[go: up one dir, main page]

JPH11256291A - Manufacture of aluminum alloy sheet for can body - Google Patents

Manufacture of aluminum alloy sheet for can body

Info

Publication number
JPH11256291A
JPH11256291A JP7330998A JP7330998A JPH11256291A JP H11256291 A JPH11256291 A JP H11256291A JP 7330998 A JP7330998 A JP 7330998A JP 7330998 A JP7330998 A JP 7330998A JP H11256291 A JPH11256291 A JP H11256291A
Authority
JP
Japan
Prior art keywords
rolling
hot
temperature
range
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7330998A
Other languages
Japanese (ja)
Other versions
JP3644819B2 (en
Inventor
Iwao Shu
岩 朱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP07330998A priority Critical patent/JP3644819B2/en
Publication of JPH11256291A publication Critical patent/JPH11256291A/en
Application granted granted Critical
Publication of JP3644819B2 publication Critical patent/JP3644819B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing an Al alloy sheet excellent in strength and DI (drawing and ironing) formability which are required of a DI (drawn and ironed) can body material and having stably low earing rate at deep drawing. SOLUTION: An Al alloy, containing 0.5-2.0% Mg, 0.5-2.0% Mn, 0.1-0.7% Fe, and 0.05-0.5% Si, is cast, subjected to homogenizing treatment, and then hot-rolled. At this time, slab thickness at the beginning of roughing and initial roughing temperature are made to >=200 mm and 450 to 580'C, respectively, and also rolling rate from the beginning of roughing is regulated to >=25%, and the temperature until a stage of 150 to 15 mm plate thickness is reached is maintained at >=400 deg.C. In this stage, recrystallization of >=5% by volume ratio is allowed to occur at least one or more times over the whole plate. Moreover, the initial temperature of subsequent finish rolling is made to 250 to 400 deg.C, and the rolling speed of each pass at finish rolling and the rolling rate of each pass at finish rolling are made to (80 to 800) m/min and >=20%, respectively. Further, final temperature at finish rolling and final plate thickness are regulated to 200 to 320 deg.C and 1.0 to 7.0 mm, respectively. Subsequently, after batch annealing or continuous annealing after primary cold rolling is applied, final cold rolling at >=60% is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明はDI加工(絞り−
しごき加工)による2ピースアルミニウム缶用の缶胴、
すなわちDI缶胴に用いられるAl−Mg−Mn系アル
ミニウム合金板の製造方法に関し、特に深絞り耳が低く
かつ塗装焼付後の強度が高く、しかもDI加工時の成形
性および塗装焼付後の成形性に優れたDI缶胴用アルミ
ニウム合金板の製造方法に関するものである。
The present invention relates to DI processing (drawing).
Canning for 2-piece aluminum cans by ironing)
More specifically, the present invention relates to a method for producing an Al-Mg-Mn-based aluminum alloy plate used for a DI can body, particularly having a low deep drawing ear, a high strength after baking, and a formability during DI processing and a formability after baking. The present invention relates to a method for producing an aluminum alloy plate for a DI can body excellent in quality.

【0002】[0002]

【従来の技術】一般に2ピースアルミニウム缶の製造工
程としては、缶胴素材に対して深絞り加工およびしごき
加工によるDI成形を施して缶胴形状とした後、所定の
サイズにトリミングを施して脱脂・洗浄処理を行ない、
さらに塗装および印刷を行なって焼付け(ベーキング)
を行ない、その後、缶胴縁部に対してネッキング加工、
フランジング加工を行ない、その後、別に成形した缶蓋
(缶エンド)と合せてシーミング加工を行なって缶とす
るのが通常である。
2. Description of the Related Art In general, as a manufacturing process of a two-piece aluminum can, a can body material is subjected to DI forming by deep drawing and ironing to form a can body, and then trimmed to a predetermined size to be degreased.・ Washing process,
Further painting and printing and baking (baking)
And then necking the can body edge,
Usually, flanging is performed, and thereafter, a can is formed by performing seaming together with a separately formed can lid (can end).

【0003】このようにして製造されるDI缶の素材
(缶胴材)としては、従来からAl−Mg−Mn系合金
であるJIS 3004合金の硬質板が広く用いられて
いる。この3004合金は、しごき加工性に優れてい
て、強度を高めるために高圧延率で冷間圧延を施した場
合でも比較的良好な成形性を示すところから、DI缶胴
材として好適であるとされている。
[0003] As a raw material (can body material) of the DI can thus manufactured, a hard plate of JIS 3004 alloy, which is an Al-Mg-Mn alloy, has been widely used. This 3004 alloy is excellent in ironing workability, and shows relatively good formability even when cold-rolled at a high rolling ratio in order to increase strength, so that it is suitable as a DI can body. Have been.

【0004】このようなDI缶胴用の3004合金硬質
板の製造方法としては、DC鋳造法などによって鋳造
後、鋳塊に対し均質化処理を施し、さらに熱間圧延およ
び冷間圧延を施して所定の板厚とし、かつその過程にお
ける冷間圧延前あるいは冷間圧延中途において中間焼鈍
を施す方法が一般的である。
[0004] As a method for producing such a 3004 alloy hard plate for a DI can body, after casting by a DC casting method or the like, the ingot is subjected to a homogenization treatment, and further subjected to hot rolling and cold rolling. Generally, a method is used in which a predetermined thickness is set and intermediate annealing is performed before or during cold rolling in the process.

【0005】ところでDI缶胴については、主として材
料コスト低減、軽量化の目的から、より薄肉化を図るこ
とが強く望まれている。そしてこのように薄肉化を図る
ためには、薄肉化に伴なって生じる缶の座屈強度低下の
問題を回避するため、材料の高強度化を図ることが不可
欠である。
[0005] By the way, it is strongly desired that the DI can body be made thinner mainly for the purpose of material cost reduction and weight reduction. In order to reduce the wall thickness, it is indispensable to increase the strength of the material in order to avoid the problem of a decrease in the buckling strength of the can caused by the reduction in the wall thickness.

【0006】またDI缶胴用材料については、上述のよ
うな薄肉化を図るための高強度化の要請ばかりではな
く、DI成形時における耳率が低いことが強く望まれ
る。すなわち、DI成形時の耳率が低いことは、DI成
形時の歩留りの向上と、缶胴の耳切れに起因する缶胴破
断の防止の点から必要とされている。さらに、耳率を如
何に制御するかによって、強度、フランジ成形性、耳率
のバランスに影響を及ぼすことになるから、耳率制御は
缶胴材にとって極めて重要な課題となっている。
Further, as for the material for the DI can body, not only the above-mentioned demand for high strength for the purpose of reducing the thickness, but also a low ear ratio at the time of DI molding is strongly desired. That is, a low ear ratio at the time of DI molding is required from the viewpoints of improving the yield at the time of DI molding and preventing the can body from being broken due to the cut end of the can body. Further, how to control the ear ratio affects the balance of strength, flange formability, and ear ratio, so that ear ratio control is a very important issue for can bodies.

【0007】しかしながら、前述のような従来の一般的
な缶胴材製造方法では、耳率を抑えるにも限界があり、
例えば絞り比1.9において耳率を3%以下に抑えるこ
とは困難であった。
[0007] However, in the above-mentioned conventional general method for manufacturing a can body, there is a limit in suppressing the ear ratio.
For example, it was difficult to suppress the ear ratio to 3% or less at an aperture ratio of 1.9.

【0008】そこで低耳率を達成するための缶胴材製造
方法が、既に例えば特開平5−317914号、特開平
9−249932号、特開平9−268355号等にお
いて提案されている。
Therefore, a method for producing a can body material for achieving a low ear ratio has already been proposed in, for example, JP-A-5-317914, JP-A-9-249932 and JP-A-9-268355.

【0009】[0009]

【発明が解決しようとする課題】前述の特開平5−31
7914号においては、冷間圧延中途において2回焼鈍
を行なう方法が提案されているが、このように冷間圧延
中途において2回焼鈍を行なった場合、最終冷間圧延の
圧延率を大きくとれないため、強度不足が生じやすいと
いう問題があるほか、製缶時の材料の加工硬化量が大き
く、フランジ成形性が悪化する問題がある。
SUMMARY OF THE INVENTION The aforementioned Japanese Patent Laid-Open No. 5-31 is disclosed.
No. 7914 proposes a method in which annealing is performed twice in the middle of cold rolling. However, when annealing is performed twice in the middle of cold rolling, the rolling reduction in the final cold rolling cannot be increased. Therefore, there is a problem that the strength is apt to be insufficient, and there is a problem that a work hardening amount of the material at the time of can making is large and flange formability is deteriorated.

【0010】また特開平9−249932号において
は、熱間圧延の最終パスにおける圧延速度、減面率、お
よび熱延終了温度を厳密に規制することによって低耳率
を達成する方法が提案されており、この方法は、ある程
度は低耳率達成に有効であるが、依然として製造チャン
スによる耳率の変動は大きく、確実かつ安定して低耳率
を得るには不充分であった。
Japanese Patent Application Laid-Open No. 9-249932 proposes a method for achieving a low ear rate by strictly controlling the rolling speed, the area reduction rate, and the hot rolling end temperature in the final pass of hot rolling. Although this method is effective for achieving a low ear rate to some extent, the fluctuation of the ear rate due to manufacturing chances is still large, and it is insufficient for reliably and stably obtaining a low ear rate.

【0011】さらに、特開平9−268355号におい
ては、熱間仕上圧延にタンデム式圧延機を用いる場合に
ついて、熱間仕上圧延条件を細かく規制することにより
低耳率を達成する方法が提案されているが、この発明の
方法は仕上圧延にタンデム式圧延機を用いた場合に限ら
れるものであって、リバーシングミルを用いる場合につ
いては全く考慮されておらず、したがって熱間圧延にリ
バーシングミルを適用した場合の耳率制御には有効では
ない。
Furthermore, Japanese Patent Application Laid-Open No. 9-268355 proposes a method of achieving a low ear ratio by finely controlling the hot finish rolling conditions when a tandem rolling mill is used for hot finish rolling. However, the method of the present invention is limited to the case where a tandem mill is used for finish rolling, and no consideration is given to the case where a reversing mill is used. It is not effective for ear rate control when is applied.

【0012】以上のように、従来提案されている方法
は、缶胴材に対する諸要求を全て充分に満たすことは困
難であり、特にリバーシングミルを用いた場合であって
も缶胴材として必要な諸特性を充分に満たす材料を得る
ことは困難であった。
As described above, it is difficult to sufficiently satisfy all the requirements for the can body by the conventionally proposed method, and in particular, even if a reversing mill is used, it is necessary to use the can body as the can body. It has been difficult to obtain a material that sufficiently satisfies various characteristics.

【0013】この発明は以上の事情を背景としてなされ
たものであって、缶胴材として望まれる諸要求を充分に
満足し得る材料、すなわち薄肉化を図った場合でも強度
とフランジ成形性に優れ、しかも深絞りにおける材料の
耳率が確実かつ安定して低い缶胴用アルミニウム合金板
を製造し得る方法を提供することを基本的な目的とする
ものである。
The present invention has been made in view of the above circumstances, and is a material capable of sufficiently satisfying various demands for a can body, that is, excellent in strength and flange formability even when the thickness is reduced. Further, it is a basic object of the present invention to provide a method capable of reliably and stably producing a low aluminum alloy sheet for a can body in a deep drawing.

【0014】またこの発明は、熱間圧延設備、特に仕上
圧延機として、リバーシングミルを用いた場合でも、上
述のような缶胴材として優れた性能を有するアルミニウ
ム合金板を製造し得る方法を提供することを目的とす
る。
The present invention also provides a method for producing an aluminum alloy sheet having excellent performance as a can body as described above, even when a reversing mill is used as a hot rolling facility, particularly a finishing mill. The purpose is to provide.

【0015】[0015]

【課題を解決するための手段】前述のような課題を解決
するべく、本願発明者等が種々実験・検討を重ねた結
果、熱間圧延工程の諸条件、特に熱間粗圧延中における
再結晶を適切に制御すると同時に、再結晶後の仕上圧延
の諸条件を厳密に規制することによって、前述の課題を
解決し得ることを見出し、この発明をなすに至ったので
ある。
As a result of various experiments and studies conducted by the present inventors to solve the above-mentioned problems, various conditions of the hot rolling process, especially recrystallization during hot rough rolling, were carried out. The present inventors have found that the aforementioned problems can be solved by appropriately controlling the conditions of the finish rolling after recrystallization and strictly controlling the conditions of the finish rolling, and have accomplished the present invention.

【0016】具体的には、請求項1の発明の缶胴用アル
ミニウム合金板の製造方法は、Mg0.5〜2.0%、
Mn0.5〜2.0%、Fe0.1〜0.7%、Si
0.05〜0.5%を含有し、さらに必要に応じて0.
005〜0.20%のTiを単独でもしくは0.000
1〜0.05%のBと組合せて含有し、残部がAlおよ
び不可避的不純物よりなるアルミニウム合金をスラブに
鋳造した後、そのスラブに対し520〜630℃の範囲
内の温度で1時間以上の均質化処理を施し、さらにスラ
ブを熱間粗圧延およびそれに続く熱間仕上圧延によって
熱間圧延するにあたり、(1) 熱間粗圧延開始時のス
ラブ厚みを200mm以上とし、(2) 熱間粗圧延開
始温度を450〜580℃の範囲内とし、(3) 熱間
粗圧延中において、粗圧延開始からの圧延率が25%以
上でかつ150〜15mmの範囲内の板厚の段階までの
温度を400℃以上に維持して、その150〜15mm
の範囲内の板厚の段階において板全体に対し体積率で5
%以上の再結晶を少なくとも1回以上生じさせ、(4)
熱間仕上圧延の開始温度を250〜400℃の範囲内
とし、(5) 熱間仕上圧延における各パスの圧延速度
を80〜800m/分の範囲内とし、(6) 熱間仕上
圧延における各パスの圧延率を20%以上とし、(7)
さらに熱間仕上圧延における上り温度を200〜32
0℃の範囲内とし、(8) かつ熱間仕上圧延における
上り板厚を1.0〜7.0mmの範囲内とし、以上の
(1)〜(8)の条件によって得られた熱延板に対し
て、0.1℃/秒以下の平均昇温速度で加熱して250
〜500℃の範囲内の温度に0.5時間以上保持するバ
ッチ焼鈍を行なった後、0.1℃/秒以下の平均冷却速
度で冷却し、その後さらに60%以上の圧延率で冷間圧
延を行なうことを特徴とするものである。
More specifically, the method for producing an aluminum alloy plate for a can body according to the first aspect of the present invention comprises the steps of:
Mn 0.5-2.0%, Fe 0.1-0.7%, Si
0.05-0.5%, and if necessary, 0.1-0.5%.
005 to 0.20% Ti alone or 0.000%
An aluminum alloy containing 1 to 0.05% of B in combination with the balance being Al and inevitable impurities is cast into a slab, and the slab is subjected to a temperature of 520 to 630 ° C for 1 hour or more. When the slab is subjected to the homogenization treatment and the slab is hot-rolled by hot rough rolling and subsequent hot finish rolling, (1) the slab thickness at the start of hot rough rolling is set to 200 mm or more; The rolling start temperature is in the range of 450 to 580 ° C., and (3) the temperature during the hot rough rolling, from the start of the rough rolling to the stage where the rolling ratio is 25% or more and the plate thickness is in the range of 150 to 15 mm. Is maintained at 400 ° C. or higher, and its 150 to 15 mm
At a thickness of the plate within the range of 5
% Or more recrystallization at least once, (4)
The start temperature of the hot finish rolling is set in the range of 250 to 400 ° C., (5) the rolling speed of each pass in the hot finish rolling is set in the range of 80 to 800 m / min, and (6) each of the hot finish rolling (7) The pass rolling rate is set to 20% or more.
Further, the rising temperature in hot finish rolling is set to 200 to 32.
Hot rolled sheet obtained under the above conditions (1) to (8), (8) and the ascending sheet thickness in hot finish rolling being in the range of 1.0 to 7.0 mm. To an average temperature of 0.1 ° C./sec.
After performing a batch annealing in which the temperature is maintained at a temperature in the range of about 500 ° C. for 0.5 hour or more, it is cooled at an average cooling rate of 0.1 ° C./sec or less, and then cold-rolled at a rolling rate of 60% or more. Is performed.

【0017】また請求項2の発明の缶胴用アルミニウム
合金板の製造方法は、素材アルミニウム合金として、M
g0.5〜2.0%、Mn0.5〜2.0%、Fe0.
1〜0.7%、Si0.05〜0.5%を含有し、かつ
Cu0.05〜0.5%、Cr0.05〜0.3%、Z
n0.05〜0.5%のうちの1種または2種以上を含
有し、さらに必要に応じて0.005〜0.20%のT
iを単独でもしくは0.0001〜0.05%のBと組
合せて含有し、残部がAlおよび不可避的不純物よりな
るアルミニウム合金を用い、請求項1で規定するプロセ
ス条件と同様の条件の均質化処理−熱間圧延(粗圧延及
び仕上圧延)−バッチ焼鈍−最終冷間圧延のプロセスで
製造するものである。
In the method for producing an aluminum alloy plate for a can body according to the second aspect of the present invention, the method comprises
g 0.5-2.0%, Mn 0.5-2.0%, Fe0.
1-0.7%, Si 0.05-0.5%, Cu 0.05-0.5%, Cr 0.05-0.3%, Z
n contains one or more of 0.05 to 0.5%, and if necessary, 0.005 to 0.20% of T
An aluminum alloy containing i alone or in combination with 0.0001 to 0.05% of B and the balance being Al and unavoidable impurities, and homogenized under the same conditions as the process conditions defined in claim 1. It is manufactured by a process of processing, hot rolling (rough rolling and finish rolling), batch annealing, and final cold rolling.

【0018】さらに請求項3の発明の缶胴用アルミニウ
ム合金板の製造方法は、素材合金として請求項1で規定
する合金と同じアルミニウム合金を用い、かつ均質化処
理−熱間圧延(粗圧延及び仕上圧延)を請求項1で規定
する条件で行ない、その後、熱延板に対して2〜25%
の圧延率で1次冷間圧延を施し、さらに焼鈍として、1
〜100℃/秒の範囲内の平均昇温速度で330〜62
0℃の範囲内の温度に加熱して保持なしもしくは10分
以下の保持の連続焼鈍を施した後、1〜100℃/秒の
範囲内の平均冷却速度で冷却し、その後請求項1の方法
と同様に60%以上の圧延率で最終冷間圧延を行なうも
のである。
Further, in the method for producing an aluminum alloy sheet for a can body according to the third aspect of the present invention, the same aluminum alloy as the alloy defined in the first aspect is used as a raw material alloy, and the homogenization treatment-hot rolling (rough rolling and Finish rolling) under the conditions specified in claim 1, and then 2 to 25% of the hot-rolled sheet.
Primary cold rolling at a rolling rate of
330 to 62 at an average heating rate in the range of
2. A method according to claim 1, wherein after heating to a temperature in the range of 0 [deg.] C. and performing continuous annealing with no holding or holding for 10 minutes or less, cooling is performed at an average cooling rate in the range of 1 to 100 [deg.] C./sec. The final cold rolling is performed at a rolling rate of 60% or more in the same manner as in the above.

【0019】そしてまた請求項4の発明の缶胴用アルミ
ニウム合金板の製造方法は、素材アルミニウム合金とし
て請求項2で規定する成分組成と同じ成分組成の合金を
用い、請求項3で規定するプロセスで製造するものであ
る。
According to a fourth aspect of the present invention, there is provided a method for producing an aluminum alloy sheet for a can body, wherein an alloy having the same composition as the composition defined in the second aspect is used as the raw aluminum alloy. It is manufactured by.

【0020】なお、以上の請求項1〜4の方法におい
て、60%以上の圧延率で最終冷間圧延を行なった後に
は、さらに80〜200℃の範囲内の温度で0.5時間
以上保持する最終焼鈍を施しても良く、これを規定した
のが請求項5の発明である。
In the above method, after the final cold rolling is performed at a rolling ratio of 60% or more, the temperature is further maintained at a temperature in the range of 80 to 200 ° C. for 0.5 hour or more. The final annealing may be performed, and this is defined by the invention of claim 5.

【0021】[0021]

【発明の実施の形態】先ずこの発明の方法において用い
られるアルミニウム合金の成分組成の限定理由について
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the reasons for limiting the composition of the aluminum alloy used in the method of the present invention will be described.

【0022】Mg:Mgの添加は、Mgそれ自体の固溶
による強度向上に効果があり、またMgの固溶に伴なっ
て加工硬化量の増大による強度向上が期待でき、さらに
はSiとの共存によるMg2 Siの時効析出による強度
向上も期待でき、したがってMgは缶胴材として必要な
強度を得るためには不可欠の元素である。またMgは、
加工時の転位の増殖作用があるため、再結晶粒を微細化
させるためにも有効である。但しMg量が0.5%未満
では上述の効果が少なく、一方2.0%を越えれば、高
強度は容易に得られるものの、DI加工時の変形抵抗が
大きくなって絞り性やしごき性を悪くする。したがって
Mg量は0.5〜2.0%の範囲内とした。
Mg: The addition of Mg is effective in improving the strength due to the solid solution of Mg itself, and can be expected to improve the strength by increasing the amount of work hardening accompanying the solid solution of Mg. An increase in strength due to aging precipitation of Mg 2 Si due to coexistence can also be expected, and thus Mg is an indispensable element for obtaining the strength required for a can body. Mg is
Since it has the effect of increasing dislocations during processing, it is also effective for making recrystallized grains finer. However, when the Mg content is less than 0.5%, the above-mentioned effect is small. On the other hand, when the Mg content is more than 2.0%, although high strength is easily obtained, deformation resistance at the time of DI processing is increased and drawability and ironing property are reduced. Make it worse. Therefore, the Mg content is set in the range of 0.5 to 2.0%.

【0023】Mn:Mnは強度および成形性の向上に寄
与する有効な元素である。特にこの発明で目的としてい
る用途である缶胴材ではDI成形時にしごき加工が加え
られるため、とりわけMnは重要となる。アルミニウム
板のしごき加工においては通常エマルジョンタイプの潤
滑剤が用いられているが、Mn系晶出物が少ない場合に
は同程度の強度を有していてもエマルジョンタイプ潤滑
剤だけでは潤滑能が不足し、ゴーリングと呼ばれる擦り
疵や焼付きなどの外観不良が発生するおそれがある。こ
の現象は晶出物の大きさ、量、種類に影響されることが
知られており、その晶出物を形成するためにMnは不可
欠な元素である。Mn量が0.5%未満ではMn系化合
物による固体潤滑的な効果が得られず、一方Mn量が
2.0%を越えればAl6 Mnの初晶巨大金属間化合物
が発生し、著しく成形性を損なう。そこでMn量は0.
5〜2.0%の範囲内とした。
Mn: Mn is an effective element that contributes to improvement in strength and formability. In particular, in the can body material, which is the target application of the present invention, ironing is added during DI molding, and therefore Mn is particularly important. Emulsion type lubricants are usually used for ironing aluminum plates, but when the amount of Mn-based crystals is small, lubricating ability is insufficient with only emulsion type lubricants even if they have the same strength. However, there is a possibility that poor appearance such as abrasion and seizure called galling may occur. It is known that this phenomenon is affected by the size, amount, and type of the crystallized material, and Mn is an indispensable element for forming the crystallized material. If the Mn content is less than 0.5%, the solid lubricating effect of the Mn-based compound cannot be obtained, while if the Mn content exceeds 2.0%, a primary intermetallic giant compound of Al 6 Mn is generated, resulting in remarkable molding. Impair the nature. Therefore, the amount of Mn is 0.1.
The range was 5 to 2.0%.

【0024】Fe:Feは、Mnの晶出や析出を促進し
て、アルミニウム基地中のMn固溶量やMn系金属間化
合物の分散状態を制御するために必要な元素である。適
正な化合物分散状態を得るためには、Mn添加量に応じ
てFeを添加することが必要である。Fe量が0.1%
未満では適正な化合物分散状態を得ることが困難であ
り、一方Fe量が0.7%を越えれば、Mn添加に伴な
って初晶巨大金属間化合物が発生しやすくなり、成形性
を著しく損なう。そこでFe量の範囲は0.1〜0.7
%とした。
Fe: Fe is an element required to promote crystallization and precipitation of Mn and to control the amount of Mn solid solution in the aluminum matrix and the dispersion state of the Mn-based intermetallic compound. In order to obtain an appropriate compound dispersion state, it is necessary to add Fe according to the amount of Mn added. Fe content is 0.1%
If the amount is less than the above, it is difficult to obtain a proper compound dispersion state, while if the amount of Fe exceeds 0.7%, a primary crystal large intermetallic compound is easily generated with the addition of Mn, and the formability is significantly impaired. . Therefore, the range of the amount of Fe is 0.1 to 0.7.
%.

【0025】Si:Siの添加は、Mg2 Si系化合物
の析出による時効硬化を通じて缶胴材の強度向上に寄与
する。またSiは、Al−Mn−Fe−Si系金属間化
合物を生成して、Mn系金属間化合物の分散状態を制御
するために必要な元素である。Si量が0.05%未満
では上記の効果が得られず、一方0.5%を越えれば時
効硬化により材料が硬くなりすぎて成形性を阻害する。
そこでSi量の範囲は0.05〜0.5%とした。
Si: The addition of Si contributes to the improvement of the strength of the can body material through age hardening due to precipitation of the Mg 2 Si-based compound. Si is an element necessary for generating an Al-Mn-Fe-Si-based intermetallic compound and controlling the dispersion state of the Mn-based intermetallic compound. If the Si content is less than 0.05%, the above effects cannot be obtained, while if it exceeds 0.5%, the material becomes too hard due to age hardening, and the formability is impaired.
Therefore, the range of the amount of Si is set to 0.05 to 0.5%.

【0026】Ti,B:通常のアルミニウム合金におい
ては、鋳塊結晶粒微細化のためにTi、あるいはTiお
よびBを微量添加することが行なわれており、この発明
においても、必要に応じて微量のTiを単独で、あるい
はBと組合せて添加しても良い。但しTi量が0.00
5%未満ではその効果が得られず、0.20%を越えれ
ば巨大なAl−Ti系金属間化合物が晶出して成形性を
阻害するため、Tiを添加する場合のTi量は0.00
5〜0.20%の範囲内とした。またTiとともにBを
添加すれば鋳塊結晶粒微細化の効果が向上するが、Ti
と併せてBを添加する場合、B量が0.0001%未満
ではその効果がなく、0.05%を越えればTi−B系
の粗大粒子が混入して成形性を害することから、Tiと
ともにBを添加する場合のB量は0.0001〜0.0
5%の範囲内とした。
Ti, B: In ordinary aluminum alloys, a small amount of Ti or Ti and B is added to refine the ingot crystal grains. In the present invention, trace amounts are added if necessary. May be added alone or in combination with B. However, if the amount of Ti is 0.00
If it is less than 5%, the effect cannot be obtained, and if it exceeds 0.20%, a huge Al-Ti intermetallic compound is crystallized and the formability is impaired.
It was in the range of 5 to 0.20%. If B is added together with Ti, the effect of refining the ingot crystal grains is improved.
When B is added together with B, the effect is not obtained if the amount of B is less than 0.0001%, and if it exceeds 0.05%, coarse particles of Ti-B series are mixed and formability is impaired. When B is added, the amount of B is 0.0001 to 0.0.
It was within the range of 5%.

【0027】Cu,Cr,Zn:これらはいずれも強度
向上に寄与する元素であり、必要に応じてこれらのうち
から選ばれた1種または2種以上が添加される。これら
の各元素についてさらに説明する。
Cu, Cr, Zn: These are all elements that contribute to the improvement in strength, and one or more selected from these are added as necessary. Each of these elements will be further described.

【0028】Cu:Cuは、焼鈍時にアルミニウム基地
中に溶体化させておき、塗装焼付処理時にAl−Cu−
Mg系析出物として析出することによる析出硬化を利用
した強度向上に寄与する。Cu量が0.05%未満では
その効果が得られず、一方Cuを0.5%を越えて添加
した場合には、時効硬化は容易に得られるものの、硬く
なりすぎて成形性を阻害し、また耐食性も劣化する。そ
こでCu量の範囲は0.05〜0.5%とした。
Cu: Cu is dissolved in an aluminum matrix at the time of annealing, and Al-Cu-
It contributes to strength improvement utilizing precipitation hardening by precipitation as Mg-based precipitates. When the Cu content is less than 0.05%, the effect cannot be obtained. On the other hand, when Cu is added in excess of 0.5%, age hardening can be easily obtained, but it becomes too hard and impairs moldability. In addition, the corrosion resistance also deteriorates. Therefore, the range of the amount of Cu is set to 0.05 to 0.5%.

【0029】Cr;Crも強度向上に効果的な元素であ
るが、0.05%未満ではその効果が少なく、0.3%
を越えれば巨大晶出物生成によって成形性の低下を招く
ため、好ましくない。そこでCr量の範囲は0.05〜
0.3%とした。
Cr: Cr is also an element effective for improving the strength, but less than 0.05% has little effect, and 0.3%
Exceeding the range is not preferred because the formation of giant crystals causes a reduction in moldability. Therefore, the range of the amount of Cr is 0.05 to
0.3%.

【0030】Zn:Znの添加はAl−Mg−Zn系粒
子の時効析出による強度向上に寄与するが、0.05%
未満ではその効果が得られず、0.5%を越えれば、強
度への寄与については問題がないが、耐食性を劣化させ
る。そこでZn量の範囲は0.05〜0.5%とした。
Zn: The addition of Zn contributes to the improvement of the strength due to the aging precipitation of Al-Mg-Zn-based particles.
If it is less than 0.5%, the effect cannot be obtained. If it exceeds 0.5%, there is no problem in the contribution to the strength, but the corrosion resistance is deteriorated. Therefore, the range of the amount of Zn is set to 0.05 to 0.5%.

【0031】以上の各元素の残部はAlと不可避不純物
すれば良い。
The remainder of each of the above elements may be inevitable impurities with Al.

【0032】次にこの発明における製造プロセスを、そ
の作用とともに説明する。
Next, the manufacturing process of the present invention will be described together with its operation.

【0033】先ず前述のような合金組成を有するアルミ
ニウム合金鋳塊を常法に従ってDC鋳造法(半連続鋳造
法)などにより鋳造する。次いでその鋳塊に対して均質
化処理を施して、鋳塊の偏析を均質化するとともにMn
系の第2相粒子サイズと分布を最適化する。均質化処理
温度が520℃未満では均質化の効果が不充分であり、
一方630℃を越えれば共晶融解のおそれがある。均質
化処理は1時間未満では均質化が不充分となる。したが
って均質化処理は520〜630℃の範囲内の温度で1
時間以上行なう必要がある。なお均質化処理時間の上限
は特に規制しないが、経済性を考慮して通常は48時間
以下にすることが好ましい。
First, an aluminum alloy ingot having the above-described alloy composition is cast by a DC casting method (semi-continuous casting method) or the like according to a conventional method. Next, the ingot is subjected to a homogenization treatment to homogenize segregation of the ingot and to reduce Mn.
Optimize the second phase particle size and distribution of the system. If the homogenization treatment temperature is less than 520 ° C, the effect of homogenization is insufficient,
On the other hand, if the temperature exceeds 630 ° C., eutectic melting may occur. If the homogenization treatment is performed for less than one hour, the homogenization will be insufficient. Therefore, the homogenization treatment is performed at a temperature in the range of 520 to 630 ° C.
It must be done for more than an hour. The upper limit of the homogenization treatment time is not particularly limited, but is usually preferably 48 hours or less in consideration of economy.

【0034】均質化処理を施したスラブに対しては、熱
間圧延を行なう。この熱間圧延は、粗圧延とそれに続く
仕上圧延とに区分されるが、この発明の方法の場合、粗
圧延にリバーシングミル(可逆式圧延機)を用い、仕上
圧延にリバーシングミルもしくはリバーシングウォーム
ミル(可逆式仕上圧延機)を用いることが適当である
が、それらに限られないことはもちろんである。
The slab subjected to the homogenization treatment is subjected to hot rolling. This hot rolling is classified into rough rolling and subsequent finishing rolling. In the case of the method of the present invention, a reversing mill (reversible rolling mill) is used for rough rolling, and a reversing mill or a reversing mill is used for finishing rolling. Although it is appropriate to use a single worm mill (reversible finishing mill), it is needless to say that the present invention is not limited thereto.

【0035】この熱間圧延工程の条件は、この発明の方
法の場合極めて重要であり、(1)〜(8)の条件に従
って熱間圧延を行なうことが耳率の制御に対して重要で
ある。そこでこれらの(1)〜(8)の条件について詳
細に説明する。
The conditions of this hot rolling step are extremely important in the case of the method of the present invention, and it is important to perform hot rolling in accordance with the conditions (1) to (8) for controlling ear ratio. . Therefore, the conditions (1) to (8) will be described in detail.

【0036】(1) 熱間粗圧延開始時のスラブ厚みを
200mm以上とする。この熱間粗圧延時のスラブ厚み
は、後述する(3)項の条件と密接に関係し、板厚15
0mmに達するまでの熱間粗圧延前半の圧下量を確保し
て、転位を充分に蓄積させるためには、熱間粗圧延開始
時のスラブ厚みを200mm以上としておく必要があ
り、好ましくは充分な圧下量を得るために400mm以
上とする。なおこの熱間粗圧延前半における転位の蓄積
に関しては、(3)項において詳細に説明する。
(1) The slab thickness at the start of hot rough rolling is 200 mm or more. The slab thickness at the time of the hot rough rolling is closely related to the condition of the item (3) described later, and
In order to secure the rolling reduction in the first half of hot rough rolling until reaching 0 mm and to sufficiently accumulate dislocations, it is necessary to set the slab thickness at the start of hot rough rolling to 200 mm or more, and preferably sufficient In order to obtain the amount of reduction, the thickness is set to 400 mm or more. The accumulation of dislocations in the first half of the hot rough rolling will be described in detail in the section (3).

【0037】(2) 熱間粗圧延開始温度を450〜5
80℃の範囲内とする。熱間粗圧延の開始温度は、熱間
圧延中の材料の回復および再結晶の挙動に強い影響を及
ぼし、特に最終板の深絞り耳を低くするために必要なキ
ューブ方位の結晶組織(キューブ方位の結晶粒の集合体
を以下キューブバンドと称する)の形成に重要な役割を
果たしている。熱間粗圧延開始温度が450℃未満では
キューブバンドの形成量が不足しやすく、一方580℃
を越えた高温で熱間粗圧延を開始すれば、キューブバン
ドの形成は容易となるものの、板の表面品質が低下す
る。したがって熱間粗圧延開始温度は450〜580℃
の範囲内とする必要がある。
(2) Starting temperature of hot rough rolling is 450 to 5
It is within the range of 80 ° C. The starting temperature of hot rough rolling has a strong influence on the recovery and recrystallization behavior of the material during hot rolling, and in particular, the crystallographic structure of the cube orientation (cube orientation) necessary for lowering the deep drawing edge of the final sheet. (Hereinafter, referred to as a cube band). When the hot rough rolling start temperature is lower than 450 ° C., the formation amount of the cube band tends to be insufficient.
If hot rough rolling is started at a high temperature exceeding the above range, formation of a cube band is facilitated, but the surface quality of the sheet is reduced. Therefore, the hot rough rolling start temperature is 450 to 580 ° C.
Must be within the range.

【0038】(3) 熱間粗圧延中において、粗圧延開
始からの圧延率が25%以上でかつ150〜15mmの
範囲内の板厚の段階までの温度を400℃以上に維持し
て、その段階において板全体に対し体積率で5%以上の
再結晶を少なくとも1回以上生じさせる。この発明の方
法においては、熱間粗圧延中において、熱間粗圧延率が
25%以上でかつ板厚が150〜15mmの範囲内の段
階で板全体に対し体積率で5%以上の再結晶を少なくと
も1回以上生じさせることが、耳率の制御にとって不可
欠である。すなわち、熱間粗圧延率が25%以上でかつ
板厚が150〜15mmの範囲内の段階での再結晶によ
り形成されたキューブバンドは安定であって熱延上り板
にも残存し、最終冷間圧延後の最終板の耳率の低減に有
効となる。そしてこのように体積率5%以上の再結晶を
生じさせるためには、圧延温度を400℃以上に維持す
る必要がある。圧延温度が400℃より低くなれば、体
積率5%以上の再結晶を生起させることが困難となる。
したがってこの発明では、熱間粗圧延中において熱間粗
圧延開始からの圧延率が25%以上であってかつ板厚が
150〜15mmの範囲内の段階までの圧延温度を40
0℃以上に維持して、その段階で板全体に対する体積率
で5%以上の再結晶を少なくとも1回生起させることと
したのである。
(3) During the hot rough rolling, the temperature from the start of the rough rolling to the stage where the rolling ratio is 25% or more and the thickness is in the range of 150 to 15 mm is maintained at 400 ° C. or more. In the step, recrystallization of 5% or more by volume relative to the entire plate is caused at least once. In the method of the present invention, during the hot rough rolling, the recrystallization in which the hot rough rolling reduction is 25% or more and the sheet thickness is in the range of 150 to 15 mm and the volume ratio is 5% or more with respect to the entire sheet. Is indispensable for the control of ear rate at least once. That is, the cube band formed by recrystallization at a stage where the hot rough rolling reduction is 25% or more and the plate thickness is in the range of 150 to 15 mm is stable, remains on the hot-rolled plate, and is finally cooled. This is effective for reducing the ear ratio of the final sheet after the cold rolling. In order to cause the recrystallization with the volume ratio of 5% or more, it is necessary to maintain the rolling temperature at 400 ° C. or more. If the rolling temperature is lower than 400 ° C., it becomes difficult to cause recrystallization at a volume ratio of 5% or more.
Therefore, in the present invention, during the hot rough rolling, the rolling temperature from the start of the hot rough rolling is 25% or more, and the rolling temperature up to the stage where the sheet thickness is in the range of 150 to 15 mm is 40.
The temperature was maintained at 0 ° C. or higher, and at that stage, recrystallization of 5% or more by volume relative to the entire plate was caused to occur at least once.

【0039】なおここで、熱間粗圧延開始からの熱間粗
圧延率が25%未満の段階では、歪が少なく、板厚15
0〜15mmの範囲内で体積率5%以上の再結晶を起こ
させることが困難である。また150mmより厚い段階
で再結晶を起こさせること自体は、この発明の効果に対
して特に悪影響はないが、150mmより厚い段階で再
結晶を起こさせて、その後の板厚150〜15mmの範
囲内の段階で体積率5%以上の再結晶を生じさせなかっ
た場合には、耳率の制御の効果が充分に得られない。し
たがって体積率5%以上の再結晶を生じさせる段階は、
粗圧延率が25%以上でかつ板厚が150〜15mmの
範囲内の段階とした。なおこの段階で体積率5%以上の
再結晶は2回以上生じさせても良いことはもちろんであ
る。またこの段階で生じさせる再結晶は、前述のように
板全体に対する体積率で5%以上が必要であるが、より
好ましくは、体積率15%以上の再結晶を生じさせるこ
とが望ましい。そしてまた、この段階で体積率5%以
上、好ましくは体積率15%以上の再結晶を生じさせる
ためには、前述のようにその段階まで圧延温度を400
℃以上に維持する必要があるが、確実に体積率5%以上
の再結晶を生じさせるために、必要に応じて熱間粗圧延
中途において400℃以上で1200秒以内の保持を行
なっても良い。
Here, at the stage where the hot rough rolling ratio from the start of the hot rough rolling is less than 25%, the distortion is small and the sheet thickness is 15%.
It is difficult to cause recrystallization at a volume ratio of 5% or more in the range of 0 to 15 mm. The fact that recrystallization is caused at a stage thicker than 150 mm has no particular adverse effect on the effect of the present invention. However, the recrystallization is caused at a stage thicker than 150 mm and the thickness of the subsequent plate is in the range of 150 to 15 mm. If the recrystallization with a volume ratio of 5% or more is not caused in the step, the effect of controlling the ear ratio cannot be sufficiently obtained. Therefore, the step of causing recrystallization with a volume ratio of 5% or more is as follows:
The rough rolling rate was 25% or more, and the plate thickness was in the range of 150 to 15 mm. At this stage, it is needless to say that recrystallization with a volume ratio of 5% or more may be performed twice or more. In addition, the recrystallization at this stage requires a volume ratio of 5% or more with respect to the whole plate as described above, but it is more preferable that the recrystallization is performed at a volume ratio of 15% or more. Further, in order to cause recrystallization at a volume ratio of 5% or more, preferably 15% or more at this stage, the rolling temperature is set to 400% until that stage as described above.
It is necessary to maintain the temperature at a temperature of 400 ° C. or higher. However, in order to surely cause recrystallization at a volume ratio of 5% or more, it is possible to maintain the temperature at 400 ° C. or higher and 1200 seconds or less during hot rough rolling as needed. .

【0040】なおまた、前述のように粗圧延率が25%
以上でかつ板厚が150〜15mmの範囲内の段階にお
いて体積率5%以上の再結晶を確実に生起させるために
は、その板厚の段階までの温度を400℃以上に維持す
るばかりでなく、熱間粗圧延開始時のスラブ厚みから板
厚150mmに達するまでの熱間粗圧延各パスの1パス
当り圧下量を15mm以上、より最適には40mm以上
とすることが好ましく、また熱間粗圧延における圧延速
度を40m/分以上、より最適には70m/分以上とす
ることが好ましい。
Further, as described above, the rough rolling rate is 25%.
In order to reliably generate recrystallization having a volume ratio of 5% or more at a stage in which the plate thickness is in the range of 150 to 15 mm, not only the temperature up to the plate thickness stage is maintained at 400 ° C. or more, but also It is preferable that the rolling reduction per pass of each hot rough rolling pass from the slab thickness at the start of hot rough rolling to the sheet thickness of 150 mm is 15 mm or more, more preferably 40 mm or more. The rolling speed in rolling is preferably 40 m / min or more, more preferably 70 m / min or more.

【0041】すなわち、熱間粗圧延開始時のスラブ厚み
(前述のように200mm以上、好ましくは400mm
以上)から板厚150mmまでは、熱間粗圧延のほぼ前
半の段階に相当するが、この段階における1パス当りの
圧下量は、圧延温度および圧延速度と相俟って材料の回
復および再結晶挙動、特に結晶粒サイズ、亜結晶粒サイ
ズに影響を及ぼす。その1パス当りの圧下量が15mm
未満では転位が蓄積されにくく、結晶粒・亜結晶粒が粗
大となる傾向を示し、またキューブバンドの数も少な
く、材料の耳率および機械的特性に悪影響を及ぼす。そ
こで1パス当りの圧下量は15mm以上、より最適には
40mm以上とすることが好ましい。なお各パスの圧下
量の上限は特に規制する必要はないが、良好な表面品質
を保つため、通常は各パスの1パス当りの圧下量を10
0mm以下とすることが好ましい。
That is, the slab thickness at the start of hot rough rolling (200 mm or more, preferably 400 mm
From above) to a plate thickness of 150 mm corresponds to almost the first half of the hot rough rolling. The rolling reduction per pass at this stage depends on the rolling temperature and rolling speed, and the material recovery and recrystallization. Affects behavior, especially grain size and sub-grain size. The rolling reduction per pass is 15mm
If it is less than 10, dislocations are unlikely to accumulate, crystal grains and sub-crystal grains tend to be coarse, and the number of cube bands is small, which adversely affects the ear ratio and mechanical properties of the material. Therefore, the rolling reduction per pass is preferably 15 mm or more, more preferably 40 mm or more. The upper limit of the amount of reduction in each pass does not need to be particularly limited. However, in order to maintain good surface quality, the amount of reduction per pass in each pass is usually set at 10%.
It is preferably set to 0 mm or less.

【0042】また圧延速度は圧延温度および圧下量と相
俟って材料の回復および再結晶挙動、特に結晶粒および
亜結晶粒のサイズに強い影響を及ぼす。熱間粗圧延の圧
延速度が40m/分未満では転位が蓄積されにくく、結
晶粒、亜結晶粒が粗大となる傾向を示し、キューブバン
ドの数も少なくなり、材料の耳率および機械的特性に対
して悪い影響を及ぼす。また圧延速度が低ければ生産性
も低下する。したがって圧延速度は40m/分以上とす
ることが好ましく、より好適には70m/分以上とす
る。圧延速度の上限は特に規制する必要はないが、良好
な表面品質を得るためには、通常は1000m/分以下
が好ましい。
The rolling speed, together with the rolling temperature and the rolling reduction, has a strong influence on the recovery and recrystallization behavior of the material, in particular on the size of the crystal grains and sub-crystal grains. If the rolling speed of the hot rough rolling is less than 40 m / min, dislocations are unlikely to accumulate, the crystal grains and sub-crystal grains tend to be coarse, the number of cube bands is reduced, and the ear ratio and mechanical properties of the material are reduced. Has a bad effect on you. Also, if the rolling speed is low, the productivity also decreases. Therefore, the rolling speed is preferably at least 40 m / min, more preferably at least 70 m / min. Although there is no particular limitation on the upper limit of the rolling speed, it is usually preferably 1000 m / min or less in order to obtain good surface quality.

【0043】(4) 熱間仕上圧延の開始温度を250
〜400℃の範囲内とする。熱間仕上圧延は、適切な転
位密度の蓄積を行なうために重要な工程である。すなわ
ち、前述のように熱間粗圧延において板厚が150〜1
5mmの範囲内の段階で形成されたキューブバンド組織
の周辺に、熱間仕上圧延において適切な密度で転位を導
入することによって、熱間圧延上りの状態での自己保有
熱による自己焼鈍、さらにはその後の焼鈍においてキュ
ーブ方位の結晶組織の成長を図ることかでき、ひいては
最終冷間圧延後の最終板の耳率を低く規制することに有
利となる。ここで、熱間仕上圧延の開始温度が250℃
未満の場合は、表面品質が低下するとともに、粗大粒子
周辺の再結晶核生成数が増加し、その後の再結晶でキュ
ーブ方位以外の再結晶粒が多くなり、低耳率制御に不利
となる。一方熱間仕上圧延開始温度が400℃を越える
高温では、回復、再結晶が進みやすく、充分な転位を導
入することが困難となる。したがって熱間仕上圧延の開
始温度は250〜400℃の範囲内とする必要がある。
なおこの範囲内でも特に270〜370℃の範囲内が好
ましい。
(4) The hot finish rolling start temperature is set to 250
The temperature is in the range of 400 ° C. Hot finish rolling is an important step in achieving proper dislocation density accumulation. That is, as described above, the sheet thickness is 150 to 1 in the hot rough rolling.
By introducing dislocations at an appropriate density in hot finish rolling around the cube band structure formed at a stage within a range of 5 mm, self-annealing by self-holding heat in a hot-rolled state, and further, In the subsequent annealing, it is possible to achieve the growth of the crystal structure in the cube orientation, which is advantageous for controlling the ear ratio of the final sheet after final cold rolling to be low. Here, the hot finish rolling start temperature is 250 ° C.
If it is less than 1, the surface quality is reduced and the number of recrystallized nuclei generated around the coarse particles is increased. In subsequent recrystallization, recrystallized grains other than the cube orientation are increased, which is disadvantageous for low ear ratio control. On the other hand, when the hot finish rolling start temperature is higher than 400 ° C., recovery and recrystallization are apt to proceed, and it becomes difficult to introduce sufficient dislocations. Therefore, the starting temperature of the hot finish rolling needs to be in the range of 250 to 400 ° C.
In addition, also in this range, especially in the range of 270-370 degreeC is preferable.

【0044】なお熱間仕上圧延開始温度を250〜40
0℃、好ましくは270〜370℃の範囲内に制御する
ためには、前述のように熱間粗圧延において150〜1
5mmの板厚の段階で体積率5%以上の再結晶を確保し
た後、熱間仕上圧延開始までに必要に応じて中間冷却
(強制冷却)を行なっても良い。この中間冷却は、例え
ば熱間圧延機に使用されているクーラントで板を強制冷
却したり、そのほか水、油、空気などの冷却媒体を用い
て板を強制冷却したりすれば良い。なおこのように中間
冷却を行なう場合、150〜15mmの板厚の段階で体
積率5%以上の再結晶の確保と中間冷却の実施に要する
時間は、生産性の観点から1800秒以内とすることが
好ましい。
The hot finish rolling start temperature is 250-40.
In order to control the temperature within the range of 0 ° C., preferably 270 to 370 ° C., as described above, 150 to 1
Intermediate cooling (forced cooling) may be performed if necessary after securing recrystallization with a volume ratio of 5% or more at the stage of the plate thickness of 5 mm before the start of hot finish rolling. The intermediate cooling may be performed, for example, by forcibly cooling the plate with a coolant used in a hot rolling mill, or by forcibly cooling the plate with a cooling medium such as water, oil, or air. When the intermediate cooling is performed in this manner, the time required for securing the recrystallization at a volume ratio of 5% or more and performing the intermediate cooling at the stage of the plate thickness of 150 to 15 mm should be within 1800 seconds from the viewpoint of productivity. Is preferred.

【0045】(5) 熱間仕上圧延における各パスの圧
延速度を80〜800m/分の範囲内とする。 (6) 熱間仕上圧延における各パスの圧延率を20%
以上とする。熱間仕上圧延の各パスの歪速度は、適切な
転位密度の形成および再結晶核生成、特にキューブ方位
の再結晶核の生成と成長に大きな影響を及ぼし、適切な
密度の転位を導入して低耳率達成に有効なキューブ方位
の再結晶核の生成、成長を促進するためには、仕上圧延
各パスの歪み速度を0.1〜250.0sec-1とする
ことが必要であり、より最適には1.0〜90.0se
-1の範囲内に制御することが好ましい。熱間仕上圧延
各パスの歪み速度は、各パスでの圧延速度と圧延率(圧
下量)との組合せによって制御される。したがって熱間
仕上圧延各パスの歪み速度を前述のように0.1〜25
0.0sec-1、好ましくは1.0〜90.0sec-1
の範囲内に制御するためには、各パスの圧延速度と圧延
率とを適切に規制する必要がある。
(5) The rolling speed of each pass in the hot finish rolling is set within a range of 80 to 800 m / min. (6) Reduce the rolling ratio of each pass in hot finish rolling to 20%
Above. The strain rate of each pass of hot finish rolling has a significant effect on the formation of relocation nuclei and the formation of recrystallization nuclei with appropriate dislocation density, especially on the generation and growth of recrystallization nuclei with cube orientation. In order to promote the generation and growth of recrystallization nuclei having a cube orientation effective for achieving a low ear ratio, it is necessary to set the strain rate of each pass of finish rolling to 0.1 to 250.0 sec −1 , 1.0 to 90.0 sec optimally
It is preferable to control within the range of c -1 . The strain rate in each pass of the hot finish rolling is controlled by a combination of the rolling rate in each pass and the rolling ratio (reduction amount). Therefore, the strain rate of each pass of the hot finish rolling is set to 0.1 to 25 as described above.
0.0 sec -1 , preferably 1.0 to 90.0 sec -1
In order to control the rolling speed within the range, it is necessary to appropriately regulate the rolling speed and the rolling ratio of each pass.

【0046】ここで、熱間仕上圧延各パスの圧延速度が
80m/分未満では、歪み速度が遅く、適切な密度の転
位の導入に不利となり、キューブ方位の再結晶核の生
成、成長が困難となって低耳率制御が困難となり、一方
800m/分を越えれば、表面品質の低下を招くから、
熱間仕上圧延の各パスの圧延速度は80〜800m/分
の範囲内とする必要がある。
If the rolling speed in each pass of the hot finish rolling is less than 80 m / min, the strain rate is low, and it is disadvantageous to introduce dislocations having an appropriate density, and it is difficult to generate and grow recrystallization nuclei in the cube orientation. It becomes difficult to control the low ear ratio, and if it exceeds 800 m / min, the surface quality is reduced.
The rolling speed of each pass of the hot finish rolling needs to be in the range of 80 to 800 m / min.

【0047】一方熱間仕上圧延各パスの圧延率が20%
以下では、歪み速度が遅くなって、適切な密度の転位の
導入が困難となり、キューブ方位の再結晶核の生成、成
長が困難となり、低耳率制御が困難となる。したがって
熱間仕上圧延各パスの圧延率は20%以上とした。なお
熱間仕上圧延各パスの圧延率の上限は特に定めないが、
通常は表面品質の点から、85%以下とする。
On the other hand, the rolling ratio of each pass of the hot finish rolling is 20%.
In the following, the strain rate becomes slow, it becomes difficult to introduce dislocations having an appropriate density, it becomes difficult to generate and grow recrystallization nuclei in the cube orientation, and it becomes difficult to control the low ear ratio. Therefore, the rolling ratio of each pass of the hot finish rolling was set to 20% or more. Although the upper limit of the rolling ratio of each pass of hot finish rolling is not particularly defined,
Usually, it is set to 85% or less from the viewpoint of surface quality.

【0048】(7) 熱間仕上圧延における上り温度を
200〜320℃の範囲内とする。熱間仕上圧延の上り
温度が200℃未満では表面品質が低下し、また第2相
粒子周辺での再結晶核生成が増加して、その後の再結晶
でキューブ方位以外の再結晶粒が多くなり、低耳率制御
に不利となる。一方上り温度が320℃を越えれば、最
終板の耳率の変動が大きくなり、最終板の耳率を安定し
て確実に低耳率に制御することが困難となる。
(7) The ascending temperature in the hot finish rolling is in the range of 200 to 320 ° C. If the ascent temperature of the hot finish rolling is lower than 200 ° C., the surface quality is deteriorated, and the recrystallization nucleation around the second phase particles is increased. This is disadvantageous for low ear rate control. On the other hand, if the rising temperature exceeds 320 ° C., the fluctuation of the ear ratio of the final plate becomes large, and it becomes difficult to stably control the ear ratio of the final plate to a low ear ratio.

【0049】(8) 熱間仕上圧延の上り板厚を1.0
〜7.0mmの範囲内とする。仕上圧延の上がり板厚が
1.0mm未満では、焼鈍後の最終的な冷間圧延での圧
延率を充分に確保することが困難となり、最終板の強度
不足が生じやすい。一方上り板厚が7.0mmを越えれ
ば、焼鈍後の最終的な冷間圧延において圧延率が高くな
り過ぎ、耳率が高くなる傾向を示す。
(8) The ascending thickness of the hot finish rolling is set to 1.0
It is within the range of 7.0 mm. If the finished thickness of the finish rolling is less than 1.0 mm, it is difficult to secure a sufficient rolling reduction in final cold rolling after annealing, and the strength of the final plate tends to be insufficient. On the other hand, if the upward thickness exceeds 7.0 mm, the rolling reduction tends to be too high in the final cold rolling after annealing, and the ear ratio tends to be high.

【0050】以上で述べたような(1)〜(8)の条件
で熱間圧延を終了させた後、その圧延板に対し、バッチ
焼鈍により中間焼鈍を施すか、または後述するような軽
度の1次冷間圧延を行なってから連続焼鈍による中間焼
鈍を施す。この中間焼鈍は、材料を完全に再結晶させ
て、最終冷間圧延後の板の耳率を低くするために必要な
工程である。
After the completion of the hot rolling under the conditions (1) to (8) as described above, the rolled sheet is subjected to intermediate annealing by batch annealing, or to a mild mode as described later. After the first cold rolling, intermediate annealing by continuous annealing is performed. This intermediate annealing is a necessary step for completely recrystallizing the material and reducing the ear ratio of the sheet after final cold rolling.

【0051】ここで、熱延板に対して直ちにバッチ焼鈍
を適用する場合、平均昇温速度0.1℃/秒以下で25
0〜500℃の範囲内の温度に加熱し、その範囲内の温
度で0.5時間以上保持し、平均冷却速度0.1℃/秒
以下で冷却する。ここで、平均昇温速度および平均冷却
速度が0.1℃/秒を越えれば、バッチ焼鈍方式では熱
延板コイル全体を均一に加熱もしくは冷却できなくなる
問題が生じる。また加熱保持温度が250℃未満では完
全に再結晶させることが困難となり、一方500℃を越
える高温では再結晶核が粗大となって、製缶時に肌荒れ
やフローラインなどの表面欠陥が発生しやすくなる。ま
た加熱保持の時間が0.5時間未満では完全に再結晶さ
せることが困難であり、また熱延板のコイルの全体を均
一に加熱することが困難となる。なおバッチ焼鈍の場合
の加熱保持時間の上限は特に定めないが、通常は経済性
の観点から、24時間以内とする。
Here, when batch annealing is immediately applied to the hot-rolled sheet, the average annealing rate is 0.1 ° C./sec.
Heat to a temperature within the range of 0 to 500 ° C., hold at a temperature within the range for 0.5 hour or more, and cool at an average cooling rate of 0.1 ° C./sec or less. Here, if the average heating rate and the average cooling rate exceed 0.1 ° C./sec, there is a problem that the batch annealing method cannot uniformly heat or cool the entire hot rolled sheet coil. When the heating and holding temperature is lower than 250 ° C., it is difficult to completely recrystallize. On the other hand, when the temperature is higher than 500 ° C., recrystallization nuclei become coarse, and surface defects such as rough skin and flow lines are liable to occur during can manufacturing. Become. If the heating and holding time is less than 0.5 hour, it is difficult to completely recrystallize and it is difficult to uniformly heat the entire coil of the hot-rolled sheet. Although the upper limit of the heating holding time in the case of batch annealing is not particularly defined, it is usually within 24 hours from the viewpoint of economy.

【0052】ここで、上述の説明では、熱間圧延上がり
の熱延板に対してそのままバッチ焼鈍による中間焼鈍を
施すこととしているが、中間焼鈍には連続焼鈍を適用す
ることもできる。但し、急速昇温・高温短時間加熱の連
続焼鈍では、一般に徐加熱のバッチ焼鈍の場合と比較し
て、キューブ方位の再結晶粒の形成が少なくなる問題が
ある。しかしながら、充分な固溶量の確保による高強度
化と結晶粒組織の微細化などの観点からは、急速昇温・
高温短時間加熱の連続焼鈍法を適用する方が有利とな
る。そこで連続焼鈍を適用してしかもキューブ方位の再
結晶粒の生成に有利な方法を開発すべく種々の検討を重
ねた結果、キューブ方位の結晶粒と転位との相互作用が
少ないことを利用し、熱延板に対して2〜25%の比較
的小さい冷間圧延率で軽度の1次冷間圧延を行なってか
ら連続焼鈍を施すことにより、キューブ方位の再結晶粒
の生成、成長をバッチ焼鈍の場合と同程度に促進させ得
ることを見出した。したがって中間焼鈍に連続焼鈍を適
用する場合は、熱延板に対して2〜25%の圧延率の軽
度の1次冷間圧延を施してから連続焼鈍を施すこととし
たのである。
Here, in the above description, intermediate annealing by batch annealing is performed on the hot-rolled sheet after hot rolling as it is, but continuous annealing can be applied to the intermediate annealing. However, continuous annealing with rapid heating and high-temperature short-time heating generally has a problem that formation of recrystallized grains in the cube orientation is smaller than in batch annealing with slow heating. However, from the viewpoint of increasing the strength by securing a sufficient amount of solid solution and refining the crystal grain structure,
It is more advantageous to apply a continuous annealing method of heating at a high temperature for a short time. Therefore, as a result of repeated investigations to develop a method that is advantageous for the generation of recrystallized grains with cube orientation while applying continuous annealing, we took advantage of the fact that the interaction between crystal grains with cube orientation and dislocations is small, By performing light primary cold rolling on the hot rolled sheet at a relatively small cold rolling reduction of 2 to 25% and then performing continuous annealing, the generation and growth of recrystallized grains in cube orientation are batch-annealed. It has been found that it can be promoted to the same extent as in the case of. Therefore, when continuous annealing is applied to intermediate annealing, the hot-rolled sheet is subjected to light primary cold rolling at a rolling reduction of 2 to 25%, and then to continuous annealing.

【0053】ここで、熱延板に対する1次冷間圧延の圧
延率が2%未満では、歪み量不足によりキューブ方位の
再結晶粒の生成、成長を加速する効果およびキューブ方
位以外の再結晶粒の生成、成長を抑制する効果が不充分
となり、一方圧延率が25%を越えれば、導入された多
量の歪によりキューブ方位の再結晶粒も壊されてしまう
ため、キユーブ方位再結晶粒組織を充分に得ることが困
難となり、最終板の耳率低減効果が得られなくなる。し
たがって熱延板に対して1次冷間圧延を施してから連続
焼鈍を施す場合の1次冷間圧延における圧延率は2〜2
5%の範囲内とした。
If the rolling reduction of the primary cold rolling on the hot-rolled sheet is less than 2%, the effect of accelerating the generation and growth of cube-oriented recrystallized grains due to insufficient strain, and the effect of recrystallized grains other than cube-oriented. When the rolling reduction exceeds 25%, the recrystallized grains in the cube orientation are also destroyed by a large amount of introduced strain. It becomes difficult to obtain a sufficient thickness, and the effect of reducing the ear ratio of the final plate cannot be obtained. Therefore, when the primary cold rolling is performed on the hot rolled sheet and then continuous annealing is performed, the rolling reduction in the primary cold rolling is 2 to 2
It was within the range of 5%.

【0054】前述のように熱延板に対して圧延率2〜2
5%の1次冷間圧延を施した後の連続焼鈍は、1〜10
0℃/秒の範囲内の平均昇温速度で330〜620℃の
範囲内の温度に加熱し、保持なしもしくは10分以下の
保持の後、1〜100℃/秒の範囲内の平均冷却速度で
冷却する条件とする。ここで、平均昇温速度、平均冷却
速度が1℃/秒未満では、連続焼鈍(CAL)方式にお
いては生産性の著しい低下を招き、また100℃/秒を
越える平均昇温速度、平均冷却速度はキューブ方位の再
結晶粒の形成に不利となる。また加熱到達温度が330
℃未満では再結晶が生じにくく、一方620℃を越える
高温ではキューブ方位の再結晶粒の形成に不利となる。
さらに330〜620℃に10分を越えて保持すること
は、連続焼鈍の生産性を阻害する。
As described above, the rolling reduction is 2 to 2 with respect to the hot-rolled sheet.
Continuous annealing after subjecting to 5% primary cold rolling is 1 to 10
Heating to a temperature in the range of 330 to 620 ° C. at an average temperature rise rate in the range of 0 ° C./sec, and without holding or after holding for 10 minutes or less, an average cooling rate in the range of 1 to 100 ° C./sec. And cooling conditions. Here, when the average heating rate and the average cooling rate are less than 1 ° C./sec, the productivity is significantly reduced in the continuous annealing (CAL) method, and the average heating rate and the average cooling rate exceeding 100 ° C./sec. Is disadvantageous for the formation of recrystallized grains having a cube orientation. In addition, the heating ultimate temperature is 330
If the temperature is lower than ℃, recrystallization is unlikely to occur.
Further, holding at 330 to 620 ° C. for more than 10 minutes impairs the productivity of continuous annealing.

【0055】以上のように、バッチ焼鈍もしくは連続焼
鈍による中間焼鈍を施した後には、最終板厚としかつ必
要な強度を得るために冷間圧延を施す。ここで、最終の
冷間圧延率が60%未満では、加工硬化による強度上昇
が少なく、缶胴材用の最終板に必要な強度を得ることが
困難である。
As described above, after performing the intermediate annealing by batch annealing or continuous annealing, cold rolling is performed to obtain a final sheet thickness and obtain necessary strength. Here, when the final cold rolling reduction is less than 60%, the strength increase due to work hardening is small, and it is difficult to obtain the strength required for the final plate for can body.

【0056】冷間圧延後の板は、これを最終板としてそ
のままDI成形に供しても良いが、冷間圧延板に必要に
応じて80〜200℃の範囲内の温度で0.5時間以上
の最終焼鈍を行なっても良い。この最終焼鈍は、延性の
回復による成形性の向上を目的としたものであるが、そ
の温度が80℃未満では成形性の向上効果が充分に得ら
れず、一方200℃を越えれば軟化による強度低下が大
きくなり、また焼鈍時間が0.5時間未満では成形性向
上効果を充分に得ることができない。なお焼鈍時間の上
限は特に定めないが、生産性、経済性の点からは10時
間以下が望ましい。
The sheet after cold rolling may be subjected to DI forming as it is as a final sheet. However, if necessary, the cold-rolled sheet may be treated at a temperature in the range of 80 to 200 ° C. for 0.5 hour or more. May be subjected to final annealing. This final annealing is intended to improve the formability by recovering the ductility. However, if the temperature is lower than 80 ° C., the effect of improving the formability cannot be sufficiently obtained. If the annealing time is less than 0.5 hour, the effect of improving the formability cannot be sufficiently obtained. The upper limit of the annealing time is not particularly limited, but is preferably 10 hours or less from the viewpoint of productivity and economy.

【0057】[0057]

【実施例】表1に示す金属記号A〜Fの各合金につい
て、常法に従ってDC鋳造法によりスラブに鋳塊した。
その後、均質化処理を施した後、熱間粗圧延および熱間
仕上圧延によって熱間圧延を施した。なお熱間圧延設備
としては、粗圧延機、仕上圧延機ともにリバーシングミ
ルを用い、熱間粗圧延速度はいずれも50m/分以上と
した。その他の熱間圧延の詳細な条件を表2、表3の製
造番号1〜7に示す。熱間仕上圧延後の圧延板に対し、
表4中に示す条件でバッチ焼鈍を施すかまたは1次冷間
圧延後連続焼鈍を施し、その後最終冷間圧延を行なっ
た。最終冷間圧延後、製造番号5の場合を除いて最終焼
鈍を施した。
EXAMPLES Ingots of metal symbols A to F shown in Table 1 were cast into slabs by DC casting according to a conventional method.
Then, after performing a homogenization process, hot rolling was performed by hot rough rolling and hot finishing rolling. As the hot rolling equipment, a reversing mill was used for both the rough rolling mill and the finish rolling mill, and the hot rough rolling speed was 50 m / min or more in each case. Other detailed conditions of the hot rolling are shown in Tables 2 and 3 as serial numbers 1 to 7. For the rolled sheet after hot finish rolling,
Under the conditions shown in Table 4, batch annealing was performed, or continuous annealing was performed after primary cold rolling, and then final cold rolling was performed. After the final cold rolling, final annealing was performed except for the case of production number 5.

【0058】以上のようにして得られた缶胴用のアルミ
ニウム合金板について、元板の機械的性質(引張強さT
S、耐力YS、伸びEL)および塗装焼付(ベーキン
グ)を想定した200℃×20分の熱処理を行なった後
の機械的性質を調べた。また元板については、ポンチ径
48mm、ブランク径93mm、クリアランス30%の
条件にてカップ深絞り試験を行なって耳率を調べた。こ
こで、強度については、塗装焼付(ベーキング)後の耐
力として、270MPa以上の値が必要であり、また耳
率については、3%を越えれば製缶中のトラブルが発生
しやすくなることが知られている。
With respect to the aluminum alloy plate for a can body obtained as described above, the mechanical properties (tensile strength T
S, proof stress YS, elongation EL) and mechanical properties after heat treatment at 200 ° C. for 20 minutes assuming baking of paint (baking) were examined. The base plate was subjected to a cup deep drawing test under the conditions of a punch diameter of 48 mm, a blank diameter of 93 mm, and a clearance of 30%, and the ear ratio was examined. Here, as for the strength, a value of 270 MPa or more is required as the proof stress after baking of the paint (baking), and when the ear ratio exceeds 3%, it is known that troubles in the can-making are likely to occur. Have been.

【0059】さらにDI缶成形性評価として、缶切れ
性、口拡げ性(フランジ成形性)、シーミング性、およ
び外観欠陥について調べた。ここで、缶切れ性について
は苛酷なしごき加工を連続10,000缶行なったとき
の缶破断の発生状況を調べ、また口拡げ性については4
段ネッキング加工後のフランジ成形性を調べ、さらにシ
ーミング性については4段ネッキング加工後のシーミン
グ加工性を調べ、そしてまた外観欠陥については、DI
缶の缶胴壁の圧延方向に沿ったフローライン状の外観欠
陥およびDI方向の縦筋の発生状況を調べ、それぞれ◎
〜×で相対評価した。これらの結果を表5に示す。
Further, as evaluation of the moldability of DI cans, the can-easeability, mouth-opening property (flange moldability), seaming properties, and appearance defects were examined. Here, regarding the can-removability, the situation of occurrence of can breakage when 10,000 severe canning processes were performed continuously was examined.
The flange formability after the step necking was examined, the seaming property was examined after the four-step necking, and the appearance defect was measured using DI.
The appearance defects in the form of flow lines along the rolling direction of the can body wall of the can and the occurrence of vertical streaks in the DI direction were examined.
×× relatively evaluated. Table 5 shows the results.

【0060】[0060]

【表1】 [Table 1]

【0061】[0061]

【表2】 [Table 2]

【0062】[0062]

【表3】 [Table 3]

【0063】[0063]

【表4】 [Table 4]

【0064】[0064]

【表5】 [Table 5]

【0065】表1〜表5において、製造番号1〜5はい
ずれもこの発明で規定する成分組成範囲内の合金につい
て、この発明で規定する製造プロセス条件を満足して製
造したものであり、この場合は表5に示すように、いず
れも耳率が3%を確実に下廻って充分な低耳率を達成で
き、かつベーキング後の耐力が270MPa以上で充分
な強度を有しており、しかもDI成形性も優れているこ
とが明らかである。
In Tables 1 to 5, Production Nos. 1 to 5 are all alloys having a component composition range specified in the present invention satisfying the manufacturing process conditions specified in the present invention. In each case, as shown in Table 5, the ear ratio was reliably lower than 3% to achieve a sufficiently low ear ratio, the proof strength after baking was 270 MPa or more, and the sample had sufficient strength. It is clear that the moldability is also excellent.

【0066】一方製造番号6は、合金の成分組成はこの
発明で規定する範囲内であるが、製造プロセス条件がこ
の発明で規定する範囲から外れたものである。すなわち
この発明の方法の場合、熱間仕上圧延開始温度を400
〜250℃の範囲内に制御する必要があるが、製造条件
番号6の場合、熱間仕上圧延開始温度が447℃とこの
発明で規定する温度の上限よりも高く、この場合は最終
板の耳率が6.0%と高く、缶切れ性と口拡げ性が劣っ
ていた。
On the other hand, in production number 6, the composition of the alloy is within the range specified in the present invention, but the manufacturing process conditions are out of the range specified in the present invention. That is, in the case of the method of the present invention, the hot finish rolling start temperature is set to 400
In the case of manufacturing condition No. 6, the hot finish rolling start temperature is 447 ° C., which is higher than the upper limit of the temperature specified in the present invention. The rate was as high as 6.0%, and the can-opening property and the mouth-opening property were poor.

【0067】また製造番号7は、Mg量が0.48%と
この発明で規定する合金のMg量下限よりも低い合金F
を用いた例であり、この場合はベーキング後の強度が低
く、また耳率も高く、缶切れ性に劣っていた。
The production number 7 indicates that the alloy F has an Mg content of 0.48%, which is lower than the lower limit of the Mg content of the alloy specified in the present invention.
In this case, the strength after baking was low, the ear ratio was high, and the can-cutting property was poor.

【0068】[0068]

【発明の効果】前述の実施例からも明らかなように、こ
の発明の方法によれば、DI缶胴用材料として、缶胴の
薄肉化に充分耐え得るような高強度を有すると同時に、
DI成形性、特にフランジ成形性に優れ、しかも深絞り
耳率が安定して低いアルミニウム合金板を確実に得るこ
とができる。
As is clear from the above-mentioned embodiment, according to the method of the present invention, the material for the DI can has a high strength enough to withstand the thinning of the can, and at the same time,
It is possible to reliably obtain an aluminum alloy plate which is excellent in DI formability, particularly flange formability, and has a stable and low deep drawing ear ratio.

フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 630 C22F 1/00 630A 630K 673 673 682 682 683 683 684 684C 685 685Z 691 691B 691A 691C 692 692A 694 694A 694B Front page continued (51) Int.Cl. 6 identifications FI C22F 1/00 630 C22F 1/00 630A 630K 673 673 682 682 683 683 684 684C 685 685Z 691 691B 691A 691C 692 692A 694 694A 694B

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Mg0.5〜2.0%(重量%、以下同
じ)、Mn0.5〜2.0%、Fe0.1〜0.7%、
Si0.05〜0.5%を含有し、さらに必要に応じて
0.005〜0.20%のTiを単独でもしくは0.0
001〜0.05%のBと組合せて含有し、残部がAl
および不可避的不純物よりなるアルミニウム合金をスラ
ブに鋳造した後、そのスラブに対し520〜630℃の
範囲内の温度で1時間以上の均質化処理を施し、さらに
スラブを熱間粗圧延およびそれに続く熱間仕上圧延によ
って熱間圧延するにあたり、 (1) 熱間粗圧延開始時のスラブ厚みを200mm以
上とし、 (2) 熱間粗圧延開始温度を450〜580℃の範囲
内とし、 (3) 熱間粗圧延中において、粗圧延開始からの圧延
率が25%以上でかつ150〜15mmの範囲内の板厚
の段階までの温度を400℃以上に維持して、その15
0〜15mmの範囲内の板厚の段階において板全体に対
し体積率で5%以上の再結晶を少なくとも1回以上生じ
させ、 (4) 熱間仕上圧延の開始温度を250〜400℃の
範囲内とし、 (5) 熱間仕上圧延における各パスの圧延速度を80
〜800m/分の範囲内とし、 (6) 熱間仕上圧延における各パスの圧延率を20%
以上とし、 (7) さらに熱間仕上圧延における上り温度を200
〜320℃の範囲内とし、 (8) かつ熱間仕上圧延における上り板厚を1.0〜
7.0mmの範囲内とし、 以上の(1)〜(8)の条件によって得られた熱延板に
対して、0.1℃/秒以下の平均昇温速度で加熱して2
50〜500℃の範囲内の温度に0.5時間以上保持す
るバッチ焼鈍を行なった後、0.1℃/秒以下の平均冷
却速度で冷却し、その後さらに60%以上の圧延率で冷
間圧延を行なうことを特徴とする、缶胴用アルミニウム
合金板の製造方法。
1. Mg 0.5-2.0% (weight%, the same applies hereinafter), Mn 0.5-2.0%, Fe 0.1-0.7%,
0.05 to 0.5% of Si, and if necessary, 0.005 to 0.20% of Ti alone or 0.0
001-0.05% B in combination with the balance being Al
After casting an aluminum alloy comprising unavoidable impurities into a slab, the slab is subjected to a homogenization treatment at a temperature in the range of 520 to 630 ° C. for 1 hour or more, and the slab is further subjected to hot rough rolling and subsequent hot rolling. In hot rolling by finish rolling, (1) the slab thickness at the start of hot rough rolling is 200 mm or more; (2) the hot rough rolling start temperature is in the range of 450 to 580 ° C; During the rough rough rolling, the temperature from the start of the rough rolling to the stage of the sheet thickness in the range of 25% or more and 150 to 15 mm is maintained at 400 ° C. or more.
In the stage of the thickness of the plate in the range of 0 to 15 mm, recrystallization of 5% or more by volume is caused at least once in the entire plate, and (4) the starting temperature of hot finish rolling is in the range of 250 to 400 ° C. (5) The rolling speed of each pass in hot finish rolling is 80
(6) The rolling reduction of each pass in hot finish rolling is 20%.
(7) Further, the rising temperature in hot finish rolling is set to 200
(8) And the ascending plate thickness in hot finish rolling is 1.0 to
The hot-rolled sheet obtained under the above conditions (1) to (8) was heated at an average temperature rising rate of 0.1 ° C./sec or less to obtain a temperature of 2 mm.
After performing batch annealing at a temperature in the range of 50 to 500 ° C. for 0.5 hour or more, it is cooled at an average cooling rate of 0.1 ° C./second or less, and then further cold-rolled at a rolling rate of 60% or more. A method for producing an aluminum alloy plate for a can body, which comprises rolling.
【請求項2】 Mg0.5〜2.0%、Mn0.5〜
2.0%、Fe0.1〜0.7%、Si0.05〜0.
5%を含有し、かつCu0.05〜0.5%、Cr0.
05〜0.3%、Zn0.05〜0.5%のうちの1種
または2種以上を含有し、さらに必要に応じて0.00
5〜0.20%のTiを単独でもしくは0.0001〜
0.05%のBと組合せて含有し、残部がAlおよび不
可避的不純物よりなるアルミニウム合金をスラブに鋳造
した後、そのスラブに対し520〜630℃の範囲内の
温度で1時間以上の均質化処理を施し、さらにスラブを
熱間粗圧延およびそれに続く熱間仕上圧延によって熱間
圧延するにあたり、 (1) 熱間粗圧延開始時のスラブ厚みを200mm以
上とし、 (2) 熱間粗圧延開始温度を450〜580℃の範囲
内とし、 (3) 熱間粗圧延中において、粗圧延開始からの圧延
率が25%以上でかつ150〜15mmの範囲内の板厚
の段階までの温度を400℃以上に維持して、その15
0〜15mmの範囲内の板厚の段階において板全体に対
し体積率で5%以上の再結晶を少なくとも1回以上生じ
させ、 (4) 熱間仕上圧延の開始温度を250〜400℃の
範囲内とし、 (5) 熱間仕上圧延における各パスの圧延速度を80
〜800m/分の範囲内とし、 (6) 熱間仕上圧延における各パスの圧延率を20%
以上とし、 (7) さらに熱間仕上圧延における上り温度を200
〜320℃の範囲内とし、 (8) かつ熱間仕上圧延における上り板厚を1.0〜
7.0mmの範囲内とし、 以上の(1)〜(8)の条件によって得られた熱延板に
対して、0.1℃/秒以下の平均昇温速度で加熱して2
50〜500℃の範囲内の温度に0.5時間以上保持す
るバッチ焼鈍を行なった後、0.1℃/秒以下の平均冷
却速度で冷却し、その後さらに60%以上の圧延率で冷
間圧延を行なうことを特徴とする、缶胴用アルミニウム
合金板の製造方法。
2. Mg 0.5-2.0%, Mn 0.5-
2.0%, Fe 0.1-0.7%, Si 0.05-0.
5%, Cu 0.05-0.5%, Cr0.
0.05-0.3%, Zn 0.05-0.5%, one or more of them, and further 0.00
5 to 0.20% Ti alone or 0.0001 to
After casting an aluminum alloy containing 0.05% of B in combination with the balance consisting of Al and inevitable impurities into a slab, the slab is homogenized for 1 hour or more at a temperature in the range of 520 to 630 ° C. After performing the treatment and hot rolling the slab by hot rough rolling and subsequent hot finish rolling, (1) the slab thickness at the start of hot rough rolling is 200 mm or more, and (2) the hot rough rolling is started. (3) During the hot rough rolling, the temperature from the start of the rough rolling to a stage in which the rolling ratio is 25% or more and the thickness is within a range of 150 to 15 mm is 400. ℃ ℃ 15
In the stage of the thickness of the plate in the range of 0 to 15 mm, recrystallization of 5% or more by volume is caused at least once in the entire plate, and (4) the starting temperature of hot finish rolling is in the range of 250 to 400 ° C. (5) The rolling speed of each pass in hot finish rolling is 80
(6) The rolling reduction of each pass in hot finish rolling is 20%.
(7) Further, the rising temperature in hot finish rolling is set to 200
(8) And the ascending plate thickness in hot finish rolling is 1.0 to
The hot-rolled sheet obtained under the above conditions (1) to (8) was heated at an average temperature rising rate of 0.1 ° C./sec or less to obtain a temperature of 2 mm.
After performing batch annealing at a temperature in the range of 50 to 500 ° C. for 0.5 hour or more, it is cooled at an average cooling rate of 0.1 ° C./second or less, and then further cold-rolled at a rolling rate of 60% or more. A method for producing an aluminum alloy plate for a can body, which comprises rolling.
【請求項3】 Mg0.5〜2.0%、Mn0.5〜
2.0%、Fe0.1〜0.7%、Si0.05〜0.
5%を含有し、さらに必要に応じて0.005〜0.2
0%のTiを単独でもしくは0.0001〜0.05%
のBと組合せて含有し、残部がAlおよび不可避的不純
物よりなるアルミニウム合金をスラブに鋳造した後、そ
のスラブに対し520〜630℃の範囲内の温度で1時
間以上の均質化処理を施し、さらにスラブを熱間粗圧延
およびそれに続く熱間仕上圧延によって熱間圧延するに
あたり、 (1) 熱間粗圧延開始時のスラブ厚みを200mm以
上とし、 (2) 熱間粗圧延開始温度を450〜580℃の範囲
内とし、 (3) 熱間粗圧延中において、粗圧延開始からの圧延
率が25%以上でかつ150〜15mmの範囲内の板厚
の段階までの温度を400℃以上に維持して、その15
0〜15mmの範囲内の板厚の段階において板全体に対
し体積率で5%以上の再結晶を少なくとも1回以上生じ
させ、 (4) 熱間仕上圧延の開始温度を250〜400℃の
範囲内とし、 (5) 熱間仕上圧延における各パスの圧延速度を80
〜800m/分の範囲内とし、 (6) 熱間仕上圧延における各パスの圧延率を20%
以上とし、 (7) さらに熱間仕上圧延における上り温度を200
〜320℃の範囲内とし、 (8) かつ熱間仕上圧延における上り板厚を1.0〜
7.0mmの範囲内とし、 以上の(1)〜(8)の条件によって得られた熱延板に
対して、2〜25%の圧延率で1次冷間圧延を施し、さ
らに1〜100℃/秒の範囲内の平均昇温速度で330
〜620℃の範囲内の温度に加熱して保持なしもしくは
10分以下の保持を行なう連続焼鈍を施した後、1〜1
00℃/秒の範囲内の平均冷却速度で冷却し、その後さ
らに60%以上の圧延率で最終冷間圧延を行なうことを
特徴とする、缶胴用アルミニウム合金板の製造方法。
3. Mg 0.5-2.0%, Mn 0.5-
2.0%, Fe 0.1-0.7%, Si 0.05-0.
5%, and if necessary, 0.005 to 0.2
0% Ti alone or 0.0001-0.05%
After casting an aluminum alloy containing Al and unavoidable impurities into a slab, the homogenizing treatment is performed on the slab at a temperature in a range of 520 to 630 ° C. for 1 hour or more, Further, in hot rolling the slab by hot rough rolling and subsequent hot finish rolling, (1) the slab thickness at the start of hot rough rolling is 200 mm or more, and (2) the hot rough rolling start temperature is 450 to (3) During hot rough rolling, the temperature from the start of rough rolling to a rolling ratio of 25% or more and a plate thickness in the range of 150 to 15 mm is maintained at 400 ° C. or more. And 15
In the stage of the thickness of the plate in the range of 0 to 15 mm, recrystallization of 5% or more by volume is caused at least once in the entire plate, and (4) the starting temperature of hot finish rolling is in the range of 250 to 400 ° C. (5) The rolling speed of each pass in hot finish rolling is 80
(6) The rolling reduction of each pass in hot finish rolling is 20%.
(7) Further, the rising temperature in hot finish rolling is set to 200
(8) And the ascending plate thickness in hot finish rolling is 1.0 to
The hot-rolled sheet obtained under the above conditions (1) to (8) is subjected to primary cold rolling at a rolling ratio of 2 to 25%, and further to 1 to 100 mm. 330 ° C./average heating rate in the range of
After performing continuous annealing in which heating is performed to a temperature in the range of 620 ° C. and no holding or holding for 10 minutes or less, 1 to 1
A method for producing an aluminum alloy sheet for a can body, comprising cooling at an average cooling rate in the range of 00 ° C./sec, and then performing final cold rolling at a rolling rate of 60% or more.
【請求項4】 Mg0.5〜2.0%、Mn0.5〜
2.0%、Fe0.1〜0.7%、Si0.05〜0.
5%を含有し、かつCu0.05〜0.5%、Cr0.
05〜0.3%、Zn0.05〜0.5%のうちの1種
または2種以上を含有し、さらに必要に応じて0.00
5〜0.20%のTiを単独でもしくは0.0001〜
0.05%のBと組合せて含有し、残部がAlおよび不
可避的不純物よりなるアルミニウム合金をスラブに鋳造
した後、そのスラブに対し520〜630℃の範囲内の
温度で1時間以上の均質化処理を施し、さらにスラブを
熱間粗圧延およびそれに続く熱間仕上圧延によって熱間
圧延するにあたり、 (1) 熱間粗圧延開始時のスラブ厚みを200mm以
上とし、 (2) 熱間粗圧延開始温度を450〜580℃の範囲
内とし、 (3) 熱間粗圧延中において、粗圧延開始からの圧延
率が25%以上でかつ150〜15mmの範囲内の板厚
の段階までの温度を400℃以上に維持して、その15
0〜15mmの範囲内の板厚の段階において板全体に対
し体積率で5%以上の再結晶を少なくとも1回以上生じ
させ、 (4) 熱間仕上圧延の開始温度を250〜400℃の
範囲内とし、 (5) 熱間仕上圧延における各パスの圧延速度を80
〜800m/分の範囲内とし、 (6) 熱間仕上圧延における各パスの圧延率を20%
以上とし、 (7) さらに熱間仕上圧延における上り温度を200
〜320℃の範囲内とし、 (8) かつ熱間仕上圧延における上り板厚を1.0〜
7.0mmの範囲内とし、 以上の(1)〜(8)の条件によって得られた熱延板に
対して、2〜25%の圧延率で1次冷間圧延を施し、さ
らに1〜100℃/秒の範囲内の平均昇温速度で330
〜620℃の範囲内の温度に加熱して保持なしもしくは
10分以下の保持を行なう連続焼鈍を施した後、1〜1
00℃/秒の範囲内の平均冷却速度で冷却し、その後さ
らに60%以上の圧延率で最終冷間圧延を行なうことを
特徴とする、缶胴用アルミニウム合金板の製造方法。
4. Mg 0.5-2.0%, Mn 0.5-
2.0%, Fe 0.1-0.7%, Si 0.05-0.
5%, Cu 0.05-0.5%, Cr0.
0.05-0.3%, Zn 0.05-0.5%, one or more of them, and further 0.00
5 to 0.20% Ti alone or 0.0001 to
After casting an aluminum alloy containing 0.05% of B in combination with the balance consisting of Al and inevitable impurities into a slab, the slab is homogenized for 1 hour or more at a temperature in the range of 520 to 630 ° C. After performing the treatment and hot rolling the slab by hot rough rolling and subsequent hot finish rolling, (1) the slab thickness at the start of hot rough rolling is 200 mm or more, and (2) the hot rough rolling is started. (3) During the hot rough rolling, the temperature from the start of the rough rolling to a stage in which the rolling ratio is 25% or more and the thickness is within a range of 150 to 15 mm is 400. ℃ ℃ 15
In the stage of the thickness of the plate in the range of 0 to 15 mm, recrystallization of 5% or more by volume is caused at least once in the entire plate, and (4) the starting temperature of hot finish rolling is in the range of 250 to 400 ° C. (5) The rolling speed of each pass in hot finish rolling is 80
(6) The rolling reduction of each pass in hot finish rolling is 20%.
(7) Further, the rising temperature in hot finish rolling is set to 200
(8) And the ascending plate thickness in hot finish rolling is 1.0 to
The hot-rolled sheet obtained under the above conditions (1) to (8) is subjected to primary cold rolling at a rolling ratio of 2 to 25%, and further to 1 to 100 mm. 330 ° C./average heating rate in the range of
After performing continuous annealing in which heating is performed to a temperature in the range of 620 ° C. and no holding or holding for 10 minutes or less, 1 to 1
A method for producing an aluminum alloy sheet for a can body, comprising cooling at an average cooling rate in the range of 00 ° C./sec, and then performing final cold rolling at a rolling rate of 60% or more.
【請求項5】 請求項1〜4のいずれかの請求項に記載
の缶胴用アルミニウム合金板の製造方法において、 60%以上の圧延率で最終冷間圧延を行なった後、さら
に80〜200℃の範囲内の温度で0.5時間以上保持
する最終焼鈍を施すことを特徴とする、缶胴用アルミニ
ウム合金板の製造方法。
5. The method for producing an aluminum alloy sheet for a can body according to claim 1, wherein the final cold rolling is performed at a rolling rate of 60% or more, and then 80 to 200. A method for producing an aluminum alloy sheet for a can body, which comprises performing final annealing at a temperature in the range of 0.5 ° C. for at least 0.5 hour.
JP07330998A 1998-03-06 1998-03-06 Method for producing aluminum alloy plate for can body Expired - Fee Related JP3644819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07330998A JP3644819B2 (en) 1998-03-06 1998-03-06 Method for producing aluminum alloy plate for can body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07330998A JP3644819B2 (en) 1998-03-06 1998-03-06 Method for producing aluminum alloy plate for can body

Publications (2)

Publication Number Publication Date
JPH11256291A true JPH11256291A (en) 1999-09-21
JP3644819B2 JP3644819B2 (en) 2005-05-11

Family

ID=13514448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07330998A Expired - Fee Related JP3644819B2 (en) 1998-03-06 1998-03-06 Method for producing aluminum alloy plate for can body

Country Status (1)

Country Link
JP (1) JP3644819B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152371A (en) * 2004-11-29 2006-06-15 Furukawa Sky Kk Aluminum alloy for food can having excellent casting-crack resistance
JP2012140664A (en) * 2010-12-28 2012-07-26 Mitsubishi Alum Co Ltd Method for manufacturing high strength plate material for can body having satisfactory surface property
JP2012172192A (en) * 2011-02-21 2012-09-10 Mitsubishi Alum Co Ltd Method for producing aluminum alloy sheet for can body having low ear ratio and method for producing aluminum alloy sheet for bottle type beverage can having low ear ratio
JP2017160521A (en) * 2016-03-11 2017-09-14 三菱アルミニウム株式会社 Manufacturing method of aluminum alloy sheet for beverage can body excellent in anisotropy and neck moldability and bottle can body excellent in anisotropy and bottle neck moldability
US20210214827A1 (en) * 2017-02-01 2021-07-15 Uacj Corporation Aluminum alloy sheet and production method therefor
CN117431423A (en) * 2023-12-20 2024-01-23 中铝材料应用研究院有限公司 Aluminum alloy plate for pop-top can body and preparation method and application thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152371A (en) * 2004-11-29 2006-06-15 Furukawa Sky Kk Aluminum alloy for food can having excellent casting-crack resistance
JP2012140664A (en) * 2010-12-28 2012-07-26 Mitsubishi Alum Co Ltd Method for manufacturing high strength plate material for can body having satisfactory surface property
JP2012172192A (en) * 2011-02-21 2012-09-10 Mitsubishi Alum Co Ltd Method for producing aluminum alloy sheet for can body having low ear ratio and method for producing aluminum alloy sheet for bottle type beverage can having low ear ratio
JP2017160521A (en) * 2016-03-11 2017-09-14 三菱アルミニウム株式会社 Manufacturing method of aluminum alloy sheet for beverage can body excellent in anisotropy and neck moldability and bottle can body excellent in anisotropy and bottle neck moldability
US20210214827A1 (en) * 2017-02-01 2021-07-15 Uacj Corporation Aluminum alloy sheet and production method therefor
CN117431423A (en) * 2023-12-20 2024-01-23 中铝材料应用研究院有限公司 Aluminum alloy plate for pop-top can body and preparation method and application thereof
CN117431423B (en) * 2023-12-20 2024-04-12 中铝材料应用研究院有限公司 Aluminum alloy plate for pop-top can body and preparation method and application thereof

Also Published As

Publication number Publication date
JP3644819B2 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
JP3871462B2 (en) Method for producing aluminum alloy plate for can body
JP3644818B2 (en) Method for producing aluminum alloy plate for can body
JP3600022B2 (en) Manufacturing method of aluminum base alloy sheet for deep drawing
JPS626740B2 (en)
JP4257135B2 (en) Aluminum alloy hard plate for can body
JP3644819B2 (en) Method for producing aluminum alloy plate for can body
JP3871473B2 (en) Method for producing aluminum alloy plate for can body
JPH07305131A (en) Aluminum alloy sheet for super plastic forming capable of cold preforming and its production
JP2933501B2 (en) Method for producing aluminum alloy sheet excellent in formability of DI can bottom
JP2005076041A (en) Method for manufacturing hard aluminum alloy sheet for can body
JP3713614B2 (en) Method for producing aluminum alloy plate for can body
JPH05331588A (en) Aluminum alloy sheet for forming excellent in flange formability and its production
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JP3260227B2 (en) Al-Mg-Si based alloy sheet excellent in formability and bake hardenability by controlling crystal grains and method for producing the same
JPH10330897A (en) Production of aluminum base alloy sheet for deep drawing
JPH06228696A (en) Aluminum alloy sheet for di can body
JP4034904B2 (en) Hot rolled plate for aluminum can body and can body plate using the same
JPS63125645A (en) Production of aluminum alloy material having fine crystal grain
JP2956038B2 (en) Al alloy plate for drawing cups excellent in suppressing distortion pattern and method for producing the same
JP2891620B2 (en) High strength aluminum alloy hard plate excellent in stress corrosion cracking resistance and method of manufacturing the same
JPH04276047A (en) Production of hard aluminum alloy sheet for forming
JPH08127850A (en) Production of aluminum alloy sheet for forming low in edge ratio
JP3247447B2 (en) Manufacturing method of aluminum alloy sheet for forming with low ear ratio
JPH0813109A (en) Production of aluminum alloy sheet for forming
JPH05222497A (en) Production of hard aluminum alloy sheet reduced in edge rate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees