[go: up one dir, main page]

JPH11255544A - Reinforcing fiber for cement material and formed cement produced by using the fiber - Google Patents

Reinforcing fiber for cement material and formed cement produced by using the fiber

Info

Publication number
JPH11255544A
JPH11255544A JP7651398A JP7651398A JPH11255544A JP H11255544 A JPH11255544 A JP H11255544A JP 7651398 A JP7651398 A JP 7651398A JP 7651398 A JP7651398 A JP 7651398A JP H11255544 A JPH11255544 A JP H11255544A
Authority
JP
Japan
Prior art keywords
reinforcing fiber
polypropylene
fiber
cement
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7651398A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ohata
裕之 大幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tesac Corp
Original Assignee
Tesac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tesac Corp filed Critical Tesac Corp
Priority to JP7651398A priority Critical patent/JPH11255544A/en
Publication of JPH11255544A publication Critical patent/JPH11255544A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/10Treatment for enhancing the mixability with the mortar

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a fiber resistant to autoclave treatment and having excellent adhesivity to cement matrix by using a polypropylene as the core material, of a reinforcing fiber composed of a core material and a surface layer material and using a thermoplastic polymer material having polar functional group and produced by addition polymerization as the surface layer material. SOLUTION: The thermoplastic polymer material having a polar functional group such as carboxyl group is preferably an acid-modified polypropylene, more preferably a polypropylene modified with maleic anhydride. Inorganic fine particles are added to the surface layer material. In a reinforcing fiber composed of a core material, a surface layer material and an intermediate layer material, it is preferable to use polypropylene as the core material, a thermoplastic polymer material as the surface layer material and an acid-modified polypropylene as the intermediate layer material. The addition amount of the reinforced fiber is preferably 0.3-5 wt.% and the product is preferably cured in an autoclave. Preferably, the acid-modified polypropylene has a melting point lower than that of the core polypropylene by >=5 deg.C and has an acid value of >=5. A formed cement article having high flexural strength is produced by this process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はセメントマトリック
スとの接着性に優れ、特にオートクレーブ養生すること
により、著しい接着力が発現するセメント系材料用補強
繊維およびこの繊維を配合して補強されたセメント成型
体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reinforcing fiber for cementitious materials which exhibits excellent adhesiveness to a cement matrix and, in particular, exhibits remarkable adhesive strength by autoclaving, and a cement molding reinforced by blending the fiber. It is about the body.

【0002】[0002]

【従来の技術】従来、有害性が指摘されている石綿に変
わるセメント成型体の補強繊維としては、ポリビニルア
ルコール系、ポリオレフィン系、ポリアクリロニトリル
系、ポリアミド系等の合成繊維やガラス繊維が用いられ
ている。しかしながら、セメント成型体の養生は寸法安
定性向上、養生時間の短縮等の目的でオートクレーブで
行うことが近年は増加しており、こうしたオートクレー
ブ養生を行う場合には、ポリオレフィン系以外の繊維は
耐熱アルカリ性の不足から劣化してしまうために補強繊
維として用いることができなかった。
2. Description of the Related Art Conventionally, synthetic fibers or glass fibers of polyvinyl alcohol type, polyolefin type, polyacrylonitrile type, polyamide type, etc. have been used as reinforcing fibers for cement moldings in place of asbestos which has been pointed out as harmful. I have. However, in recent years, the curing of cement moldings has been increasing in autoclaves for the purpose of improving dimensional stability and shortening the curing time, and when performing such autoclave curing, non-polyolefin fibers are resistant to heat and alkali. However, it could not be used as a reinforcing fiber because it was deteriorated due to the shortage.

【0003】一方、汎用樹脂として唯一耐熱アルカリ性
があるポリオレフィン系繊維は、分子構造内に親水性基
やセメントとの接着性に有効な官能基がほとんど存在し
ないため、セメントマトリックスとの接着性が極めて悪
く、ポリオレフィン系繊維で補強したセメント成型体を
破壊すると容易に繊維が引き抜けてしまい、繊維の引き
抜き抵抗による衝撃強度や曲げ破壊エネルギーの増大は
認められても、曲げ強度を大きく向上させるには至らな
い欠点があった。
[0003] On the other hand, polyolefin fibers, which are the only general-purpose resins having heat-resistant alkali resistance, have very little hydrophilic groups or functional groups effective for adhesion to cement in their molecular structure, and therefore have extremely poor adhesion to the cement matrix. Bad, when the cement molded body reinforced with polyolefin fiber is broken, the fiber is easily pulled out, and even if increase in impact strength or bending fracture energy due to fiber pullout resistance is recognized, it is necessary to greatly improve the bending strength. There were drawbacks that could not be reached.

【0004】[0004]

【発明が解決しようとする課題】かかる従来技術の欠点
を克服するために、ポリオレフィン系繊維のセメントと
の親和性を改良するための種々の方法が提案されてい
る。代表的なものとして各種の無機微粒子やポリ酢酸ビ
ニル等の親水性高分子物質を繊維に添加する方法や、表
面にシラン系カップリング剤、界面活性剤や金属塩等を
種々の方法で塗布もしくは付着定着させ、親和性を改良
する方法が提案されているが、前者は繊維全体に異物を
混入させるため、延伸性が損なわれ、十分な繊維強度が
得られない上に、繊維の表面部分にある改質剤以外は親
和性の向上に寄与せず、添加量の割に改質効果が良くな
い欠点があり、後者は表面処理剤とポリオレフィン系繊
維との間の接着性が無いため、セメントマトリックスと
表面処理剤が接着したとしても、繊維とマトリックスの
間には十分な接着力が得られない欠点があった。
To overcome the disadvantages of the prior art, various methods have been proposed for improving the affinity of polyolefin fibers with cement. As a typical method, various inorganic fine particles or a method of adding a hydrophilic polymer substance such as polyvinyl acetate to the fiber, a silane coupling agent, a surfactant or a metal salt on the surface by various methods or A method of improving the affinity by adhering and fixing has been proposed, but in the former, the foreign matter is mixed into the entire fiber, so that the stretchability is impaired, sufficient fiber strength is not obtained, and the fiber surface Other than a certain modifier, it does not contribute to the improvement of affinity, and there is a drawback that the modifying effect is not good for the added amount, and the latter has no adhesiveness between the surface treatment agent and the polyolefin fiber, so cement Even if the matrix and the surface treatment agent adhere, there is a defect that a sufficient adhesive force cannot be obtained between the fiber and the matrix.

【0005】また、これらの欠点を補うために繊維を芯
鞘構造にし、芯材に通常のポリオレフィン樹脂を用い、
表層材に親和性改良のための各種材料を配合する方法が
提案されている。例えば、特開昭57−129861に
は、芯材、表層材ともにポリオレフィン系樹脂を用い、
表層に無機微粒子を添加して親和性を高める方法が提案
されている。しかし、この方法では表層材の主材料にポ
リオレフィン樹脂を用いており、無機微粒子とポリオレ
フィン樹脂の接着性に問題がある。また、特開平4−7
4741、特開平6−9254には、芯材、表層材とも
に熱可塑性樹脂を用い、表層材に各種無機微粒子を添加
したり付着させて親和性を高める方法が提案されてい
る。しかし、これらの方法では耐オートクレーブ養生性
を考慮して芯材にポリオレフィン樹脂を用いると、芯材
との剥離を防ぐために表層材の主材料もポリオレフィン
樹脂を用いる必要があり、やはり無機微粒子とポリオレ
フィン樹脂の接着性が問題になる。
In order to compensate for these drawbacks, the fiber has a core-sheath structure, and an ordinary polyolefin resin is used for the core material.
There has been proposed a method of blending various materials for improving affinity with a surface material. For example, Japanese Patent Application Laid-Open No. Sho 57-129861 discloses that a core material and a surface material are made of polyolefin resin,
A method has been proposed in which inorganic particles are added to the surface layer to increase the affinity. However, in this method, a polyolefin resin is used as a main material of the surface layer material, and there is a problem in adhesion between the inorganic fine particles and the polyolefin resin. Also, Japanese Patent Application Laid-Open No.
4741 and JP-A-6-9254 propose a method in which a thermoplastic resin is used for both the core material and the surface layer, and various inorganic fine particles are added to or adhere to the surface layer to enhance the affinity. However, in these methods, if a polyolefin resin is used as a core material in consideration of autoclave curing resistance, it is necessary to use a polyolefin resin as a main material of a surface material in order to prevent separation from the core material, and inorganic fine particles and polyolefin resin are also required. The adhesiveness of the resin becomes a problem.

【0006】さらに、特開平9−255391には、芯
材に高融点樹脂、表層材に低融点樹脂を配合した補強繊
維をセメントマトリックスに混合した後にオートクレー
ブ養生して成型することにより、繊維同士の接触点を融
着させてセメント成型体を強化する方法が提案されてい
る。しかし、この方法では耐オートクレーブ性を持たせ
るために繊維材料としてポリオレフィン樹脂を用いる
と、繊維とセメントマトリックスの間での接着は期待で
きず、また、繊維添加量が少ないと繊維同士の接触点も
少なくなるため高い補強効果が得られない。
Further, Japanese Patent Application Laid-Open No. 9-255391 discloses that a reinforcing fiber in which a high melting point resin is blended in a core material and a low melting point resin is blended in a surface layer material is mixed with a cement matrix and then cured by autoclave and molded. Methods have been proposed to strengthen the cement molding by fusing the contact points. However, in this method, if a polyolefin resin is used as a fiber material in order to impart autoclave resistance, adhesion between the fiber and the cement matrix cannot be expected. A high reinforcing effect cannot be obtained because the amount is small.

【0007】本発明は上記のような従来技術の問題点を
解消するためになされたもので、耐オートクレーブ性を
持ち、しかもセメントマトリックスとの接着性に優れた
セメント系材料用補強繊維及びそれを使用するセメント
成型体を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and it has an autoclave resistance and an excellent adhesion to a cement matrix, and a reinforcing fiber for cement-based materials. An object is to provide a cement molded body to be used.

【0008】[0008]

【課題を解決するための手段】本発明者は上記目的を達
成するために鋭意検討した結果、本発明の完成に到達し
た。即ち、本発明は芯材と表層材から構成されているセ
メント系材料用補強繊維において、芯材がポリプロピレ
ンであり、表層材が極性官能基を有し付加重合により得
られる熱可塑性高分子物質を含むことを特徴とするセメ
ント系材料用補強繊維である。本発明のセメント系材料
用補強繊維の好ましい態様では、前記熱可塑性高分子物
質が酸変性ポリプロピレン、より好ましくはアクリル酸
変性ポリプロピレン又は無水マレイン酸変性ポリプロピ
レンであり、前記表層材に無機微粒子が添加されている
ことを特徴とする。
Means for Solving the Problems The present inventors have made intensive studies to achieve the above object, and as a result, completed the present invention. That is, the present invention relates to a reinforcing fiber for a cementitious material comprising a core material and a surface material, wherein the core material is polypropylene, and the surface material has a polar functional group and is obtained by addition polymerization. It is a reinforcing fiber for a cementitious material characterized by containing. In a preferred embodiment of the reinforcing fiber for cement-based material of the present invention, the thermoplastic polymer substance is an acid-modified polypropylene, more preferably an acrylic acid-modified polypropylene or a maleic anhydride-modified polypropylene, and inorganic fine particles are added to the surface material. It is characterized by having.

【0009】また、本発明は芯材、表層材及びそれらの
間の中間層材から構成されているセメント系材料用補強
繊維において、芯材がポリプロピレンであり、表層材が
熱可塑性高分子物質であり、中間層材が酸変性ポリプロ
ピレンであることを特徴とするセメント系材料用補強繊
維である。本発明の好ましいセメント系材料用補強繊維
の好ましい態様では前記酸変性ポリプロピレンはアクリ
ル酸変性ポリプロピレン又は無水マレイン酸変性ポリプ
ロピレンであり、前記表層材に無機微粒子が添加されて
いることを特徴とする。
The present invention also relates to a reinforcing fiber for a cementitious material comprising a core material, a surface material and an intermediate layer material therebetween, wherein the core material is polypropylene and the surface material is a thermoplastic polymer material. And a reinforcing fiber for cementitious materials, wherein the intermediate layer material is an acid-modified polypropylene. In a preferred embodiment of the reinforcing fiber for a cement-based material according to the present invention, the acid-modified polypropylene is acrylic acid-modified polypropylene or maleic anhydride-modified polypropylene, and inorganic fine particles are added to the surface material.

【0010】また、本発明は前記セメント系材料用補強
繊維が0.3〜5重量%添加されていることを特徴とす
る繊維補強セメント成型体である。本発明の繊維補強セ
メント成型体の好ましい態様では、オートクレーブ養生
されていることを特徴とする。
[0010] The present invention is also a fiber-reinforced cement molding characterized in that 0.3 to 5% by weight of the reinforcing fiber for cement-based material is added. In a preferred embodiment of the fiber-reinforced cement molded article of the present invention, it is characterized in that it is autoclaved.

【0011】[0011]

【発明の実施の形態】本発明のセメント系材料用補強繊
維は芯材にポリプロピレンを用い、表層材に極性官能基
を有し付加重合により熱可塑性高分子物質を含むもので
ある。本発明に使用される極性官能基を有し付加重合に
より得られる熱可塑性高分子物質は、ヒドロキシル基、
カルボキシル基、カルボニル基、アルコキシル基、アル
コキシカルボニル基、グリシジル基などの極性官能基を
分子構造中に有し、かつ熱可塑性を有する高分子物質で
あればよく、例えばポリビニルアルコール、ポリビニル
フェノール、ポリエーテル、カルボキシルビニルポリマ
ー、ポリ酢酸ビニル、ポリビニルエーテル、アクリル樹
脂、ポリヒドロオキシポリオレフィンなどのホモポリマ
ー及びエチレン−ビニルアルコール共重合体、エチレン
−酢酸ビニル共重合体などのコポリマー及びアクリル酸
変性ポリプロピレン、無水マレイン酸変性ポリプロピレ
ンなどのポリプロピレンの酸変性物などが挙げられる。
本発明では、ポリプロピレンとの接着性に優れ、且つセ
メントとの親和性に優れたカルボキシル基を含むアクリ
ル酸変性ポリプロピレン、無水マレイン酸変性ポリプロ
ピレンなどの酸変性ポリプロピレンが好ましく、特に無
水マレイン酸変性ポリプロピレンがより好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The reinforcing fiber for a cement-based material of the present invention has a core material made of polypropylene, a surface material having a polar functional group, and containing a thermoplastic polymer substance by addition polymerization. The thermoplastic polymer material having a polar functional group used in the present invention and obtained by addition polymerization includes a hydroxyl group,
Carboxyl group, carbonyl group, alkoxyl group, alkoxycarbonyl group, having a polar functional group such as a glycidyl group in the molecular structure, and may be a polymer substance having thermoplasticity, for example, polyvinyl alcohol, polyvinyl phenol, polyether , Homopolymers such as carboxyl vinyl polymer, polyvinyl acetate, polyvinyl ether, acrylic resin, polyhydroxy polyolefin, and copolymers such as ethylene-vinyl alcohol copolymer and ethylene-vinyl acetate copolymer, and acrylic acid-modified polypropylene, maleic anhydride Acid-modified products of polypropylene, such as acid-modified polypropylene, may be mentioned.
In the present invention, an acid-modified polypropylene such as an acrylic acid-modified polypropylene containing a carboxyl group having excellent adhesion to polypropylene and having an excellent affinity for cement, and a maleic anhydride-modified polypropylene are preferable. More preferred.

【0012】本発明のセメント系材料用補強繊維の表層
材に用いる酸変性ポリプロピレンは芯材に用いるポリプ
ロピレンより融点が5℃以上低く、酸価が5以上のもの
が好ましい。本発明のセメント系材料用補強繊維は、芯
材のポリプロピレンの融点より低く、表層材の酸変性ポ
リプロピレンの融点より高い温度で養生し、ポリプロピ
レンの芯材の物性に影響を与えずに表層材をセメントマ
トリックスと溶融接着することにより最大限の補強効果
を発現するが、芯材のポリプロピレンとの融点の差が5
℃未満の酸変性ポリプロピレンを表層材に用いると、オ
ートクレーブ養生の温度を芯材の物性に影響しない温度
に設定することが難しく、十分な補強効果が得られな
い。また、酸価が5未満のものは、融点が十分に低くて
もセメントマトリックスと十分な接着力が得られず、補
強効果が低くなる。
The acid-modified polypropylene used for the surface layer of the reinforcing fiber for cementitious materials of the present invention preferably has a melting point lower than that of the polypropylene used for the core by 5 ° C. or more and an acid value of 5 or more. The reinforcing fiber for a cementitious material of the present invention is cured at a temperature lower than the melting point of the polypropylene of the core material and higher than the melting point of the acid-modified polypropylene of the surface material, and the surface material without affecting the physical properties of the core material of the polypropylene. The maximum reinforcement effect is exhibited by fusion bonding with the cement matrix, but the difference in melting point between the core material and polypropylene is 5%.
When an acid-modified polypropylene having a temperature of less than 0 ° C. is used for the surface material, it is difficult to set the temperature of the autoclave curing to a temperature that does not affect the physical properties of the core material, and a sufficient reinforcing effect cannot be obtained. Further, those having an acid value of less than 5 cannot obtain a sufficient adhesive force with the cement matrix even if the melting point is sufficiently low, and the reinforcing effect is low.

【0013】ポリプロピレンの酸変性物以外の材料のよ
うに、ポリプロピレンとの接着性が悪く表層材に単独で
用いると芯材のポリプロピレンとの間で剥離が生じるお
それのあるものは、表層材と芯材のポリプロピレン両方
と接着性を有するアクリル酸変性ポリプロピレンや無水
マレイン酸変性ポリプロピレンなどの酸変性ポリプロピ
レンを中間層材として表層材と芯材の間に配置して用い
るか、中間層材を省略する場合はエチレン−エチルアク
リレート共重合体、アクリル酸変性ポリプロピレン、無
水マレイン酸変性ポリプロピレンなどの相溶化剤と混合
して表層材に用いると良い。なお、本発明における付加
重合により得られる樹脂ではなく、ポリエステル系やポ
リアミド系の樹脂のように脱水反応による縮合重合によ
り得られる樹脂を用いると、オートクレーブ養生雰囲気
のような高温高圧の水蒸気中に長時間暴露した場合、加
水分解してしまう恐れがある。
[0013] Materials such as materials other than the acid-modified products of polypropylene, which have poor adhesion to polypropylene and which may cause peeling between the core material and polypropylene when used alone for the surface material, include the surface material and the core material. When acid-modified polypropylene such as acrylic acid-modified polypropylene or maleic anhydride-modified polypropylene, which has adhesive properties to both polypropylene, is used between the surface layer and the core as the intermediate layer, or the intermediate layer is omitted. Is preferably mixed with a compatibilizer such as an ethylene-ethyl acrylate copolymer, an acrylic acid-modified polypropylene, or a maleic anhydride-modified polypropylene, and used as a surface layer material. When a resin obtained by condensation polymerization by a dehydration reaction, such as a polyester-based or polyamide-based resin, is used instead of the resin obtained by the addition polymerization in the present invention, the resin can be stored in a high-temperature high-pressure steam such as an autoclave curing atmosphere. Exposure over time may result in hydrolysis.

【0014】本発明のセメント系材料用補強繊維は上記
材料により形成された芯材と表層材からなる複合繊維で
あるが、芯材部と表層材部の重量比率は50対50から
95対5の間のものが好ましい。この比率が50対50
より小さくなると、接着力は得られても強度を有する芯
材の比率が小さくなり、十分な繊維強度が得られない。
また、この比率が95対5より大きくなると、斑無く表
層を形成することが難しくなり十分な接着力が得られな
い。
The reinforcing fiber for a cementitious material of the present invention is a composite fiber comprising a core material and a surface material formed of the above-mentioned materials, and the weight ratio of the core material to the surface material is 50:50 to 95: 5. Those between are preferred. This ratio is 50 to 50
If it is smaller, the ratio of the core material having strength is reduced even though the adhesive strength is obtained, and sufficient fiber strength cannot be obtained.
On the other hand, if the ratio is greater than 95: 5, it is difficult to form a surface layer without unevenness, and sufficient adhesive strength cannot be obtained.

【0015】本発明のセメント系材料用補強繊維の製造
方法としては、従来公知の製造方法を適宜使用すること
ができ、例えばノズルから共押出した芯鞘構造のフィラ
メントを延伸したり、芯材の片側もしくは両側に表層材
を配した多層構造フィルムを延伸後に割裂させるなどの
製造方法を用いることができる。
As a method for producing the reinforcing fiber for cementitious materials of the present invention, a conventionally known production method can be appropriately used. For example, a filament having a core-sheath structure co-extruded from a nozzle is drawn, or a core material is produced. A production method such as splitting a multilayer structure film having a surface material disposed on one or both sides after stretching can be used.

【0016】本発明のセメント系材料用補強繊維の表層
材に添加される無機微粒子としては、炭酸カルシウム、
タルク、シリカ、水酸化アルミニウム、セピオライト、
マイカ、酸価チタン等のセメントとの反応性に優れたも
のが挙げられ、その粒子径としては0.01mm以下の
ものが好ましく、より好ましくは0.005mm以下で
ある。粒子径が0.01mmより大きいものは、表層材
の樹脂との接着性及びセメントとの反応性に乏しく効果
的ではない。
The inorganic fine particles added to the surface material of the reinforcing fiber for cementitious materials of the present invention include calcium carbonate,
Talc, silica, aluminum hydroxide, sepiolite,
Examples thereof include those having excellent reactivity with cement such as mica and acid value titanium, and the particle diameter is preferably 0.01 mm or less, more preferably 0.005 mm or less. If the particle diameter is larger than 0.01 mm, the adhesiveness of the surface layer material to the resin and the reactivity with the cement are poor, so that it is not effective.

【0017】本発明の繊維補強セメント成型体に用いら
れるセメント系材料用補強繊維の添加量は0.3〜5重
量%が好ましく、より好ましくは0.5〜2重量%であ
る。この添加量が0.3重量%より低くなると十分な補
強効果を得ることが難しく、5重量%より多くなるとフ
ァイバーボールが発生するためやはり十分な補強効果が
得られない。
The amount of the reinforcing fiber for the cement-based material used in the fiber-reinforced cement molding of the present invention is preferably 0.3 to 5% by weight, more preferably 0.5 to 2% by weight. If the amount is less than 0.3% by weight, it is difficult to obtain a sufficient reinforcing effect. If the amount is more than 5% by weight, fiber balls are generated, so that a sufficient reinforcing effect cannot be obtained.

【0018】本発明のセメント系材料用補強繊維は、極
性官能基を有し付加重合により得られる熱可塑性高分子
物質を含む表層材によってポリプロピレンの芯材を覆っ
ているので、セメントマトリックスとの接着性に優れて
おり、容易に引き抜けが生じない。しかも耐熱アルカリ
性が高いポリプロピレンを芯材に用いているため、オー
トクレーブ養生による繊維強度の低下も少なく、セメン
ト成型体の曲げ強度を大きく向上させることができる。
また、表層材に酸変性ポリプロピレン樹脂を用いること
により、オートクレーブ養生の熱で溶融接着効果が得ら
れるので、さらに高い補強効果が得られる。
The reinforcing fiber for a cementitious material of the present invention has a polar functional group and is covered with a surface layer material containing a thermoplastic polymer obtained by addition polymerization. It has excellent resistance and does not easily pull out. Moreover, since polypropylene having high heat-resistant alkali properties is used for the core material, the fiber strength is not significantly reduced by the autoclave curing, and the bending strength of the cement molded product can be greatly improved.
Further, by using an acid-modified polypropylene resin for the surface layer material, a fusion bonding effect can be obtained by the heat of the autoclave curing, so that a higher reinforcing effect can be obtained.

【0019】[0019]

【実施例】本発明を以下の実施例等によって具体的に説
明するが、本発明はこれらに限定されるものではない。
EXAMPLES The present invention will be specifically described with reference to the following examples, but the present invention is not limited to these examples.

【0020】実施例 1 多層インフレーション押出機によって、芯材にポリプロ
ピレン樹脂(融点170℃、MFR=2.5g/10m
in)、表層材に架橋ポリエチレンオキサイド樹脂(住
友精化製、アクアコークTQU−5)を10重量%、芯
材と同一のポリプロピレン樹脂を88重量%、相溶化剤
(エチレン−エチルアクリレート共重合体)を2重量%
配した3層構造のチューブ状フィルム(層厚比1:8:
1、フィルム厚0.18mm)を作成し、熱風式延伸装
置を用いて縦方向に17倍に延伸し、針布ローラーを用
いて割裂したのち全長6mmに切断して補強繊維を得
た。
Example 1 A polypropylene resin (melting point 170 ° C., MFR = 2.5 g / 10 m) was used as a core material by a multilayer inflation extruder.
in), 10% by weight of a crosslinked polyethylene oxide resin (manufactured by Sumitomo Seika Co., Ltd., AquaCork TQU-5), 88% by weight of the same polypropylene resin as the core material, a compatibilizer (ethylene-ethyl acrylate copolymer) ) At 2% by weight
Three-layered tubular film (layer thickness ratio 1: 8:
1, a film thickness of 0.18 mm), stretched 17 times in the machine direction using a hot-air stretching device, split using a garment roller, and then cut to a total length of 6 mm to obtain a reinforcing fiber.

【0021】この補強繊維を早強ポルトランドセメント
100重量部、珪石粉(比重2.62g/cm2 、比表
面積5330cm2 /g)100重量部、真珠岩系パー
ライト(嵩比重0.11g/cm2 、粒径1.2mm以
下)20重量部に対して2重量部投入し、オムニミキサ
ーを用いて撹拌混合した後、純水90重量部を加え、さ
らにオムニミキサーで撹拌してセメント混合物を得た。
次にこのセメント混合物を深さ10mm、底面寸法30
0mm×300mmの型枠に投入し振動成型した後、温
度20℃、湿度80%の環境下で24時間放置しセメン
ト硬化物を得た。次にこのセメント硬化物を幅50m
m、長さ125mmに切断し、165℃で8時間オート
クレーブ養生を行い、実施例1のセメント成型体を得
た。
100 parts by weight of the early-strength Portland cement, 100 parts by weight of silica powder (specific gravity 2.62 g / cm 2 , specific surface area 5330 cm 2 / g), perlite perlite (bulk specific gravity 0.11 g / cm 2) 2 parts by weight with respect to 20 parts by weight, stirred and mixed using an omni mixer, added with 90 parts by weight of pure water, and further stirred with an omni mixer to obtain a cement mixture. .
Next, the cement mixture was immersed in a depth of 10 mm and a bottom dimension of 30 mm.
After being put into a 0 mm × 300 mm formwork and subjected to vibration molding, it was left under an environment of a temperature of 20 ° C. and a humidity of 80% for 24 hours to obtain a hardened cement. Next, this cement hardened material is 50 m wide
m, cut into a length of 125 mm, and autoclaved at 165 ° C. for 8 hours to obtain a cement molded body of Example 1.

【0022】実施例 2 多層インフレーション押出機によって、芯材にポリプロ
ピレン樹脂(融点170℃、MFR=2.5g/10m
in)、表層材にアクリル酸変性ポリプロピレン樹脂
(融点150℃、MFR=20g/10min、酸価2
0)を配した3層構造のチューブ状フィルム(層厚比
1:8:1、フィルム厚0.18mm)を作成し、熱風
式延伸装置を用いて縦方向に17倍に延伸し、針布ロー
ラーを用いて割裂したのち全長6mmに切断して補強繊
維を得た。この補強繊維を用いて実施例1と同様に成型
養生し、実施例2のセメント成型体を得た。
Example 2 A polypropylene resin (melting point 170 ° C., MFR = 2.5 g / 10 m) was used as a core material by a multilayer inflation extruder.
in), acrylic acid-modified polypropylene resin (melting point 150 ° C., MFR = 20 g / 10 min, acid value 2)
A tubular film (thickness ratio 1: 8: 1, film thickness 0.18 mm) having a three-layer structure provided with the above 0) was prepared, and stretched 17 times in the longitudinal direction using a hot-air stretching device. After splitting using a roller, the fiber was cut to a total length of 6 mm to obtain a reinforcing fiber. Using this reinforcing fiber, molding and curing were performed in the same manner as in Example 1 to obtain a cement molded body of Example 2.

【0023】実施例 3 多層インフレーション押出機によって、芯材にポリプロ
ピレン樹脂(融点170℃、MFR=2.5g/10m
in)、表層材にエチレン−ビニルアルコール共重合体
(日本合成化学工業製 ソアノールDT2903)、中
間層材に無水マレイン酸変性ポリプロピレン樹脂を配し
た5層構造のチューブ状フィルム(層厚比1:1:1
6:1:1、フィルム厚0.18mm)を作成し、熱風
式延伸装置を用いて縦方向に17倍に延伸し、針布ロー
ラーを用いて割裂したのち全長6mmに切断して補強繊
維を得た。この補強繊維を用いて実施例1と同様に成型
養生し、実施例3のセメント成型体を得た。
Example 3 The core material was made of a polypropylene resin (melting point 170 ° C., MFR = 2.5 g / 10 m by a multilayer inflation extruder.
in), a five-layer tubular film (layer thickness ratio 1: 1) in which an ethylene-vinyl alcohol copolymer (Soarnol DT2903 manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) was disposed as a surface layer material and a maleic anhydride-modified polypropylene resin was disposed as an intermediate layer material. : 1
6: 1: 1, film thickness 0.18 mm), stretched 17 times in the longitudinal direction using a hot-air stretching device, split using a garment roller, and then cut to a total length of 6 mm to obtain a reinforcing fiber. Obtained. Using this reinforcing fiber, molding and curing were performed in the same manner as in Example 1 to obtain a cement molded product of Example 3.

【0024】実施例 4 多層インフレーション押出機によって、芯材にポリプロ
ピレン樹脂(融点170℃、MFR=2.5g/10m
in)、表層材にアクリル酸変性ポリプロピレン樹脂
(融点150℃、MFR=20g/10min、酸価2
0)と炭酸カルシウム粉末(平均粒径5μm、添加量2
0重量%)の混合物を配した3層構造のチューブ状フィ
ルム(層厚比1:8:1、フィルム厚0.18mm)を
作成し、熱風式延伸装置を用いて縦方向に17倍に延伸
し、針布ローラーを用いて割裂したのち全長6mmに切
断して補強繊維を得た。この補強繊維を用いて実施例1
と同様に成型養生し、実施例4のセメント成型体を得
た。
Example 4 A polypropylene resin (melting point 170 ° C., MFR = 2.5 g / 10 m) was used as a core material by a multilayer inflation extruder.
in), acrylic acid-modified polypropylene resin (melting point 150 ° C., MFR = 20 g / 10 min, acid value 2)
0) and calcium carbonate powder (average particle size 5 μm, addition amount 2)
0% by weight) to form a three-layered tubular film (layer thickness ratio 1: 8: 1, film thickness 0.18 mm), and stretched 17 times in the machine direction using a hot-air stretching device. Then, it was split using a needle roller and then cut to a total length of 6 mm to obtain a reinforcing fiber. Example 1 using this reinforcing fiber
In the same manner as in the above, molding and curing were performed to obtain a cement molded body of Example 4.

【0025】実施例 5 多層インフレーション押出機によって、芯材にポリプロ
ピレン樹脂(融点170℃、MFR=2.5g/10m
in)、表層材に無水マレイン酸変性ポリプロピレン樹
脂(融点145℃、MFR=100g/10min、酸
価40)を配した3層構造のチューブ状フィルム(層厚
比1:8:1、フィルム厚0.18mm)を作成し、熱
風式延伸装置を用いて縦方向に17倍に延伸し、針布ロ
ーラーを用いて割裂したのち全長6mmに切断して補強
繊維を得た。この補強繊維を用いて実施例1と同様に成
型養生し、実施例5のセメント成型体を得た。
Example 5 A polypropylene resin (melting point 170 ° C., MFR = 2.5 g / 10 m) was used as a core material by a multilayer inflation extruder.
in), a three-layer tubular film (layer thickness ratio 1: 8: 1, film thickness 0) in which a maleic anhydride-modified polypropylene resin (melting point 145 ° C., MFR = 100 g / 10 min, acid value 40) was disposed on the surface material. .18 mm), stretched 17 times in the machine direction using a hot-air stretching device, split using a needle cloth roller, and then cut to a total length of 6 mm to obtain a reinforcing fiber. Using this reinforcing fiber, molding and curing were performed in the same manner as in Example 1 to obtain a cement molded body of Example 5.

【0026】比較例 1 単層インフレーション押出機によって、ポリプロピレン
樹脂(融点170℃、MFR=2.5g/10min)
のチューブ状フィルム(フィルム厚0.18mm)を作
成し、熱風式延伸装置を用いて縦方向に17倍に延伸
し、針布ローラーを用いて割裂したのち全長6mmに切
断して補強繊維を得た。この補強繊維を用いて実施例1
と同様に成型養生し、比較例1のセメント成型体を得
た。
Comparative Example 1 A polypropylene resin (melting point 170 ° C., MFR = 2.5 g / 10 min) was produced by a single-layer inflation extruder.
And a 17-fold stretch in the machine direction using a hot-air stretching device, split using a garment roller, and then cut to a total length of 6 mm to obtain a reinforcing fiber. Was. Example 1 using this reinforcing fiber
The molding was cured in the same manner as described above to obtain a cement molded body of Comparative Example 1.

【0027】比較例 2 多層インフレーション押出機によって、芯材にポリプロ
ピレン樹脂(融点170℃、MFR=2.5g/10m
in)、表層材に芯材と同一のポリプロピレン樹脂と炭
酸カルシウム粉末(平均粒径5μm、添加量20重量
%)の混合物を配した3層構造のチューブ状フィルム
(層厚比1:8:1、フィルム厚0.18mm)を作成
し、熱風式延伸装置を用いて縦方向に17倍に延伸し、
針布ローラーを用いて割裂したのち全長6mmに切断し
て補強繊維を得た。この補強繊維を用いて実施例1と同
様に成型養生し、比較例2のセメント成型体を得た。
Comparative Example 2 A polypropylene resin (melting point 170 ° C., MFR = 2.5 g / 10 m) was used as a core material by a multilayer inflation extruder.
in), a tubular film having a three-layer structure in which a mixture of the same polypropylene resin as the core material and calcium carbonate powder (average particle size: 5 μm, addition amount: 20% by weight) was disposed on the surface material (layer thickness ratio 1: 8: 1) , A film thickness of 0.18 mm), and stretched 17 times in the machine direction using a hot-air stretching device.
After splitting using a cloth roller, the fiber was cut to a total length of 6 mm to obtain a reinforcing fiber. Using this reinforcing fiber, molding and curing were performed in the same manner as in Example 1 to obtain a cement molded product of Comparative Example 2.

【0028】これらの実施例および比較例のセメント成
型体を万能引っ張り試験器(島津製作所製、オートグラ
フAG−5000D)を用いて、スパン100mm、ク
ロスヘッドスピード5mm/minで3点曲げ試験を行
った。その試験結果を表1に示す。
Using the universal tensile tester (Shimadzu Corporation, Autograph AG-5000D), a three-point bending test was performed on the cement molded bodies of these Examples and Comparative Examples at a span of 100 mm and a crosshead speed of 5 mm / min. Was. Table 1 shows the test results.

【表1】 [Table 1]

【0029】[0029]

【発明の効果】以上詳述したように、本発明のセメント
系材料用補強繊維は表面材が極性官能基を有し付加重合
により得られる熱可塑性高分子物質を含んでいるので、
セメントマトリックスとの接着性に優れており、容易に
引き抜けが生じない。しかも耐熱アルカリ性が高いポリ
プロピレン樹脂を芯材に用いているためオートクレーブ
養生による繊維強度の低下も少なく、セメント成型体の
曲げ強度を大きく向上させることができる。また、本発
明のセメント系材料用補強繊維は表層材に酸変性ポリプ
ロピレン、好ましくは無水マレイン酸ポリプロピレン樹
脂を用いることにより、オートクレーブ養生の熱で溶融
接着効果が得られるので、さらに高い補強効果が得られ
る。また、本発明のセメント系材料用補強繊維は表層材
に無機微粒子を添加することによって、セメントマトリ
ックスとの接着性がさらに向上し、より高い補強効果が
得られる。また、本発明の繊維補強セメント成型体は上
記のセメント系材料用補強繊維で補強されることによっ
て、従来のポリプロピレン繊維で補強されたセメント成
型体に比べて極めて高い曲げ強度を得ることができる。
As described in detail above, the reinforcing fiber for cementitious materials of the present invention has a polar functional group on the surface and contains a thermoplastic polymer obtained by addition polymerization.
It has excellent adhesion to the cement matrix and does not easily pull out. Moreover, since a polypropylene resin having high heat-resistant alkali properties is used for the core material, a decrease in fiber strength due to autoclave curing is small, and the bending strength of the cement molding can be greatly improved. In addition, the reinforcing fiber for cementitious materials of the present invention uses an acid-modified polypropylene, preferably a maleic anhydride polypropylene resin as a surface material, so that a fusion bonding effect can be obtained by the heat of autoclave curing, so that a higher reinforcing effect can be obtained. Can be In addition, by adding inorganic fine particles to the surface material of the reinforcing fiber for a cement-based material of the present invention, the adhesion to the cement matrix is further improved, and a higher reinforcing effect is obtained. In addition, the fiber-reinforced cement molded article of the present invention can obtain extremely high bending strength by being reinforced with the above-mentioned reinforcing fiber for cement-based material, as compared with a conventional cement molded article reinforced with polypropylene fiber.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 芯材と表層材から構成されているセメン
ト系材料用補強繊維において、芯材がポリプロピレンで
あり、表層材が極性官能基を有し付加重合により得られ
る熱可塑性高分子物質を含むことを特徴とするセメント
系材料用補強繊維。
1. A reinforcing fiber for a cement-based material comprising a core material and a surface material, wherein the core material is polypropylene, the surface material has a polar functional group, and a thermoplastic polymer substance obtained by addition polymerization is used. A reinforcing fiber for cementitious materials, characterized in that it comprises:
【請求項2】 前記熱可塑性高分子物質が酸変性ポリプ
ロピレンであることを特徴とする請求項1記載のセメン
ト系材料用補強繊維。
2. The reinforcing fiber for cementitious materials according to claim 1, wherein said thermoplastic polymer substance is an acid-modified polypropylene.
【請求項3】 前記酸変性ポリプロピレンが無水マレイ
ン酸変性ポリプロピレンであることを特徴とする請求項
2記載のセメント系材料用補強繊維。
3. The reinforcing fiber for cementitious materials according to claim 2, wherein said acid-modified polypropylene is maleic anhydride-modified polypropylene.
【請求項4】 芯材、表層材及びそれらの間の中間層材
から構成されているセメント系材料用補強繊維におい
て、芯材がポリプロピレンであり、表層材が熱可塑性高
分子物質であり、中間層材が酸変性ポリプロピレンであ
ることを特徴とするセメント系材料用補強繊維。
4. A reinforcing fiber for a cementitious material comprising a core material, a surface material and an intermediate material therebetween, wherein the core material is polypropylene, the surface material is a thermoplastic polymer material, A reinforcing fiber for cementitious materials, wherein the layer material is an acid-modified polypropylene.
【請求項5】 前記表層材に無機微粒子を添加したこと
を特徴とする請求項1〜4のいずれか記載のセメント系
材料用補強繊維。
5. The reinforcing fiber for cementitious materials according to claim 1, wherein inorganic fine particles are added to said surface layer material.
【請求項6】 請求項1〜5のいずれか記載のセメント
系材料用補強繊維が0.3〜5重量%添加されているこ
とを特徴とする繊維補強セメント成型体。
6. A fiber-reinforced cement molded product, wherein 0.3 to 5% by weight of the reinforcing fiber for cementitious material according to claim 1 is added.
【請求項7】 オートクレーブ養生されていることを特
徴とする請求項6記載の繊維補強セメント成型体。
7. The fiber-reinforced cement molding according to claim 6, which is subjected to autoclave curing.
JP7651398A 1998-03-09 1998-03-09 Reinforcing fiber for cement material and formed cement produced by using the fiber Pending JPH11255544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7651398A JPH11255544A (en) 1998-03-09 1998-03-09 Reinforcing fiber for cement material and formed cement produced by using the fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7651398A JPH11255544A (en) 1998-03-09 1998-03-09 Reinforcing fiber for cement material and formed cement produced by using the fiber

Publications (1)

Publication Number Publication Date
JPH11255544A true JPH11255544A (en) 1999-09-21

Family

ID=13607362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7651398A Pending JPH11255544A (en) 1998-03-09 1998-03-09 Reinforcing fiber for cement material and formed cement produced by using the fiber

Country Status (1)

Country Link
JP (1) JPH11255544A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029793A (en) * 2000-07-12 2002-01-29 Daiwabo Co Ltd Composite fiber for reinforcing cement
JP2009084101A (en) * 2007-09-28 2009-04-23 Seiren Co Ltd Fiber reinforcing material for mortar and mortar formed material using the same
JP2014129198A (en) * 2012-12-28 2014-07-10 Daiwabo Holdings Co Ltd Fiber for reinforcing a hydraulic material and hydraulic material using the same
JP2015094063A (en) * 2013-11-13 2015-05-18 ダウ グローバル テクノロジーズ エルエルシー Composite fibers with evoh on surface for concrete reinforcement
JP2018517651A (en) * 2015-05-08 2018-07-05 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハーConstruction Research & Technology GmbH Composite fiber for inorganic binder applications
US10131579B2 (en) 2015-12-30 2018-11-20 Exxonmobil Research And Engineering Company Polarity-enhanced ductile polymer fibers for concrete micro-reinforcement
WO2019126847A1 (en) * 2017-12-26 2019-07-04 Saint-Gobain do Brasil Produtos Industriais e para Construção Ltda. Fibre for reinforcing fibre cement, fibre production method and fibre cement article
US10717673B2 (en) 2015-12-30 2020-07-21 Exxonmobil Research And Engineering Company Polymer fibers for concrete reinforcement

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029793A (en) * 2000-07-12 2002-01-29 Daiwabo Co Ltd Composite fiber for reinforcing cement
JP2009084101A (en) * 2007-09-28 2009-04-23 Seiren Co Ltd Fiber reinforcing material for mortar and mortar formed material using the same
JP2014129198A (en) * 2012-12-28 2014-07-10 Daiwabo Holdings Co Ltd Fiber for reinforcing a hydraulic material and hydraulic material using the same
JP2015094063A (en) * 2013-11-13 2015-05-18 ダウ グローバル テクノロジーズ エルエルシー Composite fibers with evoh on surface for concrete reinforcement
JP2018517651A (en) * 2015-05-08 2018-07-05 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハーConstruction Research & Technology GmbH Composite fiber for inorganic binder applications
US10131579B2 (en) 2015-12-30 2018-11-20 Exxonmobil Research And Engineering Company Polarity-enhanced ductile polymer fibers for concrete micro-reinforcement
US10717673B2 (en) 2015-12-30 2020-07-21 Exxonmobil Research And Engineering Company Polymer fibers for concrete reinforcement
WO2019126847A1 (en) * 2017-12-26 2019-07-04 Saint-Gobain do Brasil Produtos Industriais e para Construção Ltda. Fibre for reinforcing fibre cement, fibre production method and fibre cement article

Similar Documents

Publication Publication Date Title
DE69007811T2 (en) Mixtures of ethylene-vinyl alcohol copolymer and amorphous polyamide and multi-layer containers made from them.
CN100564023C (en) A kind of kenaf-plastics composite sheet material and preparation method thereof
CN114044997B (en) Polyethylene composite material for glass fiber reinforced thermoplastic pipeline
JPH0575007B2 (en)
CN110105781A (en) One kind enhancing bamboo powder/polyethylene interface compatibility technology based on the bionical interface modification of polyacrylamide base dopamine
JPH11255544A (en) Reinforcing fiber for cement material and formed cement produced by using the fiber
JP2022527551A (en) Two-component ultrafine fiber with hydrophilic polymer on surface with enhanced dispersion in alkaline environment for roof applications of fiber cement
JPS6385036A (en) Fiber reinforced cement composite material and formed matter
JP2017531744A (en) Drawn polyolefin fiber
JP2010511088A (en) Polyamide graft copolymer, material containing the same, production method and use
JPH0412742B2 (en)
JP4918446B2 (en) Fiber reinforcement for mortar and mortar molding using the same
CN100471911C (en) Wooden molded product and method for producing wooden molded product
JPWO2019208810A1 (en) Composite prepreg and composite laminate
CN116444919A (en) A thermoplastic composite material with high inorganic content and its preparation method
CN102702762A (en) MAPE (maleic anhydride grafting high density polyethylene) compatibilzed basalt fiber-wood plastic composites and preparation method thereof
JPH06316445A (en) Treating solution, glass clothe and glass clothe reinforced polypropylene resin molded product
CN1563188B (en) High shock resistant composite material of PCT enhanced by fiberglass
JPS6399209A (en) melt molding material
JP2007217500A (en) Black vinyl ester resin molding material
JP2020050686A (en) Fiber reinforced resin composition and molded article composed of the fiber reinforced resin composition
CN110003678A (en) One kind enhancing bamboo powder/recycling polyvinyl chloride interface compatibility technology based on octadecanoyl dopamine biomimetic modification
JP2621399B2 (en) Glass fiber reinforced plastic
JP3357156B2 (en) Method for producing molded article having gradient layered distribution structure
JPH07233264A (en) Glass fiber-reinforced polyolefin resin composition, its preparation and molded product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041224

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Effective date: 20050131

Free format text: JAPANESE INTERMEDIATE CODE: A821

A711 Notification of change in applicant

Effective date: 20050131

Free format text: JAPANESE INTERMEDIATE CODE: A712

RD02 Notification of acceptance of power of attorney

Effective date: 20050131

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A521 Written amendment

Effective date: 20050131

Free format text: JAPANESE INTERMEDIATE CODE: A821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050309

A977 Report on retrieval

Effective date: 20071101

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A02 Decision of refusal

Effective date: 20090714

Free format text: JAPANESE INTERMEDIATE CODE: A02