗率が上昇し,続いて部分的導
電経路(導電性粉末凝集部)への電流の集中,或いは凝
集部での絶縁破壊が発生し,部分的な異常発熱し発火へ
と至る。Incidentally, in order to lower the room temperature resistivity, it is necessary to increase the amount of conductive powder dispersed in the PTC composition. However, when the dispersion amount of the conductive powder having a relatively small particle size such as carbon black in the polymer PTC composition is increased in order to lower the room temperature resistivity, the partial conductivity in the polymer matrix amorphous region is increased. Agglomeration of the powder occurs and a partial conductive path is formed.
When a relatively large current flows there to generate a positive temperature characteristic, ignition of the polymer PTC composition occurs as follows. First, the temperature of the polymer PTC composition rises, then the average resistivity of the polymer PTC composition rises, and then the current concentrates on the partial conductive path (conductive powder aggregation part), or in the aggregation part, Dielectric breakdown occurs, causing partial abnormal heat generation and ignition.
【0009】また,室温抵抗率を低下させるための他の
方法としては,高分子PTC組成物に分散させる導電性
粉末を抵抗率の低い粉末に置き換えることも考えられ
る。例えば,金属粉末の抵抗率は,カーボンブラックの
約1/1000程度である。しかし,PTC組成物に導
電性粉末としてカーボンブラックの代わりに金属粉末を
分散させた場合,金属粉末自体の凝集によって前述と同
様の理由で,PTC組成物に比較的大きな電流が流れた
場合に発火が生じる。また,金属導電性粉末を分散させ
たPTC組成物は,繰り返し動作毎に室温抵抗率が上昇
するという問題がある。このことは,金属導電性粉末を
分散させた高分子PTC組成物が,繰り返し使用に耐え
ないことを意味している。Another method for lowering the room temperature resistivity is to replace the conductive powder dispersed in the polymer PTC composition with a powder having a low resistivity. For example, the resistivity of metal powder is about 1/1000 that of carbon black. However, when a metal powder is dispersed as a conductive powder in the PTC composition instead of carbon black, ignition occurs when a relatively large current flows through the PTC composition for the same reason as described above due to aggregation of the metal powder itself. Occurs. Further, the PTC composition in which the metal conductive powder is dispersed has a problem that the room temperature resistivity increases with each repetitive operation. This means that the polymer PTC composition in which the metal conductive powder is dispersed cannot withstand repeated use.
【0010】更に,高分子PTC組成物の抵抗率が急激
に立ち上がる温度(動作温度)は,一般的に高分子マト
リックスの融点によつて決定される。即ち,高分子PT
C組成物の動作温度を変えるには高分子マトリックス自
体を変えなければならない。このことは,高分子PTC
組成物の動作温度を任意に設定することが事実上不可能
なことを意味している。Further, the temperature at which the resistivity of the polymer PTC composition rapidly rises (operating temperature) is generally determined by the melting point of the polymer matrix. That is, polymer PT
Changing the operating temperature of the C composition requires changing the polymer matrix itself. This is because the polymer PTC
This means that it is virtually impossible to arbitrarily set the operating temperature of the composition.
【0011】そこで,本発明の技術的課題は,定常状態
(室温)での抵抗値が十分低く,電流を流したときに発
火せず,動作毎の抵抗上昇が少なく,動作温度を任意に
設定可能なPTC組成物及びPTC素子とそれを用いた
過電流保護素子とを提供することにある。Therefore, a technical problem of the present invention is that the resistance value in a steady state (room temperature) is sufficiently low, it does not ignite when a current flows, the resistance rise at each operation is small, and the operating temperature is arbitrarily set. It is an object of the present invention to provide a possible PTC composition and PTC device and an overcurrent protection device using the same.
【0012】[0012]
【課題を解決するための手段】以上の問題を解決するた
めに,本発明者らは,種々検討を行った結果,ポリマー
成分に導電性粉末として,金属炭化物粉末を分散させる
ことが有効であることを見出し本発明をなすに至ったも
のである。Means for Solving the Problems In order to solve the above problems, the present inventors have conducted various studies and found that it is effective to disperse a metal carbide powder as a conductive powder in a polymer component. This has led to the achievement of the present invention.
【0013】本発明によれば,ポリマー成分と金属炭化
物粉末とを主成分とする電気抵抗が正の温度特性(PT
C)を示す複合組成物であって,前記金属炭化物粉末の
成分比が前記複合組成物全体のl0〜60vo1%の範
囲内であることを特徴とするPTC組成物が得られる。
ここで,本発明において,金属炭化物粉末を分散させて
もカーボンブラックを分散させた場合と同等のPTC特
性が得られ,また,金属炭化物粉末を分散させた場合,
金属炭化物粉末がポリマーマトリックスの非晶質領域に
集中せず,また金属炭化物粉末自体の凝集も生じないた
め,室温抵抗率を低下させるためトータルの導電性粉末
分散量を増加させても,部分的な導電経路が形成され
ず,電流を流した際の発火が生じない。さらに,金属炭
化物粉末を分散させた高分子PTC組成物は,繰り返し
動作させても室温抵抗率の顕著な上昇が観られない。According to the present invention, the electric resistance mainly composed of the polymer component and the metal carbide powder has a positive temperature characteristic (PT
A PTC composition is obtained, which is a composite composition shown in (C), wherein the component ratio of the metal carbide powder is in the range of 10 to 60 vo1% of the entire composite composition.
Here, in the present invention, even when the metal carbide powder is dispersed, the same PTC characteristics as those obtained when carbon black is dispersed can be obtained, and when the metal carbide powder is dispersed,
Since the metal carbide powder does not concentrate in the amorphous region of the polymer matrix and the metal carbide powder itself does not agglomerate, even if the total amount of the conductive powder dispersed is increased to lower the room temperature resistivity, the partial dispersion may occur. No conductive path is formed, and no ignition occurs when current flows. Further, the polymer PTC composition in which the metal carbide powder is dispersed does not show a remarkable increase in the room temperature resistivity even when repeatedly operated.
【0014】また,本発明によれば,前記PTC組成物
において,前記金属炭化物粉末は,TiC,WC,W2
C,ZrC,VC,NbC,TaC,Mo2 Cの内の少
なくとも一種であることを特徴とするPTC組成物が得
られる。According to the present invention, in the PTC composition, the metal carbide powder includes TiC, WC, W 2
A PTC composition characterized by being at least one of C, ZrC, VC, NbC, TaC, and Mo 2 C is obtained.
【0015】さらに,本発明によれば,前記いずれかの
PTC組成物において,前記ポリマー成分は,融点が少
なくとも100℃のポリエチエレンと,融点が多くとも
100℃未満のコポリマーとを当該ポリエチレンに対す
る体積比が0〜80%となるように少なくとも2種混合
したものであることを特徴とするPTC組成物が得られ
る。ここで,本発明においては,高分子PTC組成物の
ポリマー成分として,融点が100℃以上のポリエチエ
レンと,融点が100℃未満のコポリマーとを複合さ
せ,金属炭化物粉末を分散させた場合,ポリエチレンと
コポリマーとの複合比に応じて動作温度を20〜130
℃程度の範囲で任意に設定可能である。Further, according to the present invention, in any of the above PTC compositions, the polymer component comprises a polyethylene having a melting point of at least 100 ° C. and a copolymer having a melting point of at most less than 100 ° C. with respect to the polyethylene by volume. A PTC composition characterized by being a mixture of at least two of them so that the ratio is 0 to 80% is obtained. Here, in the present invention, as a polymer component of the high-molecular-weight PTC composition, when a polyethylene having a melting point of 100 ° C. or more and a copolymer having a melting point of less than 100 ° C. are compounded and metal carbide powder is dispersed, polyethylene Operating temperature from 20 to 130 depending on the compounding ratio of
It can be set arbitrarily in the range of about ° C.
【0016】[0016]
【発明の実施の形態】以下,本発明の実施の形態につい
て,図面を参照して説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0017】まず,本発明の実施の形態によるPTC組
成物を用いた高分子PTC素子の具体的製造方法につい
て説明する。First, a specific method for manufacturing a polymer PTC device using the PTC composition according to the embodiment of the present invention will be described.
【0018】ポリマー成分として融点が130℃程度の
結晶性高密度ポリエチレンに融点が70℃程度のエチレ
ン系コポリマーを,ポリエチレンに対する体積比が0〜
80vo1%となるようにロールミル上で加熱混練し複
合した。得られたポリマー成分に,金属炭化物粉末をポ
リマー成分に対して10〜60vol%となるようにロ
ールミル上で加熱混練し,ポリマー組成体を得た。金属
炭化物粉末としては,各々粒径が1〜5μm程度のTi
C,WC,W2 C,ZrC,VC,NbC,TaC,及
びMo2 Cを用いた。As a polymer component, a crystalline high-density polyethylene having a melting point of about 130 ° C. is mixed with an ethylene copolymer having a melting point of about 70 ° C.
The mixture was heated and kneaded on a roll mill so as to be 80 vol. The obtained polymer component was heated and kneaded with a metal carbide powder on a roll mill so as to be 10 to 60 vol% with respect to the polymer component to obtain a polymer composition. As the metal carbide powder, Ti particles each having a particle size of about 1 to 5 μm are used.
C, was used WC, W 2 C, ZrC, VC, NbC, TaC, and Mo 2 C.
【0019】得られた組成体を粉末化した後,Ni箔の
間に挟んだ状態で,100〜200℃程度の温度で加熱
圧縮成型することにより,厚さ1mmの成型体を得,外
径15mm)内径10.6mmのリング状に打ち抜き高
分子PTC素子を得た。After the obtained composition is powdered, the composition is heated and compression molded at a temperature of about 100 to 200 ° C. while being sandwiched between Ni foils to obtain a molded body having a thickness of 1 mm. 15 mm) A polymer PTC element was punched out into a ring shape having an inner diameter of 10.6 mm.
【0020】また比較のため,同様の方法でカーボンブ
ラックを導電性粉末とした場合の高分子PTC素子を作
製した。For comparison, a polymer PTC element using carbon black as a conductive powder was prepared in the same manner.
【0021】ここで,高分子PTC素子の目標特性は,
室温抵抗が前述の様に2Ω・cm以下であること,抵抗
率が急激に上昇した後(スイッチング後)の抵抗率と室
温での抵抗率の比(スイッチング後R/室温R)が,過
電流保護素子として十分動作し,かつ面状発熱対として
十分使用可能である104 以上であることとした。ま
た,高分子PTC素子を繰り返しスイッチングさせた際
の室温抵抗率・目標値は,500回スイッチング後にも
2Ω・cmを上回らないこととした。Here, the target characteristics of the polymer PTC element are as follows:
As described above, the room temperature resistance is 2 Ω · cm or less, and the ratio of the resistivity after the rapid rise (after switching) to the resistivity at room temperature (R after switching / R at room temperature) is the overcurrent. It is determined to be 10 4 or more, which sufficiently operates as a protection element and can be sufficiently used as a planar heating couple. Further, the room temperature resistivity / target value when the polymer PTC element is repeatedly switched does not exceed 2 Ω · cm even after switching 500 times.
【0022】図1は高分子PTC素子の温度と抵抗率の
測定結果を示す図である。測定はオイルバス中4短針法
で行い,抵抗率測定にはディジタルマルチメータを用い
た。図1から分かるように,曲線2〜5に示す高密度ポ
リエチレンに金属炭化物粉末を分散させたPTC素子
は,室温での抵抗率が,<2Ω・cmと目標を下回り,
かつ温度一抵抗曲線の挙動は,曲線1に示すカーボンブ
ラックのみを分散させた素子とほぼ同等で,抵抗率の比
は(スイッチング後R/室温R)>108 と目標を大き
く上回っている。また,ポリマー成分を高密度ポリエチ
レンとエチレン系コポリマーの複合とした場合,エチレ
ン系コポリマーの組成比の増加に伴い,素子動作温度が
低下することが分かる。このことは,ポリエチレンとコ
ポリマーの複合比により,高分子PTC素子の動作温度
が,用途に応じて任意に設定できることを示している。FIG. 1 is a diagram showing the measurement results of the temperature and the resistivity of the polymer PTC element. The measurement was carried out by a 4-short-needle method in an oil bath, and a digital multimeter was used for resistivity measurement. As can be seen from FIG. 1, the PTC element in which the metal carbide powder is dispersed in the high-density polyethylene shown by the curves 2 to 5 has a resistivity at room temperature of <2Ω · cm, which is lower than the target.
In addition, the behavior of the temperature-resistance curve is almost the same as that of the element in which only the carbon black shown in the curve 1 is dispersed, and the ratio of the resistivity is (R after switching / R at room temperature)> 10 8 , greatly exceeding the target. In addition, when the polymer component is a composite of high-density polyethylene and an ethylene-based copolymer, it can be seen that the device operating temperature decreases as the composition ratio of the ethylene-based copolymer increases. This indicates that the operating temperature of the polymer PTC element can be arbitrarily set according to the application by the composite ratio of polyethylene and copolymer.
【0023】図2は,前述のようにして得られた高分子
PTC素子に,10A(50V)の電流を繰り返し通電
した際の素子動作後の抵抗率の変化を示す図である。図
2から分かるように,曲線11で示すカーボンブラック
のみを20vo1%分散させた素子は,繰り返し通電後
の抵抗率の変化は少ないが,初期の室温抵抗が目標値よ
り高い。一方,曲線12で示すカーボンブラックのみを
30vo1%分散させた素子は,初期の室温抵抗は,2
Ω・cm以下であるが1回目の通電で発火した。これに
対して,曲線13で示す金属炭化物粉末を分散させた素
子は,室温抵抗率<2Ω・cmと目標値を下回り,かつ
繰り返し通電後も<2Ω・cmと室温抵抗目標値内を維
持した。FIG. 2 is a graph showing a change in resistivity after device operation when a current of 10 A (50 V) is repeatedly applied to the polymer PTC device obtained as described above. As can be seen from FIG. 2, in the element in which only carbon black indicated by curve 11 is dispersed by 20 vol. 1%, the change in resistivity after repeated energization is small, but the initial room temperature resistance is higher than the target value. On the other hand, the element in which only carbon black shown by curve 12 was dispersed by 30 vol.
Ω · cm or less, but ignited at the first energization. On the other hand, the element in which the metal carbide powder shown by the curve 13 is dispersed has a room temperature resistivity of less than the target value of <2 Ω · cm, and maintains the target value of room temperature resistance of <2 Ω · cm even after repeated energization. .
【0024】下記表1に,PTC組成物における金属炭
化物粉末分散量,及びポリエチレンに対するコポリマー
複合比を変化させた場合に,高分子PTC素子をスイッ
チング(10A(50V)通電)させた際の特性を示し
た。Table 1 shows the characteristics of the polymer PTC element when switching (10 A (50 V) current) when the dispersion amount of the metal carbide powder in the PTC composition and the copolymer composite ratio to polyethylene were changed. Indicated.
【0025】[0025]
【表1】 [Table 1]
【0026】上記表1から明らかな様に,導電性粉末の
分散量が10vol%未満の場合,室温抵抗率が目標に
達しないため,本発明の範囲から除外した。また,導電
性粉末分散量が60vo1%を上回ると,室温抵抗が著
しく低下し通電時の素子動作現象がみられなくなるた
め,本発明の範囲から除外した。さらに,コポリマー複
合比が,80vo1%を上回ると,室温抵抗率が目標に
達しないため本発明の範囲から除外した。即ち,本発明
の範囲は,導電性粉末の分散量が10vol%以上60
vol%未満であり,且つコポリマー複合比が,80v
o1%以下である。As is clear from Table 1, when the dispersion amount of the conductive powder is less than 10 vol%, the room temperature resistivity does not reach the target, and is excluded from the scope of the present invention. When the dispersion amount of the conductive powder exceeds 60 vo 1%, the resistance at room temperature is remarkably reduced, and the element operation phenomenon upon energization is not observed. Therefore, it is excluded from the scope of the present invention. Further, when the copolymer composite ratio exceeds 80 vo1%, the room temperature resistivity does not reach the target, and thus is excluded from the scope of the present invention. That is, the range of the present invention is that the dispersion amount of the conductive powder is 10 vol% or more and 60 vol% or less.
vol% and the copolymer composite ratio is 80 v
o 1% or less.
【0027】下記表2に,各金属炭化物と高分子PTC
組成物の特性の関係を示した。Table 2 below shows each metal carbide and polymer PTC.
The relationship between the properties of the compositions is shown.
【0028】[0028]
【表2】 [Table 2]
【0029】上記表2より明らかな通り,TiC,W
C,W2 C,ZrC,VC,NbC,TaC,及びMo
2 Cの内のいずれの金属炭化物粉末を用いても,前述の
目標を達成した高分子PTC組成物が得られる。As is clear from Table 2, TiC, W
C, W 2 C, ZrC, VC, NbC, TaC, and Mo
Using any of the metal carbide powders of 2 C, a high molecular weight PTC composition that achieves the above-mentioned target can be obtained.
【0030】[0030]
【発明の効果】以上,説明したように,本発明によれ
ば,高分子PTC組成物に金属炭化物粉末を用いること
によって,通電の際の発火を防止したPTC組成物とそ
れを用いたPTC素子とを提供することができる。As described above, according to the present invention, according to the present invention, a PTC composition in which ignition is prevented when a current is applied by using a metal carbide powder in a polymer PTC composition, and a PTC element using the same. And can be provided.
【0031】また,本発明によれば,導電性粉末として
金属炭化物粉末を分散させることに,更に,ポリマー成
分として,融点が100℃以上のポリエチエレンと,融
点が100℃未満のコポリマーとを複合させることによ
って,定常状態での抵抗値が十分低く,電流を流したと
きに発火せず,動作毎の抵抗上昇が少なく,動作温度を
任意に設定可能なPTC組成物とをれを用いたPTC素
子とを提供することができる。According to the present invention, in addition to dispersing the metal carbide powder as the conductive powder, the polymer component further comprises a polyethylene having a melting point of 100 ° C. or more and a copolymer having a melting point of less than 100 ° C. By doing so, a PTC composition using a PTC composition that has a sufficiently low resistance value in a steady state, does not ignite when a current flows, has a small increase in resistance at each operation, and can arbitrarily set an operation temperature. And an element can be provided.
【0032】さらに,本発明によれば,前記した利点を
備えたPTC素子を使用した過電流保護素子を提供する
ことができる。Further, according to the present invention, it is possible to provide an overcurrent protection element using a PTC element having the aforementioned advantages.
【図1】本発明の実施の形態によるPTC組成物を用い
たPTC素子の特性を示す図である。FIG. 1 is a diagram showing characteristics of a PTC element using a PTC composition according to an embodiment of the present invention.
【図2】図1のPTC素子の動作回数と抵抗率との関係
を示す図である。FIG. 2 is a diagram showing a relationship between the number of operations and the resistivity of the PTC element of FIG.
1 カーボンブラックを分散させたPTC素子の温
度,抵抗率特性曲線 2〜5 金属炭化物粉末を分散させたPTC素子の温
度,抵抗率特性曲線 11 50V,10A繰り返し印加後のカーボンブ
ラックを分散させたPTC素子の抵抗率特性を示す曲線 12 カーボンブラックを分散させたPTC素子の抵
抗率特性を示す曲線 13 金属炭化物粉末を分散させたPTC素子の抵抗
率特性を示す曲線1 Temperature and resistivity characteristic curve of PTC element in which carbon black is dispersed 2-5 Temperature and resistivity characteristic curve of PTC element in which metal carbide powder is dispersed 11 PTC in which carbon black is dispersed after repeated application of 50 V, 10 A Curve indicating resistivity characteristic of element 12 Curve indicating resistivity characteristic of PTC element in which carbon black is dispersed 13 Curve indicating resistivity characteristic of PTC element in which metal carbide powder is dispersed
Claims (5)
分とする電気抵抗が正の温度特性(PTC)を示す複合
組成物であって,前記金属炭化物粉末の成分比が前記複
合組成物全体のl0〜60vo1%の範囲内であること
を特徴とするPTC組成物。1. A composite composition comprising a polymer component and a metal carbide powder as main components and exhibiting a positive temperature characteristic (PTC) in electrical resistance, wherein the metal carbide powder has a component ratio of the entire composite composition. A PTC composition characterized by being in the range of 10-60 vol1%.
前記金属炭化物粉末は,TiC,WC,W2 C,Zr
C,VC,NbC,TaC,Mo2 Cの内の少なくとも
一種であることを特徴とするPTC組成物。2. The PTC composition according to claim 1, wherein
The metal carbide powder is TiC, WC, W 2 C, Zr
A PTC composition, which is at least one of C, VC, NbC, TaC, and Mo 2 C.
いて,前記ポリマー成分は,融点が少なくとも100℃
のポリエチエレンと,融点が多くとも100℃未満のコ
ポリマーとを当該ポリエチレンに対する体積比が0〜8
0%となるように少なくとも2種混合したものであるこ
とを特徴とするPTC組成物。3. The PTC composition according to claim 1, wherein the polymer component has a melting point of at least 100 ° C.
Of polyethylene and a copolymer having a melting point of at most less than 100 ° C. with a volume ratio of 0-8
A PTC composition characterized by being a mixture of at least two kinds so as to be 0%.
PTC組成物を用いたことを特徴とするPTC素子。4. A PTC element using the PTC composition according to any one of claims 1 to 3.
とを特徴とする過電流保護素子。5. An overcurrent protection element using the PTC element according to claim 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17920297A JPH1126206A (en) | 1997-07-04 | 1997-07-04 | Ptc composition, ptc element, and overcurrent protective element using the ptc element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17920297A JPH1126206A (en) | 1997-07-04 | 1997-07-04 | Ptc composition, ptc element, and overcurrent protective element using the ptc element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1126206A true JPH1126206A (en) | 1999-01-29 |
Family
ID=16061720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17920297A Withdrawn JPH1126206A (en) | 1997-07-04 | 1997-07-04 | Ptc composition, ptc element, and overcurrent protective element using the ptc element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1126206A (en) |
-
1997
- 1997-07-04 JP JP17920297A patent/JPH1126206A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6090313A (en) | High temperature PTC device and conductive polymer composition | |
EP2592628B1 (en) | Conductive composite material with positive temperature coefficient of resistance and over-current protection component | |
US4545926A (en) | Conductive polymer compositions and devices | |
US4849133A (en) | PTC compositions | |
US6074576A (en) | Conductive polymer materials for high voltage PTC devices | |
JP2007221119A (en) | Overcurrent protection element | |
JP3813611B2 (en) | Conductive polymer having PTC characteristics, method for controlling PTC characteristics of the polymer, and electronic device using the polymer | |
TW524820B (en) | PTC conductive polymer composition | |
US20020137831A1 (en) | Polymeric PTC composition and circuit protection device made therefrom | |
JP2000331804A (en) | Ptc composition | |
CN113826174A (en) | PPTC compositions and devices with low thermal deration and low process jump | |
GB2569532A (en) | Improved positive temperature coefficient ink composition without negative temperature coefficient effect | |
US20020128333A1 (en) | Low switching temperature polymer positive temperature coefficient device | |
JPH11329675A (en) | Ptc composition | |
JPH1126206A (en) | Ptc composition, ptc element, and overcurrent protective element using the ptc element | |
CN100380532C (en) | Conductive composite material with positive temperature coefficient and overcurrent protection element | |
JPH115915A (en) | Conductive composition | |
JP2000080216A (en) | Ptc composition, ptc element and overcurrent protecting element using the element | |
JP2000021605A (en) | Ptc composition | |
JP3168262B2 (en) | Circuit protection device | |
JP4196582B2 (en) | Electrical fuse element and manufacturing method thereof | |
JPH11144906A (en) | Ptc composition | |
JP2000109615A (en) | Conductive polymer composition having positive temperature coefficient characteristics | |
JPH10223406A (en) | Ptc composition and ptc element employing it | |
JPH1131603A (en) | Ptc resistant element for protecting electric circuit and manufacture thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20040907 |