JPH11258081A - Inter-powder adhesion measuring device and inter-powder adhesion measuring method and image forming device and image forming method - Google Patents
Inter-powder adhesion measuring device and inter-powder adhesion measuring method and image forming device and image forming methodInfo
- Publication number
- JPH11258081A JPH11258081A JP6094498A JP6094498A JPH11258081A JP H11258081 A JPH11258081 A JP H11258081A JP 6094498 A JP6094498 A JP 6094498A JP 6094498 A JP6094498 A JP 6094498A JP H11258081 A JPH11258081 A JP H11258081A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- toner
- adhesion
- powders
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 title claims abstract description 332
- 238000000034 method Methods 0.000 title claims description 81
- 238000005119 centrifugation Methods 0.000 claims abstract description 7
- 239000000758 substrate Substances 0.000 claims description 105
- 239000002245 particle Substances 0.000 claims description 81
- 238000005259 measurement Methods 0.000 claims description 27
- 239000000853 adhesive Substances 0.000 claims description 25
- 230000001070 adhesive effect Effects 0.000 claims description 25
- 238000000926 separation method Methods 0.000 claims description 21
- 238000012545 processing Methods 0.000 claims description 12
- 230000005484 gravity Effects 0.000 claims description 10
- 238000010030 laminating Methods 0.000 claims description 9
- 125000006850 spacer group Chemical group 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 claims description 4
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 238000012546 transfer Methods 0.000 description 129
- 239000010410 layer Substances 0.000 description 61
- 239000000428 dust Substances 0.000 description 27
- 238000010586 diagram Methods 0.000 description 14
- 230000008569 process Effects 0.000 description 14
- 230000002776 aggregation Effects 0.000 description 10
- 238000000691 measurement method Methods 0.000 description 8
- 239000000654 additive Substances 0.000 description 7
- 238000004220 aggregation Methods 0.000 description 7
- 238000011161 development Methods 0.000 description 6
- 230000000996 additive effect Effects 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- 238000005054 agglomeration Methods 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 108091008695 photoreceptors Proteins 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 238000005411 Van der Waals force Methods 0.000 description 2
- 206010047571 Visual impairment Diseases 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229920005668 polycarbonate resin Polymers 0.000 description 2
- 239000004431 polycarbonate resin Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- -1 ethylene-tetra-fluoroethylene Chemical group 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Developing Agents For Electrophotography (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、トナー粒子間の付
着力を測定する粉体間付着力測定装置及び粉体間付着力
測定方法、並びにそれらを利用してトナー粒子の飛び散
り防止することが可能な画像形成装置及び画像形成方法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring adhesion between powders and a method for measuring adhesion between powders, which measure the adhesion between toner particles, and to prevent scattering of toner particles by using them. The present invention relates to a possible image forming apparatus and an image forming method.
【0002】[0002]
【従来の技術】粉体を取り扱う分野では、粉体の様々な
特性値を把握することが重要である。粉体の付着力を測
定する方法は、粉体の付着している物体から粉体を分離
するのに必要な力を見積もる方法が一般的である。粉体
を物体から分離させる方法としては、遠心力、振動、衝
撃、空気圧、電界及び磁界等を用いた方法が知られてい
る。このうち、遠心力を利用した方法は定量測定が容易
であり、感光体及びキャリアへのトナーの付着における
静電引力及びファンデルワールス力の寄与を論じた「C.
J.Mastrangelo,Photogr.Sci.Eng.,26:194-197(198
2)」、感光体へのトナーの付着において重要であるトナ
ー粒子中の電荷分布を論じた「M.H.Lee and J.Ayala,J.
Image.Tech.,11:279-284(1985)」及び定量化が困難な非
静電的なトナーの付着力を論じた「寺尾和男、重広清:
電子写真学会誌、34(1995)83」等の様々な研究結果が発
表されている。2. Description of the Related Art In the field of handling powder, it is important to grasp various characteristic values of the powder. As a method of measuring the adhesive force of the powder, a method of estimating a force required to separate the powder from an object to which the powder is attached is generally used. As a method of separating powder from an object, a method using centrifugal force, vibration, impact, air pressure, electric field, magnetic field, or the like is known. Among them, the method using centrifugal force facilitates quantitative measurement, and discussed the contribution of electrostatic attraction and van der Waals force in the adhesion of toner to the photoreceptor and carrier.
J. Mastrangelo, Photogr. Sci. Eng., 26: 194-197 (198
2), `` MHLee and J. Ayala, J., who discussed the charge distribution in toner particles, which is important in toner adhesion to photoreceptors.
Image.Tech., 11: 279-284 (1985) "and" Kazuo Terao and Kiyoshi Shigehiro discussing the adhesion of non-static toner that is difficult to quantify:
Various research results have been published, such as the Journal of the Society of Electrophotography, 34 (1995) 83.
【0003】ここで、「M.Takeuchi,A.Onose,M.Anzai,
R.Kojima and K.Kawai:"Proc.IS&T 7 th Int.Congress A
dv.Non-Impact Printing Technology,21991,vol.1,pp.2
00-208」において用いられている遠心力を用いた粉体の
付着力の測定方法(以下、遠心分離式付着力測定方法と
称す)を以下に示す。この遠心分離式付着力測定方法
は、粉体を付着させた試料基板と、試料基板から分離し
た粉体を付着させる受け基板と、試料基板と受け基板と
の間に設けられたスペーサとから構成される測定セル
を、遠心分離装置のロータ内に設置し、ロータの回転に
よる遠心力を用いて粉体を試料基板から分離して受け基
板に付着させ、受け基板上の粉体を光学顕微鏡などを用
いて観察し、その画像をコンピュータに取り込み、画像
処理を行って粉体の粒径を測定し、粉体の粒径及び比重
から粉体の重量を求め、粉体の重量及びロータの回転数
から分離に必要な遠心力を計算して、各粉体の付着力を
求めるという方法である。このように、粉体と平面間の
付着力測定に関しては、多くの報告があるが、粉体間の
付着力測定に関する報告は少ない。[0003] Here, "M. Takeuchi, A. Onose, M. Anzai,
R.Kojima and K.Kawai: "Proc.IS & T 7 th Int.Congress A
dv.Non-Impact Printing Technology, 21991, vol.1, pp.2
Of powder using centrifugal force used in "00-208"
Adhesion measurement method (hereinafter referred to as centrifugal separation adhesion measurement method and
Are shown below. This centrifugal adhesion measurement method
Is separated from the sample substrate with the powder
The receiving substrate to which the powder is attached, the sample substrate and the receiving substrate
Measuring cell composed of a spacer provided between
Is installed in the rotor of the centrifuge, and
The powder is separated from the sample substrate using centrifugal force
Attach it to the plate and apply the powder on the receiving substrate using an optical microscope, etc.
And observe it, import the image to a computer,
Perform the treatment to measure the particle size of the powder, the particle size and specific gravity of the powder
Of the powder and the number of revolutions of the rotor
Calculate the centrifugal force required for separation from
It is a method of asking. Thus, between the powder and the plane
There are many reports on adhesion measurement,
There are few reports on adhesion measurement.
【0004】一方、電子写真方式で用いるトナー画像の
転写プロセスでは、感光体上で電場により拘束されてい
るトナー粒子集団を拘束力のない均一面にクーロン力で
引っ張って移動させるため、原理的にトナーが散り易い
という問題がある。また、転写体あるいは中間転写体上
に転写されたトナーには、トナー粒子間のクーロン反発
力が働いており、転写後のトナーの飛び散りの原因の一
つになっていると考えられる。従って、トナーの飛び散
りにはトナー粒子間の付着力が重要な特性値となる。特
にファンデルワールス力や液架橋力のような非静電的付
着力をコントロールすることが重要であり、その非静電
的付着力を定量的に測定する方法の確立が望まれる。On the other hand, in a toner image transfer process used in an electrophotographic method, a group of toner particles constrained by an electric field on a photoreceptor is pulled and moved by a Coulomb force to a uniform surface having no constraining force. There is a problem that toner is easily scattered. Further, Coulomb repulsion between toner particles acts on the toner transferred onto the transfer member or the intermediate transfer member, which is considered to be one of the causes of toner scattering after transfer. Therefore, the adhesion between toner particles is an important characteristic value for toner scattering. In particular, it is important to control non-electrostatic adhesion such as Van der Waals force and liquid crosslinking force, and it is desired to establish a method for quantitatively measuring the non-electrostatic adhesion.
【0005】なお、この種の方法として関連するものに
は、例えば、特開平2−282760号公報、特開平5
−333757号公報、特開平6−167825公報、
特開平6−167826号公報がある。[0005] Incidentally, as a method related to this type, for example, Japanese Patent Application Laid-Open No. 2-282760 and Japanese Patent Application Laid-Open
JP-333775, JP-A-6-167825,
There is JP-A-6-167826.
【0006】[0006]
【発明が解決しようとする課題】前記従来技術では、電
子写真方式で用いるトナー画像の転写プロセスにおいて
トナー粒子間の非静電的付着力をコントロールすること
が重要であるにも拘らず、トナーのような粉体間の非静
電的付着力を定量的かつ効率的に測定する方法が確立さ
れていないという問題があった。In the prior art, it is important to control the non-electrostatic adhesion between toner particles in the transfer process of a toner image used in an electrophotographic system, but it is important to control the toner. There has been a problem that a method for quantitatively and efficiently measuring such non-electrostatic adhesion between powders has not been established.
【0007】本発明の目的は、このような問題点を改善
し、トナーのような粉体間の非静電的付着力を定量的に
測定できる粉体間付着力測定装置及び粉体間付着力測定
方法を提供することにある。さらに、本発明の他の目的
は、前記粉体間付着力測定装置及び粉体間付着力測定方
法を利用して、トナー画像形成後のトナーの飛び散りを
低減できる画像形成装置及び画像形成方法を提供するこ
とにある。SUMMARY OF THE INVENTION An object of the present invention is to solve such a problem and to provide a powder adhesion measuring apparatus and a powder adhesion measuring apparatus capable of quantitatively measuring a non-electrostatic adhesion between powders such as toner. It is an object of the present invention to provide a method for measuring an adhesion. Further, another object of the present invention is to provide an image forming apparatus and an image forming method capable of reducing scattering of toner after forming a toner image by using the above-described powder-to-powder adhesion measuring apparatus and method. To provide.
【0008】[0008]
【課題を解決するための手段】前記目的を達成するた
め、本発明の粉体間付着力測定装置は、粉体を複数層以
上の厚さに重ねた粉体層を形成した試料面を有する試料
基板、前記粉体層から分離した粉体を付着させる付着面
を有する受け基板、及び前記試料面と前記付着面との間
に設けられたスペーサから構成される測定セルと、前記
測定セルを回転させるロータと、を有する遠心分離装置
と、前記付着面に付着した粉体の画像を取得する画像取
得手段と、前記画像取得手段にて取得された粉体の画像
を解析し、前記受け基板上に付着している粉体の数、及
び粉体の受け基板上への投影面積を求めるための画像処
理手段と、前記画像処理手段により求められた付着面に
付着する粉体の数と投影面積の関係から、個々の粉体同
士が付着せずに独立して前記受け基板上に付着した状態
を取り得る粉体の数及び投影面積を求める独立状態決定
手段と、前記遠心分離装置のロータ回転数と前記受け基
板上に付着した粉体の投影面積の関係から、個々の粉体
が独立状態となるロータ回転数を決定するロータ回転数
決定手段と、前記付着面に付着した粉体の平均粒径及び
比重から計算した該粉体の平均重量と前記ロータの回転
数とから、前記試料面上に形成した粉体層の最表面から
粉体を分離するために必要な遠心力を求める付着力導出
手段と、前記試料面上の粉体層の単位面積当たりの付着
量、粉体の平均帯電量、及び、粉体層最表面から粉体を
分離するために必要な遠心力の値を用いて、粉体間の非
静電的付着力を算出する非静電的付着力算出手段と、を
有することを特徴とする。In order to achieve the above object, an apparatus for measuring adhesion between powders according to the present invention has a sample surface on which a powder layer is formed by stacking a plurality of powder layers. A sample substrate, a receiving substrate having an adhesion surface for adhering the powder separated from the powder layer, and a measurement cell including a spacer provided between the sample surface and the adhesion surface; and A centrifugal separator having a rotor to be rotated; an image acquisition unit for acquiring an image of the powder attached to the attachment surface; and an image of the powder acquired by the image acquisition unit, and analyzing the image of the powder. Image processing means for determining the number of powders adhering on the surface and the projected area of the powders on the receiving substrate; and the number and projection of the powders adhering to the adhering surface determined by the image processing means Independent of individual powders not adhering to each other due to area Independent state determining means for determining the number and projected area of powder that can take a state of adhering on the receiving substrate, and the relationship between the rotational speed of the rotor of the centrifugal separator and the projected area of the powder adhering on the receiving substrate. A rotor speed determining means for determining a rotor speed at which each powder is in an independent state; an average weight of the powder calculated from an average particle diameter and specific gravity of the powder attached to the attachment surface; From the number of rotations, the adhesion force deriving means for determining the centrifugal force required to separate the powder from the outermost surface of the powder layer formed on the sample surface, unit area of the powder layer on the sample surface The non-electrostatic adhesion between the powders is calculated using the adhesion amount per unit, the average charge amount of the powder, and the value of the centrifugal force required to separate the powder from the outermost surface of the powder layer. And a non-electrostatic adhesive force calculating means.
【0009】また、前記目的を達成するため、本発明の
粉体間付着力測定方法は、粉体を複数層以上の厚さに重
ねた粉体層を形成した試料面を有する試料基板を作成
し、前記粉体層から分離した粉体を付着させる付着面を
有する受け基板を作成する基板作成工程と、前記試料基
板と、前記受け基板と、前記試料面と前記付着面の間に
設けられたスペーサと、から構成される測定セルを作成
する測定セル作成工程と、前記測定セルを回転させるロ
ータを有する遠心分離装置の該ロータ内に前記測定セル
を設置する測定セル設置工程と、前記ロータの回転によ
る遠心力により、前記試料面上に形成した粉体層の表面
の粉体を分離して前記付着面に付着させる遠心分離工程
と、前記測定セルを前記ロータから取り出して、前記受
け基板を取得する受け基板取得工程と、前記付着面に付
着する粉体の画像を取得し、取得された該粉体の画像を
解析することにより、前記受け基板上に付着している粉
体の数を求める粉体数導出工程と、前記粉体の画像を解
析することにより、粉体の受け基板上への投影面積を求
める投影面積導出工程と、前記付着面に付着する粉体の
数と投影面積の関係から、個々の粉体同士が付着せずに
独立して受け基板上に付着した状態を取り得る粉体の数
及び投影面積を求める独立状態決定工程と、前記ロータ
の回転数と前記受け基板上に付着した粉体の投影面積の
関係から、個々の粉体が独立状態となるロータ回転数を
決定するロータ回転数決定工程と、前記粉体の平均粒径
及び比重から計算した該粉体の平均重量と前記ロータの
回転数とから、前記試料面上に形成した粉体層の最表面
から粉体を分離するために必要な遠心力を求める付着力
導出工程と、前記試料面上の粉体層の単位面積当たりの
付着量、粉体の平均帯電量、及び、粉体層最表面から粉
体を分離するために必要な遠心力の値を用いて、粉体間
の非静電的付着力を算出する非静電的付着力算出工程
と、を有することを特徴とする。In order to achieve the above object, the method for measuring the adhesion between powders according to the present invention comprises preparing a sample substrate having a sample surface on which a powder layer is formed by laminating a plurality of powder layers. A substrate forming step of forming a receiving substrate having an adhering surface for adhering the powder separated from the powder layer; and a sample substrate, the receiving substrate, and a substrate provided between the sample surface and the adhering surface. A measuring cell forming step of forming a measuring cell composed of a spacer, a measuring cell setting step of setting the measuring cell in the rotor of a centrifugal separator having a rotor for rotating the measuring cell, A centrifugal separation step of separating the powder on the surface of the powder layer formed on the sample surface by the centrifugal force caused by the rotation of the sample layer and attaching the powder to the attachment surface; Get A substrate obtaining step, obtaining an image of the powder adhering to the adhering surface, and analyzing the obtained image of the powder to obtain the number of powder adhering on the receiving substrate The number deriving step, by analyzing the image of the powder, the projected area deriving step to determine the projected area of the powder on the receiving substrate, and from the relationship between the number and projected area of the powder adhering to the adhering surface An independent state determining step for determining the number and projection area of the powders that can take a state in which individual powders independently adhere to each other without adhering to the receiving substrate; and From the relationship of the projected area of the attached powder, a rotor rotation speed determining step of determining the rotor rotation speed at which each powder becomes an independent state, and the average of the powder calculated from the average particle diameter and specific gravity of the powder From the weight and the rotation speed of the rotor, Adhesion force deriving step of determining the centrifugal force required to separate the powder from the outermost surface of the powder layer, the amount of adhesion per unit area of the powder layer on the sample surface, the average charge amount of the powder, and A non-electrostatic adhesion force calculating step of calculating a non-electrostatic adhesion force between the powders by using a value of a centrifugal force required to separate the powder from the outermost surface of the powder layer. It is characterized by.
【0010】また、前記目的を達成するため、本発明の
画像形成装置は、少なくとも、静電潜像を担持する静電
潜像担持体と、画像情報に応じて前記静電潜像担持体に
静電潜像を形成する形成手段と、前記静電潜像にトナー
を供給して顕像化する現像手段と、顕像化されたトナー
画像を担持するトナー画像担持体とを有し、前記粉体間
付着力測定方法によって予め測定した、前記トナー画像
担持体のトナー画像を形成するトナー粒子間の非静電的
付着力をFt(N)、トナー帯電量の平均値をQ(μC
/g)、前記トナー画像担持体上での最大のトナー付着
量をM(mg/cm2)としたとき、以下の関係式「M4
Q2/(Ft×109)≦60」を満たすように構成され
たことを特徴とする。In order to achieve the above object, an image forming apparatus according to the present invention comprises at least an electrostatic latent image carrier for carrying an electrostatic latent image, and an electrostatic latent image carrier according to image information. Forming means for forming an electrostatic latent image, developing means for supplying toner to the electrostatic latent image to visualize the toner, and a toner image carrier for carrying the visualized toner image; The non-electrostatic adhesion between toner particles forming the toner image of the toner image carrier, which is measured in advance by the powder adhesion measurement method, is Ft (N), and the average value of the toner charge is Q (μC
/ G), where M (mg / cm 2 ) is the maximum amount of toner adhering on the toner image carrier, the following relational expression “M 4
Q 2 / (Ft × 10 9 ) ≦ 60 ”.
【0011】また、前記目的を達成するため、本発明の
画像形成方法は、少なくとも、均一に帯電された静電潜
像担持体に画像情報に応じて光を照射し、前記静電潜像
担持体上に静電潜像を形成して担持する静電潜像形成工
程と、前記静電潜像にトナーを供給して顕像化し、顕像
化されたトナー画像をトナー画像担持体に担持する現像
工程とを有し、前記現像工程においては、請求項6記載
の粉体間付着力測定方法によって予め測定した、前記ト
ナー画像担持体のトナー画像を形成するトナー粒子間の
非静電的付着力をFt(N)、トナー帯電量の平均値を
Q(μC/g)、前記トナー画像担持体上での最大のト
ナー付着量をM(mg/cm2)としたとき、以下の関
係式「M4Q2/(Ft×109)≦60」を満たすこと
を特徴とする。According to another aspect of the present invention, there is provided an image forming method comprising: irradiating at least a uniformly charged electrostatic latent image carrier with light in accordance with image information; An electrostatic latent image forming step of forming and carrying an electrostatic latent image on a body, and supplying toner to the electrostatic latent image to form a visible image, and carrying the visualized toner image on a toner image carrier And a non-electrostatic process between the toner particles forming the toner image on the toner image carrier, which is measured in advance by the method for measuring an adhesion between powders according to claim 6. When the adhesive force is Ft (N), the average value of the toner charge amount is Q (μC / g), and the maximum toner adhesion amount on the toner image carrier is M (mg / cm 2 ), the following relationship is obtained. It is characterized by satisfying the expression “M 4 Q 2 / (Ft × 10 9 ) ≦ 60”.
【0012】[0012]
【発明の実施の形態】以下、図面を用い、本発明の一実
施例を示して詳細に説明する。 《前記粉体間付着力測定装置及び粉体間付着力測定方法
の実施例》 本実施例の粉体間付着力測定装置は、図1
のように、装置全体を制御し、後述の粉体間付着力測定
方法の工程を制御するCPU41、トナー等の粉体間付
着力測定に用いる遠心分離装置5及びインタフェース4
3、CRT等から構成され、スキャナ49によって取り
込まれた粉体の画像やその画像の解析結果等を表示する
表示手段44、キーボードやマウス等の入力手段45、
CPU41の制御プログラムや必要データを記憶したメ
モリ46、遠心力分離装置42による測定データやその
解析結果等を蓄積するための外部記憶装置47、光学顕
微鏡やCCDカメラ等により観察、撮影された粉体の画
像を装置本体に取り込むためのスキャナ49及びインタ
フェース50、スキャナ49を介して取り込まれた粉体
の画像を解析し、後述の受け基板3上に付着している粉
体の数、及び粉体の受け基板3上への投影面積を求める
ための画像処理手段48等を有する。また、図2のよう
に、遠心分離装置5は、図3に示す測定セル1を回転さ
せるロータ6と保持部材7とを備える。ロータ6は、自
身の回転中心軸に対して垂直な断面で穴形状であり、保
持部材7を嵌合可能に支持する試料設置部8を有する。
保持部材7は棒状部7aと、棒状部7aに設けられた測
定セル1を保持するセル保持部7bと、を備える。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. << Examples of the Apparatus for Measuring Adhesion Between Powders and Method for Measuring Adhesion Between Powders >> The apparatus for measuring adhesion between powders in this embodiment is shown in FIG.
CPU 41 for controlling the entire apparatus and controlling the steps of the method for measuring the adhesion between powders described later, the centrifugal separator 5 used for measuring the adhesion between powders such as toner, and the interface 4
3, a display means 44 composed of a CRT, etc., for displaying an image of the powder taken in by the scanner 49 and an analysis result of the image, an input means 45 such as a keyboard and a mouse,
A memory 46 storing a control program of the CPU 41 and necessary data, an external storage device 47 for storing measurement data by the centrifugal force separation device 42 and analysis results thereof, and powders observed and photographed by an optical microscope, a CCD camera, or the like. The scanner 49 and the interface 50 for capturing the image of the powder into the apparatus main body, the image of the powder captured via the scanner 49 is analyzed, and the number of powders adhering to the receiving substrate 3 described below, And an image processing means 48 for obtaining an area projected on the receiving substrate 3. Further, as shown in FIG. 2, the centrifugal separator 5 includes a rotor 6 for rotating the measuring cell 1 shown in FIG. The rotor 6 has a hole shape in a cross section perpendicular to its own rotation center axis, and has a sample setting unit 8 that supports the holding member 7 so as to be fittable.
The holding member 7 includes a rod portion 7a and a cell holding portion 7b that holds the measurement cell 1 provided on the rod portion 7a.
【0013】このような構成による、本実施例の粉体間
付着力測定方法では、CPU41Kの制御によって、図
4に示す手順でトナー等の粉体間の非静電的付着力を測
定する。すなわち、粉体を複数層以上の厚さに重ねて形
成した試料面2aを有する試料基板2を作成し、その試
料基板2から分離した粉体を付着させる付着面を有する
受け基板3を作成する受け基板作成工程101と、試料
基板2と、受け基板3と、試料基板2の試料面2aと受
け基板3の付着面3aの間に設けられたスペーサ4と、
から構成される測定セル1を作成する測定セル作成工程
102と、測定セル1を回転させるロータ6を有する遠
心分離装置5のロータ6内に測定セル1を設置する測定
セル設置工程103と、遠心分離装置5のロータ6の回
転による遠心力により、試料面2aに形成した粉体層の
表面の粉体を分離して受け基板3の付着面3aに付着さ
せる遠心分離工程104と、測定セル1を遠心分離装置
5のロータ6から取り出して、受け基板3を取得する受
け基板取得工程105と、受け基板3の付着面3aに付
着する粉体の画像を、図示していない光学顕微鏡やCC
Dカメラにて観察、撮影し、その画像をスキャナ49を
介して取得し、取得した画像を画像処理手段48を用い
て解析することにより、受け基板3に付着している粉体
の数を求める粉体数導出工程106と、粉体の受け基板
3の付着面3aへの投影面積を求める投影面積導出工程
107と、受け基板3の付着面3aに付着する粉体の数
と投影面積の関係から、個々の粉体同士が付着せずに独
立して受け基板3上に付着した状態を取り得る粉体の数
及び投影面積を求める独立状態決定工程108と、遠心
分離装置5のロータ6の回転数と受け基板3上に付着し
た粉体の投影面積の関係から、独立状態となるロータ6
の回転数を決定するロータ回転数決定工程109と、粉
体の平均粒径及び比重から計算したその粉体の平均重量
と前記ロータ6の回転数とから、試料面上に形成した粉
体層の最表面から粉体を分離するために必要な遠心力を
求める付着力導出工程110と、試料面上の粉体層の単
位面積当たりの付着量(あるいは、試料面上の粉体の厚
さ)、粉体の平均帯電量、及び粉体層最表面から粉体を
分離するのに必要な遠心力より、粉体間の非静電的付着
力を算出する非静電的付着力算出工程111と、から構
成される。In the method for measuring the adhesion between powders according to the present embodiment having such a configuration, the non-electrostatic adhesion between powders such as toner is measured by the procedure shown in FIG. 4 under the control of the CPU 41K. That is, a sample substrate 2 having a sample surface 2a formed by laminating powder in a plurality of layers or more is prepared, and a receiving substrate 3 having an adhering surface on which the powder separated from the sample substrate 2 is adhered is prepared. Receiving substrate forming step 101, sample substrate 2, receiving substrate 3, spacer 4 provided between sample surface 2 a of sample substrate 2 and attachment surface 3 a of receiving substrate 3,
A measuring cell creating step 102 for creating the measuring cell 1 comprising: a measuring cell setting step 102 for setting the measuring cell 1 in the rotor 6 of the centrifugal separator 5 having the rotor 6 for rotating the measuring cell 1; A centrifugal separation step 104 of separating the powder on the surface of the powder layer formed on the sample surface 2 a by the centrifugal force caused by the rotation of the rotor 6 of the separation device 5 and attaching the powder to the attachment surface 3 a of the receiving substrate 3; Is obtained from the rotor 6 of the centrifugal separator 5 to obtain the receiving substrate 3, and the image of the powder adhering to the adhering surface 3 a of the receiving substrate 3 is read by an optical microscope or CC (not shown).
The number of powders adhering to the receiving substrate 3 is obtained by observing and photographing with a D camera, acquiring the image via the scanner 49, and analyzing the acquired image using the image processing means 48. A powder number deriving step 106, a projected area deriving step 107 for obtaining a projected area of the powder on the adhering surface 3a of the receiving substrate 3, and a relationship between the number of powder adhering to the adhering surface 3a of the receiving substrate 3 and the projected area From the independent state determination step 108 for determining the number and projection area of the powders that can take a state in which the individual powders independently adhere to the receiving substrate 3 without adhering to each other; The rotor 6 becomes independent from the relationship between the rotation speed and the projected area of the powder attached to the receiving substrate 3.
A rotor layer number determining step 109 for determining the number of rotations of the powder, a powder layer formed on the sample surface from the average weight of the powder calculated from the average particle diameter and specific gravity of the powder and the number of rotations of the rotor 6. Adhesion deriving step 110 for obtaining the centrifugal force required to separate the powder from the outermost surface of the sample, and the adhesion amount per unit area of the powder layer on the sample surface (or the thickness of the powder on the sample surface) ), A non-electrostatic adhesion calculating step for calculating the non-electrostatic adhesion between the powders from the average charge amount of the powders and the centrifugal force required to separate the powders from the outermost surface of the powder layer. 111.
【0014】なお、前記測定セル設置工程103は、遠
心分離装置5のロータ6を取り外し、取り外したロータ
6内に測定セル1を設置することにより実行される。ま
た、遠心分離工程104は、同一試料基板2に対して遠
心分離装置5のロータ6の回転数を変化させ、試料基板
2に付着した粉体を各回転数毎に交換される受け基板3
の付着面3aに付着させることにより実行される。前述
のような図1〜図3に示した構成の粉体間付着力測定装
置により、測定セル設置工程103が、保持部材7のセ
ル保持部7bにより測定セル1を保持する保持工程と、
保持部材7を試料設置部8に嵌合させ、試料基板2の試
料面2aの垂線と受け基板3の付着面3aの垂線が共に
遠心分離装置5のロータ6の回転中心軸に対して垂直と
なり、試料基板2の試料面2aが受け基板3の付着面3
aと遠心分離装置5のロータ6の回転中心軸との間に位
置するように、保持部材7を遠心分離装置5のロータ6
内に設置する設置工程と、から構成されるので、ロータ
6を用いて測定セル1に大きな遠心力を加えることがで
きる。The measuring cell installation step 103 is performed by removing the rotor 6 of the centrifugal separator 5 and installing the measuring cell 1 in the removed rotor 6. The centrifugation step 104 changes the rotation speed of the rotor 6 of the centrifugal separator 5 with respect to the same sample substrate 2 and exchanges the powder attached to the sample substrate 2 at each rotation speed with the receiving substrate 3.
This is performed by attaching to the attachment surface 3a. With the powder-to-powder adhesion measuring device having the configuration shown in FIGS. 1 to 3 as described above, the measurement cell setting step 103 is a holding step of holding the measurement cell 1 by the cell holding portion 7b of the holding member 7,
The holding member 7 is fitted to the sample setting section 8, and the perpendicular of the sample surface 2 a of the sample substrate 2 and the perpendicular of the attachment surface 3 a of the receiving substrate 3 are both perpendicular to the rotation center axis of the rotor 6 of the centrifugal separator 5. The sample surface 2a of the sample substrate 2 is
a of the centrifugal separator 5 and the rotor 6 of the centrifugal separator 5.
A large centrifugal force can be applied to the measurement cell 1 using the rotor 6.
【0015】本実施例においては、粉体の受ける遠心力
Fは、粉体の重量m、ロータの回転数f(rpm)、ロ
ータの中心軸から試料基板の粉体付着面までの距離rを
用いて、次式(4)により求められる。 F=m×r×(2πf/60)2 (4) また、粉体の重量mは、粉体の真比重ρ、円相当径dを
用いて、次式(5)より求められる。In the present embodiment, the centrifugal force F applied to the powder is represented by the weight m of the powder, the number of rotations f (rpm) of the rotor, and the distance r from the center axis of the rotor to the powder adhering surface of the sample substrate. It is obtained by the following equation (4). F = m × r × (2πf / 60) 2 (4) The weight m of the powder is obtained from the following equation (5) using the true specific gravity ρ of the powder and the circle equivalent diameter d.
【0016】 m=(π/6)×ρ×d3 (5) さらに、後述の式(1)及び(2)より、粉体の受ける
遠心力Fは、次式(6)より求められる。 F=(π3/5400)×ρ×d3×r×f2 (6) 試料面上のトナー層を遠心分離法で分離しようとする場
合、トナー層の最表面のトナーには、回転による遠心
力、他のトナーとの非静電的付着力、他のトナーとのク
ーロン反発力、試料面との鏡像力が働いている。ここ
で、トナー間の非静電的付着力を測定したい場合、クー
ロン反発力や鏡像力などの静電的な力の影響を取り除く
必要がある。本実施例では、試料面上の粉体層の単位面
積当たりの付着量M(mg/cm2)、粉体の平均帯電
量をQ(μC/g)、粉体層最表面から粉体を分離する
ために必要な遠心力をFs(N)としたとき、付着量M
及び、又は帯電量Qが異なる複数の試料に対して遠心力
Fsを求め、次の関係式(1)から、粉体間の非静電的
付着力Ft(N)を算出する。但し、Aは定数である。M = (π / 6) × ρ × d 3 (5) Further, from equations (1) and (2) described later, the centrifugal force F received by the powder can be obtained from the following equation (6). F = (π 3/5400) × ρ × d 3 × r × f 2 (6) If the toner layer on the sample surface to be separated by centrifugation, the toner of the outermost surface of the toner layer, due to the rotation Centrifugal force, non-electrostatic adhesion to other toner, Coulomb repulsion to other toner, and mirror image to the sample surface are acting. Here, when it is desired to measure the non-electrostatic adhesion between toners, it is necessary to remove the influence of electrostatic forces such as Coulomb repulsion and mirror image. In the present embodiment, the adhesion amount M (mg / cm 2 ) of the powder layer on the sample surface per unit area, the average charge amount of the powder is Q (μC / g), Assuming that the centrifugal force required for separation is Fs (N), the adhesion amount M
And, the centrifugal force Fs is obtained for a plurality of samples having different charge amounts Q, and the non-electrostatic adhesion Ft (N) between the powders is calculated from the following relational expression (1). Here, A is a constant.
【0017】 Ft=Fs−A×(Q/M)2 (1) また、試料面上の粉体層の厚さをH(μm)、粉体の平
均帯電量をQ(μC/g)、粉体層最表面から粉体を分
離するために必要な遠心力をFs(N)としたとき、厚
さH及び、又は帯電量Qが異なる複数の試料に対して遠
心力Fsを求め、次の関係式(2)から、粉体間の非静
電的付着力Ft(N)を算出する。但し、Bは定数であ
る。Ft = Fs−A × (Q / M) 2 (1) Further, the thickness of the powder layer on the sample surface is H (μm), the average charge amount of the powder is Q (μC / g), Assuming that the centrifugal force required to separate the powder from the outermost surface of the powder layer is Fs (N), the centrifugal force Fs is obtained for a plurality of samples having different thicknesses H and / or charge amounts Q. From the relational expression (2), the non-electrostatic adhesion Ft (N) between the powders is calculated. Here, B is a constant.
【0018】 Ft=Fs−B×(Q/H)2 (2) なお、遠心分離装置5は、日立工機製CP100α(最
高回転数:100,000rpm、最大遠心加速度:8
00,000×g)を用いた。また、ロータ6は、日立
工機製アングルロータP100ATを用いた。試料基板
2、受け基板3、スペーサ4及び保持部材7は、遠心分
離装置5の大きな遠心力に耐えられる強度があり、ロー
タ6内に設置したときに遠心分離装置5の最大回転数ま
で回転可能な重量以下となるような軽量の材料を用いる
必要があるため、アルミ製の部材を用いた。また、受け
基板3の付着面3aは、アルミを蒸着した、傷のない平
滑な面とすることが望ましい。付着面3aの傷を無くす
ることで、トナー粒子測定の画面処理時に受け基板3の
傷も計測されることを防ぐことができる。さらに、試料
基板2の試料面2aとしては、測定対象の粉体層を形成
することが可能なものであれば全て使用可能である。任
意の試料面上に測定対象の粉体を上方から落下させで形
成してもよいが、厚さが均一な粉体層を形成するために
は、電子写真法を応用して粉体層を形成することが望ま
しい。特に、測定対象がトナーである場合、実際にトナ
ー間の付着力を測定したい状態での試料を作成する必要
がある。例えば、現像工程後の感光体上のトナー画像の
トナー間付着力を測定したい場合、試料面2aとしてシ
ート状の感光体を用いることが望ましい。また、転写工
程でニップ圧力などを受けた後の状態を測定したい場
合、実際の紙やOHPシートなどを試料面2aとして試
料基板2に貼り付けることが望ましい。Ft = Fs−B × (Q / H) 2 (2) The centrifugal separator 5 is a CP100α manufactured by Hitachi Koki (maximum rotation speed: 100,000 rpm, maximum centrifugal acceleration: 8).
00,000 × g). As the rotor 6, an angle rotor P100AT manufactured by Hitachi Koki was used. The sample substrate 2, the receiving substrate 3, the spacer 4, and the holding member 7 have strength enough to withstand the large centrifugal force of the centrifugal separator 5, and can be rotated up to the maximum rotation speed of the centrifugal separator 5 when installed in the rotor 6. Since it is necessary to use a lightweight material having a weight not more than an appropriate weight, an aluminum member was used. Further, it is desirable that the attachment surface 3a of the receiving substrate 3 be a smooth surface with no scratches on which aluminum is deposited. Eliminating the scratches on the attachment surface 3a can prevent the scratches on the receiving substrate 3 from being measured during the screen processing for toner particle measurement. Further, as the sample surface 2a of the sample substrate 2, any material that can form a powder layer to be measured can be used. The powder to be measured may be formed by dropping the powder to be measured from above onto an arbitrary sample surface.However, in order to form a powder layer having a uniform thickness, the powder layer is formed by applying electrophotography. It is desirable to form. In particular, when the measurement target is a toner, it is necessary to prepare a sample in a state where it is desired to actually measure the adhesive force between the toners. For example, when it is desired to measure the adhesion between toners of the toner image on the photoconductor after the development process, it is desirable to use a sheet-shaped photoconductor as the sample surface 2a. When it is desired to measure the state after receiving a nip pressure or the like in the transfer step, it is desirable to attach actual paper or an OHP sheet to the sample substrate 2 as the sample surface 2a.
【0019】以下、より具体的な粉体間付着力測定方法
を示す。本実施例では、トナー層の形成にはリコー製デ
ィジタルフルカラー複写機PRETER650を使用し
た。また、PRETER650用トナーをベースとし
て、外添剤(H2000シリカ)添加量を変えたものを
3種類用意した。各種トナーの凝集度の測定結果を表1
に示す。Hereinafter, a more specific method for measuring the adhesion between powders will be described. In this embodiment, a digital full-color copying machine PRETER650 manufactured by Ricoh was used for forming the toner layer. In addition, three kinds of toners with different amounts of external additives (H2000 silica) were prepared based on the toner for PRETER650. Table 1 shows the measurement results of the aggregation degree of various toners.
Shown in
【0020】◎◎
【表1】 [Table 1]
【0021】トナーの凝集度Cは、ホソカワミクロン製
のパウダーテスタPT−N型を使用し、次の方法により
測定した。パウダーテスタに3種類のメッシュを装着し
(フルイ目開き、上段75μm、中段45μm、下段2
2μm)、トナーサンプルを2g上段のメッシュに載
せ、振幅目盛が1mm振幅する状態で、30秒間振動さ
せる。各メッシュ上に残ったトナーの重量からトナーの
凝集度を次式により算出する。The aggregation degree C of the toner was measured by the following method using a powder tester PT-N manufactured by Hosokawa Micron. Attach three types of meshes to the powder tester (screen opening, upper 75 μm, middle 45 μm, lower 2
2 μm), and place the toner sample on the upper mesh of 2 g, and vibrate for 30 seconds with the amplitude scale having an amplitude of 1 mm. The aggregation degree of the toner is calculated from the weight of the toner remaining on each mesh by the following equation.
【0022】◎◎
【数1】 (Equation 1)
【0023】ここで示したトナーの凝集度は、トナーの
流動性を示す特性値であり、値の小さいほど流動性が向
上する傾向がみられる。各種トナーとPRETER65
0用2成分現像剤のキャリアを混合し、現像剤とした。
各種現像剤に対して荷電電位や露光量などの作像条件を
設定し、中間転写ベルト上に直径3mmの円形のトナー
像を形成した。さらに、中間転写ベルトを切りだし、図
5のように、円形のアルミ基板上に貼り合わせ、試料基
板2を作成した。試料基板(アルミ基板)2の試料面
(中間転写ベルトの一部)2a上に形成したトナー層は
帯電しているため、トナー粒子間のクーロン反発力や基
板との鏡像力が働いていると考えられる。これらの力の
影響を考察するために、各トナー種に対して、中間転写
ベルト上のトナー帯電量Q(μC/g)とトナー付着量
M(mg/cm2)を変化させた複数の試料面2aを作
成した。トナー帯電量Q及びトナー付着量Mは既知の面
積のトナー画像に対して吸引式ファラデーケージ法で測
定した。こうして作成した試料基板2を保持部材7に装
着し、保持部材7をロータ6に、ロータ6を遠心分離装
置5にセットする。The agglomeration degree of the toner shown here is a characteristic value indicating the fluidity of the toner. The smaller the value is, the more the fluidity tends to be improved. Various toners and PRETER65
A carrier of a two-component developer for 0 was mixed to obtain a developer.
Image forming conditions such as charge potential and exposure amount were set for various developers, and a circular toner image having a diameter of 3 mm was formed on the intermediate transfer belt. Further, the intermediate transfer belt was cut out and stuck on a circular aluminum substrate as shown in FIG. Since the toner layer formed on the sample surface (part of the intermediate transfer belt) 2a of the sample substrate (aluminum substrate) 2 is charged, the Coulomb repulsion between the toner particles and the mirror image with the substrate act. Conceivable. In order to consider the effects of these forces, a plurality of samples were prepared in which the toner charge amount Q (μC / g) and the toner adhesion amount M (mg / cm 2 ) on the intermediate transfer belt were changed for each toner type. Surface 2a was created. The toner charge amount Q and the toner adhesion amount M were measured on a toner image having a known area by a suction Faraday cage method. The sample substrate 2 thus prepared is mounted on the holding member 7, and the holding member 7 is set on the rotor 6, and the rotor 6 is set on the centrifugal separator 5.
【0024】さらに、遠心分離装置5を作動させると、
トナー粒子は遠心力によりトナー層表面から分離し、受
け基板3(直径 本体:8mm、トナー受け範囲:5.
2mm)に付着する。トナーの受ける遠心力Fは、前述
の式(6)から求められる。なお、d:トナー粒径、
ρ:トナー比重1.2g/cm3、r:遠心半径64.
47mm、f:分離回転数rpmとする。Further, when the centrifugal separator 5 is operated,
The toner particles are separated from the surface of the toner layer by centrifugal force, and the receiving substrate 3 (diameter body: 8 mm, toner receiving range: 5.
2 mm). The centrifugal force F received by the toner is obtained from the above-described equation (6). D: toner particle size,
ρ: toner specific gravity 1.2 g / cm 3 , r: centrifugal radius
47 mm, f: separation rotational speed rpm.
【0025】 F=(π3/5400)×ρ×d3×r×f2 (6) 本実施例では、試料基板2から分離するトナー数が比較
的多いため、効率的な評価法として、受け基板3上の一
個一個のトナー粒径は測定せず、平均粒径d=7.5μ
mであるとしてトナー粒子数のみを計数する方法を採用
した。すなわち、受け基板3の付着面3aの中央部をC
CD顕微鏡カメラ(キーエンス社製ハイパーマイクロス
コープ)で拡大観察し、ビデオプリンタで出力した。2
00倍レンズを用いた場合、ビデオプリント上では77
倍の倍率になり、一画面では横1.4mm×縦1.1m
m=1.54mm2の面積を観察できる。拡大写真をス
キャナ49を用いて400dpi×400dpi白黒写
真モードでパーソナルコンピュータ(粉体間付着力測定
装置本体側)に取り込み、画像処理手段48(画像処理
ソフト(イメージプロプラス))を用いて、2値化処
理、計数処理を行い、トナー粒子数とトナー粒子部分が
占める画素数すなわちトナーの受け基板3上への投影面
積を計数した。[0025] In F = (π 3/5400) × ρ × d 3 × r × f 2 (6) The present embodiment, since a relatively large toner number of separating from the sample substrate 2, as an effective evaluation method, The particle diameter of each toner on the receiving substrate 3 was not measured, and the average particle diameter d was 7.5 μm.
m, and a method of counting only the number of toner particles was adopted. That is, the center of the attachment surface 3a of the receiving substrate 3 is C
The images were magnified and observed with a CD microscope camera (Hyperscope manufactured by KEYENCE CORPORATION) and output with a video printer. 2
When a 00 × lens is used, 77
The magnification is twice as large as one screen, 1.4mm wide x 1.1m long
An area of m = 1.54 mm 2 can be observed. The enlarged photograph is taken into a personal computer (on the main body side of the adhesive force measuring device between powders) in a 400 dpi × 400 dpi black-and-white photograph mode by using a scanner 49, and is read by an image processing means 48 (image processing software (Image Pro Plus)). A binarizing process and a counting process were performed, and the number of toner particles and the number of pixels occupied by the toner particle portion, that is, the projected area of the toner on the receiving substrate 3 were counted.
【0026】また、後述の方法で、トナー層中央部の最
表層のトナー粒子が分離し始める回転数fを決定し、式
(6)からトナーを分離するために必要な遠心力Fを求
めた。トナー層の遠心分離を行う際、問題となるのが取
り扱うトナー数の多さである。画像処理ソフトで付着面
3a上のトナー粒子数を計数する場合、トナー数が多く
なると、複数のトナー粒子が重なって大きな一つの粒子
として計数されるようになる。そこで、本実施例では、
トナー粒子数ではなく、トナー粒子部分が占有する総面
積(投影面積)を用いて分離回転数を決定する方法を採
用した。Further, the rotational speed f at which the toner particles in the outermost layer at the center of the toner layer start to be separated is determined by the method described later, and the centrifugal force F required for separating the toner is obtained from the equation (6). . When centrifuging the toner layer, the problem is the large number of toners to be handled. When counting the number of toner particles on the attachment surface 3a by image processing software, as the number of toners increases, a plurality of toner particles overlap and are counted as one large particle. Therefore, in this embodiment,
A method of determining the number of rotations for separation using the total area (projected area) occupied by the toner particle portions instead of the number of toner particles is employed.
【0027】ここで、本実施例で測定した全サンプルに
対して、付着面3a上のトナー粒子数とトナー部投影面
積(画像処理の画素数)の関係を図6に示す。1枚のビ
デオプリント内のトナー部の画素数が1×105個程度
までは画素数とトナー粒子数との間に直線的な関係が成
り立っている。これは、トナー数が1000個程度まで
は一粒一粒が独立して付着していることを意味してい
る。これに対して、トナー部の画素数が2×105個以
上になると、トナー粒子数は約1800個程度で飽和し
てしまう。これは、トナー数が1800個程度以上にな
ると、付着面3a上でトナー粒子同士が重なってしまう
ことを意味している。すなわち、本実施例では、独立状
態決定工程108において、受け基板3上のトナー数1
800個またはトナー部画素数2×105個が、トナー
粒子が独立状態を取り得る最大数であると求められる。
また、この状態では、トナー粒子の固まりが分離してい
るのではなく、トナー粒子が一粒一粒独立して分離して
いると考えられる。本実施例における独立状態の評価基
準としては、遠心力の増加と共にトナー層の表層から分
離し始めたトナーが累積し、1800個(画素数2×1
05個)程度飛んだ時点の回転数を分離回転数fと決め
た。ビデオプリント画面の全面積での画素数は約2.4
×106個であるから、単純に考えると、表層トナーの
約8%が分離した状態である。この状態でトナー粒子は
一粒一粒独立して分離していると考えられる。FIG. 6 shows the relationship between the number of toner particles on the adhesion surface 3a and the projected area of the toner portion (the number of pixels for image processing) for all the samples measured in this embodiment. A linear relationship holds between the number of pixels and the number of toner particles until the number of pixels of the toner portion in one video print is about 1 × 10 5 . This means that up to about 1000 toner particles are attached independently. On the other hand, when the number of pixels in the toner portion is 2 × 10 5 or more, the number of toner particles is saturated at about 1800. This means that when the number of toners is about 1800 or more, the toner particles overlap on the attachment surface 3a. That is, in this embodiment, in the independent state determination step 108, the number of toners on the receiving substrate 3 is 1
800 or 2 × 10 5 toner part pixels are required to be the maximum number of toner particles that can be in an independent state.
In this state, it is considered that the toner particles are not separated but the toner particles are separated independently. In this embodiment, the evaluation criteria of the independent state are as follows. As the centrifugal force increases, the toner that has started to separate from the surface of the toner layer accumulates and accumulates 1800 (the number of pixels is 2 × 1).
The number of rotations at the time of flying about 0. 5 ) was determined as the separation rotation number f. The number of pixels in the entire area of the video print screen is about 2.4
Since it is × 10 6 , about 8% of the surface layer toner is in a separated state from a simple consideration. In this state, it is considered that the toner particles are independently separated one by one.
【0028】ここで、本実施例における3種類のトナー
a,b,cについて、遠心回転数に対する分離トナー数
の変化を図7〜図9に示す。なお、横軸には遠心回転数
(rpm)を、縦軸には累積のトナー部画素数を対数で
表した。前述の独立状態決定工程108で決定した画素
数2×105個の位置は矢印で示した。また、表2に各
条件での試料面2a上のトナー帯電量Q(μC/g)と
トナー付着量M(mg/cm2)の測定結果を示した。FIGS. 7 to 9 show changes in the number of separated toners with respect to the number of centrifugal rotations for the three types of toners a, b, and c in this embodiment. The abscissa represents the centrifugal rotation speed (rpm), and the ordinate represents the cumulative number of pixels of the toner portion in logarithm. The positions of 2 × 10 5 pixels determined in the independent state determination step 108 are indicated by arrows. Table 2 shows the measurement results of the toner charge amount Q (μC / g) and the toner adhesion amount M (mg / cm 2 ) on the sample surface 2a under each condition.
【0029】◎◎
【表2】 [Table 2]
【0030】前記の各条件に対して、累積の画素数が2
×105個になるロータ回転数を、分離回転数fとして
決定し、式(6)でトナー粒径を7.5μmとして遠心
力Fを計算した。この遠心力Fは表層のトナー粒子を分
離するために必要な力であり、トナー粒子間に働く静電
的な力と非静電的付着力の両者の影響を反映している。
遠心力Fの計算結果を表3に示す。何れのトナーに対し
ても、トナー帯電量Qが大きいほどトナーを分離するた
めの遠心力Fが大きく、トナー付着量Mが大きいほど遠
心力Fが小さい傾向がある。For each of the above conditions, the cumulative number of pixels is 2
The number of rotor rotations at which the number of rotors becomes × 10 5 was determined as the number of rotations for separation f, and the centrifugal force F was calculated by the equation (6) with the toner particle size being 7.5 μm. The centrifugal force F is a force necessary for separating the toner particles on the surface layer, and reflects the influence of both the electrostatic force and the non-electrostatic adhesive force acting between the toner particles.
Table 3 shows the calculation results of the centrifugal force F. For any toner, the larger the toner charge amount Q, the larger the centrifugal force F for separating the toner, and the larger the toner adhesion amount M, the smaller the centrifugal force F.
【0031】◎◎
【表3】 [Table 3]
【0032】本実施例では、図10に示すような、鏡像
力による付着状態のモデルを考え、解析することによ
り、トナー粒子間の非静電的付着力を決定する。表層の
トナー粒子の中心に点電荷が存在すると仮定し、この点
電荷に働く基板との鏡像力のみを考慮する。点電荷q
は、トナー帯電量Q(μC/g)に比例し、基板と点電
荷の距離hは、トナー付着量M(mg/cm2)にほぼ
比例する。従って、点電荷に働く鏡像力FはF∝(q/
h)2∝[Q/M]2に比例する。この計算結果も表3に
示した。In this embodiment, a non-electrostatic adhesion force between toner particles is determined by considering and analyzing a model of an adhesion state by a mirror image as shown in FIG. Assuming that a point charge exists at the center of the toner particles on the surface layer, only the mirror image force acting on the point charge with the substrate is considered. Point charge q
Is proportional to the toner charge amount Q (μC / g), and the distance h between the substrate and the point charge is substantially proportional to the toner adhesion amount M (mg / cm 2 ). Therefore, the image force F acting on the point charge is F∝ (q /
h) 2 ∝ [Q / M] It is proportional to 2 . This calculation result is also shown in Table 3.
【0033】ここで、本実施例による鏡像力モデルでの
解析方法に基づいて遠心力を整理した結果を図11に示
す。なお、縦軸は表層のトナーが分離し始める遠心力F
s、横軸は[Q/M]2の計算値を示す。[Q/M]2の
値は鏡像力に比例すると考えられるが、その絶対値自体
に意味はない。各トナーとも、バラツキはあるものの、
直線的な増加傾向が認められる。これにより、横軸をゼ
ロに外挿したときの遠心力が非静電的なトナー粒子間の
付着力Ftを表すと考えられる。すなわち、以下の関係
式(7)が成り立つ。但し、Aは定数である。Here, FIG. 11 shows the result of rearranging the centrifugal force based on the analysis method using the image force model according to the present embodiment. The vertical axis represents the centrifugal force F at which the toner on the surface starts to separate.
s and the horizontal axis show the calculated value of [Q / M] 2 . The value of [Q / M] 2 is considered to be proportional to the image power, but its absolute value itself has no meaning. Although there is variation in each toner,
A linear increase trend is observed. Accordingly, it is considered that the centrifugal force when the horizontal axis is extrapolated to zero represents the non-electrostatic adhesion force Ft between the toner particles. That is, the following relational expression (7) holds. Here, A is a constant.
【0034】 Fs=Ft+A×(Q/M)2 (7) さらに、非静電的なトナー粒子間の付着力Ftとトナー
凝集度の相関を図12に示す。トナーへの外添剤添加量
の減少と共に、トナー凝集度が増加し、非静電的トナー
間付着力が増加することが定量的に確認できた。なお、
前記トナー付着量Mの代わりにトナー層の厚さHを測定
した。トナー層厚さHはキーエンス社の表面形状測定顕
微鏡VF7500を用いて測定した。図13にトナー付
着量Mとトナー層厚さHの相関を示す。両者にはほぼ比
例関係が成り立つ。従って、式(7)と同様に式(8)
が成り立ち、Ftを測定することができた。但し、Bは
定数である。Fs = Ft + A × (Q / M) 2 (7) Further, FIG. 12 shows the correlation between the adhesion force Ft between the non-static toner particles and the toner aggregation degree. It was quantitatively confirmed that as the amount of the external additive added to the toner decreased, the degree of aggregation of the toner increased and the non-electrostatic adhesion between toners increased. In addition,
Instead of the toner adhesion amount M, the thickness H of the toner layer was measured. The toner layer thickness H was measured using a surface profile measuring microscope VF7500 manufactured by Keyence Corporation. FIG. 13 shows a correlation between the toner adhesion amount M and the toner layer thickness H. There is a substantially proportional relationship between the two. Therefore, like equation (7), equation (8)
Was satisfied, and Ft could be measured. Here, B is a constant.
【0035】 Fs=Ft+B×(Q/H)2 (8) 本実施例の更なる検討の結果、前述した転写工程でのト
ナーの飛び散り、いわゆる転写チリ現象は、トナー帯電
量とトナー付着量、さらに本実施例の方法により測定し
たトナー間付着力の三つの特性値で記述できることを見
いだした。転写チリが多いほど、ライン間のような非画
像部に見えるトナー粒子数が多くなる。この非画像部に
散ったトナー数から転写チリレベルを評価した。本実施
例では、中間転写ベルト上の200μm幅のライン状ト
ナー画像をCCD顕微鏡カメラで撮影し、その拡大写真
をスキャナ49からパーソナルコンピュータに白黒連続
調画像として取り込んだ。市販の画像処理ソフトを用い
て、連続調の写真画像を2値化してトナー粒子部分とベ
ルト部分の輪郭を強調、分離した。前記画像処理ソフト
の計数機能を用いてトナー粒子部分の個数(オブジェク
ト数)を計数し、長さ1mm当たりのラインエッジ部か
ら飛び散ったトナー粒子の個数を算出した。この数値を
「ライン散りトナー数N(個/mm)」と定義した。ま
た、中間転写ベルト上のトナー帯電量Q及びトナー付着
量Mは吸引式ファラデーケージ法で測定し、200μm
幅のライン画像を既知の長さ分だけ吸引、採集した。採
集したトナーによる誘起電荷量qと重量mから単位重量
当たりのトナーの電荷量を算出し、平均トナー帯電量Q
(μC/g)として表す。また、ライン画像の拡大写真
からライン幅の平均値を求めてライン画像の面積aを算
出し、単位面積当たりのトナーの重量をトナー付着量M
(mg/cm2)として表す。Fs = Ft + B × (Q / H) 2 (8) As a result of further study of this embodiment, the toner scattering in the above-described transfer process, the so-called transfer dust phenomenon, is caused by the toner charge amount and the toner adhesion amount. Furthermore, it has been found that it can be described by three characteristic values of the adhesion between toners measured by the method of this embodiment. As the amount of transfer dust increases, the number of toner particles visible in a non-image portion such as between lines increases. The transfer dust level was evaluated from the number of toner scattered in the non-image area. In this embodiment, a 200 μm-wide linear toner image on the intermediate transfer belt was photographed by a CCD microscope camera, and an enlarged photograph thereof was captured as a monochrome continuous tone image from the scanner 49 into a personal computer. Using commercially available image processing software, the continuous tone photographic image was binarized to emphasize and separate the contours of the toner particle portion and the belt portion. The number of toner particles (the number of objects) was counted using the counting function of the image processing software, and the number of toner particles scattered from the line edge per 1 mm length was calculated. This numerical value was defined as "the number of toner particles on the line N (number / mm)". The toner charge amount Q and the toner adhesion amount M on the intermediate transfer belt were measured by a suction Faraday cage method, and were 200 μm
A line image having a width was suctioned and collected by a known length. The amount of toner charge per unit weight is calculated from the amount of charge induced by the collected toner q and the weight m, and the average toner charge amount Q
(ΜC / g). Also, the average value of the line width is calculated from the enlarged photograph of the line image to calculate the area a of the line image.
(Mg / cm 2 ).
【0036】ここで、図14に、中間転写ベルト上での
ライン散りトナー数Nと、中間転写ベルト上のトナー付
着量Mの相関を示す。M=0.8〜1.0mg/cm2
程度までのトナー付着量が比較的少ない場合はマゼンタ
トナーの単色画像で、それ以上トナー付着量が多い場合
はシアントナーの上にマゼンタトナーを重ねた2色重ね
画像で実験した。また、トナーとして前述のトナーaを
用いた。また、帯電能力のみが異なる3種類のキャリア
による現像剤を作成し、中間転写ベルト上のトナー帯電
量Qをパラメータとして変化させた。キャリアの帯電能
力は製造過程の焼成温度を変化させてコントロールし
た。帯電能力の高い順にキャリアA、キャリアB、キャ
リアCとした。図14では、ライン散りトナー数Nはト
ナー付着量Mの増加と共に急激に増加する。また、トナ
ー帯電量Qが大きいほどライン散りトナー数Nも大き
い。本発明者の検討では、転写チリが実用上許容できる
レベルは、中間転写ベルト上でのライン散りトナー数が
130個/mmとした。トナー荷電量が大きい場合は中
間転写ベルト上でのトナー付着量を低減しなければなら
ない。すなわち、中間転写ベルト上の画像領域内でトナ
ー付着量が最も多くなる部分でのトナー付着量が少なく
なるような作像条件を設定しなければならない。逆に、
トナー帯電量を小さくすれば、中間転写ベルト上での最
大トナー付着量が多くても許容される。図14中の三つ
の曲線は、「N= αM4Q2+β」の特性を表し、α=
0.28、β=18で同一である。この特性とトナー付
着量Mとトナー帯電量Qに対する転写チリの実験結果は
よく一致している。同様に、外添剤の添加量が異なる前
記3種類のトナーa,b,cを使用し、トナー凝集度ま
たはトナー間付着力をパラメータとして変化させた結果
を図15に示す。Here, FIG. 14 shows a correlation between the number N of toner particles scattered on the intermediate transfer belt and the amount M of toner adhering on the intermediate transfer belt. M = 0.8-1.0 mg / cm 2
The experiment was conducted with a single-color image of magenta toner when the toner adhesion amount was relatively small, and with a two-color superimposed image in which magenta toner was superimposed on cyan toner when the toner adhesion amount was larger than that. The toner a described above was used as the toner. Further, a developer was prepared using three types of carriers having only different charging capabilities, and the toner charge amount Q on the intermediate transfer belt was changed as a parameter. The charging ability of the carrier was controlled by changing the firing temperature during the manufacturing process. Carrier A, carrier B, and carrier C were used in the order of higher charging ability. In FIG. 14, the number N of the line-scattered toner sharply increases with an increase in the toner adhesion amount M. In addition, the larger the toner charge amount Q, the larger the number N of the line scattering toner. According to the study of the present inventor, the practically acceptable level of the transfer dust is that the number of toner particles scattered on the intermediate transfer belt is 130 / mm. When the toner charge amount is large, the amount of toner adhesion on the intermediate transfer belt must be reduced. That is, image forming conditions must be set such that the amount of toner adhered to the portion where the amount of adhered toner is the largest in the image area on the intermediate transfer belt is reduced. vice versa,
If the toner charge amount is reduced, even if the maximum toner adhesion amount on the intermediate transfer belt is large, it is acceptable. The three curves in FIG. 14 represent the characteristics of “N = αM 4 Q 2 + β”, and α =
0.28 and β = 18. This characteristic and the experimental results of transfer dust with respect to the toner adhesion amount M and the toner charge amount Q agree well. Similarly, FIG. 15 shows the results obtained by using the three types of toners a, b, and c having different addition amounts of the external additives and changing the toner aggregation degree or the adhesion force between the toners as a parameter.
【0037】この図15においても、トナー付着量Mの
増加に伴う散りトナー数Nの増加は同様である。また、
外添剤量の減少によってトナー凝集度またはトナー間付
着力が大きくなるほど、散りトナー数が減少する傾向が
ある。図15中の三つの曲線も、「N= αM4Q2+
β」の特性を表し、トナーaではα=0.28、β=1
8、トナーbではα=0.12、β=14、トナーcで
はα=0.08、β=10となった。この特性と転写チ
リの実験結果はよく一致している。Also in FIG. 15, the increase in the number N of scattered toner with the increase in the amount M of attached toner is the same. Also,
The number of scattered toners tends to decrease as the degree of aggregation of the toner or the adhesion between the toners increases due to the decrease in the amount of the external additive. The three curves in FIG. 15 also show “N = αM 4 Q 2 +
β ”, α = 0.28 and β = 1 for toner a.
8, α = 0.12 and β = 14 for toner b, and α = 0.08 and β = 10 for toner c. This characteristic is in good agreement with the experimental results of the transcription dust.
【0038】さらに、図16に、図12で求めたトナー
粒子間の非静電的付着力Ftと図14から求めた前記パ
ラメータαの関係を示す。図中の曲線はα=1.8/F
t(図16でのFtの単位はnN=10-9N)の関係を
示しており、実験結果とほぼ一致している。なお、転写
チリ発生のメカニズムの詳細は明らかでないが、トナー
粒子間の非静電的付着力Ft(N)、トナー付着量M、
トナー帯電量Qの三つのパラメータの変化に対して、ラ
イン散りトナー数Nは実験的には以下の経験式と良く一
致することが明らかとなった。FIG. 16 shows the relationship between the non-electrostatic adhesion Ft between toner particles determined in FIG. 12 and the parameter α determined from FIG. The curve in the figure is α = 1.8 / F
t (the unit of Ft in FIG. 16 is nN = 10 −9 N), which is almost in agreement with the experimental result. Although the details of the mechanism of the generation of transfer dust are not clear, the non-electrostatic adhesion force Ft (N) between the toner particles, the toner adhesion amount M,
It has been clarified experimentally that the line scattering toner number N agrees well with the following empirical formula with respect to changes in the three parameters of the toner charge amount Q.
【0039】 N=1.8M4Q2/(Ft×109)+β (βは10〜20程度) (9) 前述のように実用上許容できるライン散りトナー数Nは
130個/mm程度以下であるから、βを10〜20と
して、 N−β=1.8M4Q2/(Ft×109)≦110〜120 (10) となる。従って、中間転写ベルト上の画像領域内で最も
トナー量が多くなる部分に対して、以下の関係式(3)
を満たすような作像条件を設定すれば、転写チリの少な
い画像が得られる。N = 1.8 M 4 Q 2 / (Ft × 10 9 ) + β (β is about 10 to 20) (9) As described above, the practically allowable number of toner particles N on the line is about 130 / mm or less. Therefore, assuming that β is 10 to 20, N−β = 1.8 M 4 Q 2 / (Ft × 10 9 ) ≦ 110 to 120 (10) Therefore, the following relational expression (3) is applied to the portion where the amount of toner is largest in the image area on the intermediate transfer belt.
By setting an image forming condition that satisfies the condition, an image with less transfer dust can be obtained.
【0040】 M4Q2/(Ft×109)≦60 (3) 前記関係式(3)において、トナー粒子間の非静電的付
着力Ftは、5×10 -9N〜3×10-8Nの範囲である
ことが好ましい。Ftが5×10-9Nよりも小さい場
合、前記関係式(3)を満たすためには、トナー付着量
Mまたはトナー帯電量Qを非常に小さくする必要があ
る。中間転写ベルト上で最もトナーが多い部分でのトナ
ー付着量Mの低下は画像濃度の不足となり、トナー帯電
量Qの低下はトナー凝集度の低下と重なってトナー飛散
等の不具合を生じる。一方、Ftが3×10-8Nよりも
大きい場合は、転写チリに対してはライン散りトナー数
Nが減少する減少する方向だが、現像時のトナー画像の
粒状性の悪化やトナー補給時の搬送性の悪化等の不具合
を生じる。MFourQTwo/ (Ft × 109) ≦ 60 (3) In the above relational expression (3), the non-electrostatic
Strength Ft is 5 × 10 -9N ~ 3 × 10-8Is in the range of N
Is preferred. Ft is 5 × 10-9Places smaller than N
In order to satisfy the relational expression (3), the toner adhesion amount
M or the toner charge amount Q needs to be very small.
You. Toner in the toner-rich area on the intermediate transfer belt
-Decrease in the amount of adhesion M results in insufficient image density and toner charging
The decrease in the amount Q overlaps with the decrease in the toner cohesion degree and the toner scatters.
And so on. On the other hand, Ft is 3 × 10-8Than N
If larger, the number of toner particles scattered on the line for transfer dust
N decreases in the decreasing direction, but the toner image
Problems such as deterioration of graininess and deterioration of transportability when supplying toner
Is generated.
【0041】また、前記関係式(3)において、中間転
写ベルト上でのトナー帯電量の絶対値が10〜30μC
/gの範囲であることが好ましい。トナー帯電量の絶対
値が10μC/gより小さい場合、転写チリに対しては
ライン散りトナー数が減少する方向だが、トナー飛散や
転写不良等の不具合を生じる。逆に、トナー帯電量の絶
対値が30μC/gよりも大きい場合も、転写性が不十
分になる。In the relational expression (3), the absolute value of the toner charge amount on the intermediate transfer belt is 10 to 30 μC.
/ G is preferable. If the absolute value of the toner charge amount is smaller than 10 μC / g, the number of toner particles scattered in the line is reduced for transfer dust, but problems such as toner scattering and transfer failure occur. Conversely, when the absolute value of the toner charge amount is larger than 30 μC / g, transferability becomes insufficient.
【0042】さらに、本実施例においては、中間転写ベ
ルトの表面抵抗値が108〜1010Ωcmであることが
好ましい。表面抵抗値が108Ωcmよりも小さい場
合、転写電圧がリークしてしまい、転写不良が発生す
る。逆に、表面抵抗値が1010Ωcmよりも大きい場
合、ベルト転写工程後の中間転写ベルトの非画像部にマ
イナス電位を保持するようになる。従って、この残留電
位を除去するための除電装値が必要になるという欠点が
ある。しかし、この非画像部の電荷保持は中間転写ベル
ト上での転写チリ低減には効果がある。すなわち、中間
転写ベルト上で画像を形成するトナー粒子間にはトナー
が持つマイナス電荷間にクーロン反発力が作用してトナ
ー散りが発生するが、非画像部にマイナス電荷を保持し
ている場合、非画像部のマイナス電荷とトナー電荷の間
にクーロン反発力が作用し転写チリを抑制すると考えら
れる。このような場合、転写チリ低減には必ずしも関係
式(3)の条件を満たす必要はなくなる。逆に言えば、
関係式(3)は中間転写ベルトの体積抵抗値が1010Ω
cm以下の場合に特に有効である。Further, in this embodiment, the surface resistance of the intermediate transfer belt is preferably 10 8 Ωcm to 10 10 Ωcm. If the surface resistance value is smaller than 10 8 Ωcm, the transfer voltage leaks and transfer failure occurs. Conversely, if the surface resistance is greater than 10 10 Ωcm, the non-image portion of the intermediate transfer belt after the belt transfer process will maintain a negative potential. Therefore, there is a disadvantage that a static eliminator value for removing the residual potential is required. However, the charge retention in the non-image portion is effective in reducing transfer dust on the intermediate transfer belt. That is, Coulomb repulsion acts between the negative charges of the toner between the toner particles forming the image on the intermediate transfer belt to cause toner scattering, but when the non-image portion holds the negative charges, It is considered that Coulomb repulsion acts between the negative charge of the non-image portion and the toner charge to suppress transfer dust. In such a case, it is not necessary to always satisfy the condition of the relational expression (3) for reducing the transfer dust. Conversely,
The relational expression (3) indicates that the volume resistance value of the intermediate transfer belt is 10 10 Ω.
cm or less is particularly effective.
【0043】《前記画像形成装置及び画像形成方法の第
1の実施例》 次に、図17を用い、前記の粉体間付着
力測定方法の測定結果を適用したカラー画像形成装置に
ついて述べる。本実施例では、1本の感光体に対向して
4色の現像器を並べて配置してあり、感光体上に異なる
色成分毎に形成されるトナー像を中間転写ベルト上に順
次重ねて転写し、その重ねて転写されたトナー像を転写
紙等に一括転写することによって、カラー画像を得る1
ドラム中間転写体方式を採用する。<< First Embodiment of the Image Forming Apparatus and Image Forming Method >> Next, referring to FIG. 17, a color image forming apparatus to which the measurement result of the above-described method for measuring the adhesion between powders is applied will be described. In the present embodiment, four color developing units are arranged side by side to face one photoconductor, and toner images formed for each different color component on the photoconductor are sequentially superimposed and transferred on an intermediate transfer belt. The color image is obtained by batch-transferring the superimposed transferred toner images onto transfer paper or the like.
A drum intermediate transfer member system is adopted.
【0044】図17において、感光体ドラム35(=静
電潜像担持体)はアルミ素管上に、下引き層、電荷発生
層、電荷輸送層の順に重ねて製膜した機能分離型の感光
層を有する。感光層の厚さは約28μm、静電容量は約
90pF/cm2である。本実施例においては、感光体
ドラム35をスコロトロン帯電器21で均一にマイナス
帯電(約−650〜−700V)した後、画像情報に応
じたレーザ光を露光部22に照射し、−100V〜−5
00Vの静電潜像を形成する。感光体の帯電電位や露光
部電位を電位センサA23で検出し、帯電条件や露光条
件等を制御することもできる。すなわち、静電潜像を形
成する形成手段は、スコロトロン帯電器21、露光部2
2、電位センサA23等からなる。In FIG. 17, the photosensitive drum 35 (= electrostatic latent image carrier) is a function-separated type photosensitive film formed by laminating an undercoat layer, a charge generation layer, and a charge transport layer on an aluminum tube in this order. With layers. The thickness of the photosensitive layer is about 28 μm, and the capacitance is about 90 pF / cm 2 . In the present embodiment, after the photosensitive drum 35 is uniformly negatively charged (about -650 to -700 V) by the scorotron charger 21, a laser beam corresponding to image information is applied to the exposure unit 22, and -100 V to −100 V is applied. 5
A 00V electrostatic latent image is formed. The potential of the photosensitive member and the potential of the exposed portion can be detected by the potential sensor A23 to control the charging condition, the exposure condition, and the like. That is, the means for forming the electrostatic latent image includes the scorotron charger 21 and the exposure unit 2
2. It comprises a potential sensor A23 and the like.
【0045】また、現像部24(=現像手段)には4色
の現像器が並べて配置されており、各色毎に静電潜像を
現像する。乾式2成分現像剤を用い、感光体上の低電位
部にマイナス帯電トナーを付着させる反転現像方式であ
る。前記乾式2成分現像剤は平均粒径が7.5μmの粉
砕トナーと平均粒径が50μmの樹脂コートキャリアか
らなり、現像剤中のトナーの帯電量は、−10〜−30
μC/gとした。トナーには外添剤として0.2〜0.
8重量部のシリカ微粒子が添加されている。本実施例に
おいては、現像バイアス値は約−500〜−550Vと
した。現像バイアスには交流成分を重畳させてもよい。
現像後の位置にはPセンサ25が設置され、光学的反射
率からトナー付着量を検出してプロセス条件を制御する
こともできる。In the developing section 24 (= developing means), developing devices of four colors are arranged side by side, and develop an electrostatic latent image for each color. This is a reversal development system in which a negatively charged toner is attached to a low potential portion on a photoconductor using a dry two-component developer. The dry two-component developer is composed of a pulverized toner having an average particle size of 7.5 μm and a resin-coated carrier having an average particle size of 50 μm, and the charge amount of the toner in the developer is -10 to -30.
μC / g. The toner has an external additive of 0.2 to 0.1.
8 parts by weight of silica fine particles are added. In this embodiment, the developing bias value is set to about -500 to -550V. An AC component may be superimposed on the developing bias.
A P sensor 25 is installed at a position after the development, and the process condition can be controlled by detecting the toner adhesion amount from the optical reflectance.
【0046】また、各色のトナー像は中間転写ベルト2
6(=トナー画像担持体)上に転写される。転写電圧の
間接印加方式を採用しており、入口ローラ32と出口ロ
ーラ33の間に架け渡されたベルト部分が感光体に接離
可能に構成されている。前記中間転写ベルト26はポリ
カーボネート樹脂あるいはフッ素系樹脂等の中にカーボ
ンブラックを分散させた単層の中抵抗体であり、厚さ約
150μm、表面抵抗値は108〜1010Ωcm、体積
抵抗値は109〜1011Ωcmの範囲のものを用いた。
また、入口ローラ32は接地され、出口ローラ33に+
1000〜+1500V程度の転写電圧(Vt)が印加
される。転写電圧(Vt)は図示していない電源より供
給され、その出力値は図示していない制御部にて制御さ
れている。以後、感光体から中間転写ベルト26上への
転写を「ベルト転写」と称す。なお、ベルト転写後の感
光体上の残留トナーは、PCC(クリーニング前チャー
ジャ)27によって帯電量が制御され、ドラムクリーニ
ング装置29でブラシ及びブレードで除去される。The toner images of each color are transferred to the intermediate transfer belt 2.
6 (= toner image carrier). An indirect transfer voltage application method is adopted, and a belt portion bridged between the entrance roller 32 and the exit roller 33 is configured to be able to contact and separate from the photoconductor. The intermediate transfer belt 26 is a single-layer medium resistor in which carbon black is dispersed in a polycarbonate resin, a fluorine resin, or the like, has a thickness of about 150 μm, a surface resistance value of 10 8 to 10 10 Ωcm, and a volume resistance value. Used in the range of 10 9 to 10 11 Ωcm.
In addition, the entrance roller 32 is grounded, and the exit roller 33 has +
A transfer voltage (Vt) of about 1000 to +1500 V is applied. The transfer voltage (Vt) is supplied from a power supply (not shown), and its output value is controlled by a control unit (not shown). Hereinafter, the transfer from the photoconductor to the intermediate transfer belt 26 is referred to as “belt transfer”. The amount of charge of the residual toner on the photoconductor after the belt transfer is controlled by a PCC (charger before cleaning) 27 and is removed by a drum cleaning device 29 with a brush and a blade.
【0047】本実施例においては、中間転写ベルト26
上に1色目のトナー画像が形成された後、2色目の作像
動作を開始し、中間転写ベルト26上に2色目のトナー
像を重ねて転写する。この時、転写される順番毎に転写
電圧を増加させていってもよい。フルカラー画像の場
合、中間転写ベルト26上に黒、シアン、マゼンタ、イ
エローの4色のトナー画像を順次形成した後、一括して
記録紙34上に転写する。中間転写ベルト26上から記
録紙34上へのトナー像の転写は、紙転写ローラ31で
紙の裏側からプラス極性の電圧を印加する。以後、中間
転写ベルト26から記録紙34上への転写を「ペーパー
転写」と称す。ペーパー転写後の中間転写ベルト26上
に残留したトナーはクリーニング装置28によって除去
される。In this embodiment, the intermediate transfer belt 26
After the first color toner image is formed thereon, the second color image forming operation is started, and the second color toner image is transferred onto the intermediate transfer belt 26 in a superimposed manner. At this time, the transfer voltage may be increased for each transfer order. In the case of a full-color image, four color toner images of black, cyan, magenta, and yellow are sequentially formed on the intermediate transfer belt 26, and then are collectively transferred onto the recording paper 34. To transfer the toner image from the intermediate transfer belt 26 to the recording paper 34, a positive voltage is applied from the back side of the paper by the paper transfer roller 31. Hereinafter, the transfer from the intermediate transfer belt 26 to the recording paper 34 is referred to as “paper transfer”. The toner remaining on the intermediate transfer belt 26 after the paper transfer is removed by the cleaning device 28.
【0048】《前記画像形成装置及び画像形成方法の第
2の実施例》 本実施例の画像形成装置の構成は、第1
の実施例(図17)と概ね同様であるが、後述のように
中間転写ベルト26として、表面抵抗値が109Ωc
m、体積抵抗値が1010Ωcmの単層の中抵抗体を用い
た。また、本実施例においては、前記粉体間付着力測定
方法によって測定したトナー粒子間の非静電的付着力F
tが8×10-9Nとなるトナーaを用い、シアンとマゼ
ンタを2色重ねたブルーのライン部について最終画像で
の転写チリ品位を目視判定した。このように2色重ねた
色の部分は、ペーパー転写工程前、すなわち、中間転写
ベルト26上でのトナー付着量が多くなり、転写チリが
増加する。このような中間転写ベルト26上でトナー付
着量が最大となる部分において転写チリが低減できれ
ば、これよりもトナー付着量が少ない部分でも確実に転
写チリは低減する。また、前記中間転写ベルト26は、
エチレン−テトラ−フルオロエチレン(ETFE)樹脂
の中にカーボンブラックを分散させた表面抵抗値が10
9Ωcm、体積抵抗値が1010Ωcmの単層の中抵抗体
であって、ベルト転写バイアス値は、1色目、2色目共
に+1200Vとした。現像剤中のトナー帯電量はシア
ンとマゼンタ共に−30μC/g程度であった。ベルト
転写工程後の中間転写ベルト26上でのトナー帯電量の
平均値Qは−17.7μC/gであった。この時のライ
ン散りトナー数は図14中の●プロットの結果となり、
中間転写ベルト上でのトナー付着量Mが1.1mg/c
m2以下では、「M4Q2/(Ft×109)≦60」が成
立し、転写チリは許容できるレベルであった。その他の
不具合も発生しなかった。<< Second Embodiment of the Image Forming Apparatus and Image Forming Method >> The configuration of the image forming apparatus of this embodiment is the same as that of the first embodiment.
Is substantially the same as the embodiment (FIG. 17), but the surface resistance of the intermediate transfer belt 26 is 10 9 Ωc as will be described later.
m, a single-layer medium resistor having a volume resistance of 10 10 Ωcm was used. Further, in this embodiment, the non-electrostatic adhesion F between the toner particles measured by the above-described method for measuring the adhesion between powders is used.
Using the toner a having a t of 8 × 10 −9 N, the transfer dust quality in the final image was visually determined for the blue line portion where cyan and magenta were overlapped in two colors. In the color portion where the two colors are overlapped in this way, the amount of toner adhered on the intermediate transfer belt 26 before the paper transfer step, that is, the transfer amount increases. If the transfer dust can be reduced in the portion where the toner adhesion amount is maximum on the intermediate transfer belt 26, the transfer dust is surely reduced even in the portion where the toner adhesion amount is smaller than this. The intermediate transfer belt 26 is
A carbon black dispersed in an ethylene-tetra-fluoroethylene (ETFE) resin has a surface resistance of 10
It is a single-layer medium resistor having a resistance of 9 Ωcm and a volume resistance of 10 10 Ωcm, and the belt transfer bias value is set to +1200 V for both the first color and the second color. The charge amount of the toner in the developer was about −30 μC / g for both cyan and magenta. The average value Q of the toner charge amount on the intermediate transfer belt 26 after the belt transfer step was −17.7 μC / g. At this time, the number of toner particles scattered on the line is the result of the plot in FIG.
The toner adhesion amount M on the intermediate transfer belt is 1.1 mg / c
When m 2 or less, “M 4 Q 2 / (Ft × 10 9 ) ≦ 60” was satisfied, and the transfer dust was at an acceptable level. No other problems occurred.
【0049】なお、本実施例と比較するために、図14
中の●プロットの結果において、中間転写ベルト26上
でのトナー付着量Mを1.2mg/cm2以上にした場
合、前記関係式「M4Q2/(Ft×109)≦60」が
成立せず、転写チリが目立ち許容できなくなった。 《前記画像形成装置及び画像形成方法の第3の実施例》
本実施例の画像形成装置の構成は、第1の実施例(図
17)と概ね同様である。本実施例では、前記粉体間付
着力測定方法で測定したトナー粒子間の非静電的付着力
Ftが2×10 -8Nとなるトナーcを用いた。現像剤中
のトナー帯電量はシアンとマゼンタ共に−28μC/g
程度であった。ベルト転写工程後の中間転写ベルト26
上でのトナー帯電量の平均値Qは−17.4μC/gで
あった。この時のライン散りトナー数Nは図15中の△
プロットの結果となり、中間転写ベルト26上でのトナ
ー付着量Mが1.36mg/cm2以下では、前記関係
式「M4Q2/(Ft×109)≦60」が成立し、転写
チリは許容できるレベルであった。その他の不具合も発
生しなかった。For comparison with this embodiment, FIG.
In the results of the plots in the middle, on the intermediate transfer belt 26
1.2mg / cmTwoPlace
When the relational expression “MFourQTwo/ (Ft × 109) ≦ 60 ”
It was not established, and the transfer dust became noticeable and unacceptable. << Third Embodiment of Image Forming Apparatus and Image Forming Method >>
The configuration of the image forming apparatus of this embodiment is the same as that of the first embodiment (FIG.
This is almost the same as 17). In this embodiment, the powder
Non-electrostatic adhesion between toner particles measured by adhesion measurement method
Ft is 2 × 10 -8N toner c was used. In developer
Of -28 μC / g for both cyan and magenta
It was about. Intermediate transfer belt 26 after belt transfer step
The average value Q of the toner charge amount above is −17.4 μC / g.
there were. At this time, the number N of toner scattered on the line is represented by △ in FIG.
As a result of the plot, the toner on the intermediate transfer belt 26
-The amount of adhesion M is 1.36 mg / cmTwoIn the following, the relationship
The expression "MFourQTwo/ (Ft × 109) ≦ 60 ”is established and transferred.
Chile was at an acceptable level. Other problems also occur
Did not live.
【0050】《前記画像形成装置及び画像形成方法の第
4の実施例》 本実施例の画像形成装置の構成は、第1
の実施例(図17)と概ね同様である。本実施例では、
第3の実施例と同様に、トナー粒子間の非静電的付着力
Ftが2×10-8Nとなるトナーcを用いた。さらに、
現像剤中のトナー濃度を低下させてトナー帯電量を増加
させた。現像剤中のトナー帯電量はシアンとマゼンタ共
に−40μC/g程度になった。ベルト転写工程後の中
間転写ベルト26上でのトナー帯電量Qは本実施例の範
囲外の−31μC/gになった。この時の中間転写ベル
ト26上でのトナー付着量Mは1.00mg/cm
2で、前記関係式「M4Q2/(Ft×109)≦60」が
成立し、転写チリは許容できるレベルであった。しか
し、中間転写ベルト26上でのトナー帯電量が大き過ぎ
るため、ペーパー転写工程で転写不良が発生した。<< Fourth Embodiment of the Image Forming Apparatus and Image Forming Method >> The configuration of the image forming apparatus of this embodiment is the same as that of the first embodiment.
This is almost the same as the embodiment (FIG. 17). In this embodiment,
As in the third embodiment, a toner c having a non-electrostatic adhesion Ft between toner particles of 2 × 10 −8 N was used. further,
The toner concentration in the developer was reduced to increase the toner charge amount. The charge amount of the toner in the developer was about −40 μC / g for both cyan and magenta. The toner charge amount Q on the intermediate transfer belt 26 after the belt transfer step was −31 μC / g, which is out of the range of the present embodiment. At this time, the toner adhesion amount M on the intermediate transfer belt 26 is 1.00 mg / cm.
In 2 , the relational expression “M 4 Q 2 / (Ft × 10 9 ) ≦ 60” was satisfied, and the transfer dust was at an acceptable level. However, since the toner charge amount on the intermediate transfer belt 26 was too large, transfer failure occurred in the paper transfer process.
【0051】《前記画像形成装置及び画像形成方法の第
5の実施例》 本実施例の画像形成装置の構成は、第1
の実施例(図17)と概ね同様である。本実施例では、
外添剤添加量が1.0重量部のトナーdを用い、第4の
実施例と同様に画像形成を行った。前記粉体間付着力測
定方法で測定したトナー粒子間の非静電的付着力Ftは
4×10-9N程度となり本実施例の範囲外となった。現
像剤中のトナー帯電量はシアンとマゼンタ共に−15μ
C/g程度であった。ベルト転写工程後の中間転写ベル
ト26上でのトナー帯電量の平均値Qは−11.5μC
/gであった。この時の中間転写ベルト26上でのトナ
ー付着量Mが1.1mg/cm2では、前記関係式「M4
Q2/(Ft×109)≦60」が成立し、転写チリは許
容できるレベルであった。しかし、現像装置からのトナ
ー飛散が発生した。<< Fifth Embodiment of Image Forming Apparatus and Image Forming Method >> The configuration of the image forming apparatus of this embodiment is the same as that of the first embodiment.
This is almost the same as the embodiment (FIG. 17). In this embodiment,
An image was formed in the same manner as in the fourth embodiment using toner d having an external additive addition amount of 1.0 part by weight. The non-electrostatic adhesion Ft between the toner particles measured by the method for measuring the adhesion between powders was about 4 × 10 −9 N, which is out of the range of the present embodiment. The toner charge amount in the developer is -15 μm for both cyan and magenta.
It was about C / g. The average value Q of the toner charge amount on the intermediate transfer belt 26 after the belt transfer step is -11.5 μC.
/ G. At this time, when the toner adhesion amount M on the intermediate transfer belt 26 is 1.1 mg / cm 2 , the relational expression “M 4
Q 2 / (Ft × 10 9 ) ≦ 60 ”was established, and the transfer dust was at an acceptable level. However, toner scattering from the developing device occurred.
【0052】《前記画像形成装置及び画像形成方法の第
6の実施例》 本実施例の画像形成装置の構成は、第1
の実施例(図17)と概ね同様である。本実施例では、
キャリアAと外添剤未添加のトナーeを用い、第4の実
施例と同様に画像形成を行った。前記粉体間付着力測定
方法で測定したトナー粒子間の非静電的付着力Ftは4
×10-8N程度となり本実施例の範囲外となる。現像剤
中のトナー帯電量はシアンとマゼンタ共に−25μC/
g程度であった。ベルト転写工程後の中間転写ベルト2
6上でのトナー帯電量の平均値Qは−16μC/gであ
った。中間転写ベルト26上でのトナー付着量Mが1.
5mg/cm2では、前記関係式「M4Q 2/(Ft×1
09)≦60」が成立し、転写チリは許容できるレベル
であった。しかし、現像後のドット画像の粒状性が悪化
した。<< Second Embodiment of the Image Forming Apparatus and Image Forming Method
Sixth Embodiment >> The configuration of the image forming apparatus of the present embodiment is the same as that of the first embodiment.
This is almost the same as the embodiment (FIG. 17). In this embodiment,
Using the carrier A and the toner e to which no external additive was added,
Image formation was performed in the same manner as in the example. Measurement of adhesion between powders
Non-electrostatic adhesion Ft between toner particles measured by the method is 4
× 10-8N, which is out of the range of the present embodiment. Developer
The toner charge amount in the medium was -25 μC / c for both cyan and magenta.
g. Intermediate transfer belt 2 after belt transfer step
6 is −16 μC / g.
Was. The toner adhesion amount M on the intermediate transfer belt 26 is 1.
5mg / cmTwoThen, the relational expression "MFourQ Two/ (Ft × 1
09) ≦ 60 ”holds, and the transfer dust is at an acceptable level.
Met. However, the graininess of the dot image after development deteriorates
did.
【0053】《前記画像形成装置及び画像形成方法の第
7の実施例》 本実施例の画像形成装置の構成は、第1
の実施例(図17)と概ね同様であるが、中間転写ベル
ト26として、ポリカーボネート樹脂の中にカーボンブ
ラックを分散させた表面抵抗値が108Ωcm、体積抵
抗値が1011Ωcmの単層の中抵抗体を用いた。その結
果、現像剤中のトナー帯電量はシアンとマゼンタ共に−
30μC/g程度であった。ベルト転写工程後の中間転
写ベルト26上でのトナー帯電量の平均値Qは−17.
7μC/gであった。中間転写ベルト26上でのトナー
付着量Mが1.0mg/cm2では、前記関係式「M4Q
2/(Ft×109)≦60」が成立し、転写チリは許容
できるレベルであった。中間転写ベルト26上での残留
電荷もなく、中間転写ベルト26の除電装置を省略する
ことができた。その他の不具合も発生しなかった。<< Seventh Embodiment of the Image Forming Apparatus and Image Forming Method >> The configuration of the image forming apparatus of the present embodiment is as follows.
Is substantially the same as that of the embodiment (FIG. 17), except that the intermediate transfer belt 26 is a single layer having a surface resistance of 10 8 Ωcm and a volume resistance of 10 11 Ωcm in which carbon black is dispersed in a polycarbonate resin. A medium resistor was used. As a result, the charge amount of the toner in the developer was-for both cyan and magenta.
It was about 30 μC / g. The average value Q of the toner charge amount on the intermediate transfer belt 26 after the belt transfer step is -17.
It was 7 μC / g. When the toner adhesion amount M on the intermediate transfer belt 26 is 1.0 mg / cm 2 , the relational expression “M 4 Q
2 / (Ft × 10 9 ) ≦ 60 ”was established, and the transfer dust was at an acceptable level. There was no residual charge on the intermediate transfer belt 26, and the charge eliminator for the intermediate transfer belt 26 could be omitted. No other problems occurred.
【0054】《前記画像形成装置及び画像形成方法の第
8の実施例》 本実施例の画像形成装置の構成は、第1
の実施例(図17)と概ね同様であるが、中間転写ベル
ト26の表面に約20μmの高抵抗層を設けた。その表
面層はPVdF樹脂中に酸化チタンを分散させたもの
で、表面抵抗値は1013Ωcmである。ベルト転写バイ
アス値は1色目のシアン転写時は+1600V、2色目
のマゼンタ転写時には+2000Vとした。また、現像
剤としてはトナーaを用いた。現像剤中のトナー帯電量
はシアンとマゼンタ共に−24μC/g程度であった。
ベルト転写工程後の中間転写ベルト26上でのトナー帯
電量Qが−14.0μC/g、トナー付着量Mが1.3
7mg/cm2で、前記関係式「M4Q2/(Ft×1
09)≦60」を満たしていないが、中間転写ベルト2
6上でのライン散りトナー数Nは50個程度しかなく、
転写チリは許容できるレベルであった。これは、中間転
写ベルト26上の非画像部のマイナス電荷がトナー散り
を抑制したものと考えられる。しかし、そのマイナス電
荷の影響で次の作像工程で転写ムラによる残像が発生し
た。<< Eighth Embodiment of the Image Forming Apparatus and Image Forming Method >> The configuration of the image forming apparatus of the present embodiment is a first embodiment.
This is almost the same as the embodiment (FIG. 17), except that a high resistance layer of about 20 μm is provided on the surface of the intermediate transfer belt 26. The surface layer is obtained by dispersing titanium oxide in PVdF resin, and has a surface resistance of 10 13 Ωcm. The belt transfer bias value was set to +1600 V during cyan transfer of the first color and +2000 V during magenta transfer of the second color. Further, toner a was used as a developer. The charge amount of the toner in the developer was about −24 μC / g for both cyan and magenta.
The toner charge amount Q on the intermediate transfer belt 26 after the belt transfer step is −14.0 μC / g, and the toner adhesion amount M is 1.3.
At 7 mg / cm 2 , the relational expression “M 4 Q 2 / (Ft × 1
0 9 ) ≦ 60 ”, but the intermediate transfer belt 2
6, the number N of the line scattering toner is only about 50,
Transcript levels were at acceptable levels. This is presumably because the negative charges in the non-image portion on the intermediate transfer belt 26 suppressed toner scattering. However, an afterimage due to transfer unevenness occurred in the next image forming process due to the influence of the negative charge.
【0055】本実施例によれば、遠心分離法により粉体
層最表面から粉体を分離するために必要な遠心力Fs
(N)を測定し、試料面上の粉体層の単位面積当たりの
付着量M(mg/cm2)及び粉体の平均帯電量Q(μ
C/g)の依存性から静電的な力の影響を分離できるの
で、粉体間の非静電的付着力Ft(N)を求めることが
できる。また、遠心分離法により粉体層最表面から粉体
を分離するために必要な遠心力Fs(N)を測定し、試
料面上の粉体層の厚さH(μm)及び粉体の平均帯電量
Q(μC/g)の依存性から静電的な力の影響を分離で
きるので、粉体間の非静電的付着力Ft(N)を求める
ことができる。According to this embodiment, the centrifugal force Fs required to separate the powder from the outermost surface of the powder layer by the centrifugal separation method
(N) was measured, and the adhesion amount M (mg / cm 2 ) of the powder layer on the sample surface per unit area and the average charge amount Q (μ) of the powder layer were measured.
Since the influence of the electrostatic force can be separated from the dependency of C / g), the non-electrostatic adhesion Ft (N) between the powders can be obtained. Further, the centrifugal force Fs (N) required for separating the powder from the outermost surface of the powder layer by the centrifugal separation method was measured, and the thickness H (μm) of the powder layer on the sample surface and the average of the powder were measured. Since the influence of the electrostatic force can be separated from the dependence of the charge amount Q (μC / g), the non-electrostatic adhesion Ft (N) between the powders can be obtained.
【0056】また、本実施例によれば、試料基板2上に
粉体を複数層以上の厚さに重ねて粉体層を形成する工程
は、電子写真方式の現像工程により、静電潜像を形成し
たシート状の試料基板2上に粉体層を形成するようにし
たので、均一な粉体層を形成できる。さらに、試料基板
2上に粉体を複数層以上の厚さに重ねて粉体層を形成す
る工程は、電子写真方式の現像工程により、静電潜像を
形成した粉体像担持体上に粉体層を形成した後、電子写
真方式の転写工程により、粉体像をシート状の試料基板
上に転写して形成するようにしたので、簡単な構成で粉
体層を形成し、精度良く非静電的付着力を測定すること
ができる。すなわち、トナーのような粉体間の非静電的
付着力を定量的かつ効率的に測定できる。According to the present embodiment, the step of forming a powder layer by laminating a plurality of layers of powder on the sample substrate 2 is performed by an electrophotographic developing process. Since the powder layer is formed on the sheet-like sample substrate 2 on which is formed, a uniform powder layer can be formed. Further, the step of forming a powder layer by laminating the powder on the sample substrate 2 to a thickness of at least a plurality of layers is performed on the powder image carrier on which the electrostatic latent image is formed by an electrophotographic developing process. After the powder layer is formed, the powder image is transferred and formed on a sheet-like sample substrate by an electrophotographic transfer process, so that the powder layer is formed with a simple configuration and accurately. Non-electrostatic adhesion can be measured. That is, the non-electrostatic adhesion between powders such as toner can be quantitatively and efficiently measured.
【0057】さらに、本実施例によれば、トナー粒子間
の非静電的付着力及びトナー画像担持体上でのトナー帯
電量とトナー付着量の三つの特性値の関係を最適化でき
るので、転写チリの少ない高品質の画像を得ることがで
きる。また、トナー画像担持体上でのトナー粒子間の非
静電的付着力を最適化し、例えばトナー画像担持体上に
形成したトナー画像のトナー粒子間の非静電的付着力F
t(N)が、5×10 -9N〜3×10-8Nの範囲にある
ようにしたので、転写チリを低減し、トナー飛散や現像
ムラ等の異常画像の発生を抑制して、高品質の画像を得
ることができる。あるいはトナー帯電量を最適化し、例
えばトナー画像担持体上でのトナーの平均帯電量の絶対
値が10〜30μC/gであるようにしたので、転写チ
リが少なく、トナー飛散や現像ムラのない高品質の画像
を得ることができる。Further, according to this embodiment, the toner particles
Non-Electrostatic Adhesion of Toner and Toner Band on Toner Image Carrier
Optimizes the relationship between the three characteristic values of charge and toner adhesion
Therefore, it is possible to obtain high quality images with less transfer dust.
Wear. In addition, non-contact between toner particles on the toner image carrier
Optimize electrostatic adhesion, for example, on a toner image carrier
Non-electrostatic adhesion F between toner particles of the formed toner image
t (N) is 5 × 10 -9N ~ 3 × 10-8In the range of N
To reduce transfer dust and prevent toner scattering and development.
Suppress the occurrence of abnormal images such as unevenness and obtain high quality images
Can be Or optimize the toner charge amount,
For example, the absolute value of the average charge amount of the toner on the toner image carrier
The value was set to 10 to 30 μC / g.
High quality images with little toner scattering and no toner scattering or uneven development
Can be obtained.
【0058】また、本実施例によれば、トナー画像担持
体がトナー画像を一時的に担持する中間転写ベルトであ
り、その中間転写ベルトの抵抗値を最適化し、例えば中
間転写ベルトの表面抵抗値が108〜1010Ωcmであ
るようにしたので、小型の装置で、転写チリが少なく、
残像などのない高品質のカラー画像を得ることができ
る。According to the present embodiment, the toner image carrier is an intermediate transfer belt for temporarily supporting a toner image, and the resistance value of the intermediate transfer belt is optimized, for example, the surface resistance value of the intermediate transfer belt. Is 10 8 Ωcm to 10 10 Ωcm, so the transfer device is small with a small device,
A high-quality color image without any afterimage can be obtained.
【0059】[0059]
【発明の効果】以上説明したように、本発明のによれ
ば、遠心分離法により粉体層最表面から粉体を分離する
ために必要な遠心力Fs(N)を測定し、試料面上の粉
体層の単位面積当たりの付着量M(mg/cm2)及び
粉体の平均帯電量Q(μC/g)の依存性から静電的な
力の影響を分離できるので、粉体間の非静電的付着力F
t(N)を求めることができる。また、遠心分離法によ
り粉体層最表面から粉体を分離するために必要な遠心力
Fs(N)を測定し、試料面上の粉体層の厚さH(μ
m)及び粉体の平均帯電量Q(μC/g)の依存性から
静電的な力の影響を分離できるので、粉体間の非静電的
付着力Ft(N)を求めることができる。よって、トナ
ーのような粉体間の非静電的付着力を定量的に測定でき
る粉体間付着力測定装置及び粉体間付着力測定方法を提
供することができる。As described above, according to the present invention, the centrifugal force Fs (N) required to separate the powder from the outermost surface of the powder layer is measured by the centrifugal separation method, and the centrifugal force Fs (N) is measured on the sample surface. The influence of electrostatic force can be separated from the dependence of the adhesion amount M (mg / cm 2 ) per unit area of the powder layer and the average charge amount Q (μC / g) of the powder. Non-electrostatic adhesion F
t (N) can be determined. The centrifugal force Fs (N) required to separate the powder from the outermost surface of the powder layer by the centrifugal separation method was measured, and the thickness H (μ) of the powder layer on the sample surface was measured.
m) and the influence of the electrostatic force can be separated from the dependence on the average charge amount Q (μC / g) of the powder, so that the non-electrostatic adhesion Ft (N) between the powders can be obtained. . Therefore, it is possible to provide a powder adhesion measuring apparatus and a powder adhesion measuring method capable of quantitatively measuring the non-electrostatic adhesion between powders such as toner.
【0060】また、本発明によれば、前記粉体間付着力
測定装置及び粉体間付着力測定方法を用いて、トナー粒
子間の非静電的付着力及びトナー画像担持体上でのトナ
ー帯電量とトナー付着量の三つの特性値の関係を最適化
できるので、転写チリの少ない高品質の画像を得ること
ができる。よって、トナー画像形成後のトナーの飛び散
りを低減できる画像形成装置及び画像形成方法を提供す
ることができる。Further, according to the present invention, the non-electrostatic adhesive force between toner particles and the toner Since the relationship between the three characteristic values of the charge amount and the toner adhesion amount can be optimized, a high-quality image with less transfer dust can be obtained. Therefore, it is possible to provide an image forming apparatus and an image forming method capable of reducing scattering of toner after toner image formation.
【図1】本発明の一実施例における粉体間付着力測定装
置の構成図である。FIG. 1 is a configuration diagram of a powder adhesion measuring apparatus according to an embodiment of the present invention.
【図2】本発明の一実施例における粉体間付着力測定装
置における遠心分離装置の測定セルを示す斜視図であ
る。FIG. 2 is a perspective view showing a measuring cell of a centrifugal separator in the apparatus for measuring adhesion between powders according to one embodiment of the present invention.
【図3】本発明の一実施例における粉体間付着力測定装
置における遠心分離装置の一部断面図である。FIG. 3 is a partial cross-sectional view of a centrifugal separator in the apparatus for measuring adhesion between powders according to one embodiment of the present invention.
【図4】本発明の一実施例における粉体間付着力測定方
法の概略を示すフローチャートである。FIG. 4 is a flowchart showing an outline of a method of measuring an adhesion force between powders according to an embodiment of the present invention.
【図5】本発明の一実施例における粉体間付着力測定装
置及び粉体間付着力測定方法における遠心分離サンプル
図である。FIG. 5 is a sample diagram of centrifugal separation in the apparatus for measuring adhesion between powders and the method for measuring adhesion between powders according to one embodiment of the present invention.
【図6】本発明の一実施例における粉体間付着力測定装
置及び粉体間付着力測定方法におけるトナー部面積とト
ナー粒子数の相関を示す図である。FIG. 6 is a diagram showing the correlation between the toner area and the number of toner particles in the apparatus for measuring adhesion between powders and the method for measuring adhesion between powders according to one embodiment of the present invention.
【図7】本発明の一実施例における粉体間付着力測定装
置及び粉体間付着力測定方法におけるトナーaの遠心分
離結果を示す図である。FIG. 7 is a diagram showing the result of centrifugal separation of toner a in the apparatus for measuring adhesion between powders and the method for measuring adhesion between powders according to one embodiment of the present invention.
【図8】本発明の一実施例における粉体間付着力測定装
置及び粉体間付着力測定方法におけるトナーbの遠心分
離結果を示す図である。FIG. 8 is a diagram illustrating a result of centrifugal separation of toner b in a powder adhesion measuring apparatus and a powder adhesion measuring method according to an embodiment of the present invention.
【図9】本発明の一実施例における粉体間付着力測定装
置及び粉体間付着力測定方法におけるトナーcの遠心分
離結果を示す図である。FIG. 9 is a diagram showing the results of centrifugal separation of toner c in the apparatus for measuring adhesion between powders and the method for measuring adhesion between powders according to one embodiment of the present invention.
【図10】本発明の一実施例における粉体間付着力測定
装置及び粉体間付着力測定方法における鏡像力モデルを
示す図である。FIG. 10 is a diagram showing a mirror image model in the apparatus for measuring adhesion between powders and the method for measuring adhesion between powders according to one embodiment of the present invention.
【図11】本発明の一実施例における粉体間付着力測定
装置及び粉体間付着力測定方法における鏡像力モデルに
よる遠心力の解析結果を示す図である。FIG. 11 is a diagram showing an analysis result of centrifugal force by a mirror image force model in the apparatus for measuring adhesion between powders and the method for measuring adhesion between powders according to one embodiment of the present invention.
【図12】本発明の一実施例における粉体間付着力測定
装置及び粉体間付着力測定方法におけるトナー凝集度と
トナー間付着力の相関を示す図である。FIG. 12 is a diagram showing a correlation between a toner cohesion degree and an inter-toner adhesive force in the inter-powder adhesive force measuring apparatus and the inter-powder adhesive force measuring method according to one embodiment of the present invention.
【図13】本発明の一実施例における粉体間付着力測定
装置及び粉体間付着力測定方法におけるトナー付着量と
厚さの相関を示す図である。FIG. 13 is a diagram showing a correlation between a toner adhesion amount and a thickness in a powder adhesion measurement apparatus and a powder adhesion measurement method according to an embodiment of the present invention.
【図14】本発明の一実施例における粉体間付着力測定
装置及び粉体間付着力測定方法における転写チリとトナ
ー付着の相関(トナー帯電量の変化)を示す図である。FIG. 14 is a diagram showing a correlation (change in toner charge amount) between transfer dust and toner adhesion in the apparatus for measuring adhesion between powders and the method for measuring adhesion between powders in one embodiment of the present invention.
【図15】本発明の一実施例における粉体間付着力測定
装置及び粉体間付着力測定方法における転写チリとトナ
ー付着の相関(トナー凝集度の変化)を示す図である。FIG. 15 is a diagram showing a correlation (change in toner agglomeration degree) between transfer dust and toner adhesion in a powder adhesion measurement device and a powder adhesion measurement method according to one embodiment of the present invention.
【図16】本発明の一実施例における粉体間付着力測定
装置及び粉体間付着力測定方法におけるトナー凝集度と
パラメータαの相関を示す図である。FIG. 16 is a diagram showing a correlation between a toner agglomeration degree and a parameter α in a powder adhesion measurement apparatus and a powder adhesion measurement method according to an embodiment of the present invention.
【図17】本発明の一実施例における画像形成装置の構
成図である。FIG. 17 is a configuration diagram of an image forming apparatus according to an embodiment of the present invention.
1 測定セル 2 試料基板 2a 試料面 3 受け基板 3a 付着面 5 遠心分離装置 6 ロータ 41 CPU 48 画像処理手段 49 スキャナ Reference Signs List 1 measurement cell 2 sample substrate 2a sample surface 3 receiving substrate 3a attachment surface 5 centrifugal separator 6 rotor 41 CPU 48 image processing means 49 scanner
Claims (12)
形成した試料面を有する試料基板、前記粉体層から分離
した粉体を付着させる付着面を有する受け基板、及び前
記試料面と前記付着面との間に設けられたスペーサから
構成される測定セルと、前記測定セルを回転させるロー
タと、を有する遠心分離装置と、 前記付着面に付着した粉体の画像を取得する画像取得手
段と、 前記画像取得手段にて取得された粉体の画像を解析し、
前記受け基板上に付着している粉体の数、及び粉体の受
け基板上への投影面積を求めるための画像処理手段と、 前記画像処理手段により求められた付着面に付着する粉
体の数と投影面積の関係から、個々の粉体同士が付着せ
ずに独立して前記受け基板上に付着した状態を取り得る
粉体の数及び投影面積を求める独立状態決定手段と、 前記遠心分離装置のロータ回転数と前記受け基板上に付
着した粉体の投影面積の関係から、個々の粉体が独立状
態となるロータ回転数を決定するロータ回転数決定手段
と、 前記付着面に付着した粉体の平均粒径及び比重から計算
した該粉体の平均重量と前記ロータの回転数とから、前
記試料面上に形成した粉体層の最表面から粉体を分離す
るために必要な遠心力を求める付着力導出手段と、 前記試料面上の粉体層の単位面積当たりの付着量、粉体
の平均帯電量、及び、粉体層最表面から粉体を分離する
ために必要な遠心力の値を用いて、粉体間の非静電的付
着力を算出する非静電的付着力算出手段と、を有するこ
とを特徴とする粉体間付着力測定装置。1. A sample substrate having a sample surface on which a powder layer formed by laminating a plurality of powder layers is provided, a receiving substrate having an adhesion surface for adhering powder separated from the powder layer, and A centrifugal separator having a measurement cell including a spacer provided between the sample surface and the adhesion surface, and a rotor for rotating the measurement cell; and an image of the powder adhered to the adhesion surface. Image acquisition means to acquire, and analyze the image of the powder acquired by the image acquisition means,
Image processing means for determining the number of powders adhering on the receiving substrate, and the projected area of the powders on the receiving substrate, and the powder adhering to the adhering surface determined by the image processing means An independent state determining means for determining the number and projected area of the powders that can take a state in which individual powders independently adhere to the receiving substrate without adhering to each other, from the relationship between the number and the projected area; and the centrifugation. From the relationship between the rotor speed of the apparatus and the projected area of the powder attached to the receiving substrate, a rotor speed determining means for determining the rotor speed at which each powder becomes an independent state; From the average weight of the powder calculated from the average particle diameter and specific gravity of the powder and the number of rotations of the rotor, centrifugation required to separate the powder from the outermost surface of the powder layer formed on the sample surface Adhesive force deriving means for obtaining force; powder on the sample surface Using the amount of adhesion per unit area of the body layer, the average charge amount of the powder, and the value of the centrifugal force required to separate the powder from the outermost surface of the powder layer, the non-electrostatic A non-electrostatic adhesive force calculating means for calculating an adhesive force, the adhesive force measuring device between powders.
面上の粉体層の単位面積当たりの付着量M(mg/cm
2 )、粉体の平均帯電量をQ(μC/g)、粉体層最表
面から粉体を分離するために必要な遠心力をFs
(N)、定数をAとしたとき、付着量M及び、又は帯電
量Qが異なる複数の試料に対して遠心力Fsを求め、以
下の関係式 Ft=Fs−A×(Q/M)2 から粉体間の非静電的付着力Ft(N)を算出すること
を特徴とする請求項1記載の粉体間付着力測定装置。2. The method according to claim 1, wherein the non-electrostatic adhesion force calculating means calculates an adhesion amount M (mg / cm) of the powder layer on the sample surface per unit area.
2 ) The average charge amount of the powder is Q (μC / g), and the centrifugal force required to separate the powder from the outermost surface of the powder layer is Fs.
(N) When the constant is A, the centrifugal force Fs is obtained for a plurality of samples having different amounts of adhesion M and / or charge Q, and the following relational expression Ft = Fs−A × (Q / M) 2 The non-electrostatic adhesive force Ft (N) between powders is calculated from the following formula:
形成した試料面を有する試料基板、前記粉体層から分離
した粉体を付着させる付着面を有する受け基板、及び前
記試料面と前記付着面との間に設けられたスペーサから
構成される測定セルと、前記測定セルを回転させるロー
タと、を有する遠心分離装置と、 前記付着面に付着した粉体の画像を取得する画像取得手
段と、 前記画像取得手段にて取得された粉体の画像を解析し、
前記受け基板上に付着している粉体の数、及び粉体の受
け基板上への投影面積を求めるための画像処理手段と、 前記画像処理手段により求められた付着面に付着する粉
体の数と投影面積の関係から、個々の粉体同士が付着せ
ずに独立して前記受け基板上に付着した状態を取り得る
粉体の数及び投影面積を求める独立状態決定手段と、 前記遠心分離装置のロータ回転数と前記受け基板上に付
着した粉体の投影面積の関係から、個々の粉体が独立状
態となるロータ回転数を決定するロータ回転数決定手段
と、 前記付着面に付着した粉体の平均粒径及び比重から計算
した該粉体の平均重量と前記ロータの回転数とから、前
記試料面上に形成した粉体層の最表面から粉体を分離す
るために必要な遠心力を求める付着力導出手段と、 前記試料面上の粉体層の厚さ、粉体の平均帯電量、及
び、粉体層最表面から粉体を分離するために必要な遠心
力の値を用いて、粉体間の非静電的付着力を算出する非
静電的付着力算出手段と、を有することを特徴とする粉
体間付着力測定装置。3. A sample substrate having a sample surface on which a powder layer formed by laminating a plurality of powder layers is provided, a receiving substrate having an adhering surface for adhering powder separated from the powder layer, and A centrifugal separator having a measurement cell including a spacer provided between the sample surface and the adhesion surface, and a rotor for rotating the measurement cell; and an image of the powder adhered to the adhesion surface. Image acquisition means to acquire, and analyze the image of the powder acquired by the image acquisition means,
Image processing means for determining the number of powders adhering on the receiving substrate, and the projected area of the powders on the receiving substrate, and the powder adhering to the adhering surface determined by the image processing means An independent state determining means for determining the number and projected area of the powders that can take a state in which individual powders independently adhere to the receiving substrate without adhering to each other, from the relationship between the number and the projected area; and the centrifugation. From the relationship between the rotor speed of the apparatus and the projected area of the powder attached to the receiving substrate, a rotor speed determining means for determining the rotor speed at which each powder becomes an independent state; From the average weight of the powder calculated from the average particle diameter and specific gravity of the powder and the number of rotations of the rotor, centrifugation required to separate the powder from the outermost surface of the powder layer formed on the sample surface Adhesive force deriving means for obtaining force; powder on the sample surface Calculate the non-electrostatic adhesion between powders using the thickness of the body layer, the average amount of charge of the powder, and the centrifugal force required to separate the powder from the outermost surface of the powder layer And a non-electrostatic adhesive force calculating means.
面上の粉体層の厚さをH(μm)、粉体の平均帯電量Q
(μC/g)、粉体層最表面から粉体を分離するために
必要な遠心力をFs(N)、定数をBとしたとき、厚さ
H及び、又は帯電量Qが異なる複数の試料に対して遠心
力Fsを求め、以下の関係式 Ft=Fs−B×(Q/H)2 から、粉体間の非静電的付着力Ft(N)を算出するこ
とを特徴とする請求項3記載の粉体間付着力測定装置。4. The non-electrostatic adhesive force calculating means sets the thickness of the powder layer on the sample surface to H (μm),
(ΜC / g), when the centrifugal force required to separate the powder from the outermost surface of the powder layer is Fs (N), and the constant is B, a plurality of samples having different thicknesses H and / or different charge amounts Q are provided. A non-electrostatic adhesion force Ft (N) between the powders is calculated from the following relational expression: Ft = Fs−B × (Q / H) 2 Item 3. An apparatus for measuring adhesion between powders according to Item 3.
形成した試料面を有する試料基板を作成し、前記粉体層
から分離した粉体を付着させる付着面を有する受け基板
を作成する基板作成工程と、 前記試料基板と、前記受け基板と、前記試料面と前記付
着面の間に設けられたスペーサと、から構成される測定
セルを作成する測定セル作成工程と、 前記測定セルを回転させるロータを有する遠心分離装置
の該ロータ内に前記測定セルを設置する測定セル設置工
程と、 前記ロータの回転による遠心力により、前記試料面上に
形成した粉体層の表面の粉体を分離して前記付着面に付
着させる遠心分離工程と、 前記測定セルを前記ロータから取り出して、前記受け基
板を取得する受け基板取得工程と、 前記付着面に付着する粉体の画像を取得し、取得された
該粉体の画像を解析することにより、前記受け基板上に
付着している粉体の数を求める粉体数導出工程と、 前記粉体の画像を解析することにより、粉体の受け基板
上への投影面積を求める投影面積導出工程と、 前記付着面に付着する粉体の数と投影面積の関係から、
個々の粉体同士が付着せずに独立して受け基板上に付着
した状態を取り得る粉体の数及び投影面積を求める独立
状態決定工程と、 前記ロータの回転数と前記受け基板上に付着した粉体の
投影面積の関係から、個々の粉体が独立状態となるロー
タ回転数を決定するロータ回転数決定工程と、 前記粉体の平均粒径及び比重から計算した該粉体の平均
重量と前記ロータの回転数とから、前記試料面上に形成
した粉体層の最表面から粉体を分離するために必要な遠
心力を求める付着力導出工程と、 前記試料面上の粉体層の単位面積当たりの付着量、粉体
の平均帯電量、及び、粉体層最表面から粉体を分離する
ために必要な遠心力の値を用いて、粉体間の非静電的付
着力を算出する非静電的付着力算出工程と、を有するこ
とを特徴とする粉体間付着力測定方法。5. A sample substrate having a sample surface on which a powder layer formed by laminating a plurality of powder layers with a thickness of at least a plurality of layers is formed, and a receiver having an adhering surface for adhering the powder separated from the powder layer. A substrate creation step of creating a substrate, the sample substrate, the receiving substrate, and a spacer provided between the sample surface and the attachment surface; a measurement cell creation step of creating a measurement cell including: A measuring cell setting step of setting the measuring cell in the rotor of a centrifugal separator having a rotor for rotating the measuring cell; and a surface of the powder layer formed on the sample surface by centrifugal force caused by rotation of the rotor. A centrifugal separation step of separating and adhering the powder to the adhering surface; a receiving substrate obtaining step of taking out the measuring cell from the rotor to obtain the receiving substrate; and an image of the powder adhering to the adhering surface. And get By analyzing the obtained image of the powder, a powder number deriving step of obtaining the number of powders adhered on the receiving substrate, and analyzing the image of the powder, A projection area deriving step of obtaining a projection area on the receiving substrate, and from a relationship between the number of powder particles adhering to the adhesion surface and the projection area,
An independent state determination step for determining the number and projected area of the powders that can take a state in which the individual powders independently adhere to the receiving substrate without adhering to each other; and the rotation speed of the rotor and the adhesion to the receiving substrate. A rotor rotation speed determining step of determining a rotor rotation speed at which the individual powders are in an independent state from the relationship of the projected area of the powder, and an average weight of the powder calculated from an average particle diameter and a specific gravity of the powder. And a rotation speed of the rotor, an adhesion force deriving step of determining a centrifugal force required to separate powder from the outermost surface of the powder layer formed on the sample surface, and a powder layer on the sample surface. Non-electrostatic adhesion between powders using the adhesion amount per unit area, the average charge amount of the powder, and the value of centrifugal force required to separate the powder from the outermost surface of the powder layer A non-electrostatic adhesive force calculating step of calculating the adhesive force between the powders. Constant method.
記試料面上の粉体層の単位面積当たりの付着量M(mg
/cm2 )、粉体の平均帯電量をQ(μC/g)、粉体
層最表面から粉体を分離するために必要な遠心力をFs
(N)、定数をAとしたとき、付着量M及び、又は帯電
量Qが異なる複数の試料に対して遠心力Fsを求め、以
下の関係式 Ft=Fs−A×(Q/M)2 から粉体間の非静電的付着力Ft(N)を算出すること
を特徴とする請求項5記載の粉体間付着力測定方法。6. In the non-electrostatic adhesion force calculating step, the adhesion amount M (mg) of the powder layer on the sample surface per unit area.
/ Cm 2 ), the average charge amount of the powder is Q (μC / g), and the centrifugal force required to separate the powder from the outermost surface of the powder layer is Fs.
(N) When the constant is A, the centrifugal force Fs is obtained for a plurality of samples having different amounts of adhesion M and / or charge Q, and the following relational expression Ft = Fs−A × (Q / M) 2 6. The method for measuring the adhesion between powders according to claim 5, wherein the non-electrostatic adhesion Ft (N) between the powders is calculated from the following formulas.
形成した試料面を有する試料基板を作成し、前記粉体層
から分離した粉体を付着させる付着面を有する受け基板
を作成する基板作成工程と、 前記試料基板と、前記受け基板と、前記試料面と前記付
着面の間に設けられたスペーサと、から構成される測定
セルを作成する測定セル作成工程と、 前記測定セルを回転させるロータを有する遠心分離装置
の該ロータ内に前記測定セルを設置する測定セル設置工
程と、 前記ロータの回転による遠心力により、前記試料面上に
形成した粉体層の表面の粉体を分離して前記付着面に付
着させる遠心分離工程と、 前記測定セルを前記ロータから取り出して、前記受け基
板を取得する受け基板取得工程と、 前記付着面に付着する粉体の画像を取得し、取得された
該粉体の画像を解析することにより、前記受け基板上に
付着している粉体の数を求める粉体数導出工程と、 前記粉体の画像を解析することにより、粉体の受け基板
上への投影面積を求める投影面積導出工程と、 前記付着面に付着する粉体の数と投影面積の関係から、
個々の粉体同士が付着せずに独立して受け基板上に付着
した状態を取り得る粉体の数及び投影面積を求める独立
状態決定工程と、 前記ロータの回転数と前記受け基板上に付着した粉体の
投影面積の関係から、個々の粉体が独立状態となるロー
タ回転数を決定するロータ回転数決定工程と、 前記粉体の平均粒径及び比重から計算した該粉体の平均
重量と前記ロータの回転数とから、前記試料面上に形成
した粉体層の最表面から粉体を分離するために必要な遠
心力を求める付着力導出工程と、 前記試料面上の粉体層の厚さ、粉体の平均帯電量、及
び、粉体層最表面から粉体を分離するために必要な遠心
力の値を用いて、粉体間の非静電的付着力を算出する非
静電的付着力算出工程と、を有することを特徴とする粉
体間付着力測定方法。7. A sample substrate having a sample surface on which a powder layer formed by laminating a plurality of powder layers having a thickness of at least a plurality of layers, and a receiver having an adhering surface for adhering the powder separated from the powder layer. A substrate creation step of creating a substrate, the sample substrate, the receiving substrate, and a spacer provided between the sample surface and the attachment surface; a measurement cell creation step of creating a measurement cell including: A measuring cell setting step of setting the measuring cell in the rotor of a centrifugal separator having a rotor for rotating the measuring cell; and a surface of the powder layer formed on the sample surface by centrifugal force caused by rotation of the rotor. A centrifugal separation step of separating and adhering the powder to the adhering surface; a receiving substrate obtaining step of taking out the measuring cell from the rotor to obtain the receiving substrate; and an image of the powder adhering to the adhering surface. And get By analyzing the obtained image of the powder, a powder number deriving step of obtaining the number of powders adhered on the receiving substrate, and analyzing the image of the powder, A projection area deriving step of obtaining a projection area on the receiving substrate, and from a relationship between the number of powder particles adhering to the adhesion surface and the projection area,
An independent state determination step for determining the number and projected area of the powders that can take a state in which the individual powders independently adhere to the receiving substrate without adhering to each other; and the rotation speed of the rotor and the adhesion to the receiving substrate. A rotor rotation speed determining step of determining a rotor rotation speed at which the individual powders are in an independent state from the relationship of the projected area of the powder, and an average weight of the powder calculated from an average particle diameter and a specific gravity of the powder. And a rotation speed of the rotor, an adhesion force deriving step of determining a centrifugal force required to separate powder from the outermost surface of the powder layer formed on the sample surface, and a powder layer on the sample surface. Using the thickness of the powder, the average charge amount of the powder, and the value of the centrifugal force required to separate the powder from the outermost surface of the powder layer, the non-electrostatic adhesion between the powders is calculated. A method for measuring the adhesion between powders, comprising: an electrostatic adhesion calculation step.
記試料面上の粉体層の厚さをH(μm)、粉体の平均帯
電量Q(μC/g)、粉体層最表面から粉体を分離する
ために必要な遠心力をFs(N)、定数をBとしたと
き、厚さH及び、又は帯電量Qが異なる複数の試料に対
して遠心力Fsを求め、以下の関係式 Ft=Fs−B×(Q/H)2 から、粉体間の非静電的付着力Ft(N)を算出するこ
とを特徴とする請求項7記載の粉体間付着力測定方法。8. In the non-electrostatic adhesion calculation step, the thickness of the powder layer on the sample surface is H (μm), the average charge amount of the powder Q (μC / g), When the centrifugal force required to separate the powder from the surface is Fs (N) and the constant is B, the centrifugal force Fs is obtained for a plurality of samples having different thicknesses H and / or different charge amounts Q. The non-electrostatic adhesive force Ft (N) between the powders is calculated from the relational expression Ft = Fs−B × (Q / H) 2. Method.
担持体と、画像情報に応じて前記静電潜像担持体に静電
潜像を形成する形成手段と、前記静電潜像にトナーを供
給して顕像化する現像手段と、顕像化されたトナー画像
を担持するトナー画像担持体とを有し、 請求項6記載の粉体間付着力測定方法によって予め測定
した、前記トナー画像担持体のトナー画像を形成するト
ナー粒子間の非静電的付着力をFt(N)、トナー帯電
量の平均値をQ(μC/g)、前記トナー画像担持体上
での最大のトナー付着量をM(mg/cm2)としたと
き、以下の関係式 M4×Q2/(Ft×109)≦60 を満たすように構成されたことを特徴とする画像形成装
置。9. An electrostatic latent image carrier for carrying an electrostatic latent image, forming means for forming an electrostatic latent image on said electrostatic latent image carrier in accordance with image information, and said electrostatic latent image carrier. A developing means for supplying toner to the image to visualize the toner image, and a toner image carrier for carrying the visualized toner image, wherein the toner image carrier is measured in advance by the powder-to-powder adhesion measuring method according to claim 6. The non-electrostatic adhesion between toner particles forming a toner image on the toner image carrier is Ft (N), the average value of the toner charge is Q (μC / g), An image forming apparatus characterized by satisfying the following relational expression M 4 × Q 2 / (Ft × 10 9 ) ≦ 60, where M is the maximum toner adhesion amount (mg / cm 2 ). .
ー画像のトナー粒子間の非静電的付着力Ft(N)が、
5×10-9N乃至3×10-8Nの範囲にあるようなトナ
ーを用いることを特徴とする請求項9記載の画像形成装
置。10. A non-electrostatic adhesive force Ft (N) between toner particles of a toner image formed on the toner image carrier,
The image forming apparatus according to claim 9, wherein a toner having a range of 5 × 10 −9 N to 3 × 10 −8 N is used.
担持体に画像情報に応じて光を照射し、前記静電潜像担
持体上に静電潜像を形成して担持する静電潜像形成工程
と、前記静電潜像にトナーを供給して顕像化し、顕像化
されたトナー画像をトナー画像担持体に担持する現像工
程とを有し、 前記現像工程においては、請求項6記載の粉体間付着力
測定方法によって予め測定した、前記トナー画像担持体
のトナー画像を形成するトナー粒子間の非静電的付着力
をFt(N)、トナー帯電量の平均値をQ(μC/
g)、前記トナー画像担持体上での最大のトナー付着量
をM(mg/cm2)としたとき、以下の関係式 M4×Q2/(Ft×109)≦60 を満たすことを特徴とする画像形成方法。11. A method of irradiating at least a uniformly charged electrostatic latent image carrier with light according to image information to form an electrostatic latent image on the electrostatic latent image carrier and carry the electrostatic latent image on the electrostatic latent image carrier. A latent image forming step, and a developing step of supplying toner to the electrostatic latent image to visualize the electrostatic latent image, and carrying the visualized toner image on a toner image carrier, wherein the developing step includes: The non-electrostatic adhesive force between toner particles forming a toner image on the toner image carrier, which is measured in advance by the method for measuring an adhesive force between powders described in Item 6, is Ft (N), and the average value of the toner charge amount is Q (μC /
g), assuming that the maximum toner adhesion amount on the toner image carrier is M (mg / cm 2 ), the following relational expression M 4 × Q 2 / (Ft × 10 9 ) ≦ 60 is satisfied. Characteristic image forming method.
ー画像のトナー粒子間の非静電的付着力Ft(N)が、
5×10-9N乃至3×10-8Nの範囲にあることを特徴
とする請求項11記載の画像形成方法。12. A non-electrostatic adhesive force Ft (N) between toner particles of a toner image formed on the toner image carrier,
The image forming method according to claim 11, wherein the thickness is in a range of 5 × 10 −9 N to 3 × 10 −8 N.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06094498A JP3670134B2 (en) | 1998-03-12 | 1998-03-12 | Powder-to-powder adhesion measuring apparatus, powder-to-powder adhesion measuring method, and image forming apparatus and image forming method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06094498A JP3670134B2 (en) | 1998-03-12 | 1998-03-12 | Powder-to-powder adhesion measuring apparatus, powder-to-powder adhesion measuring method, and image forming apparatus and image forming method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11258081A true JPH11258081A (en) | 1999-09-24 |
JP3670134B2 JP3670134B2 (en) | 2005-07-13 |
Family
ID=13157013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06094498A Expired - Fee Related JP3670134B2 (en) | 1998-03-12 | 1998-03-12 | Powder-to-powder adhesion measuring apparatus, powder-to-powder adhesion measuring method, and image forming apparatus and image forming method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3670134B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006050996A1 (en) * | 2004-11-11 | 2006-05-18 | BAM Bundesanstalt für Materialforschung und -prüfung | Method and device for examining the resistance of a connection by means of a centrifugal force |
JP2007240945A (en) * | 2006-03-09 | 2007-09-20 | Ricoh Co Ltd | Method for evaluating electrostatic charge image developing toner, electrostatic charge image developing toner, method for manufacturing the same, development method using the same, toner cartridge, and process cartridge |
WO2010065477A3 (en) * | 2008-12-02 | 2010-10-07 | President And Fellows Of Harvard College | A method for rotating an object attached to a surface of a substrate |
JP2010266841A (en) * | 2009-04-13 | 2010-11-25 | Ricoh Co Ltd | Proper toner deposition amount specification method |
US8590372B2 (en) | 2009-05-22 | 2013-11-26 | Sharp Kabushiki Kaisha | Device and method for measuring toner adhesion |
US9354189B2 (en) | 2008-12-02 | 2016-05-31 | President And Fellows Of Harvard College | Apparatus for measurement of spinning forces relating to molecules |
US9869851B2 (en) | 2008-12-02 | 2018-01-16 | The Research Foundation For The State University Of New York | Centrifuge force microscope modules and systems for use in a bucket of a centrifuge |
US10948401B2 (en) | 2016-02-25 | 2021-03-16 | President And Fellows Of Harvard College | Spinning apparatus for measurement of characteristics relating to molecules |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018189932A (en) * | 2017-05-12 | 2018-11-29 | 富士ゼロックス株式会社 | Image forming apparatus |
-
1998
- 1998-03-12 JP JP06094498A patent/JP3670134B2/en not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006050996A1 (en) * | 2004-11-11 | 2006-05-18 | BAM Bundesanstalt für Materialforschung und -prüfung | Method and device for examining the resistance of a connection by means of a centrifugal force |
US7707895B2 (en) | 2004-11-11 | 2010-05-04 | Bam Bundesanstalt Fur Material-Forschung Und-Prufung | Method and device for testing the strength of a connection using centrifugal force |
JP2007240945A (en) * | 2006-03-09 | 2007-09-20 | Ricoh Co Ltd | Method for evaluating electrostatic charge image developing toner, electrostatic charge image developing toner, method for manufacturing the same, development method using the same, toner cartridge, and process cartridge |
US9869851B2 (en) | 2008-12-02 | 2018-01-16 | The Research Foundation For The State University Of New York | Centrifuge force microscope modules and systems for use in a bucket of a centrifuge |
US8491454B2 (en) | 2008-12-02 | 2013-07-23 | President And Fellows Of Harvard College | Spinning force apparatus |
US8795143B2 (en) | 2008-12-02 | 2014-08-05 | President And Fellows Of Harvard College | Spinning force apparatus |
US9354189B2 (en) | 2008-12-02 | 2016-05-31 | President And Fellows Of Harvard College | Apparatus for measurement of spinning forces relating to molecules |
WO2010065477A3 (en) * | 2008-12-02 | 2010-10-07 | President And Fellows Of Harvard College | A method for rotating an object attached to a surface of a substrate |
US10265705B2 (en) | 2008-12-02 | 2019-04-23 | President And Fellows Of Harvard College | Apparatus for measurement of spinning forces relating to molecules |
JP2010266841A (en) * | 2009-04-13 | 2010-11-25 | Ricoh Co Ltd | Proper toner deposition amount specification method |
US8590372B2 (en) | 2009-05-22 | 2013-11-26 | Sharp Kabushiki Kaisha | Device and method for measuring toner adhesion |
US10948401B2 (en) | 2016-02-25 | 2021-03-16 | President And Fellows Of Harvard College | Spinning apparatus for measurement of characteristics relating to molecules |
US11913872B2 (en) | 2016-02-25 | 2024-02-27 | President And Fellows Of Harvard College | Spinning apparatus for measurement of characteristics relating to molecules |
Also Published As
Publication number | Publication date |
---|---|
JP3670134B2 (en) | 2005-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5051546B2 (en) | Image forming apparatus | |
US6594462B2 (en) | Developing apparatus using toner with conductive particles | |
US6898401B2 (en) | Charging system, process cartridge and image forming apparatus | |
JP2011191774A (en) | Image forming apparatus | |
US20080014524A1 (en) | Developing agent and image forming method | |
JP3670134B2 (en) | Powder-to-powder adhesion measuring apparatus, powder-to-powder adhesion measuring method, and image forming apparatus and image forming method | |
JP2008020909A (en) | Developer | |
JP2938543B2 (en) | Image forming device | |
JP2007011295A (en) | Image forming apparatus and image forming method | |
US6832058B2 (en) | Image forming apparatus including a maximum charge quantity of toner particles forming useless toner | |
JP2009265491A (en) | Image forming apparatus | |
US6381438B2 (en) | Image forming apparatus and image forming method | |
JP5279361B2 (en) | Image forming apparatus | |
JP2003248408A (en) | Image forming apparatus | |
JP5348558B2 (en) | Proper toner adhesion amount identification method | |
JP4625874B2 (en) | Image forming apparatus and image forming method | |
JP2986872B2 (en) | Developer life detector | |
JP7494079B2 (en) | Image forming device | |
JP2001042644A (en) | Image forming apparatus and image forming method | |
JP3759534B2 (en) | Image forming apparatus | |
JP2870020B2 (en) | Image forming device | |
JPH1165307A (en) | Image forming device | |
JPH1165220A (en) | Image forming device | |
JP2000187390A (en) | Developing device | |
JP2000122416A (en) | Developing device and image forming device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20020809 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20031225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040330 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040531 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040531 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050412 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050413 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080422 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090422 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100422 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100422 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110422 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120422 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130422 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140422 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |