JPH11247486A - Damping structure for structures - Google Patents
Damping structure for structuresInfo
- Publication number
- JPH11247486A JPH11247486A JP5353898A JP5353898A JPH11247486A JP H11247486 A JPH11247486 A JP H11247486A JP 5353898 A JP5353898 A JP 5353898A JP 5353898 A JP5353898 A JP 5353898A JP H11247486 A JPH11247486 A JP H11247486A
- Authority
- JP
- Japan
- Prior art keywords
- structures
- damper
- columns
- kinetic energy
- vibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
- Vibration Prevention Devices (AREA)
Abstract
(57)【要約】
【目的】 構造物を簡易な構成で効果的に制振し、耐震
や耐風性能の優れた構造物を低コストで提供することに
ある。
【構成】 並立する二つ以上の構造物1の間に、水平方
向の外力による前記二つ以上の構造物の撓み変形に伴う
それらの構造物間の上下方向の位置ずれの運動エネルギ
ーを消費するダンパー部材2を配設するとともに、前記
二つ以上の構造物同士を上下方向相対移動可能に連結す
る連結部材3を設けたものである。
(57) [Summary] [Objective] An object of the present invention is to provide a structure with excellent seismic and wind resistance at a low cost by effectively damping the structure with a simple structure. The present invention consumes kinetic energy of vertical displacement between two or more structures 1 in parallel due to bending deformation of the two or more structures due to a horizontal external force. A damper member 2 is provided, and a connecting member 3 for connecting the two or more structures to each other so as to be vertically movable relative to each other is provided.
Description
【0001】[0001]
【産業上の利用分野】この発明は、地震や風等で加えら
れる水平方向の外力による建築物や橋梁等の構造物の振
動を減衰させる制振構造に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration damping structure for attenuating vibration of a structure such as a building or a bridge due to a horizontal external force applied by an earthquake, wind or the like.
【0002】[0002]
【従来の技術および発明が解決しようとする課題】超高
層ビルディングを含む各種建築物や長大橋の主塔や橋梁
の橋脚等の構造物は、地震や風等の水平方向の外力を受
けると変形してその内部にエネルギーを蓄え、この内部
エネルギーによって次の変形を生じ、釣合いを保とうと
する。これにより構造物は、水平方向の外力を受けると
曲げ変形や剪断変形を生じながら振動する。このとき、
構造物の横断面では曲げ応力や剪断応力が生じており、
曲げ応力は横断面端部で最大となるが、剪断応力は横断
面中立軸で最大となる。2. Description of the Related Art Various structures including super-high-rise buildings, structures such as main towers of long bridges and piers of bridges are deformed by horizontal external forces such as earthquakes and winds. Then, energy is stored in the inside, and the next deformation is caused by the internal energy, so that an attempt is made to maintain the balance. As a result, the structure vibrates while undergoing bending deformation and shearing deformation when subjected to a horizontal external force. At this time,
Bending stress and shear stress are generated in the cross section of the structure,
Bending stress is greatest at the end of the cross section, while shear stress is greatest at the neutral axis of the cross section.
【0003】従って、上記の如き構造物に生ずる剪断応
力による内部エネルギーを次の変形が生ずる前に消費す
ることができれば、構造物の変形を小さくし得て構造物
の耐震性能を高めることができ、また、内部エネルギー
の全体的な減少により曲げ応力による内部エネルギーも
小さくすることができるので、構造物をより柔軟なもの
とすることができる。Therefore, if the internal energy due to the shear stress generated in the above structure can be consumed before the next deformation occurs, the deformation of the structure can be reduced and the seismic performance of the structure can be improved. In addition, since the internal energy due to bending stress can be reduced due to the overall decrease in the internal energy, the structure can be made more flexible.
【0004】ところで、上記のように内部エネルギーを
小さくする制振構造としては従来、例えば、日本機械学
会〔No.95-28〕第4回「運動と振動の制御」シンポジウ
ム講演論文集中第 255頁〜第 258頁に松本幸人等が発表
した「並列構造物の曲げねじれ振動制御」が知られてお
り、この制振構造は、厚さの異なる二つの並列建築物間
に水平方向に作動するリニアアクチュエーター(リニア
モーター)を介在させてそれらの建築物同士を連結し、
それらの建築物の相互作用とリニアアクチュエーターの
作動とによりにより建築物の振動を抑制せんとするもの
である。Conventionally, as a vibration damping structure for reducing the internal energy as described above, for example, the condensed papers of the 4th Symposium on “Motion and Vibration Control” of the Japan Society of Mechanical Engineers [No.95-28], page 255 ~ Page 258, "Bending and torsional vibration control of parallel structures" published by Yukihito Matsumoto et al. Is known, and this vibration damping structure is a linear linear actuation between two parallel buildings of different thickness. Connecting those buildings with an actuator (linear motor) interposed,
The interaction between the buildings and the operation of the linear actuator are intended to suppress the vibration of the buildings.
【0005】また、上記のように内部エネルギーを小さ
くする制振構造としては従来、例えば、建設省建築研究
所監修の「建築技術」1996年10月号中第 130頁〜第 131
頁に林理が発表した「早期降伏して地震エネルギーを吸
収する極軟鋼制振壁」によるものも知られており、この
制振構造は、建築物の各階層間を極軟鋼制振壁で連結す
ることにより、階層間の水平方向の剪断応力による内部
エネルギーをその極軟鋼制振壁の水平方向の剪断変形で
消費することにて建築物の振動を抑制せんとするもので
ある。Conventionally, as a vibration damping structure for reducing the internal energy as described above, for example, pages 130 to 131 of "Building Technology", October 1996, supervised by the Building Research Institute of the Ministry of Construction.
It is also known that there is a very mild steel damping wall, which Hayashi announced on the page, "Early yielding and absorbing seismic energy." By connecting, the internal energy due to the horizontal shear stress between the stories is consumed by the horizontal shear deformation of the extremely mild steel damping wall, thereby suppressing the vibration of the building.
【0006】しかしながら、上記前者の制振構造ではリ
ニアアクチュエーターの設置および制御に多大のコスト
が嵩むという不都合があり、また上記後者の制振構造で
は構造物全体を制振するのに構造物全体の階層間に亘っ
て制振壁を設けなければならないためこれも設置に多大
のコストが嵩むという不都合があった。However, the former vibration damping structure has a disadvantage in that the installation and control of the linear actuator requires a great deal of cost. In the latter vibration damping structure, the whole structure is damped when the whole structure is damped. Since the damping wall must be provided between the floors, there is also a disadvantage that the installation requires a great deal of cost.
【0007】それゆえこの発明は、構造物横断面の中立
軸またはその付近に剪断エネルギーの減衰性の高い部材
を配置することで鉛直方向(上下方向)の剪断応力によ
る内部エネルギーを消費するようにした、簡易な構成で
制振性能の優れた制振構造を提供することを目体として
いる。Therefore, the present invention disposes a member having a high damping property of shear energy at or near a neutral axis of a cross section of a structure so as to consume internal energy due to a vertical (vertical) shear stress. It is an object to provide a vibration damping structure having a simple structure and excellent vibration damping performance.
【0008】[0008]
【課題を解決するための手段およびその作用・効果】上
記課題を解決するため、請求項1記載のこの発明の構造
物用制振構造は、並立する二つ以上の構造物の間に、水
平方向の外力による前記二つ以上の構造物の撓み変形に
伴うそれらの構造物間の上下方向の位置ずれの運動エネ
ルギーを消費するダンパー部材を配設したことを特徴と
しており、ここにおけるダンパー部材は、通常のピスト
ン式オイルダンパーでも良いが、請求項2の記載のよう
に、前記構造物間の上下方向の位置ずれにより剪断変形
して運動エネルギーを消費する部材としても良く、また
請求項3の記載のように、前記構造物間の上下方向の位
置ずれによりそれらの構造物の少なくとも一方に対し摺
動して運動エネルギーを消費する部材としても良い。In order to solve the above-mentioned problems, a vibration damping structure for a structure according to the present invention is provided between two or more parallel structures. Characterized in that a damper member that consumes kinetic energy of vertical displacement between the two or more structures due to bending deformation of the two or more structures due to external force in the direction is provided. A normal piston type oil damper may be used, but as described in claim 2, a member that consumes kinetic energy by shearing due to vertical displacement between the structures may be used. As described above, a member that consumes kinetic energy by sliding with respect to at least one of the structures due to a vertical displacement between the structures may be used.
【0009】かかるこの発明の制振構造にあっては、並
立する二つ以上の構造物の間に配設されたダンパー部材
が、水平方向の外力による前記二つ以上の構造物の撓み
変形に伴うそれらの構造物間の上下方向の位置ずれの運
動エネルギーを消費し、これによって、水平方向の外力
により前記構造物に蓄えられた内部エネルギーを消費す
る。しかもこの発明の制振構造にあっては、ダンパー部
材は一個でも複数個でも良いが、ダンパー部材が各々、
構造物の高さ方向全体の位置ずれに対し作用して構造物
全体に対しエネルギー消費機能を発揮する。In the vibration damping structure according to the present invention, the damper member disposed between the two or more structures arranged side by side is capable of preventing the two or more structures from being deformed due to a horizontal external force. This consumes the kinetic energy of vertical displacement between those structures, thereby consuming the internal energy stored in said structures due to external horizontal forces. Moreover, in the vibration damping structure of the present invention, the number of the damper members may be one or more.
It acts on the overall displacement of the structure in the height direction and exerts an energy consuming function on the entire structure.
【0010】従って、この発明の制振構造によれば、並
立する二つ以上の構造物を簡易な構成で効果的に制振し
得て、耐震や耐風性能の優れた構造物を低コストで提供
することができる。Therefore, according to the vibration damping structure of the present invention, two or more parallel structures can be effectively damped with a simple configuration, and a structure excellent in earthquake resistance and wind resistance can be manufactured at low cost. Can be provided.
【0011】そして請求項2記載のダンパー部材にあっ
ては、構造物間の上下方向の位置ずれの運動エネルギー
をその位置ずれにより剪断変形して熱エネルギーに変換
することで消費し、また請求項3記載のダンパー部材に
あっては、構造物間の上下方向の位置ずれの運動エネル
ギーをその位置ずれによりそれらの構造物の少なくとも
一方に対し摺動して熱エネルギーに変換することで消費
する。In the damper member according to the second aspect, the kinetic energy of the vertical displacement between the structures is consumed by being sheared by the displacement and converted into thermal energy. In the damper member described in 3, the kinetic energy of the vertical displacement between the structures is consumed by sliding into at least one of the structures by the displacement and converting the kinetic energy into thermal energy.
【0012】従って、これらのダンパー部材によれば、
制振構造の構成をより簡易なものとすることができる。Therefore, according to these damper members,
The configuration of the vibration damping structure can be made simpler.
【0013】なお、この発明の制振構造においては、請
求項4の記載のように、前記二つ以上の構造物同士を上
下方向相対移動可能に連結する連結部材を設けても良
く、かかる連結部材を設ければ、前記構造物同士の離間
方向の変形がその連結部材によって防止されるので、前
記ダンパー部材の剪断変形や摺動を確実にもたらすこと
ができる。In the vibration damping structure according to the present invention, a connecting member may be provided for connecting the two or more structures so as to be vertically movable relative to each other. If the member is provided, the deformation of the structures in the separating direction is prevented by the connecting member, so that the shear deformation and sliding of the damper member can be surely brought about.
【0014】そして前記連結部材によって前記二つ以上
の構造物の上部同士を引き寄せて、それらの構造物に互
いに接近する方向の初期弾性撓み変形を与えておけば、
前記ダンパー部材の剪断変形や摺動をさらに確実にもた
らすことができるとともに、その初期弾性撓み変形によ
る内部エネルギーが水平方向の外力に抵抗するので、外
力による内部エネルギーの蓄積自体も減少させることが
できる。The upper part of the two or more structures is attracted to each other by the connecting member to give the structures an initial elastic bending deformation in a direction approaching each other.
The shearing and sliding of the damper member can be more reliably brought about, and the internal energy due to the initial elastic bending deformation resists the external force in the horizontal direction, so that the accumulation of the internal energy itself due to the external force can be reduced. .
【0015】上記の構成は並立する二つ以上の構造物に
適用されるものであり、これに対して一つの構造物に適
用され得る請求項5記載のこの発明の構造物用制振構造
は、並立して一つの構造物を支持する二本以上の支柱の
間に、水平方向の外力による前記二本以上の支柱の撓み
変形に伴うそれらの支柱間の上下方向の位置ずれの運動
エネルギーを消費するダンパー部材を配設したことを特
徴としており、ここにおけるダンパー部材は、通常のピ
ストン式オイルダンパーでも良いが、請求項6の記載の
ように、前記支柱間の上下方向の位置ずれにより剪断変
形して運動エネルギーを消費する部材としても良く、ま
た請求項7の記載のように、前記支柱間の上下方向の位
置ずれによりそれらの支柱の少なくとも一方に対し摺動
して運動エネルギーを消費する部材としても良い。The above structure is applied to two or more parallel structures, while the structure can be applied to one structure. Between two or more struts supporting one structure in parallel, the kinetic energy of vertical displacement between those struts due to the bending deformation of the two or more struts due to horizontal external force It is characterized by arranging a damper member to be consumed, and the damper member here may be a normal piston type oil damper, but as described in claim 6, shearing due to vertical displacement between the columns. The member may be a member that consumes kinetic energy by being deformed, and slides on at least one of the columns due to a vertical displacement between the columns as described in claim 7. It may be a member to consume.
【0016】かかるこの発明の制振構造にあっては、並
立して一つの構造物を支持する二本以上の支柱の間に配
設されたダンパー部材が、水平方向の外力による前記二
本以上の支柱の撓み変形に伴うそれらの支柱間の上下方
向の位置ずれの運動エネルギーを消費し、これによっ
て、水平方向の外力により前記支柱に蓄えられた内部エ
ネルギーを消費する。しかもこの発明の制振構造にあっ
ては、ダンパー部材は一個でも複数個でも良いが、ダン
パー部材が各々、支柱の高さ方向全体の位置ずれに対し
作用して構造物全体に対しエネルギー消費機能を発揮す
る。In the vibration damping structure according to the present invention, the damper member disposed between two or more columns supporting one structure in parallel is provided with the two or more dampers due to a horizontal external force. Consumes the kinetic energy of vertical displacement between the columns due to the bending deformation of the columns, thereby consuming the internal energy stored in the columns due to the external force in the horizontal direction. Moreover, in the vibration damping structure of the present invention, one or a plurality of damper members may be used, but each of the damper members acts on the displacement of the entire column in the height direction, and has an energy consumption function for the entire structure. Demonstrate.
【0017】従って、この発明の制振構造によれば、並
立して一つの構造物を支持する二本以上の支柱を簡易な
構成で効果的に制振し得て、耐震や耐風性能の優れた構
造物を低コストで、しかも単独の構造物としても提供す
ることができる。Therefore, according to the vibration damping structure of the present invention, two or more struts supporting one structure in parallel can be effectively damped with a simple configuration, and excellent in earthquake resistance and wind resistance. Can be provided at a low cost and as a single structure.
【0018】そして請求項6記載のダンパー部材にあっ
ては、支柱間の上下方向の位置ずれの運動エネルギーを
その位置ずれにより剪断変形して熱エネルギーに変換す
ることで消費し、また請求項7記載のダンパー部材にあ
っては、支柱間の上下方向の位置ずれの運動エネルギー
をその位置ずれによりそれらの支柱の少なくとも一方に
対し摺動して熱エネルギーに変換することで消費する。According to the damper member of the present invention, the kinetic energy of the vertical displacement between the columns is consumed by being sheared by the displacement and converted into thermal energy. In the damper member described above, the kinetic energy of vertical displacement between the columns is consumed by sliding into at least one of the columns and converting it into thermal energy due to the positional displacement.
【0019】従って、これらのダンパー部材によれば、
制振構造の構成をより簡易なものとすることができる。Therefore, according to these damper members,
The configuration of the vibration damping structure can be made simpler.
【0020】なお、この発明の制振構造においては、前
記二本以上の支柱同士を上下方向相対移動可能に連結す
る連結部材を設けても良く、かかる連結部材を設けれ
ば、前記支柱同士の離間方向の変形がその連結部材によ
って防止されるので、前記ダンパー部材の剪断変形や摺
動を確実にもたらすことができる。In the vibration damping structure of the present invention, a connecting member may be provided for connecting the two or more columns so as to be relatively movable in the vertical direction. Since the deformation in the separating direction is prevented by the connecting member, shear deformation and sliding of the damper member can be surely brought about.
【0021】そして前記連結部材によって前記二本以上
の支柱同士を引き寄せて、それらの支柱に互いに接近す
る方向の初期弾性撓み変形を与えておけば、前記ダンパ
ー部材の剪断変形や摺動をさらに確実にもたらすことが
できるとともに、その初期弾性撓み変形による内部エネ
ルギーが水平方向の外力に抵抗するので、外力による内
部エネルギーの蓄積自体も減少させることができる。If the two or more columns are attracted to each other by the connecting member and the columns are given initial elastic bending deformation in a direction approaching each other, the shear deformation and sliding of the damper member can be more reliably performed. In addition, since the internal energy due to the initial elastic bending deformation resists the external force in the horizontal direction, the accumulation of the internal energy due to the external force can be reduced.
【0022】[0022]
【発明の実施の形態】以下に、この発明の実施の形態を
実施例によって、図面に基づき詳細に説明する。ここに
図1は、並立する二つ以上の構造物としての二つの建築
物に適用したこの発明の構造物用制振構造の一実施例を
模式的に示す正面図であり、この実施例の制振構造は、
並立する二つの建築物1の側面の上端部間にダンパー部
材2を配設するとともに、それらの建築物1の側面同士
を、それらの建築物1の側面の上部に両端部をそれぞれ
埋設して結合した連結部材3により、上下方向相対移動
可能に連結してなる。Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a front view schematically showing one embodiment of the structure vibration damping structure of the present invention applied to two buildings as two or more parallel structures. The damping structure is
The damper member 2 is disposed between the upper ends of the side surfaces of the two buildings 1 arranged side by side, and the both sides of the buildings 1 are buried at the upper ends of the side surfaces of the buildings 1, respectively. The connection member 3 is connected so as to be relatively movable in the vertical direction.
【0023】ここにおけるダンパー部材2は、通常のピ
ストン式オイルダンパーとしても良いが、好ましくは、
例えば鉛入りゴムや、ポリマー、極軟鋼(例えば住友金
属工業株式会社が販売している商品名「SLY100」
極低降伏点鋼)等の、剪断変形で生ずる内部損失によっ
て運動エネルギーを熱エネルギーに変換して消費する部
材とするか、若しくは通常の鋼板等の、建築物1の側面
に対し摺動してその側面に対する摩擦によって運動エネ
ルギーを熱エネルギーに変換して消費する部材とする。
なお、一般に、鉛入りゴムやポリマーは、弾性的に剪断
変形しつつ内部損失によって運動エネルギーを熱エネル
ギーに変換し、極軟鋼は、塑性的に剪断変形しつつ内部
損失によって運動エネルギーを熱エネルギーに変換す
る。The damper member 2 here may be an ordinary piston type oil damper, but is preferably
For example, rubber containing lead, polymer, and mild steel (for example, trade name “SLY100” sold by Sumitomo Metal Industries, Ltd.)
A member that converts kinetic energy into heat energy by internal loss caused by shear deformation, such as extremely low yield point steel), or slides against a side surface of the building 1 such as a normal steel plate. Kinetic energy is converted into heat energy by friction with the side surface and consumed.
In general, lead-containing rubber and polymers convert kinetic energy into heat energy by internal loss while elastically shearing, and extreme mild steel converts kinetic energy into thermal energy by internal loss while plastically shearing. Convert.
【0024】そして、ダンパー部材2を剪断変形で生ず
る内部損失によって運動エネルギーを熱エネルギーに変
換して消費する部材とする場合には、ダンパー部材2の
両側面が両側の建築物の側面と一体になって上下方向に
運動するように、ダンパー部材2の両側面を両側の建築
物の側面に、貼り着けや加硫接着や溶接等の手段によっ
てそれぞれ固着しておく。またダンパー部材2を、建築
物1の側面に対し摺動してその側面に対する摩擦によっ
て運動エネルギーを熱エネルギーに変換して消費する部
材とする場合には、ダンパー部材2の少なくとも一方の
側面がそれに対応する側の建築物1の側面に摺接するよ
うに、ダンパー部材2を適当な支持部材で所定位置に支
持してその摺接させる側の建築物1の側面に圧接させて
おく。When the damper member 2 is a member that converts kinetic energy into heat energy and consumes it by internal loss generated by shear deformation, both side surfaces of the damper member 2 are integrated with the side surfaces of the building on both sides. Then, both sides of the damper member 2 are fixed to the sides of the building on both sides by means of sticking, vulcanization bonding, welding, or the like so as to move in the vertical direction. When the damper member 2 is a member that slides on the side surface of the building 1 and converts kinetic energy into heat energy by friction with the side surface and consumes it, at least one side surface of the damper member 2 The damper member 2 is supported at a predetermined position by a suitable support member so as to be in sliding contact with the side surface of the building 1 on the corresponding side, and is pressed against the side surface of the building 1 on which the sliding contact is made.
【0025】また、ここにおける連結部材3は、PCケ
ーブルや高張力ケーブル等を用いて引っ張り力には強い
が曲げ力に対しては抵抗の少ない部材とする。そしてこ
の実施例では、その連結部材3によって両側の建築物1
同士を引き寄せて、それらの建築物1に互いに接近する
方向の初期弾性撓み変形を与えておく。The connecting member 3 is made of a PC cable, a high-tension cable, or the like, and is a member that is strong against pulling force but low in resistance against bending force. In this embodiment, the building 1 on both sides is connected by the connecting member 3.
The buildings 1 are attracted to each other to give an initial elastic bending deformation in a direction approaching each other.
【0026】図2は、並立する構造物としての二つの超
高層ビルディングに適用したこの発明の構造物用制振構
造の他の一実施例を模式的に示す正面図であり、この実
施例の制振構造は、並立する二つの超高層ビルディング
4の側面間に上下方向に間隔をあけて複数のダンパー部
材2を配設するとともに、それらの超高層ビルディング
4の側面同士を、それらの側面に上記各ダンパー部材2
の位置で両端部をそれぞれ結合した連結部材3により、
上下方向相対移動可能に連結してなる。そしてここにお
けるダンパー部材2および連結部材3も、図1に示す実
施例におけると同様のものとする。FIG. 2 is a front view schematically showing another embodiment of the structure vibration damping structure of the present invention applied to two super-high-rise buildings as juxtaposed structures. In the vibration damping structure, a plurality of damper members 2 are arranged at intervals in the vertical direction between the side surfaces of the two super-high-rise buildings 4 arranged side by side, and the side surfaces of the super-high-rise buildings 4 are connected to the side surfaces. Each of the above damper members 2
By the connecting member 3 which joined both ends at the position of
It is connected so as to be vertically movable relative to each other. The damper member 2 and the connecting member 3 here are the same as those in the embodiment shown in FIG.
【0027】かかる二つの実施例の制振構造にあって
は、並立する二つの建築物1や超高層ビルディング4
に、地震や風等によって水平方向の外力が加わると、図
2中に超高層ビルディング4について変形程度を拡大し
て仮想線で示すように、その外力によりそれら二つの建
築物1や超高層ビルディング4に撓み変形が生じ、その
撓み変形に伴ってそれらの間に、図2中矢印で示す如く
上下方向の位置ずれが生ずるが、それら二つの建築物1
や超高層ビルディング4の間に配設されたダンパー部材
2が、それら二つの建築物1や超高層ビルディング4の
間の上下方向の位置ずれの運動エネルギーを消費し、こ
れによって、水平方向の外力によりそれら二つの建築物
1や超高層ビルディング4に蓄えられた内部エネルギー
を消費する。しかも上記実施例の制振構造にあっては、
ダンパー部材3が各々、建築物1や超高層ビルディング
4の高さ方向全体の位置ずれに対し作用してそれら建築
物1や超高層ビルディング4全体に対しエネルギー消費
機能を発揮する。In the vibration damping structures of the two embodiments, two buildings 1 and a super-high-rise building 4 are arranged side by side.
When an external force is applied in the horizontal direction due to an earthquake, wind, or the like, the degree of deformation of the high-rise building 4 is expanded in FIG. 4 is deformed, and a positional displacement in the vertical direction is generated between them as shown by an arrow in FIG.
The damper member 2 disposed between the high-rise building 4 and the high-rise building 4 consumes the kinetic energy of the vertical displacement between the two buildings 1 and the high-rise building 4, whereby the external force in the horizontal direction is increased. Consumes the internal energy stored in these two buildings 1 and the skyscraper 4. Moreover, in the vibration damping structure of the above embodiment,
Each of the damper members 3 acts on the overall displacement of the building 1 and the super-high-rise building 4 in the height direction, and exerts an energy consumption function on the entire building 1 and the super-high-rise building 4.
【0028】従って、上記実施例の制振構造によれば、
並立する二つの建築物1や超高層ビルディング4を簡易
な構成で効果的に制振し得て、耐震や耐風性能の優れた
建築物1や超高層ビルディング4を低コストで提供する
ことができる。Therefore, according to the vibration damping structure of the above embodiment,
It is possible to effectively control the two buildings 1 and the super-high-rise building 4 arranged side by side with a simple configuration, and to provide the building 1 and the super-high-rise building 4 excellent in earthquake resistance and wind resistance at low cost. .
【0029】そして上記実施例において、ダンパー部材
2を、鉛入りゴムや極軟鋼等の、構造物間の上下方向の
位置ずれの運動エネルギーをその位置ずれにより剪断変
形して熱エネルギーに変換することで消費するものや、
鋼板等の、構造物間の上下方向の位置ずれの運動エネル
ギーをその位置ずれによりそれらの構造物の少なくとも
一方に対し摺動して熱エネルギーに変換することで消費
するものにすれば、制振構造の構成をより簡易なものと
することができる。In the above embodiment, the damper member 2 is converted into thermal energy by shearing and deforming the kinetic energy of vertical displacement between structures, such as lead-containing rubber and ultra-mild steel, due to the displacement. And what you consume in
If the kinetic energy of vertical displacement between structures, such as a steel plate, is consumed by converting the kinetic energy into thermal energy by sliding against at least one of the structures due to the displacement, The configuration of the structure can be made simpler.
【0030】また、上記実施例の制振構造によれば、二
つの建築物1や超高層ビルディング4同士を上下方向相
対移動可能に連結する連結部材3を設けていることか
ら、建築物1や超高層ビルディング4同士の離間方向の
変形がその連結部材3によって防止されるので、ダンパ
ー部材2の剪断変形や摺動を確実にもたらすことができ
る。Further, according to the vibration damping structure of the above embodiment, since the connecting member 3 for connecting the two buildings 1 and the super high-rise buildings 4 so as to be relatively movable in the vertical direction is provided, the building 1 Since deformation of the high-rise buildings 4 in the separating direction is prevented by the connecting members 3, shear deformation and sliding of the damper members 2 can be surely brought about.
【0031】さらに、上記実施例の制振構造によれば、
連結部材3によって二つの建築物1や超高層ビルディン
グ4の上部同士を引き寄せて、それらに互いに接近する
方向の初期弾性撓み変形を与えておくことから、ダンパ
ー部材2の剪断変形や摺動をさらに確実にもたらすこと
ができるとともに、その初期弾性撓み変形による内部エ
ネルギーが水平方向の外力に抵抗するので、外力による
内部エネルギーの蓄積自体も減少させることができる。Further, according to the vibration damping structure of the above embodiment,
Since the upper parts of the two buildings 1 and the high-rise building 4 are attracted to each other by the connecting member 3 to give them initial elastic bending deformation in a direction approaching each other, the shear deformation and sliding of the damper member 2 are further reduced. In addition to reliably providing the internal energy, the internal energy due to the initial elastic deformation resists the external force in the horizontal direction, so that the accumulation of the internal energy itself due to the external force can be reduced.
【0032】図3は、一つの構造物としての長大橋の一
本の主塔に適用したこの発明の構造物用制振構造のさら
に他の一実施例を模式的に示す正面図であり、この実施
例の制振構造は、並立して上記主塔5を支持する二本の
支柱6の側面の上端部間および中間部間にそれぞれダン
パー部材2を介装するとともに、それらの支柱6の側面
同士を、それらの側面に上記各ダンパー部材2の位置で
両端部をそれぞれ結合した連結部材3により、上下方向
相対移動可能に連結してなる。そしてここにおけるダン
パー部材2および連結部材3も、図1に示す実施例にお
けると同様のものとする。FIG. 3 is a front view schematically showing still another embodiment of the structure vibration damping structure of the present invention applied to one main tower of a long bridge as one structure. In the vibration damping structure of this embodiment, the damper members 2 are interposed between the upper end portions and the intermediate portions of the side surfaces of the two columns 6 supporting the main tower 5 in parallel, respectively. The side surfaces are connected to each other so as to be relatively movable in the vertical direction by a connecting member 3 having both ends connected to the respective side surfaces at the positions of the damper members 2. The damper member 2 and the connecting member 3 here are the same as those in the embodiment shown in FIG.
【0033】かかる実施例の制振構造によれば、長大橋
の主塔5を簡易な構成で効果的に制振し得て耐震や耐風
性能の優れた長大橋を低コストで提供することができる
等、先の実施例と同様の種々の作用効果をもたらすこと
ができる。According to the vibration damping structure of this embodiment, the main tower 5 of the long bridge can be effectively damped with a simple configuration, and a long bridge with excellent seismic and wind resistance can be provided at low cost. For example, various effects similar to those of the previous embodiment can be obtained.
【0034】図4(a)は、一つの構造物としての一つ
の超高層ビルディングに適用したこの発明の構造物用制
振構造のさらに他の一実施例を模式的に示す正面図、ま
た同図(b)は、その実施例の制振構造の作用を示す説
明図、さらに同図(c)は、その実施例の制振構造にお
ける連結部材の配置を示す上記超高層ビルディングの平
面図、そして同図(d)は、その実施例の制振構造にお
けるダンパー部材の配置を示す上記超高層ビルディング
の横断面図であり、この実施例における超高層ビルディ
ング4は、図4(c),(d)に示すように、互いに隣
接して矩形に並立する四つの部分4a, 4b, 4cおよび4dを
有している。FIG. 4A is a front view schematically showing still another embodiment of the structure damping structure of the present invention applied to one super-high-rise building as one structure, and FIG. FIG. 2B is an explanatory view showing an operation of the vibration damping structure of the embodiment, and FIG. 2C is a plan view of the super-high-rise building showing an arrangement of connecting members in the vibration damping structure of the embodiment. FIG. 4D is a cross-sectional view of the super-high-rise building showing the arrangement of the damper members in the vibration damping structure of the embodiment. The super-high-rise building 4 in this embodiment is shown in FIGS. As shown in d), it has four portions 4a, 4b, 4c and 4d adjacent to each other and arranged in a rectangular shape.
【0035】そしてこの実施例の制振構造は、上下方向
について見れば図4(a),(b)に示すようにその超
高層ビルディング4の上端部と中間部とのそれぞれに、
四支柱制振部7および二支柱制振部8を有しており、そ
れら四支柱制振部7および二支柱制振部8は、平面的に
見ると図4(c),(d)に示すように、四支柱制振部
7が、その超高層ビルディング4の四つの部分4a, 4b,
4cおよび4dの角部同士が集まる中心部の間隙に位置し、
また二支柱制振部8が、その超高層ビルディング4の四
つの部分4a, 4b, 4cおよび4dが二つずつ対向する間隙の
側端部と中間部とに位置している。When viewed in the vertical direction, the vibration damping structure according to this embodiment has, as shown in FIGS. 4 (a) and 4 (b),
It has a four-post damping part 7 and a two-post damping part 8. The four-post damping part 7 and the two-post damping part 8 are shown in FIGS. 4 (c) and 4 (d) in plan view. As shown, the four-post vibration damper 7 is composed of four parts 4a, 4b,
Located in the center gap where the corners of 4c and 4d gather,
Further, the two-pillar damping part 8 is located at the side end part and the middle part of the gap where the four parts 4a, 4b, 4c and 4d of the skyscraper 4 face each other two by two.
【0036】ここで、四支柱制振部7は、図5(a)の
斜視図と、その斜視図中の矢印Aおよび矢印B方向から
それぞれ見た図5(b)および(c)の側面図とに示す
ように、互いに隣接して矩形に並立されるとともに各々
H型鋼材からなる四本の支柱6の間の十字形の隙間に、
図5(d)の斜視図に示す如き断面十字形のダンパー部
材2を配置し、ボルト9によって互いに結合した断面略
L字状の四個のブラケット10によりそれら四本の支柱6
を囲繞して締め付けることにて、上記ダンパー部材2を
それら四本の支柱6で挟持してなり、そのH型鋼材から
なる支柱6の、ブラケット10で締め付ける部分には、そ
れらの支柱6のフランジが締め付けによって変形しない
ようフランジ間に補強板11を介挿してある。Here, the four-post vibration damper 7 is a perspective view of FIG. 5 (a) and side views of FIGS. 5 (b) and 5 (c) as viewed from the directions of arrows A and B in the perspective view, respectively. As shown in the figure, in the cross-shaped gap between the four columns 6 which are adjacent to each other and are arranged side by side in a rectangular shape and each made of an H-shaped steel material,
A damper member 2 having a cruciform cross section as shown in the perspective view of FIG. 5D is arranged, and the four struts 6 are connected to each other by four brackets 10 having a substantially L-shaped cross section.
And the above-mentioned damper member 2 is sandwiched between the four columns 6, and a portion of the column 6 made of H-shaped steel material to be clamped by the bracket 10 has a flange of the column 6. However, a reinforcing plate 11 is interposed between the flanges so as not to be deformed by tightening.
【0037】ここにおけるダンパー部材2は、例えば鉛
入りゴム板等の、支柱6間の上下方向の位置ずれの運動
エネルギーをその位置ずれにより剪断変形して熱エネル
ギーに変換することで消費する部材とするか、若しくは
鋼板等の、支柱6間の上下方向の位置ずれの運動エネル
ギーをその位置ずれによりそれらの構造物の少なくとも
一方に対し摺動して熱エネルギーに変換することで消費
する部材とする。The damper member 2 here is a member such as a rubber plate containing lead, which consumes by converting the kinetic energy of the vertical displacement between the columns 6 into thermal energy by shearing the kinetic energy due to the displacement. Or a member, such as a steel plate, which consumes the kinetic energy of vertical displacement between the columns 6 by converting the kinetic energy into thermal energy by sliding against at least one of the structures due to the displacement. .
【0038】図6(a)は、上記支柱6が水平方向の外
力により撓み変形して上下方向に位置ずれしたときの四
支柱制振部7の、例えば上記鉛入りゴム板からなるダン
パー部材2の状態を示す側面図であり、図示のようにダ
ンパー部材2は、支柱6の上下方向の位置ずれにより剪
断変形して、その内部損失により、支柱6の上下方向の
位置ずれの運動エネルギーを熱エネルギーに変換して消
費する。FIG. 6 (a) shows a damper member 2 made of, for example, the above-described lead-containing rubber plate of the four-post vibration damping portion 7 when the above-mentioned column 6 is bent and deformed by an external force in the horizontal direction and is displaced vertically. FIG. 4 is a side view showing the state of FIG. 5. As shown in the figure, the damper member 2 is sheared by the vertical displacement of the column 6, and the internal loss causes the kinetic energy of the vertical displacement of the column 6 to be thermally dissipated. Convert to energy and consume.
【0039】また図6(b)は、上記支柱6が水平方向
の外力により撓み変形して上下方向に位置ずれしたとき
の四支柱制振部7の、例えば上記鋼板からなるダンパー
部材2の状態を示す側面図であり、図示のようにダンパ
ー部材2は、支柱6の上下方向の位置ずれにより、互い
に対向する支柱6の少なくとも一方に対し摺動して、そ
のダンパー部材2の表面と支柱5の側面との間の摩擦に
より、支柱6の上下方向の位置ずれの運動エネルギーを
熱エネルギーに変換して消費する。FIG. 6B shows the state of the damper member 2 made of, for example, the steel plate of the four-post vibration damper 7 when the above-mentioned column 6 is flexed and deformed by an external force in the horizontal direction and is displaced vertically. As shown in the drawing, the damper member 2 slides on at least one of the opposing columns 6 due to the vertical displacement of the column 6, and the surface of the damper member 2 and the column 5 The kinetic energy of the vertical displacement of the column 6 is converted into heat energy and consumed by friction between the side wall of the support 6 and the support 6.
【0040】この一方、二支柱制振部8は、水平かつ互
いに直角な二方向からそれぞれ見た図7(a)および
(b)の側面図と、図7(c)の横断面図とに示すよう
に、互いに隣接して並立されるとともに各々H型鋼材か
らなる二本の支柱6の間の隙間に、平板状のダンパー部
材2を配置し、ボルト9によって互いに結合した二個の
断面略コ字状のブラケット12によりそれら二本の支柱6
を囲繞して締め付けることにて、上記ダンパー部材2を
それら二本の支柱6で挟持してなり、そのH型鋼材から
なる支柱6の、ブラケット12で締め付ける部分には、そ
れらの支柱6のフランジが締め付けによって変形しない
ようにフランジ間に補強板11を介挿してある。On the other hand, the two-pillar damping part 8 is different from the side view in FIGS. 7A and 7B viewed from two directions which are horizontal and perpendicular to each other, and the cross-sectional view in FIG. As shown in the figure, a flat damper member 2 is disposed in a gap between two columns 6 each made of an H-shaped steel material, which are arranged side by side with each other, and are connected to each other by bolts 9. The U-shaped bracket 12 makes the two columns 6
Is surrounded and tightened, the damper member 2 is sandwiched between the two columns 6, and the portion of the column 6 made of the H-shaped steel material to be tightened with the bracket 12 is provided with a flange of the column 6. However, a reinforcing plate 11 is interposed between the flanges so as not to be deformed by tightening.
【0041】ここにおけるダンパー部材2も、例えば鉛
入りゴム板等の、支柱6間の上下方向の位置ずれの運動
エネルギーをその位置ずれにより剪断変形して熱エネル
ギーに変換することで消費する部材、若しくは鋼板等
の、支柱6間の上下方向の位置ずれの運動エネルギーを
その位置ずれによりそれらの構造物の少なくとも一方に
対し摺動して熱エネルギーに変換することで消費する部
材とする。The damper member 2 here is also a member such as a lead-containing rubber plate, which consumes by converting the kinetic energy of the vertical displacement between the columns 6 into thermal energy by shearing the kinetic energy due to the displacement. Alternatively, a member, such as a steel plate, which consumes the kinetic energy of vertical displacement between the columns 6 by converting the kinetic energy into thermal energy by sliding on at least one of the structures due to the displacement.
【0042】かかる二支柱制振部8にあっては、支柱6
が水平方向の外力により撓み変形して上下方向に位置ず
れすると、例えば上記鉛入りゴム板からなるダンパー部
材2を用いた場合にはそのダンパー部材2が、支柱6の
その位置ずれにより剪断変形してその内部損失により、
支柱6の上下方向の位置ずれの運動エネルギーを熱エネ
ルギーに変換して消費し、また例えば上記鋼板からなる
ダンパー部材2を用いた場合にはそのダンパー部材2
が、支柱6のその位置ずれにより、互いに対向する支柱
6の少なくとも一方に対し摺動して、そのダンパー部材
2の表面と支柱6の側面との間の摩擦により、支柱6の
上下方向の位置ずれの運動エネルギーを熱エネルギーに
変換して消費する。In the two-post vibration damper 8, the support 6
Is deformed by the external force in the horizontal direction and is displaced in the vertical direction. For example, when the damper member 2 made of the above-described lead-containing rubber plate is used, the damper member 2 is sheared and deformed due to the displacement of the column 6. Due to the internal loss
The kinetic energy of the vertical displacement of the column 6 is converted into heat energy and consumed, and for example, when the damper member 2 made of the steel plate is used, the damper member 2 is used.
Is slid on at least one of the opposing columns 6 due to the displacement of the column 6, and the vertical position of the column 6 is caused by friction between the surface of the damper member 2 and the side surface of the column 6. The kinetic energy of the slip is converted to heat energy and consumed.
【0043】図8(a)は、上記実施例の制振構造にお
ける二支柱制振部8の他の構成例を示す斜視図、図8
(b)および(c)は、その二支柱制振部8を図8
(a)中の矢印Cおよび矢印D方向からそれぞれ見た側
面図、そして図8(d)は、その二支柱制振部8を示す
横断面図であり、この構成例の二支柱制振部8は、並立
する二本の支柱6の両側に、コ字状の極軟鋼板(例えば
先の超低降伏点鋼の板)からなるダンパー部材2を十二
枚、その凹部を二本の支柱6に嵌め合わせて各段二枚ず
つ六段に水平に配置し、長尺ボルト13で相互に繋ぎ合わ
せた複数のブラケット14でそれら極軟鋼板製のダンパー
部材2の両端部をそれぞれ挟持し、それらのブラケット
14を二本の支柱6にボルト等の図示しない手段によって
固定してなる。なお、ここでは各ダンパー部材2および
各ブラケット14にU溝を切って、そこにあらかじめ多数
のナットを装着した長尺ボルト13を嵌め合わせること
で、各段をそれぞれ別個のボルトで繋ぐ場合よりもボル
トの本数を減らして二支柱制振部8の組立作業の容易化
を図っている。FIG. 8A is a perspective view showing another example of the structure of the two-post vibration damper 8 in the vibration damping structure of the above embodiment.
(B) and (c) show the two-post vibration damper 8 in FIG.
8 (a) is a side view as seen from the directions of arrows C and D, and FIG. 8 (d) is a cross-sectional view showing the two-post vibration damping portion 8, and the two-post vibration damping portion of this configuration example. Reference numeral 8 denotes twelve damper members 2 made of a U-shaped ultra-soft steel plate (for example, a plate of an ultra-low yield point steel) on both sides of the two columns 6 standing side by side, and the recesses formed by the two columns. 6, two pieces of each step are arranged horizontally in six steps, and the two ends of the damper member 2 made of extremely mild steel sheet are sandwiched by a plurality of brackets 14 connected to each other by long bolts 13, respectively. Those brackets
14 is fixed to the two columns 6 by means (not shown) such as bolts. Here, a U-groove is cut in each damper member 2 and each bracket 14, and a long bolt 13 to which a number of nuts are attached in advance is fitted therewith, so that each step is connected with a separate bolt. The number of bolts is reduced to facilitate the work of assembling the two-post vibration damper 8.
【0044】かかる二支柱制振部8にあっては、図9
(a),(b)の上部に矢印で示すように地震や風等で
水平方向に外力が加わって、支柱6が撓み変形し、上下
方向に位置ずれすると、図9(a),(b)に示すよう
に、上記十二枚のダンパー部材2が各々塑性変形し、支
柱6の上下方向の位置ずれの運動エネルギーを熱エネル
ギーに変換して消費する。In such a two-post vibration damper 8, FIG.
9 (a) and 9 (b), when an external force is applied in the horizontal direction due to an earthquake, wind, or the like at the upper part of FIGS. As shown in (1), each of the twelve damper members 2 is plastically deformed, and the kinetic energy of the vertical displacement of the column 6 is converted into heat energy and consumed.
【0045】さらにこの実施例の制振構造は、図4
(a),(c)に示すように、超高層ビルディング4の
頂部に、その超高層ビルディング4の部分4a, 4b間、部
分4b, 4c間、部分4c,4d間および部分4a, 4d間をそれぞ
れ上下方向相対移動可能に連結する連結部材3を有して
おり、上記部分4a, 4d間を連結する連結部材3について
図10(a)に代表して示すように、ここにおける各連結
部材3は高張力鋼製のロッドにて構成され、その連結部
材3の各端部は支持部15を介して、上記各部分4a,4b, 4
cおよび4dのうちの対応する部分に連結されている。Further, the vibration damping structure of this embodiment is shown in FIG.
As shown in (a) and (c), the top of the skyscraper 4 is located between the parts 4a and 4b, between the parts 4b and 4c, between the parts 4c and 4d, and between the parts 4a and 4d. Each of the connecting members 3 has a connecting member 3 for connecting the parts 4a and 4d so as to be movable relative to each other in the vertical direction. As shown in FIG. Is constituted by a rod made of high-tensile steel, and each end of the connecting member 3 is connected to each of the parts 4a, 4b, 4
linked to the corresponding parts of c and 4d.
【0046】ここで、支持部15は、図10(b)およびそ
のE−E線に沿う断面図である図10(c)に拡大して示
すように、上記各部分4a, 4b, 4cおよび4dの上端部に埋
設されたH型鋼材からなる梁16上にブラケット17を介し
て受け材18を固定し、それらブラケット17および受け材
18に連結部材3の一端部を貫通させるとともに、その貫
通させた連結部材3の端部に、受け材18の球面状の受け
面18a の半径に等しいかそれより小さい半径の球面状の
摺接面19a を持つ掛合材19を挿通し、その連結部材3の
端部のネジ部3aにナット20を螺着して、その掛合材19を
連結部材3に対し抜け止めしてなる。As shown in FIG. 10 (b) and FIG. 10 (c), which is a cross-sectional view taken along the line EE, the support portion 15 includes the portions 4a, 4b, 4c and 4c. A receiving member 18 is fixed via a bracket 17 on a beam 16 made of H-shaped steel buried at the upper end of the 4d, and the bracket 17 and the receiving member are fixed.
One end of the connecting member 3 is made to penetrate through the connecting member 3 and a spherical sliding contact with a radius equal to or smaller than the radius of the spherical receiving surface 18a of the receiving member 18 is made on the penetrating end of the connecting member 3. A hook 19 having a surface 19a is inserted therethrough, and a nut 20 is screwed into a screw portion 3a at an end of the connecting member 3 so that the hook 19 is prevented from coming off from the connecting member 3.
【0047】かかる支持部15は、超高層ビルディング4
の上記各部分4a, 4b, 4cおよび4d間に上下方向の位置ず
れが生ずると、掛合材19の球面状の摺接面19a が受け材
18の球面状の受け面18a に対し摺動することで、図10
(b)に仮想線で示すように、連結部材3の揺動を可能
にし、これにより連結部材3は、超高層ビルディング4
の部分4a, 4b間、部分4b, 4c間、部分4c,4d間および部
分4a, 4d間をそれぞれ上下方向相対移動可能に連結す
る。しかしてここでは、上記ナット20を締め込むことに
て、図10(d)に示すように、連結部材3により、超高
層ビルディング4の上記各部分4a, 4b, 4cおよび4dの頂
部同士を引き寄せて、部分4a, 4b, 4cおよび4dに互いに
接近する方向の初期弾性撓み変形を与えておく。The support section 15 is a high-rise building 4
When a vertical displacement occurs between the above-mentioned parts 4a, 4b, 4c and 4d, the spherical sliding contact surface 19a of the hooking material 19
By sliding against the spherical receiving surface 18a of FIG.
As shown by an imaginary line in (b), the connecting member 3 is allowed to swing, whereby the connecting member 3 is moved to the high-rise building 4.
The portions 4a and 4b, the portions 4b and 4c, the portions 4c and 4d, and the portions 4a and 4d are connected so as to be relatively movable in the vertical direction. Here, by tightening the nut 20, as shown in FIG. 10 (d), the connecting members 3 draw the tops of the respective portions 4a, 4b, 4c and 4d of the high-rise building 4 together. Thus, the portions 4a, 4b, 4c, and 4d are given initial elastic bending deformation in a direction approaching each other.
【0048】上記実施例の制振構造によれば、図4
(b)に示すように超高層ビルディング4が地震や風等
の水平方向の外力によって撓んで、その四つの部分4a,
4b, 4cおよび4dが例えば部分4a, 4d間および部分4b, 4c
間でそれぞれ上下方向に互いに位置ずれすると、四支柱
制振部7および二支柱制振部8が上記の如くしてその位
置ずれの運動エネルギーを消費するので、超高層ビルデ
ィング4を簡易な構成で効果的に制振し得て、耐震や耐
風性能の優れた超高層ビルディングを低コストで提供す
ることができる等、先の実施例と同様の種々の作用効果
をもたらすことができる。なお、上記超高層ビルディン
グ4の各階層には、上記各部分4a, 4b, 4c,4dの上下方
向相対移動が可能なようにそれらの部分間の間隙を覆う
図示しない繋ぎ床材を、安全のために設けておく。According to the vibration damping structure of the above embodiment, FIG.
As shown in (b), the high-rise building 4 is deflected by a horizontal external force such as an earthquake or wind, and its four parts 4a,
4b, 4c and 4d e.g. between parts 4a, 4d and parts 4b, 4c
When the two columns are displaced in the vertical direction, the four-post vibration damper 7 and the two-post vibration damper 8 consume the kinetic energy of the displacement as described above, so that the super-high-rise building 4 has a simple configuration. Various actions and effects similar to those of the previous embodiment can be provided, such as being able to effectively control the vibration and providing a super-high-rise building with excellent seismic resistance and wind resistance at low cost. Each floor of the super-high-rise building 4 is provided with a connecting floor material (not shown) covering a gap between the parts 4a, 4b, 4c, and 4d so as to be able to move vertically relative to each other. It is provided for
【0049】図11(a)は、この発明の制振構造の作用
効果の確認のために本願発明者が行った振動試験の供試
体を示す縦断面図であり、この供試体は、台21の上方
に、各々内部をアルミニウムハニカム構造として剛性を
持たせた二枚の床板(紙面と直交する方向の幅20mm×長
さ 298mm×高さ40mm、一枚当たり重量250g)22を間隔を
開けて水平に配置するとともに、図11(b)に横断面を
示す板ばね(紙面と直交する方向の幅20mm×板厚 2mm×
高さ 520mm)23を台21上に支柱の代わりに四枚立設し
て、二枚ずつのその板ばね23で上記各床板22を支持し、
また、四枚のうちの中央部の互いに隣接する二枚の板ば
ね23の上端部の間にダンパー部材として、両端面に粘着
剤(具体的には両面テープ)を設けたアルミニウムブロ
ック(紙面と直交する方向の幅20mm×厚さ10mm×高さ40
mm)24を介挿し、さらに、上記互いに隣接する二枚の板
ばね23の上部(床板22のすぐ下の部分)を連結部材とし
てのワイヤー25で上下方向相対移動可能に連結するとと
もに、そのワイヤー25で二枚の板ばね23の上部同士を引
き寄せて、それらの板ばね23に互いに接近する方向の初
期弾性撓み変形を与えてなる。そして片側の床板22に
は、加速度センサ26を設けてある。FIG. 11 (a) is a longitudinal sectional view showing a test specimen of a vibration test performed by the present inventor for confirming the operation and effect of the vibration damping structure of the present invention. Above the above, two floor boards (width 20 mm in the direction perpendicular to the paper x length 298 mm x height 40 mm, weight 250 g per sheet) 22 each with rigidity made of aluminum honeycomb structure inside are spaced apart. A leaf spring (width 20 mm in the direction perpendicular to the paper surface × thickness 2 mm ×
Height 520 mm) 23 are erected on the base 21 instead of the columns, and each of the floor plates 22 is supported by two leaf springs 23,
Further, as a damper member between the upper ends of two leaf springs 23 adjacent to each other at the center of the four sheets, an aluminum block provided with an adhesive (specifically, a double-sided tape) on both end surfaces (the paper block). 20mm width x 10mm thickness x 40 height in orthogonal directions
mm) 24, and furthermore, the upper portions of the two leaf springs 23 adjacent to each other (the portion immediately below the floor plate 22) are connected by a wire 25 as a connecting member so as to be relatively movable in the vertical direction. The upper portions of the two leaf springs 23 are pulled together by 25 to give the leaf springs 23 an initial elastic bending deformation in a direction approaching each other. An acceleration sensor 26 is provided on one floor plate 22.
【0050】図12(a)は、図11に示す供試体におい
て、上記アルミニウムブロック24の代わりに両端面に接
着剤を塗布したアルミニウムブロック(紙面と直交する
方向の幅20mm×厚さ25mm×高さ40mm)を介挿して、四枚
のうちの中央部の互いに隣接する二枚の板ばね23の上端
部同士を接着剤により剛結することで、それらの板ばね
23の撓み変形に伴う上下方向への位置ずれが生じないよ
うにするとともに、それらの板ばね23に互いに接近する
方向の初期弾性撓み変形も与えないようにした比較例の
供試体の、二枚の床板22に図では左右方向の水平な外力
を加えた場合の、時間の経過に対する加速度センサ26の
出力電圧の変化状態を示しており、同図から明らかなよ
うに、この場合には床板22の水平振動の減衰度が極めて
小さく、振動が長時間持続した。FIG. 12 (a) shows an aluminum block (width 20 mm × thickness 25 mm × height in a direction perpendicular to the paper surface) having an adhesive applied to both ends instead of the aluminum block 24 in the specimen shown in FIG. 40mm), and the upper ends of two leaf springs 23 adjacent to each other at the center of the four leaf springs are rigidly connected to each other with an adhesive.
Two pieces of the test piece of the comparative example in which the displacement in the vertical direction due to the flexural deformation of 23 is prevented from occurring, and the initial elastic flexure in the direction approaching each other is not given to the leaf springs 23. In the figure, the state where the output voltage of the acceleration sensor 26 changes with the passage of time when a horizontal external force is applied to the floor plate 22 is shown in the figure. As is clear from FIG. Of the horizontal vibration was extremely small, and the vibration lasted for a long time.
【0051】図12(b)は、図11に示す供試体におい
て、上記アルミニウムブロック24をその両端面に粘着剤
を設けないで介挿して、アルミニウムブロック24とその
両側の二枚の板ばね23との間の摩擦抵抗を実質的になく
す一方で、それらの板ばね23にワイヤー25で互いに接近
する方向の初期弾性撓み変形を与えておいて、二枚の床
板22に図では左右方向の水平な外力を加えた場合の、時
間の経過に対する加速度センサ26の出力電圧の変化状態
を示しており、同図から明らかなように、この場合には
床板22の水平振動の減衰度が比較的大きく、振動が比較
的短時間で収束した。FIG. 12 (b) shows the test piece shown in FIG. 11, in which the aluminum block 24 is inserted without providing an adhesive on both end surfaces thereof, and the aluminum block 24 and two leaf springs 23 on both sides thereof are provided. While the frictional resistance between them is substantially eliminated, the leaf springs 23 are given an initial elastic bending deformation in the direction approaching each other by the wire 25, and the two floor plates 22 are horizontally moved in the horizontal direction in the figure. It shows the state of change of the output voltage of the acceleration sensor 26 with the passage of time when a strong external force is applied, and as can be seen from the figure, in this case, the attenuation of the horizontal vibration of the floor plate 22 is relatively large. The vibration converged in a relatively short time.
【0052】図12(c)は、図11に示す供試体そのもの
を用いて、アルミニウムブロック24とその両側の二枚の
板ばね23との間の摩擦抵抗を粘着剤で大きなものとする
とともに、それらの板ばね23にワイヤー25で互いに接近
する方向の初期弾性撓み変形を与えておいて、二枚の床
板22に図では左右方向の水平な外力を加えた場合の、時
間の経過に対する加速度センサ26の出力電圧の変化状態
を示しており、同図から明らかなように、この場合には
床板22の水平振動の減衰度が極めて大きく、振動が極め
て短時間で収束した。FIG. 12 (c) shows that the frictional resistance between the aluminum block 24 and the two leaf springs 23 on both sides of the aluminum block 24 is increased with an adhesive by using the specimen itself shown in FIG. An acceleration sensor with respect to the passage of time when a horizontal external force is applied to the two floor plates 22 in the figure by giving the plate springs 23 an initial elastic bending deformation in a direction approaching each other with a wire 25. FIG. 26 shows a change state of the output voltage. As is apparent from the figure, in this case, the attenuation of the horizontal vibration of the floor plate 22 was extremely large, and the vibration converged in a very short time.
【0053】これらの試験結果から、本願発明のように
並立する構造物同士あるいはその支柱同士の上下方向の
位置ずれにダンパー部材で抵抗を与えるとともに構造物
あるいはその支柱に互いに接近する方向の初期弾性撓み
変形を与えておけば、構造物を効果的に制振し得るとい
うことが確認された。そして上記(b)の結果よりも上
記(c)の結果の方が減衰度が相当大きくなったことよ
り、構造物同士あるいはその支柱同士の上下方向の位置
ずれにダンパー部材で抵抗を与えるのみでも相当な制振
効果が得られることが判明した。From these test results, it is understood from the results of the present invention that a damper member is used to provide resistance to the vertical displacement between the structures or the columns thereof, as well as the initial elasticity in the direction approaching the structure or the columns, as in the present invention. It has been confirmed that the structure can be effectively damped if the bending deformation is given. Since the result of the above (c) is considerably larger than the result of the above (b), the damper member only provides resistance to the vertical displacement between the structures or their columns. It has been found that a considerable damping effect can be obtained.
【0054】以上、図示例に基づき説明したが、この発
明は上述の例に限定されるものでなく、例えば、上記実
施例では高層ビルディングを四つの部分に分けてそれら
の部分間にダンパー部材を設けたが、高層ビルディング
等の構造物の内部の並立する支柱間にダンパー部材を設
けても良い。またダンパー部材の形状も、上記実施例の
ものに限られず適宜変更することができる。そしてこの
発明の制振構造は、上記実施例以外の構造物にも適用し
得ることはいうまでもない。Although the present invention has been described with reference to the illustrated examples, the present invention is not limited to the above examples. For example, in the above embodiment, a high-rise building is divided into four parts and a damper member is provided between those parts. Although provided, a damper member may be provided between columns that stand side by side inside a structure such as a high-rise building. Further, the shape of the damper member is not limited to that of the above-described embodiment, and can be appropriately changed. It goes without saying that the vibration damping structure of the present invention can be applied to structures other than the above-described embodiment.
【図1】並立する二つ以上の構造物としての二つの建築
物に適用したこの発明の構造物用制振構造の一実施例を
模式的に示す正面図である。FIG. 1 is a front view schematically showing one embodiment of a structural vibration damping structure of the present invention applied to two buildings as two or more parallel structures.
【図2】並立する構造物としての二つの超高層ビルディ
ングに適用したこの発明の構造物用制振構造の他の一実
施例を模式的に示す正面図である。FIG. 2 is a front view schematically showing another embodiment of the structural damping structure of the present invention applied to two super-high-rise buildings as juxtaposed structures.
【図3】一つの構造物としての長大橋の一本の主塔に適
用したこの発明の構造物用制振構造のさらに他の一実施
例を模式的に示す正面図である。FIG. 3 is a front view schematically showing still another embodiment of the structural vibration damping structure of the present invention applied to one main tower of a long bridge as one structure.
【図4】(a)は、一つの構造物としての一つの超高層
ビルディングに適用したこの発明の構造物用制振構造の
さらに他の一実施例を模式的に示す正面図、また(b)
は、その実施例の制振構造の作用を示す説明図、さらに
(c)は、その実施例の制振構造における連結部材の配
置を示す上記超高層ビルディングの平面図、そして
(d)は、その実施例の制振構造におけるダンパー部材
の配置を示す上記超高層ビルディングの横断面図であ
る。FIG. 4A is a front view schematically showing still another embodiment of the structure damping structure of the present invention applied to one super-high-rise building as one structure, and FIG. )
Is an explanatory view showing the operation of the vibration damping structure of the embodiment, (c) is a plan view of the super-high-rise building showing the arrangement of connecting members in the vibration damping structure of the embodiment, and (d) is It is a cross-sectional view of the said high-rise building which shows arrangement | positioning of the damper member in the damping structure of the example.
【図5】(a)は、上記実施例における四支柱制振部を
示す斜視図、また(b)および(c)は、その四支柱制
振部の、(a)の斜視図中の矢印Aおよび矢印B方向か
らそれぞれ見た側面図、そして(d)は、その四支柱制
振部に用いるダンパー部材を示す斜視図である。FIG. 5A is a perspective view showing a four-post damping unit in the embodiment, and FIGS. 5B and 5C are arrows in the perspective view of FIG. FIG. 4 is a side view as seen from the directions of arrow A and arrow B, respectively, and FIG. 4D is a perspective view showing a damper member used for the four-pillar damping unit.
【図6】(a)は、上記ダンパー部材が剪断変形する場
合の上記四支柱制振部の状態を示す側面図、そして
(b)は、上記ダンパー部材が摺動する場合の上記四支
柱制振部の状態を示す側面図である。FIG. 6A is a side view showing a state of the four-post damping unit when the damper member is sheared, and FIG. 6B is a side view showing the four-post damping unit when the damper member slides. It is a side view which shows the state of a vibration part.
【図7】(a)および(b)は、上記実施例における二
支柱制振部を水平かつ互いに直角な二方向から見て示す
側面図、また(c)は、その二支柱制振部の横断面図で
ある。7 (a) and 7 (b) are side views showing the two-post vibration damper in the above embodiment viewed from two directions which are horizontal and perpendicular to each other, and FIG. 7 (c) is a view of the two-post vibration damper. FIG.
【図8】(a)は、上記実施例における二支柱制振部の
他の構成例を示す斜視図、また(b)および(c)は、
その四支柱制振部の、(a)の斜視図中の矢印Cおよび
矢印D方向からそれぞれ見た側面図、そして(d)は、
その四支柱制振部の横断面図である。FIG. 8A is a perspective view showing another example of the configuration of the two-pillar damping unit in the embodiment, and FIGS.
(D) is a side view of the four-pillar damping unit viewed from the directions of arrows C and D in the perspective view of (a).
It is a cross-sectional view of the four-pillar damping part.
【図9】(a)および(b)は、図8に示す二支柱制振
部のダンパー部材が互いに異なる二方向の外力によって
剪断変形する状態を示す側面図である。FIGS. 9A and 9B are side views showing a state in which the damper member of the two-pillar damping unit shown in FIG. 8 is sheared and deformed by external forces in two directions different from each other.
【図10】(a)は、図4に示す実施例における連結部
材の高層ビルディング頂部への設置状態を拡大して示す
説明図、(b)は、その連結部材を高層ビルディング頂
部に連結する支持部を示す断面図、(c)は、その支持
部の、(b)のE−E線に沿う断面図、そして(d)
は、上記連結部材が高層ビルディングの各部分に初期弾
性変形を与えた状態を示す側面図である。10 (a) is an enlarged explanatory view showing an installation state of the connecting member on the top of the high-rise building in the embodiment shown in FIG. 4, and FIG. 10 (b) is a support for connecting the connecting member to the top of the high-rise building. FIG. 3C is a cross-sectional view of the supporting portion, taken along line EE of FIG. 3B, and FIG.
FIG. 4 is a side view showing a state in which the connecting member gives initial elastic deformation to each part of the high-rise building.
【図11】(a)は、この発明の制振構造の作用効果の
確認のために本願発明者が行った振動試験の供試体を示
す縦断面図、(b)は、その供試体の板ばねを示す横断
面図である。FIG. 11A is a longitudinal sectional view showing a test piece of a vibration test performed by the present inventor for confirming the operation and effect of the vibration damping structure of the present invention, and FIG. 11B is a plate of the test piece; It is a cross-sectional view showing a spring.
【図12】(a)は、上記供試体を変形させた比較例の
振動試験結果、(b)は、上記供試体において粘着剤を
除いた場合の振動試験結果、そして(c)は、上記供試
体において粘着剤と初期弾性撓み変形とを両方適用した
場合の振動試験結果を示す関係線図である。FIG. 12 (a) is a vibration test result of a comparative example in which the test piece is deformed, (b) is a vibration test result when the adhesive is removed from the test piece, and (c) is a result of the vibration test. FIG. 9 is a relationship diagram showing a vibration test result when both the pressure-sensitive adhesive and the initial elastic bending deformation are applied to a test sample.
1 建築物 2 ダンパー部材 3 連結部材 4 超高層ビルディング 5 主塔 6 支柱 DESCRIPTION OF SYMBOLS 1 Building 2 Damper member 3 Connecting member 4 High-rise building 5 Main tower 6 Prop
Claims (8)
に、水平方向の外力による前記二つ以上の構造物の撓み
変形に伴うそれらの構造物間の上下方向の位置ずれの運
動エネルギーを消費するダンパー部材(2)を配設した
ことを特徴とする、構造物用制振構造。1. A vertical displacement movement between two or more structures (1) caused by bending of the two or more structures due to a horizontal external force. A damping structure for a structure, comprising a damper member (2) that consumes energy.
の上下方向の位置ずれにより剪断変形して運動エネルギ
ーを消費する部材であることを特徴とする、請求項1記
載の構造物用制振構造。2. The structure according to claim 1, wherein the damper member is a member that consumes kinetic energy by shearing due to a vertical displacement between the structures. Swing structure.
の上下方向の位置ずれによりそれらの構造物の少なくと
も一方に対し摺動して運動エネルギーを消費する部材で
あることを特徴とする、請求項1記載の構造物用制振構
造。3. The damper member (2) is a member that consumes kinetic energy by sliding against at least one of the structures due to a vertical displacement between the structures. The structure for damping a structure according to claim 1.
対移動可能に連結する連結部材(3)を設けたことを特
徴とする、請求項1から請求項3までの何れか記載の構
造物用制振構造。4. The structure according to claim 1, further comprising a connecting member (3) for connecting the two or more structures so as to be relatively movable in a vertical direction. Damping structure for goods.
上の支柱(6)の間に、水平方向の外力による前記二本
以上の支柱の撓み変形に伴うそれらの支柱間の上下方向
の位置ずれの運動エネルギーを消費するダンパー部材
(2)を配設したことを特徴とする、構造物用制振構
造。5. Between two or more columns (6) supporting one structure in parallel, a vertical direction between the columns due to bending deformation of the two or more columns due to a horizontal external force. A damping member (2) that consumes the kinetic energy of the positional deviation is disposed.
上下方向の位置ずれにより剪断変形して運動エネルギー
を消費する部材であることを特徴とする、請求項5記載
の構造物用制振構造。6. The vibration damper for a structure according to claim 5, wherein said damper member (2) is a member that consumes kinetic energy by shearing deformation due to a vertical displacement between said columns. Construction.
上下方向の位置ずれによりそれらの支柱の少なくとも一
方に対し摺動して運動エネルギーを消費する部材である
ことを特徴とする、請求項5記載の構造物用制振構造。7. The damper member (2) is a member that consumes kinetic energy by sliding against at least one of the columns due to a vertical displacement between the columns. 6. The vibration damping structure for a structure according to 5.
移動可能に連結する連結部材(3)を設けたことを特徴
とする、請求項5から請求項7までの何れか記載の構造
物用制振構造。8. The structure according to claim 5, further comprising a connecting member (3) for connecting the two or more columns so as to be relatively movable in a vertical direction. For vibration control structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05353898A JP3397678B2 (en) | 1998-03-05 | 1998-03-05 | Damping structure for structures |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05353898A JP3397678B2 (en) | 1998-03-05 | 1998-03-05 | Damping structure for structures |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11247486A true JPH11247486A (en) | 1999-09-14 |
JP3397678B2 JP3397678B2 (en) | 2003-04-21 |
Family
ID=12945592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05353898A Expired - Lifetime JP3397678B2 (en) | 1998-03-05 | 1998-03-05 | Damping structure for structures |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3397678B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001311321A (en) * | 2000-04-28 | 2001-11-09 | Takenaka Komuten Co Ltd | Connection vibration-damping device for separated frames |
JP2010090697A (en) * | 2009-11-30 | 2010-04-22 | Mitsubishi Heavy Industries Bridge & Steel Structures Engineering Co Ltd | Main tower for bridge and bridge including the same |
KR100994671B1 (en) | 2010-07-20 | 2010-11-16 | (주)씨케이피풍공학연구소 | Control apparatus of building using controlling air current and control method of the same |
-
1998
- 1998-03-05 JP JP05353898A patent/JP3397678B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001311321A (en) * | 2000-04-28 | 2001-11-09 | Takenaka Komuten Co Ltd | Connection vibration-damping device for separated frames |
JP2010090697A (en) * | 2009-11-30 | 2010-04-22 | Mitsubishi Heavy Industries Bridge & Steel Structures Engineering Co Ltd | Main tower for bridge and bridge including the same |
KR100994671B1 (en) | 2010-07-20 | 2010-11-16 | (주)씨케이피풍공학연구소 | Control apparatus of building using controlling air current and control method of the same |
Also Published As
Publication number | Publication date |
---|---|
JP3397678B2 (en) | 2003-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101379591B1 (en) | Fork configuration dampers and method of using same | |
US5875589A (en) | Structures having damped floors and a method of damping floors | |
JP3397678B2 (en) | Damping structure for structures | |
JPH11343675A (en) | Damping device and damping structure | |
JP2009035949A (en) | Shear panel type damper mounting structure to structure | |
JP2009035949A5 (en) | ||
JP2005133533A (en) | Damping wall | |
JP5305756B2 (en) | Damping wall using corrugated steel | |
JP2004232324A (en) | Vibration control system | |
JP2004300912A (en) | Comfortable damping damper | |
JP3463085B2 (en) | Seismic building | |
JPH10292845A (en) | Elasto-plastic damper | |
JP7235192B2 (en) | Support structure for ceiling panel and unit building | |
JP2573525B2 (en) | Partition wall damping structure | |
JP2000328811A (en) | Vibrational energy absorber using wire bundle | |
JP2009275480A (en) | Seismic control structure of bearing wall | |
JP2511319B2 (en) | Steel rod damper device for seismic isolation and vibration control | |
JP2003097642A (en) | Vertical seismic isolation device | |
JPH0259262B2 (en) | ||
JP2003328585A (en) | Vibration control structure for building having piloti | |
KR100603726B1 (en) | Vibration controller using relative displacement of connecting member | |
JP2006226043A (en) | Damping damper connector, damping damper, and building damping structure | |
JP3663563B2 (en) | Seismic isolation device | |
JP4660722B2 (en) | Vibration control device | |
JP2008196163A (en) | Vibration control pillar |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20030107 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090214 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100214 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100214 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110214 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110214 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120214 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130214 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140214 Year of fee payment: 11 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |