[go: up one dir, main page]

JPH112497A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH112497A
JPH112497A JP15663697A JP15663697A JPH112497A JP H112497 A JPH112497 A JP H112497A JP 15663697 A JP15663697 A JP 15663697A JP 15663697 A JP15663697 A JP 15663697A JP H112497 A JPH112497 A JP H112497A
Authority
JP
Japan
Prior art keywords
heat transfer
fin
water
transfer pipe
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15663697A
Other languages
Japanese (ja)
Inventor
Takeshi Isobe
剛 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP15663697A priority Critical patent/JPH112497A/en
Publication of JPH112497A publication Critical patent/JPH112497A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent condensate from invading a clearance between a heat transfer pipe and collar part of a fin by applying water repellent treatment to at least either one of an outer face of the heat transfer pipe or an inner face of the fin collar part and not applying the water repellent treatment to faces of the fins other than the inner face of the collar part. SOLUTION: A water-repellent coating 2 is formed on an outer face of a heat transfer pipe 1 and even if condensate is formed on a surface of a precoated fin 3 and retained in a vicinity of the heat transfer pipe, the condensate is hard to intrude into and adhere to a clearance between the heat transfer pipe 1 and a collar part 4 of the fin so that corrosion of the heat transfer pipe 1 is suppressed. And because hydrophilic coating is formed on the surface of the fin and therefore the condensate is hard to form a drop of water, the condensate hardly has a possibility of being scattered and wetting an interior of a room. Because the outer face of the heat transfer pipe is subjected to water repellent treatment, contact area between the heat transfer pipe and the condensate is very small and corrosion of the heat transfer pipe is surely suppressed even if the condensate is formed directly on the outer surface of the heat transfer pipe.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、耐食性に優れ、長
期間良好に使用できる熱交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger which has excellent corrosion resistance and can be used for a long time.

【0002】[0002]

【従来の技術】熱交換器は、空調機器の室内機と室外
機、冷温水を利用した空調機器の室内機などに使用さ
れ、その構造は、フィンに伝熱管を拡管接合させたクロ
スフィンタイプのものが主流である。そして、前記フィ
ンにはアルミニウムまたはアルミニウム合金が、伝熱管
には銅または銅合金が主に使用されている。このような
熱交換器は、例えば、アルミ素条に伝熱管を通すカラ−
部をプレス加工により形成してフィンとし、このフィン
の複数枚をカラー部を一致させて積層し、この積層体の
カラー部に伝熱管を挿通し、この伝熱管を拡管してフィ
ンのカラ−部に機械的に接合する方法により製造され
る。ところで、冷房運転時の室内機,暖房運転時の室外
機では熱交換器の表面で結露が生じ、これが溜まるとフ
ィン間に水滴によるブリッジが形成される。このブリッ
ジは通風抵抗を増大させるため冷暖房能力が低下する。
このため、フィンには、その全面に結露防止のための親
水処理を施したプレコ−トフィンが広く用いられてい
る。
2. Description of the Related Art Heat exchangers are used in indoor units and outdoor units of air conditioners, and indoor units of air conditioners using cold and hot water. The structure of the heat exchanger is a cross fin type in which heat transfer tubes are expanded and joined to fins. Is the mainstream. The fins are mainly made of aluminum or an aluminum alloy, and the heat transfer tubes are mainly made of copper or a copper alloy. Such a heat exchanger is, for example, a color that passes a heat transfer tube through an aluminum strip.
The fins are formed by press working to form fins, a plurality of the fins are laminated with the collar portions aligned, a heat transfer tube is inserted into the collar portion of the laminate, and the heat transfer tube is expanded to form a fin collar. It is manufactured by a method of mechanically joining to the part. By the way, in the indoor unit during the cooling operation and in the outdoor unit during the heating operation, dew condensation occurs on the surface of the heat exchanger, and when the dew forms, a bridge is formed between the fins due to water droplets. Since this bridge increases ventilation resistance, the cooling and heating capacity is reduced.
For this reason, precoated fins whose entire surface is subjected to a hydrophilic treatment for preventing dew condensation are widely used.

【0003】[0003]

【発明が解決しようとする課題】しかし、親水性プレコ
−トフィンを用いた熱交換器では、結露水がフィンカラ
−と伝熱管の隙間に侵入し付着し易く、この付着水(結
露水)に雰囲気中の腐食媒が溶け込むと伝熱管の腐食が
促進し冷媒が漏洩するようになるという問題がある。こ
の結露水に起因する腐食はアルミフィンと銅伝熱管の組
合せだけでなく、フィンと伝熱管が銅、アルミ、鉄など
の各種金属材料の組合わせによる場合には必ず起こり得
る。そして、付着水に溶け込む腐食媒がカルボン酸の場
合は、銅または銅合金管の伝熱管では蟻の巣状腐食が発
生して比較的短期間のうちに冷媒が漏洩し始める。前記
カルボン酸は、合板用またはクロス用の接着剤から発生
するアルデヒドやアルコ−ルが酸化しても生成するの
で、空調機器の室内機は腐食媒を含む環境下で使用され
る危険性が高い。
However, in a heat exchanger using a hydrophilic precoat fin, dew water easily enters the gap between the fin collar and the heat transfer tube and adheres to the heat exchanger. There is a problem that when the corrosive medium therein is dissolved, corrosion of the heat transfer tube is accelerated and the refrigerant leaks. Corrosion caused by the dew water can occur not only when aluminum fins and copper heat transfer tubes are combined but also when fins and heat transfer tubes are combined with various metal materials such as copper, aluminum, and iron. When the corrosive medium dissolved in the attached water is carboxylic acid, ant nest corrosion occurs in the heat transfer tube of the copper or copper alloy tube, and the refrigerant starts to leak in a relatively short period of time. Since the carboxylic acid is generated even when aldehyde or alcohol generated from the adhesive for plywood or cloth is oxidized, the indoor unit of the air conditioner has a high risk of being used in an environment containing a corrosive medium. .

【0004】一方、暖房運転時の室外機で生じるフィン
間の着霜を防止する方法として、フィン全面、あるい
は、図5に示すように、フィン6全面と伝熱管1の外面
の両方に撥水性皮膜2を形成する方法が提案されている
(特開平6−123576)。しかし、この方法を冷房
運転時の室内機に応用した場合、撥水性が経時的に劣化
するに伴い、アルミフィン表面に結露した水滴が飛散す
るようになり、室内が濡れるという問題がある。
On the other hand, as a method of preventing frost formation between the fins generated in the outdoor unit during the heating operation, water repellency is applied to the entire surface of the fin, or both the entire surface of the fin 6 and the outer surface of the heat transfer tube 1 as shown in FIG. A method for forming the film 2 has been proposed (Japanese Patent Application Laid-Open No. 6-123576). However, when this method is applied to an indoor unit during a cooling operation, there is a problem that as the water repellency deteriorates with time, water droplets condensed on the surface of the aluminum fins scatter and the interior becomes wet.

【0005】ところで、フィンに伝熱管を拡管接合させ
たクロスフィンタイプの熱交換器では、熱交換器の小型
化を狙ってフィンの間隔を狭める傾向があり、近頃で
は、図5に示すように、伝熱管1は、フィン6のカラ−
部4に覆われて露出しない程になっている。したがっ
て、伝熱管1に蟻の巣状腐食が生じるのは、伝熱管1と
フィンカラ−部4との間隙に結露水が侵入して付着し、
かつ、前記付着水にカルボン酸等の腐食媒が溶け込んだ
ときに限られる。このことから、本発明者等はフィンに
はカラー部の内面(伝熱管に接合する方の面)にのみ撥
水処理を施せば良いことを知見し、さらに研究を進めて
本発明を完成させるに至った。本発明は、蟻の巣状腐食
などが生じ難く、かつ長期間使用しても水滴が飛散した
りしない熱交換器の提供を目的とする。
Meanwhile, in a cross-fin type heat exchanger in which a heat transfer tube is expanded and joined to a fin, the interval between the fins tends to be narrowed in order to reduce the size of the heat exchanger. Recently, as shown in FIG. The heat transfer tube 1 is provided with a color of the fin 6.
It is covered with the part 4 so that it is not exposed. Therefore, the ant nest-like corrosion of the heat transfer tube 1 occurs because dew condensation water enters and adheres to the gap between the heat transfer tube 1 and the fin collar portion 4.
Further, it is limited to a case where a corrosive medium such as a carboxylic acid is dissolved in the attached water. From these facts, the present inventors have found that it is only necessary to apply the water repellent treatment to the inner surface of the fin (the surface to be joined to the heat transfer tube) on the fin, and further research to complete the present invention. Reached. An object of the present invention is to provide a heat exchanger in which ant nest-like corrosion is unlikely to occur and water droplets are not scattered even when used for a long time.

【0006】[0006]

【課題を解決するための手段】請求項1記載の発明は、
フィンと伝熱管が機械的に接合された構造の熱交換器に
おいて、前記伝熱管の外面またはフィンのカラ−部内面
(伝熱管に接合する方の面)の少なくとも一方に撥水処
理が施され、かつ前記フィンのカラ−部内面以外の面に
は撥水処理が施されていないことを特徴とする熱交換器
である。
According to the first aspect of the present invention,
In a heat exchanger having a structure in which a fin and a heat transfer tube are mechanically joined, at least one of an outer surface of the heat transfer tube or an inner surface of a collar portion of the fin (a surface to be joined to the heat transfer tube) is subjected to a water-repellent treatment. The heat exchanger is characterized in that a water repellent treatment is not applied to a surface other than the inner surface of the collar portion of the fin.

【0007】請求項2記載の発明は、フィンのカラ−部
内面以外の面に親水処理が施されていることを特徴とす
る請求項1記載の熱交換器である。
A second aspect of the present invention is the heat exchanger according to the first aspect, wherein a surface other than the inner surface of the collar portion of the fin is subjected to a hydrophilic treatment.

【0008】請求項3記載の発明は、伝熱管が銅または
銅合金で構成され、フィンがアルミニウムまたはアルミ
ニウム合金で構成されていることを特徴とする請求項1
または2記載の熱交換器である。
According to a third aspect of the present invention, the heat transfer tube is made of copper or a copper alloy, and the fin is made of aluminum or an aluminum alloy.
Or the heat exchanger according to 2.

【0009】[0009]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0010】図1は本発明の第1の例を示す部分拡大縦
断面図である。伝熱管1の外面に撥水性皮膜2が形成さ
れている。このためプレコートフィン3の表面に結露水
が発生して伝熱管近傍に溜まったとしても、これが伝熱
管1とフィンのカラ−部4との間隙に侵入し付着するよ
うなことは起き難く、伝熱管1は腐食が抑制される。ま
た、フィンの表面には親水性皮膜が形成されているため
結露水は水滴となり難く、結露水が飛散して室内を濡ら
すようなことは起き難い。また、伝熱管の外面に撥水処
理が施されているので、伝熱管の外面に直接結露するこ
とがあっても、伝熱管と結露水の接触面積は著しく小さ
く、伝熱管の腐食はより確実に抑制される。
FIG. 1 is a partially enlarged longitudinal sectional view showing a first embodiment of the present invention. A water-repellent coating 2 is formed on the outer surface of the heat transfer tube 1. For this reason, even if dew condensation water is generated on the surface of the precoat fins 3 and accumulates near the heat transfer tubes, it is unlikely that the water will enter the gap between the heat transfer tubes 1 and the collar portions 4 of the fins and adhere to it. Corrosion of the heat tube 1 is suppressed. In addition, since a hydrophilic film is formed on the surface of the fin, the dew condensation water hardly forms water droplets, and the dew condensation water is unlikely to scatter and wet the room. In addition, since the outer surface of the heat transfer tube is water-repellent, even if dew condensation occurs directly on the outer surface of the heat transfer tube, the contact area between the heat transfer tube and the condensed water is extremely small, and the corrosion of the heat transfer tube is more reliable. Is suppressed.

【0011】図2は本発明の第2の例を示す部分拡大縦
断面図である。伝熱管1の外面と接するフィンカラ−部
4の内面にのみ撥水性皮膜2が形成されており、伝熱管
1の外面には撥水性皮膜が形成されていない。プレコ−
トフィン3を用いる場合は、フィンのカラ−部4内面の
親水性皮膜5を除去せずに、その上に撥水処理を施す方
が製造コスト的に有利である。
FIG. 2 is a partially enlarged longitudinal sectional view showing a second embodiment of the present invention. The water-repellent film 2 is formed only on the inner surface of the fin collar portion 4 which is in contact with the outer surface of the heat transfer tube 1, and the water-repellent film is not formed on the outer surface of the heat transfer tube 1. Pleco
When the tofin 3 is used, it is more advantageous in terms of manufacturing cost to perform a water-repellent treatment on the inner surface of the fin collar portion 4 without removing the hydrophilic film 5.

【0012】図3は本発明の第3の例を示す部分拡大縦
断面図である。伝熱管1の外面とフィンカラ−部4の内
面の両方に撥水性皮膜2が形成されている。このもの
は、伝熱管1の外面とフィンカラ−部4の内面の両方に
撥水処理が施されているので、結露水が伝熱管1とフィ
ンのカラ−部4との間隙に侵入し付着することがより確
実に抑制され、伝熱管の耐食性は極めて高い。
FIG. 3 is a partially enlarged longitudinal sectional view showing a third embodiment of the present invention. A water-repellent coating 2 is formed on both the outer surface of the heat transfer tube 1 and the inner surface of the fin collar portion 4. In this case, since water repellent treatment is applied to both the outer surface of the heat transfer tube 1 and the inner surface of the fin collar portion 4, dew condensation water enters the gap between the heat transfer tube 1 and the collar portion 4 of the fin and adheres thereto. Is more reliably suppressed, and the heat transfer tube has extremely high corrosion resistance.

【0013】本発明において、フィンのカラ−部の内面
以外の面には親水処理を施しておくのが、結露水のブリ
ッジ防止および結露水の飛散防止の観点から望ましい。
撥水処理剤には、図4に示すように、水との接触角θが
90°以上の処理剤が望ましい。熱交換器の伝熱性能を
考慮すると、伝熱管とフィンカラ−部との間に形成され
る撥水性皮膜の総厚さは10μm以下にするのが望まし
い。本発明において、撥水性処理を施すフィンのカラー
部内面とは、伝熱管と接合する方の面であるが、撥水処
理はその近傍にも施すのが望ましい。
In the present invention, it is preferable that a surface other than the inner surface of the collar portion of the fin is subjected to a hydrophilic treatment from the viewpoint of preventing dew condensation water from being bridged and dew condensation water from being scattered.
As shown in FIG. 4, the water-repellent agent preferably has a contact angle θ with water of 90 ° or more. In consideration of the heat transfer performance of the heat exchanger, the total thickness of the water-repellent film formed between the heat transfer tube and the fin collar portion is desirably 10 μm or less. In the present invention, the inner surface of the collar portion of the fin to be subjected to the water-repellent treatment is the surface to be joined to the heat transfer tube, but it is desirable to perform the water-repellent treatment also in the vicinity thereof.

【0014】[0014]

【実施例】以下に本発明を実施例により詳細に説明す
る。 (実施例1)アルミ素条(JIS-A1200,500×25×0.1mm)に
2列×12個のカラ−部をプレス加工により形成してアル
ミフィンとし、このアルミフィンの所要枚数を前記カラ
ー部を一致させて積層し、この積層体のカラー部に燐脱
酸銅管(JIS−C1220,外径7mm,肉厚0.3mm)を挿通し、次い
で前記燐脱酸銅管をマンドレルにより拡管してカラ−部
に機械的に接合してクロスフィンタイプの熱交換器 (外
寸 500×25×250mm)を作製した。撥水処理は、燐脱酸銅
管の外面、フィンのカラー部内面、またはその両方に施
した。プレコ−トフィンの場合は親水性皮膜の上に撥水
処理を施した。
The present invention will be described below in detail with reference to examples. (Example 1) Aluminum fins were formed by pressing two rows x 12 collars on an aluminum strip (JIS-A1200, 500 x 25 x 0.1 mm) to form aluminum fins. The phosphorous deoxidized copper tube (JIS-C1220, outer diameter 7 mm, wall thickness 0.3 mm) is inserted through the collar part of the laminated body, and then the phosphorus deoxidized copper tube is expanded with a mandrel. To form a cross-fin type heat exchanger (external dimensions 500 × 25 × 250 mm). The water repellent treatment was applied to the outer surface of the phosphor deoxidized copper tube, the inner surface of the fin collar, or both. In the case of precoat fins, a water repellent treatment was applied on the hydrophilic film.

【0015】得られた各々の熱交換器について伝熱性能
と耐食性を調べた。 〔伝熱性能〕下記条件で蒸発時の空気側交換熱量を測定
して調べた。 管内冷媒:R−22、入口空気の乾球温度:27.0
℃、湿球温度:19.0℃、風速:1m/秒、出口冷媒
蒸発圧力:5.4Kg/cm2 、膨張弁前冷媒温度:4
0.0℃、出口冷媒過熱度:5.0℃。 〔耐食性〕熱交換器からサンプル (外寸 100×25×150m
m)を切出し、これを1vol%蟻酸の水溶液を封入したデシ
ケ−タ−の気相部に1カ月間暴露し、フィンカラ−部と
接触していた伝熱管外面について蟻の巣状腐食の深さを
調査した。従来品についても同様の調査を行った。
The heat transfer performance and corrosion resistance of each of the obtained heat exchangers were examined. [Heat transfer performance] The air side heat exchange during evaporation was measured and examined under the following conditions. Refrigerant in pipe: R-22, dry bulb temperature of inlet air: 27.0
° C, wet bulb temperature: 19.0 ° C, wind speed: 1 m / sec, outlet refrigerant evaporation pressure: 5.4 Kg / cm 2 , refrigerant temperature before expansion valve: 4
0.0 ° C, outlet refrigerant superheat: 5.0 ° C. [Corrosion resistance] Sample from heat exchanger (external size 100 × 25 × 150m
m) was cut out and exposed to the gas phase of a desiccator filled with an aqueous solution of 1 vol% formic acid for 1 month, and the outer surface of the heat transfer tube in contact with the fin collar was exposed to ant-nest corrosion. investigated. A similar investigation was conducted for conventional products.

【0016】結果を表1に示す。表1には撥水処理と親
水処理の条件を併記した。表中、撥Aは撥水性のフッ素
樹脂皮膜、撥Bは撥水性のシリコン樹脂皮膜、撥Cは撥
水性のパラフィン皮膜、親Dは親水性の水ガラス皮膜、
親Eは親水性アクリル樹脂皮膜、親Fは親水性セルロー
ス樹脂皮膜である。数値は、例えば5/100 は、上段が
皮膜厚さ(μm)、下段が皮膜と水の接触角度(度)を
表す。無処理/75は撥水処理または親水処理を行わず、
下段の数値は無処理の伝熱管外面またはフィン表面と水
との接触角度(度)を表す。
The results are shown in Table 1. Table 1 also shows the conditions of the water-repellent treatment and the hydrophilic treatment. In the table, A is a water-repellent fluororesin film, B is a water-repellent silicone resin film, C is a water-repellent paraffin film, D is a hydrophilic water glass film,
Parent E is a hydrophilic acrylic resin film, and parent F is a hydrophilic cellulose resin film. Numerical values, for example, 5/100, the upper part represents the film thickness (μm) and the lower part represents the contact angle (degree) of the film with water. No treatment / 75 does not perform water repellent treatment or hydrophilic treatment,
The lower numerical values represent the contact angle (degree) between the untreated heat transfer tube outer surface or the fin surface and water.

【0017】[0017]

【表1】 (註)接触角は伝熱管と同じ材質の板材について測定した。接触角はカラー 部を切開いて平板状にして測定した。接触角はプレス加工前のフィン素条につ いて測定した。蟻の巣状腐食の深さ。従来品のNo.9を基準にした相対値。[Table 1] (Note) The contact angle was measured for a plate made of the same material as the heat transfer tube. The contact angle was measured by cutting out the collar part and making it flat. The contact angle was measured on the fin strip before pressing. Ant nest corrosion depth. Relative value based on No. 9 of conventional products.

【0018】表1より明らかなように、本発明例品 (N
o.1〜8)は、一部に蟻の巣状腐食が発生したが、その程
度はごく軽微で実用上差し支えない程度のものであっ
た。中でも伝熱管外面とフィンカラー内面の両方に撥水
性皮膜を形成したNo.6〜8 は蟻の巣状腐食を全く生じな
かった。伝熱性能は従来品と同等かそれ以上であった。
これに対し、比較例品は撥水処理を施さなかったため蟻
の巣状腐食が深く進行した。
As is clear from Table 1, the products of the present invention (N
In o.1 to 8), ant's nest-like corrosion occurred partially, but the degree was very small and of a degree that would not be harmful in practical use. Above all, No. 6 to 8 in which the water-repellent coating was formed on both the outer surface of the heat transfer tube and the inner surface of the fin collar did not cause any nest corrosion. The heat transfer performance was equal to or better than the conventional product.
On the other hand, the comparative example product did not undergo the water repellent treatment, so that the ant nest-like corrosion advanced deeply.

【0019】(実施例2)実施例1で組立てた熱交換器
を冷房運転時の室内機に使用したが、良好な冷却能が保
持され、かつ使用中水滴が飛散するようなことは全くな
かった。フィンの全面に撥水処理を施した従来の熱交換
器(図5参照)も同様にして使用したが、この熱交換器
は、ある時期から水滴が飛散するようになった。これは
フィンの撥水性が経時的に劣化し、フィン面に生じた結
露水が飛散したためである。
(Embodiment 2) The heat exchanger assembled in Embodiment 1 was used for an indoor unit during a cooling operation. However, good cooling performance was maintained and no water droplets were scattered during use. Was. A conventional heat exchanger (see FIG. 5) having the entire surface of the fins subjected to a water-repellent treatment was used in the same manner, but in this heat exchanger, water droplets began to scatter from a certain time. This is because the water repellency of the fins deteriorated with time, and the dew water generated on the fin surfaces was scattered.

【0020】[0020]

【発明の効果】以上に述べたように、本発明の熱交換器
は、伝熱管外面とフィンカラー部内面の少なくとも一方
に撥水処理が施されているので、結露水が伝熱管とフィ
ンカラー部との間隙に侵入して付着することがなく、伝
熱管に蟻の巣状腐食などが発生し難い。またフィンには
伝熱管と接するカラー部内面にのみ撥水処理を施すの
で、撥水性の経時的劣化による水滴飛散などが抑制され
る。フィンのカラー部内面以外の面に親水処理を施すと
前記水滴飛散がより確実に抑えられる。
As described above, in the heat exchanger of the present invention, at least one of the outer surface of the heat transfer tube and the inner surface of the fin collar portion is subjected to the water-repellent treatment. It does not penetrate into and adhere to the gap with the part, and ant nest-like corrosion is unlikely to occur on the heat transfer tube. In addition, since the fins are subjected to the water-repellent treatment only on the inner surface of the collar portion which is in contact with the heat transfer tube, scattering of water droplets due to temporal deterioration of the water-repellency is suppressed. When the surface of the fin other than the inner surface of the collar portion is subjected to the hydrophilic treatment, the scattering of the water droplet is more reliably suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱交換器の第1の例を示す部分拡大縦
断面図である。
FIG. 1 is a partially enlarged longitudinal sectional view showing a first example of a heat exchanger of the present invention.

【図2】本発明の熱交換器の第2の例を示す部分拡大縦
断面図である。
FIG. 2 is a partially enlarged longitudinal sectional view showing a second example of the heat exchanger of the present invention.

【図3】本発明の熱交換器の第3の例を示す部分拡大縦
断面図である。
FIG. 3 is a partially enlarged longitudinal sectional view showing a third example of the heat exchanger of the present invention.

【図4】撥水性皮膜と水との接触角度の説明図である。FIG. 4 is an explanatory diagram of a contact angle between a water-repellent film and water.

【図5】従来の熱交換器の部分拡大縦断面図である。FIG. 5 is a partially enlarged longitudinal sectional view of a conventional heat exchanger.

【符号の説明】[Explanation of symbols]

1 伝熱管 2 撥水性皮膜 3 プレコートフィン 4 フィンのカラー部 5 親水性皮膜 6 フィン REFERENCE SIGNS LIST 1 heat transfer tube 2 water repellent film 3 pre-coated fin 4 fin collar 5 hydrophilic film 6 fin

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 フィンと伝熱管が機械的に接合された構
造の熱交換器において、前記伝熱管の外面またはフィン
のカラ−部内面(伝熱管に接合する方の面)の少なくと
も一方に撥水処理が施され、かつ前記フィンのカラ−部
内面以外の面には撥水処理が施されていないことを特徴
とする熱交換器。
In a heat exchanger having a structure in which a fin and a heat transfer tube are mechanically joined, at least one of an outer surface of the heat transfer tube or an inner surface of a collar portion of the fin (a surface to be joined to the heat transfer tube) is repelled. A heat exchanger characterized by being subjected to a water treatment and not being subjected to a water-repellent treatment on surfaces other than the inner surface of the collar portion of the fin.
【請求項2】 フィンのカラ−部内面以外の面に親水処
理が施されていることを特徴とする請求項1記載の熱交
換器。
2. The heat exchanger according to claim 1, wherein a surface of the fin other than the inner surface of the collar portion is subjected to a hydrophilic treatment.
【請求項3】 伝熱管が銅または銅合金で構成され、フ
ィンがアルミニウムまたはアルミニウム合金で構成され
ていることを特徴とする請求項1または2記載の熱交換
器。
3. The heat exchanger according to claim 1, wherein the heat transfer tube is made of copper or a copper alloy, and the fin is made of aluminum or an aluminum alloy.
JP15663697A 1997-06-13 1997-06-13 Heat exchanger Pending JPH112497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15663697A JPH112497A (en) 1997-06-13 1997-06-13 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15663697A JPH112497A (en) 1997-06-13 1997-06-13 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH112497A true JPH112497A (en) 1999-01-06

Family

ID=15632010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15663697A Pending JPH112497A (en) 1997-06-13 1997-06-13 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH112497A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231967A (en) * 2010-04-27 2011-11-17 Sanden Corp Heat exchanger and method for manufacturing heat exchanger
US20120125030A1 (en) * 2010-11-19 2012-05-24 Juhyok Kim Outdoor heat exchanger and heat pump having the same
EP2789939A4 (en) * 2011-12-09 2015-07-15 Panasonic Corp FRIDGE
CN111609558A (en) * 2020-05-15 2020-09-01 华帝股份有限公司 Method for preventing water pipe from being corroded and water heater using same
KR102484764B1 (en) * 2022-04-27 2023-01-06 한국생산기술연구원 Hybrid heat exchange pad, Hybrid heat exchange module including hybrid heat exchange pad

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011231967A (en) * 2010-04-27 2011-11-17 Sanden Corp Heat exchanger and method for manufacturing heat exchanger
US20120125030A1 (en) * 2010-11-19 2012-05-24 Juhyok Kim Outdoor heat exchanger and heat pump having the same
EP2789939A4 (en) * 2011-12-09 2015-07-15 Panasonic Corp FRIDGE
CN111609558A (en) * 2020-05-15 2020-09-01 华帝股份有限公司 Method for preventing water pipe from being corroded and water heater using same
KR102484764B1 (en) * 2022-04-27 2023-01-06 한국생산기술연구원 Hybrid heat exchange pad, Hybrid heat exchange module including hybrid heat exchange pad

Similar Documents

Publication Publication Date Title
JPS5942615Y2 (en) Evaporator
KR20150106230A (en) Heat exchanger and method for manufacturing the same, and outdoor unit for air-conditioner having the heat exchanger
JP2013092351A (en) Heat exchanger fin, heat exchanger and air-conditioning device
JPH112497A (en) Heat exchanger
CN106403641A (en) Heat exchanger and refrigeration cycle apparatus
JPH08323285A (en) Member with excellent water repellency and anti-frosting property and its preparation
JPS60205194A (en) Fin member material for heat exchanger
JPS6045776B2 (en) Stacked evaporator
JP3059307B2 (en) A member excellent in water repellency and frost prevention and a method of manufacturing the same
JPH11304395A (en) Member for heat exchanger and heat exchanger using it
JP2002071295A (en) Evaporator
JP2001201289A (en) Aluminum fin material for heat exchanger
JP2001208494A (en) Heat exchanger
JPH11325792A (en) Heat exchanger
JP3258244B2 (en) Fin material for heat exchanger with excellent hydrophilicity
JPH08121984A (en) Heat transfer tube for non-azeotropic mixed refrigerant and heat exchanger, refrigerating device, and air conditioner for mixed refrigerant using the same
JP2022103471A (en) Hydrophilic film and pre-coated fin material and heat exchanger
JP2004044909A (en) Aluminum fin material for heat exchanger, fin, and fin tube type heat exchanger
JPS62155493A (en) Heat exchanger with fins
JP2020098064A (en) Hydrophilic coating for heat exchanger fin material, aluminum fin material for heat exchanger, and heat exchanger
CN222123323U (en) Air conditioner
CN116113669B (en) Pre-coated fin material
JP2000304491A (en) Heat exchanger member
JP2912032B2 (en) Aluminum fin material for heat exchanger having Cu tube and heat exchanger having Cu tube using the same
JPH0219390B2 (en)