JPH11248033A - High-pressure-reducing regulating valve - Google Patents
High-pressure-reducing regulating valveInfo
- Publication number
- JPH11248033A JPH11248033A JP10090530A JP9053098A JPH11248033A JP H11248033 A JPH11248033 A JP H11248033A JP 10090530 A JP10090530 A JP 10090530A JP 9053098 A JP9053098 A JP 9053098A JP H11248033 A JPH11248033 A JP H11248033A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- fluid
- flow path
- valve
- reducing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001105 regulatory effect Effects 0.000 title abstract description 3
- 239000012530 fluid Substances 0.000 claims abstract description 51
- 230000006837 decompression Effects 0.000 claims abstract description 18
- 230000007423 decrease Effects 0.000 claims description 3
- 230000002159 abnormal effect Effects 0.000 claims 1
- 238000005452 bending Methods 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L55/00—Devices or appurtenances for use in, or in connection with, pipes or pipe systems
- F16L55/02—Energy absorbers; Noise absorbers
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Pipe Accessories (AREA)
- Details Of Valves (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高圧流体のための高圧
力減圧調節弁に関する。本明細書に於て、流体とは蒸気
を含む気体又は液体を意味する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high pressure reducing valve for high pressure fluid. In the present specification, a fluid means a gas or a liquid containing vapor.
【0002】従来、高圧流体のための減圧調節弁は発明
考案されてきた。例えば米国特許第3,813,079
号等である。Heretofore, pressure reducing valves for high pressure fluids have been invented. For example, U.S. Pat. No. 3,813,079
No. etc.
【0003】[0003]
【発明が解決しようとする課題】然し乍ら、これらの発
明のものは、未だキャビテーションの発生の虞あるなど
の問題点があった。即ち、従来技術のものは、前記米国
特許第3,813,079号公報の図6に示される高圧
力減圧機構(Apparatus for Effec
ting Gas FlowPresure Redu
ction)とその断面平面図(図7)に示されるもの
であり、未だキャビテーション発生の虞があると云う問
題があった。本発明者は、この問題点を解決すべく本発
明を完成したのである。However, these inventions have a problem that cavitation may still occur. That is, the prior art is a high-pressure depressurizing mechanism (Apparatus for Effect) shown in FIG. 6 of the aforementioned US Pat. No. 3,813,079.
ting Gas FlowPresure Redu
ction) and its sectional plan view (FIG. 7), and there is a problem that cavitation may still occur. The present inventor has completed the present invention to solve this problem.
【0004】[0004]
【課題を解決するための手段】本発明は、前記課題を解
決するために、図1乃至図5に図示のように、流体入口
10と流体出口11との間の流路の所要位置に存する減
圧装置において、弁座4と該弁座に着座可能な弁プラグ
3との間を通過した高圧力流体を所定以下の流速を保ち
ながら減圧させる高圧力減圧装置6が構成され、該高圧
力減圧装置6は、該減圧装置6内の流路を流体が流れる
ことによって該流体の圧力水頭エネルギーを損失させ、
該圧力流体を所定の圧力に迄減圧させるように、直角の
曲りを有する穴12を必要個数設けた円筒状のケージ1
5を、各ケージ15(15a,15b又は15c)に穿
設の穴12(12a,12b、12c又は12d,12
e、12f)が隣接のケージの穴12と連絡し合うこと
でジグザグの流路13を形成するように重ね合わせた高
圧力減圧調節弁において、前記ジグザグの流路13はそ
れぞれ高圧力減圧装置6の入口から出口まで独立して所
要数の直角の曲りを有する流路が放射状に形成されるも
のであるようにし、そのケージ15,15は所要数のも
のを相互に嵌挿入し合うように、圧力バランスシリンダ
7に嵌め込まれるものである。前記穴12(12a,1
2b,12c又は12,12e,12f)は、実用上
は、角穴(四角形の穴)又は丸穴とする。In order to solve the above-mentioned problems, the present invention resides in a required position of a flow path between a fluid inlet 10 and a fluid outlet 11, as shown in FIGS. In the depressurizing device, a high-pressure depressurizing device 6 is configured to depressurize the high-pressure fluid that has passed between the valve seat 4 and the valve plug 3 that can be seated on the valve seat while maintaining a flow rate equal to or lower than a predetermined value. The device 6 loses the pressure head energy of the fluid by flowing the fluid through the flow path in the pressure reducing device 6,
A cylindrical cage 1 provided with a required number of holes 12 having a right-angle bend so as to reduce the pressure fluid to a predetermined pressure.
5 is inserted into each cage 15 (15a, 15b or 15c) with a hole 12 (12a, 12b, 12c or 12d, 12d).
e, 12f) communicate with the holes 12 of the adjacent cages to form a zigzag flow path 13 in the high pressure decompression control valve, wherein the zigzag flow paths 13 are each provided with a high pressure decompression device 6. The required number of channels having a right-angle bend are formed radially independently from the inlet to the outlet of the car, and the cages 15 and 15 are inserted so that the required number of them can be inserted into each other. It is fitted into the pressure balance cylinder 7. The hole 12 (12a, 1
2b, 12c or 12, 12e, 12f) is a square hole (square hole) or a round hole for practical use.
【0005】図3の実施例図面(図4のX−O−X′断
面)に示すように、穴12(角穴又は丸穴)を一つおき
に弁座4からプラグ3が離れる方向に連続的に形成しあ
るのであるが、流体の流路を形成する穴12が夫々出口
側へ向って独立した流路13を形成しているため、他の
流路13からの緩衝を受けないのである。図8のグラフ
に図示するように、弁座とプラグの距離と減圧装置への
入口流路面積とは正比例の関係となる。この点でも、従
来技術での図7に図示するようにグラフ曲線が階段状の
特性となるものとは根本的な差異がある。[0005] As shown in the drawing of the embodiment of FIG. 3 (section XOX 'of FIG. 4), every other hole 12 (square hole or round hole) is inserted in the direction in which the plug 3 is separated from the valve seat 4. Although they are formed continuously, since the holes 12 forming the fluid flow paths form independent flow paths 13 toward the outlet side, respectively, they are not buffered by the other flow paths 13. is there. As shown in the graph of FIG. 8, the distance between the valve seat and the plug and the area of the inlet passage to the pressure reducing device are in direct proportion. Also in this point, there is a fundamental difference from the conventional technique in which the graph curve has a step-like characteristic as shown in FIG.
【0006】前記高圧力減圧装置における前記複数個の
穴12(12a,12b,12c,又は12d,12
e,12f)の断面積は弁座4から弁プラグ3が離れる
距離(弁ストローク)に正比例した減圧装置への入口流
路面積を形成するようにその位置によりその断面積を漸
増又は漸減する寸法となすものである。[0006] The plurality of holes 12 (12a, 12b, 12c, or 12d, 12d) in the high pressure decompression device.
e, 12f) is a dimension that gradually increases or decreases its cross-sectional area depending on its position so as to form an inlet flow area to the pressure reducing device that is directly proportional to the distance (valve stroke) where the valve plug 3 separates from the valve seat 4. It is something to make.
【0007】高圧力流体を所定の流速以下に保つように
流路の直角の曲りの数を決めるにおいて、前記高圧力減
圧装置6を通過する流体が絞り部又はオリフィスを通過
する時に発生する高流速によって流体圧力が飽和圧力以
下になるような現象を生じないようにした曲りの数とす
る。In determining the number of right-angle bends in the flow path so as to keep the high-pressure fluid at a predetermined flow rate or less, the high flow rate generated when the fluid passing through the high-pressure decompression device 6 passes through the throttle or the orifice is determined. The number of bends is set so as not to cause a phenomenon that the fluid pressure falls below the saturation pressure.
【0008】流体が気体の場合のためには流路の外側方
向へ流路断面積を漸次大(又は漸次小)ならしめるよう
に、前記穴12(12a,12b,12c、又は12
d、12e、12f)の幅を決める。(図2、図3及び
図4参照)。同図は、気体の流れが中心部より外側に向
う場合のものであって、流路13の深さを一定とし、流
路幅を漸次大として流路断面面積を漸次大とする実施例
を示す。図示のように中心側より順次W1,W2、W3
とするとき W2/W1=W3/W2=k>1+α である。αの値は装置の使用状態に応じて規定する。In the case where the fluid is a gas, the hole 12 (12a, 12b, 12c, or 12c) is made to gradually increase (or gradually decrease) the cross-sectional area of the flow path toward the outside of the flow path.
d, 12e, 12f) are determined. (See FIGS. 2, 3 and 4). The figure shows an example in which the flow of gas is directed outward from the center, in which the depth of the flow path 13 is constant, the flow path width is gradually increased, and the flow path cross-sectional area is gradually increased. Show. As shown, W 1 , W 2 , W 3 are sequentially arranged from the center side.
W 2 / W 1 = W 3 / W 2 = k> 1 + α. The value of α is defined according to the use state of the device.
【0009】図5は気体の流れが外側より中心部に向う
場合を示すものであって、流路13の深さを一定とした
とき、図5に図示のように、流路12の流路断面積は漸
次小ならしめるように、前記穴12(12d,12c、
12f)の幅を決める。図5に示すように、中心側より
順次W4,W5,W6とするとき W5/W4=W6/W5=k′<1−β である。β値は装置の使用状態に応じて規定する。FIG. 5 shows a case in which the gas flows from the outside toward the center. When the depth of the flow path 13 is constant, as shown in FIG. The hole 12 (12d, 12c,
Determine the width of 12f). As shown in FIG. 5, when W 4 , W 5 , and W 6 are sequentially set from the center side, W 5 / W 4 = W 6 / W 5 = k ′ <1-β. The β value is defined according to the use condition of the device.
【0010】[0010]
【作用】本発明における高圧力減圧装置6は、流体入口
10と流体出口11との間の流路の所要位置に存する減
圧装置で、弁座4と該弁座に着座可能な弁プラグ3との
間を通過した高圧力流体を所定以下の流速を保ちながら
減圧させる高圧力減圧装置6が構成され、該高圧力減圧
装置6は、該減圧装置6内の流路を流体が流れることに
よって該流体の圧力水頭エネルギーを損失させ該圧力流
体を所期の圧力に迄減圧させるように、直角の曲りを有
する穴12を必要個数設けた円筒状のケージ15を、各
ケージ15(15a,15B又は15c)に穿設の穴1
2(12a,12b、12c又は12d,12e、12
f)が隣接のケージの穴12と連絡し合うことでジグザ
グの流路13を形成するように重ね合わせた高圧力減圧
調節弁において、前記ジグザグの流路13はそれぞれ高
圧力減圧装置6の入口から出口まで独立して所要数の直
角の曲りを有する流路が放射状に形成されるものである
構成となしたので、流体圧力が飽和圧力以下になること
が防止され、キャビテーションの発生が適確に防止され
るのである。The high pressure decompression device 6 according to the present invention is a decompression device located at a required position of a flow path between the fluid inlet 10 and the fluid outlet 11, and includes a valve seat 4 and a valve plug 3 that can be seated on the valve seat. A high-pressure depressurizing device 6 is configured to depressurize the high-pressure fluid that has passed through the gap while maintaining a flow rate equal to or lower than a predetermined value. Each of the cages 15 (15a, 15B or 15a or 15B or 15a, 15B or 15B) is provided with a required number of holes 12 having a right-angled bend so that the pressure head energy of the fluid is lost and the pressure fluid is reduced to a desired pressure. Hole 1 drilled in 15c)
2 (12a, 12b, 12c or 12d, 12e, 12
f) is connected to the hole 12 of the adjacent cage to form a zigzag flow path 13, wherein the zigzag flow path 13 is provided at the inlet of the high pressure decompression device 6. The required number of right-angled channels are formed radially independently from the outlet to the outlet, so that the fluid pressure is prevented from falling below the saturation pressure and cavitation is accurately generated. Is prevented.
【0011】高圧力流体を所定の流速以下に保つように
流路の直角の曲りの数を決めるにおいて、前記高圧力減
圧装置6を通過する流体が曲り部(絞り部又はオリフィ
ス)を通過する時に発生する高圧流体によって流体圧力
が飽和圧力以下になるような現象を生じないように曲り
の数となすのは、前記の作用効果を充分ならしめるため
である。In determining the number of right-angle bends in the flow path so as to keep the high-pressure fluid at a predetermined flow rate or less, when the fluid passing through the high-pressure decompression device 6 passes through a bend (throttle or orifice). The number of bends is set so as not to cause a phenomenon that the fluid pressure becomes lower than the saturation pressure due to the generated high-pressure fluid, in order to sufficiently enhance the above-described operation and effect.
【0012】流体が気体の場合のためには、該気体の流
れが中心部より外側に向う場合のものを図示した図4に
図示のように、流路12の流路断面積を外側に向って漸
次大ならしめるのは、中心部より外側に進む気体が、減
圧されるに従い漸次膨張することに対応させて、流速を
常に所定速度以下に保持させるためである。In the case where the fluid is a gas, the cross-sectional area of the flow path 12 is directed outward as shown in FIG. 4 showing the case where the flow of the gas is directed outward from the center. The reason for gradually increasing the flow rate is to keep the flow velocity at a predetermined speed or less in response to the gas that progresses outward from the center gradually expanding as the pressure is reduced.
【0013】図5に図示のように、該気体の流れが外側
より中心部に向う場合のものにおいても、流路12の流
路断面積を中心部に向って漸次大ならしめるものも、気
体が減圧されるに従い漸次膨張することに対応させるた
めである。As shown in FIG. 5, even when the flow of the gas is directed from the outside toward the center, the flow path 12 having the flow path cross-sectional area gradually increased toward the center may be used. In order to correspond to the gradual expansion as the pressure is reduced.
【0014】[0014]
【実施例】図1は、本発明に係わる高圧力調節弁の縦断
面図である。図中、1は弁本体であって、該弁本体は、
流体の入口10及び流体の出口11を有し、その間に流
路が形成され、この弁本体1には、弁座4及び、外部か
らの力を弁軸5に加えることにより自由に上下できて弁
座4に着座可能な弁プラグ3を備える。該弁プラグ3に
は、図示のように、圧力バランス穴8が上下方向に穿設
され、圧力バランスシリンダ7には圧力バランスシール
リング9が弁プラグ3との間に装着される。2は弁蓋
(ボンネット)である。図1に図示されるように、上記
調節弁に弁プラグ3に外接する高圧力減圧装置6が設け
られる。FIG. 1 is a longitudinal sectional view of a high pressure regulating valve according to the present invention. In the figure, 1 is a valve body, and the valve body is
The valve body 1 has a fluid inlet 10 and a fluid outlet 11, between which a flow path is formed. The valve body 1 can freely move up and down by applying a force from the outside to the valve shaft 5. A valve plug (3) that can be seated on a valve seat (4) is provided. As shown, a pressure balance hole 8 is formed in the valve plug 3 in a vertical direction, and a pressure balance seal ring 9 is attached to the pressure balance cylinder 7 between the valve plug 3 and the pressure balance hole 8. 2 is a valve lid (bonnet). As shown in FIG. 1, the control valve is provided with a high-pressure reducing device 6 circumscribing the valve plug 3.
【0015】高圧力減圧装置6は、円筒状のケージ15
内に直角の曲りを有する穴12(角状穴又は丸穴)を穿
設し、該円筒状のケージ15を外側に向って重ね合わせ
て、独立した流路を必要個数形成するものであって、該
流路を流体が流れることによって、流体が有している圧
力水頭エネルギーを損失させ、高圧流体を目的の圧力に
まで(キャビテーションを発生することなく)減圧させ
るのである。The high-pressure reducing device 6 includes a cylindrical cage 15.
A hole 12 (a square hole or a round hole) having a right angle bend is formed in the inside, and the cylindrical cages 15 are superposed outward to form a required number of independent flow paths. By flowing the fluid through the flow path, the pressure head energy of the fluid is lost, and the high-pressure fluid is depressurized to a target pressure (without cavitation).
【0016】流体が気体の場合は、減圧するに従い体積
が増えるのであり、流速を所定以下にするために、流路
面積を漸次増やす必要がある。図2、図3と図4に図示
のものは、その具体例で、流路断面積は外側方向へなる
に従い大きくなしている。流路断面積の拡大は、深さを
一定にして流路の巾を漸次大とする方法と流路巾を一定
として深さを漸次大とする方法とがある。図2、図3と
図4に図示した実施例は前者である。実施例たる図1と
図4では流路方向を示す矢印は中心部より外側に向って
いるが、この流路方向とは逆の流路の方向になっている
図5の実施例のものでも本発明の作用効果には変りはな
い。When the fluid is a gas, the volume increases as the pressure is reduced, and it is necessary to gradually increase the flow path area in order to keep the flow rate below a predetermined value. FIGS. 2, 3 and 4 show specific examples thereof, in which the cross-sectional area of the flow path is made larger as going outward. The channel cross-sectional area can be expanded by a method of increasing the width of the flow channel while keeping the depth constant, or a method of increasing the depth while keeping the width of the flow channel constant. The embodiment shown in FIGS. 2, 3 and 4 is the former. In FIGS. 1 and 4, which are the embodiments, the arrow indicating the flow path direction is directed outward from the center, but the direction of the flow path opposite to this flow path direction may be the same as in the embodiment of FIG. There is no change in the operation and effect of the present invention.
【0017】[0017]
【発明の効果】本発明装置は、前記のようにして、高圧
力減圧装置を通過する流体は、一般弁やオリフィスを通
過する時に発生する高速流によって流体圧力が飽和圧力
以下になるような現象は全くないため、キャビテーショ
ンの発生もなく、気体の減圧騒音も発生しない、静かな
減圧が可能となったのである。而して、キャビテーショ
ンが発生しないので弁座、弁プラグ並びに弁内部の流体
通路などが損傷されないので長期間安定して使用するこ
とができると云う大きな特徴がある。As described above, according to the device of the present invention, the fluid passing through the high-pressure depressurizing device has such a phenomenon that the fluid pressure becomes less than the saturation pressure due to the high-speed flow generated when passing through the general valve or the orifice. Since there is no cavitation, quiet decompression without cavitation and no gas decompression noise is possible. The cavitation does not occur, so that the valve seat, the valve plug, the fluid passage inside the valve, and the like are not damaged.
【図1】本発明に係る高圧力減圧調節弁の一実施例の縦
断面図、FIG. 1 is a longitudinal sectional view of one embodiment of a high-pressure pressure-reducing control valve according to the present invention;
【図2】同上高圧力減圧調節弁のA−A横断面図、FIG. 2 is a cross-sectional view of the high-pressure reducing control valve taken along line AA of FIG.
【図3】同上における高圧力減圧装置の拡大断面図、FIG. 3 is an enlarged cross-sectional view of the high-pressure decompression device,
【図4】同上高圧力減圧調節弁のY−A−B−Y′横断
面図、FIG. 4 is a cross-sectional view of the same high-pressure reducing control valve taken along a line YABY ′;
【図5】本発明の別の実施例のものの高圧力減圧装置の
一部切欠 した横断面図、FIG. 5 is a partially cut-away cross-sectional view of a high-pressure reducing device according to another embodiment of the present invention;
【図6】従来技術による高圧力減圧装置の一部切欠して
断面を示した正面図、FIG. 6 is a front view showing a partially cutaway cross section of a high-pressure decompression device according to the related art;
【図7】同上のA−A′横断面図、FIG. 7 is a cross-sectional view taken along the line AA ′ of FIG.
【図8】本発明による弁座とプラグの距離に対する流路
面積の変化の状態を示すグラフ図、FIG. 8 is a graph showing a state of a change in a flow path area with respect to a distance between a valve seat and a plug according to the present invention;
【図9】従来技術による弁座とプラグの距離に対する流
路面積の変化の状態を示すグラフ図、FIG. 9 is a graph showing a state of a change in a flow path area with respect to a distance between a valve seat and a plug according to the related art;
1.弁本体 2.ボンネット(弁蓋) 3.弁プラグ 4.弁座 5.弁軸 6.高圧力減圧装置 7.圧力バランスシリンダ 8.圧力バランス穴 9.圧力バランスシーリング 10.流体入口 11.流体出口 12.穴 13.ジグザグの流路 15.円筒状のケージ 1. Valve body 2. 2. Bonnet (valve lid) Valve plug 4. Valve seat 5. Valve shaft 6. High pressure decompression device 7. 7. Pressure balance cylinder Pressure balance hole 9. Pressure balance sealing 10. Fluid inlet 11. Fluid outlet 12. Hole 13. 14. Zigzag flow path Cylindrical cage
Claims (4)
位置に存する減圧装置で、弁座と弁座に着座可能な弁プ
ラグとの間を通過した高圧力流体を所定以下の流速を保
ちながら減圧させる高圧力減圧装置を含み、該高圧力減
圧装置は、該減圧装置内の流路を流体が流れることによ
って、該流体の圧力水頭エネルギーを損失させ、該圧力
流体を所定の圧力まで減圧させるように、直角の曲りを
有する穴を必要個数設けた円筒状のケージを、各ケージ
に穿設の穴が隣接のケージの穴と連絡し合うことで、ジ
グザグの流路を形成するように重ね合わせた高圧力減圧
調節弁において、前記ジグザクの流路は、それぞれ高圧
力減圧装置の入口から出口まで独立して所要数の直角の
曲りを有する流路が、放射状に形成されるものであるこ
とを特徴とする高圧力減圧調節弁。A high-pressure fluid passing between a valve seat and a valve plug that can be seated on the valve seat is depressurized at a predetermined position in a flow path between a fluid inlet and a fluid outlet. A high-pressure decompression device that reduces the pressure while maintaining the pressure, the high-pressure decompression device loses the pressure head energy of the fluid by flowing the fluid through a flow path in the decompression device, and pressurizes the pressure fluid at a predetermined pressure. A cylindrical cage provided with a required number of holes having a right-angled bend so that the pressure is reduced to a maximum, and a hole formed in each cage communicates with a hole of an adjacent cage to form a zigzag flow path. In the high-pressure depressurizing control valve overlapped as described above, the zigzag flow path has a required number of right-angled bends independently formed radially from an inlet to an outlet of the high-pressure depressurizing device. High pressure Power reducing valve.
いて、前記高圧力減圧装置における前記複数個の穴の断
面積は、弁座から弁プラグが離れる距離、即ち、弁スト
ロークに正比例した減圧装置への入口流路面積を形成す
るように、その位置により、漸増又は漸減する寸法とな
すものであることを特徴とする高圧力減圧調節弁。2. The high-pressure reducing valve according to claim 1, wherein a cross-sectional area of the plurality of holes in the high-pressure reducing device is directly proportional to a distance of a valve plug from a valve seat, that is, a valve stroke. A high-pressure decompression control valve having a size that gradually increases or decreases depending on its position so as to form an inlet flow path area to the pressure reducing device.
いて、高圧力流体を流速以下に保つように流路の直角の
曲りの数を決めるに際しては、前記高圧力減圧装置を通
過する流体が高速流となって飽和圧力以下になってキャ
ビテーションや異常騒音を発生させることがない曲りの
数としたことを特徴とする高圧力減圧調節弁。3. The high-pressure depressurizing control valve according to claim 1, wherein the number of right-angle bends in the flow path is determined so as to keep the high-pressure fluid at a flow rate or less. A high-pressure reducing valve, wherein the number of bends does not cause cavitation or abnormal noise due to a high-speed flow and a saturation pressure or less.
いて、流体が気体の場合のために、前記高圧力減圧装置
における前記穴が、曲りを繰り返すごとに、流路の断面
積を漸次大ならしめるものである寸法となしたことを特
徴とする高圧力減圧調節弁。4. The high-pressure reducing valve according to claim 1, wherein, in the case where the fluid is a gas, the cross-sectional area of the flow path is gradually increased each time the hole in the high-pressure reducing device repeats bending. A high-pressure pressure-reducing control valve characterized in that it is dimensioned to be large.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10090530A JPH11248033A (en) | 1998-03-02 | 1998-03-02 | High-pressure-reducing regulating valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10090530A JPH11248033A (en) | 1998-03-02 | 1998-03-02 | High-pressure-reducing regulating valve |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11248033A true JPH11248033A (en) | 1999-09-14 |
Family
ID=14000978
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10090530A Pending JPH11248033A (en) | 1998-03-02 | 1998-03-02 | High-pressure-reducing regulating valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11248033A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009522511A (en) * | 2005-12-29 | 2009-06-11 | アイエムアイ ビジョン リミテッド | Improvements related to fluid control |
JP2010503808A (en) * | 2006-09-15 | 2010-02-04 | アイエムアイ・ビジョン・リミテッド | Improvements in fluid control |
WO2010091291A2 (en) * | 2009-02-05 | 2010-08-12 | Flowserve Management Company | Pressure-balanced control valves |
WO2011118863A1 (en) * | 2010-03-26 | 2011-09-29 | System D&D Co.,Ltd. | Fluid flow control device |
CN102927332A (en) * | 2012-11-06 | 2013-02-13 | 株洲南方阀门股份有限公司 | Piston type control valve |
CN104314517A (en) * | 2014-11-25 | 2015-01-28 | 四川长仪油气集输设备股份有限公司 | Constant-flow steam injection valve used for heavy oil well |
JP2015533409A (en) * | 2012-11-02 | 2015-11-24 | フィッシャー コントロールズ インターナショナル リミテッド ライアビリティー カンパニー | Valve cage with no dead band between the noise reduction section and the high volume flow section |
CN105179717A (en) * | 2015-10-26 | 2015-12-23 | 四川长仪油气集输设备股份有限公司 | Anti-scouring and anti-corrosion high-pressure throttling valve and producing method of combined valve element |
CN106168310A (en) * | 2015-05-18 | 2016-11-30 | 费希尔控制产品国际有限公司 | Aerodynamic type noise reduction cage |
CN112610749A (en) * | 2020-12-31 | 2021-04-06 | 无锡智能自控工程股份有限公司 | Multi-stage pressure reduction regulating valve internal part structure |
-
1998
- 1998-03-02 JP JP10090530A patent/JPH11248033A/en active Pending
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009522511A (en) * | 2005-12-29 | 2009-06-11 | アイエムアイ ビジョン リミテッド | Improvements related to fluid control |
US8474484B2 (en) | 2005-12-29 | 2013-07-02 | Imi Vision Limited | Fluid control |
JP2010503808A (en) * | 2006-09-15 | 2010-02-04 | アイエムアイ・ビジョン・リミテッド | Improvements in fluid control |
GB2479503A (en) * | 2009-02-05 | 2011-10-12 | Flowserve Man Co | Pressure-balanced control valves |
WO2010091291A3 (en) * | 2009-02-05 | 2011-01-20 | Flowserve Management Company | Pressure-balanced control valves |
CN102369377A (en) * | 2009-02-05 | 2012-03-07 | 芙罗服务管理公司 | Pressure-balanced control valves |
GB2479503B (en) * | 2009-02-05 | 2013-03-20 | Flowserve Man Co | Pressure-balanced control valves |
WO2010091291A2 (en) * | 2009-02-05 | 2010-08-12 | Flowserve Management Company | Pressure-balanced control valves |
AU2010210501B2 (en) * | 2009-02-05 | 2014-02-20 | Flowserve Pte. Ltd. | Pressure-balanced control valves |
US9222600B2 (en) | 2009-02-05 | 2015-12-29 | Flowserve Management Company | Pressure-balanced control valves |
CN102834655A (en) * | 2010-03-26 | 2012-12-19 | 韩国电力系统开发设计有限公司 | Fluid flow control device |
WO2011118863A1 (en) * | 2010-03-26 | 2011-09-29 | System D&D Co.,Ltd. | Fluid flow control device |
US8950431B2 (en) | 2010-03-26 | 2015-02-10 | System D&D Co., Ltd. | Fluid flow control device |
JP2015533409A (en) * | 2012-11-02 | 2015-11-24 | フィッシャー コントロールズ インターナショナル リミテッド ライアビリティー カンパニー | Valve cage with no dead band between the noise reduction section and the high volume flow section |
CN102927332A (en) * | 2012-11-06 | 2013-02-13 | 株洲南方阀门股份有限公司 | Piston type control valve |
CN104314517A (en) * | 2014-11-25 | 2015-01-28 | 四川长仪油气集输设备股份有限公司 | Constant-flow steam injection valve used for heavy oil well |
CN106168310A (en) * | 2015-05-18 | 2016-11-30 | 费希尔控制产品国际有限公司 | Aerodynamic type noise reduction cage |
CN106168310B (en) * | 2015-05-18 | 2019-12-13 | 费希尔控制产品国际有限公司 | aerodynamic noise reduction cage |
US10539252B2 (en) | 2015-05-18 | 2020-01-21 | Fisher Controls International Llc | Aerodynamic noise reduction cage |
CN105179717A (en) * | 2015-10-26 | 2015-12-23 | 四川长仪油气集输设备股份有限公司 | Anti-scouring and anti-corrosion high-pressure throttling valve and producing method of combined valve element |
CN112610749A (en) * | 2020-12-31 | 2021-04-06 | 无锡智能自控工程股份有限公司 | Multi-stage pressure reduction regulating valve internal part structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4881718A (en) | Ball control valve | |
US3941350A (en) | Quieting means for a fluid flow control device using vortical flow patterns | |
US2829674A (en) | Automatic fluid control means | |
US8875797B2 (en) | Method for flow control and autonomous valve or flow control device | |
FI89301B (en) | VENTILANORDNING | |
US4774984A (en) | Low-noise plug valve | |
JPH11248033A (en) | High-pressure-reducing regulating valve | |
JP5369400B2 (en) | Flow control valve | |
US5199769A (en) | Valve, in particular for slip-controlled hydraulic brake systems | |
US3715098A (en) | Adjustable fluid restrictor method and apparatus | |
JPWO2007046379A1 (en) | Cage valve | |
KR20190093702A (en) | Fluid flow control devices and systems, and methods of flowing fluids therethrough | |
US4103696A (en) | Control valve | |
JP2007113599A (en) | Fluid control valve diffuser and fluid control valve | |
US20150048267A1 (en) | Anti cavitation control valve | |
US7011101B2 (en) | Valve system | |
US4632359A (en) | Low noise flow control valve | |
US3730479A (en) | Adjustable fluid restrictor | |
EP2690518A2 (en) | Variable resistance differential pressure regulator | |
US20050035318A1 (en) | Piston structure and liquid feeder valve | |
JP2008232196A (en) | Constant flow control device | |
US20040007274A1 (en) | Choke restrictor devices and methods | |
US20040112430A1 (en) | Safety valve | |
US952187A (en) | Valve. | |
JPH11248032A (en) | High-pressure-reducing regulating valve |