[go: up one dir, main page]

JPH11243949A - Glucose dehydrogenase having pqq as prosthetic group and its production - Google Patents

Glucose dehydrogenase having pqq as prosthetic group and its production

Info

Publication number
JPH11243949A
JPH11243949A JP10050817A JP5081798A JPH11243949A JP H11243949 A JPH11243949 A JP H11243949A JP 10050817 A JP10050817 A JP 10050817A JP 5081798 A JP5081798 A JP 5081798A JP H11243949 A JPH11243949 A JP H11243949A
Authority
JP
Japan
Prior art keywords
pqq
glucose dehydrogenase
prosthetic group
protein
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10050817A
Other languages
Japanese (ja)
Inventor
Seiji Takeshima
誠嗣 竹嶋
Shizuo Hattori
静夫 服部
Yoshihisa Kawamura
川村  良久
Kazuo Adachi
収生 足立
Kazunobu Matsushita
一信 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP10050817A priority Critical patent/JPH11243949A/en
Publication of JPH11243949A publication Critical patent/JPH11243949A/en
Pending legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a new glucose dehydrogenase producible in a mass at a low cost by gene recombination technique and useful for the determination of blood sugar level, etc. SOLUTION: This enzyme is (A) a protein composed of the amino acid sequence described by formula or (B) a protein composed of the amino acid sequence of formula provided that one or several amino acid sequences are deleted, substituted or added and having glucose dehydrogenase activity. The glucose dehydrogenase having PQQ as prosthetic group is produced by culturing a PQQ-producing transformed microorganism obtained by transforming a microorganism such as Pseudomonas aeruginosa with a recombinant vector integrated with a DNA fragment containing a gene coding for the enzyme.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、PQQを補欠分子
族とする新規なグルコースデヒドロゲナーゼ(以下、G
DHとも言う)、該GDHをコードする遺伝子、該GD
Hをコードする遺伝子断片を組み込んでなる組換えベク
ター、該組換えベクターでPQQ生産能を有する微生物
が形質転換された形質転換体、該形質転換体を培養する
ことによるGDHの製造方法、GDHの安定化方法なら
びに該安定化方法により安定化されたGDH組成物に関
する。
The present invention relates to a novel glucose dehydrogenase (hereinafter referred to as G) having PQQ as a prosthetic group.
DH), a gene encoding the GDH, the GD
H. A recombinant vector comprising a gene fragment encoding H, a transformant obtained by transforming a microorganism having PQQ-producing ability with the recombinant vector, a method for producing GDH by culturing the transformant, and a method for producing GDH. The present invention relates to a stabilizing method and a GDH composition stabilized by the stabilizing method.

【0002】[0002]

【従来の技術】GDHは、1959年にノルウェーのJ.
G.Hauge によって未知のキノン化合物を有する酵素とし
て発見された。一方、PQQ(Pyrrolo Quinoline Quin
one )は脱水素酵素の第三の補酵素として、1979年
にその化学構造が決定されており、メタノール資化性菌
のメタノール脱水素酵素や酢酸菌のアルコール脱水素酵
素やグルコース脱水素酵素を中心に、多くの生物におい
て、主として脱水素酵素でその存在が確認されている。
2. Description of the Related Art GDH was established in 1959 by J. Norway.
Discovered by G. Hauge as an enzyme with an unknown quinone compound. On the other hand, PQQ (Pyrrolo Quinoline Quin
one) is the third coenzyme of dehydrogenase, whose chemical structure was determined in 1979. It uses methanol dehydrogenase of methanol assimilating bacteria, alcohol dehydrogenase of acetic acid bacteria and glucose dehydrogenase. Mainly, in many organisms, its presence is confirmed mainly by dehydrogenase.

【0003】これらの脱水素酵素は人工電子受容体を還
元できるので、ニトロブルーテトラゾリウムのような色
素を用いると可視光で、しかも感度よく検出できるこ
と、およびNAD依存性脱水素酵素のように平衡反応で
はなく一方向への反応であるので、微量の化合物の定量
に極めて有用であるとされている(飴山実、Methods in
Enzymol. 第89巻,20(1982))。
[0003] Since these dehydrogenases can reduce artificial electron acceptors, they can be detected with visible light and with high sensitivity by using a dye such as nitroblue tetrazolium, and the equilibrium reaction such as NAD-dependent dehydrogenase can be performed. It is considered to be extremely useful for the quantification of trace amounts of compounds because it is a one-way reaction instead of (Minami Ameyama, Methods in
Enzymol. 89, 20 (1982)).

【0004】PQQを補欠分子族とする酵素の中で最も
有用性が高いのは、PQQ依存性GDHであり、血糖の
測定に用いることができる。実際の使用に関しては、通
常の生化学試薬としての使用はもちろん、膜に固定した
ドライ試薬の呈色反応やチップに固定したセンサー用途
等幅広く応用することが可能である。グルコースに同様
に作用するグルコースオキシダーゼやNAD(P)依存
性GDHと比較し、溶存酸素の影響を受けないことや、
反応がシンプルなためデバイスを簡単に、しかも安価に
できることが特徴である。
Among the enzymes having PQQ as a prosthetic group, the most useful is PQQ-dependent GDH, which can be used for measuring blood glucose. As for actual use, it can be used widely as a normal biochemical reagent, as well as a color reaction of a dry reagent immobilized on a membrane or a sensor immobilized on a chip. Compared to glucose oxidase and NAD (P) -dependent GDH which act on glucose in the same way, it is not affected by dissolved oxygen,
The feature is that the device can be made simple and inexpensive because the reaction is simple.

【0005】上記PQQを補欠分子族とするGDHのク
ローニングはアシネトバクター・カルコアセティカス
(Acinetobacter calcoaceticus )LMD79.41(A.-M.Cle
ton-Jansenら,J.Bacteriol.,170,2121(19
88)およびMol.Gen.Genet.,217,430(198
9))、エシェリヒア・コリ(Escherichiacoli )(A.
-M.Cleton-Jansenら,J.Bacteriol.,172,6308
(1990))、グルコノバクター・オキシダンス(Gl
uconobacter oxydans )(Mol.Gen.Genet.,229,2
06(1991))等で報告されており、大腸菌での発
現も確認されている。
The cloning of GDH having PQQ as a prosthetic group was performed by Acinetobacter calcoaceticus LMD79.41 (A.-M.Cle
ton-Jansen et al., J. Bacteriol., 170, 2121 (19
88) and Mol. Gen. Genet., 217, 430 (198).
9)), Escherichiacoli (A.
-M. Cleton-Jansen et al., J. Bacteriol., 172, 6308
(1990)), Gluconobacter oxydans (Gl
uconobacter oxydans) (Mol. Gen. Genet., 229, 2)
06 (1991)), and expression in E. coli has also been confirmed.

【0006】[0006]

【発明が解決しようとする課題】遺伝的によく解析され
ており、かつ形質転換する宿主として最適化されている
大腸菌をはじめとする腸内細菌はPQQを産生しないこ
とが知られており、もしPQQを補欠分子族とするGD
Hをコードする遺伝子断片を組み込んでなるベクターで
大腸菌を形質転換し、該大腸菌を培養しても活性のない
アポ型GDHしか得られないことが知られている。これ
らのアポ型GDHは外からPQQを加えることにより活
性のあるホロ型GDHに変換可能であるが、必要とする
PQQは試薬として非常に高価である。また、工業的ス
ケールでは全てのアポ型がホロ型に変換されないことが
確認されている。
It is known that enterobacteria such as Escherichia coli, which has been genetically well analyzed and optimized as a transforming host, do not produce PQQ. GD with PQQ as the prosthetic group
It is known that Escherichia coli is transformed with a vector into which a gene fragment encoding H has been incorporated, and only the apo-type GDH having no activity can be obtained by culturing the Escherichia coli. These apo-type GDHs can be converted into active holo-type GDH by adding PQQ from outside, but the required PQQ is very expensive as a reagent. Further, it has been confirmed that not all apo-forms are converted to holo-forms on an industrial scale.

【0007】また、Biotechnol.Lett.,16,12,1
265(1994)には形質転換大腸菌を培養する際、
培地にPQQを加えて活性のあるホロ型GDHを生産す
ることが報告されているが、この場合も高価なPQQを
多量に用いる必要がある。さらに、Mol.Gen.Genet.,2
29,206(1991)には、グルコノバクター・オ
キシダンスのGDHをコードする遺伝子断片をグルコノ
バクター・オキシダンス自身の染色体に組み込んで発現
させているが、この場合は染色体上に存在し、多コピー
ではないため発現量は小さい。
Also, Biotechnol. Lett., 16, 12, 1
265 (1994), when culturing transformed E. coli,
It has been reported that PQQ is added to a medium to produce active holo-type GDH, but also in this case, a large amount of expensive PQQ must be used. Furthermore, Mol. Gen. Genet., 2
29, 206 (1991), a gene fragment encoding GDH of Gluconobacter oxydans is expressed by integrating it into the chromosome of Gluconobacter oxydans itself. In this case, the gene fragment is present on the chromosome, The expression level is small because it is not a multiple copy.

【0008】[0008]

【課題を解決するための手段】本発明者らは上記目的を
達成するために種々検討した結果、PQQを補欠分子族
とするGDHをコードする遺伝子を含むDNA断片を組
込んでなる組換えベクターによりPQQ生産能を有する
微生物を形質転換することによって得られた形質転換微
生物を培養し、該培養物からPQQを補欠分子族とする
GDHを採取することによって、安価にGDHを大量生
産できることを見出し、本発明に到達した。
Means for Solving the Problems As a result of various studies to achieve the above object, the present inventors have found that a recombinant vector comprising a DNA fragment containing a gene encoding GDH having PQQ as a prosthetic group is incorporated. By culturing a transformed microorganism obtained by transforming a microorganism having PQQ-producing ability by using the method described above, and collecting GDH having PQQ as a prosthetic group from the culture, whereby GDH can be mass-produced at low cost. Reached the present invention.

【0009】すなわち、本発明は、PQQを補欠分子族
とするGDHをコードする遺伝子を含むDNA断片を組
込んでなる組換えベクターでPQQ生産能を有する微生
物を形質転換することによって得られることを特徴とす
る形質転換微生物を、培養して培養物からPQQを補欠
分子族とするGDHを採取すること特徴とするGDHの
製造方法である。
That is, the present invention provides that the present invention is obtained by transforming a microorganism capable of producing PQQ with a recombinant vector into which a DNA fragment containing a gene encoding GDH having PQQ as a prosthetic group is incorporated. A method for producing GDH, comprising culturing a transformed microorganism, and collecting GDH having PQQ as a prosthetic group from the culture.

【0010】本発明は、以下の(a)または(b)のタ
ンパク質であるPQQを補欠分子族とするグルコースデ
ヒドロゲナーゼである。 (a)配列表・配列番号1に記載されたアミノ酸配列か
らなるタンパク質 (b)アミノ酸配列(a)において、1もしくは数個の
アミノ酸配列が欠失、置換もしくは付加されたアミノ酸
配列からなり、かつグルコースデヒドロゲナーゼ活性を
有するタンパク質 本発明は、配列表・配列番号1に記載されるアミノ酸配
列からなるタンパク質であるPQQを補欠分子族とする
グルコースデヒドロゲナーゼである。
[0010] The present invention is a glucose dehydrogenase having PQQ, a protein of the following (a) or (b), as a prosthetic group: (A) a protein consisting of the amino acid sequence described in Sequence Listing / SEQ ID NO: 1 (b) an amino acid sequence (a) comprising one or several amino acid sequences deleted, substituted or added, and TECHNICAL FIELD The present invention relates to a glucose dehydrogenase having PQQ, which is a protein having the amino acid sequence described in Sequence Listing and SEQ ID NO: 1, as a prosthetic group.

【0011】本発明は、以下の(e)または(f)のタ
ンパク質であるPQQを補欠分子族とするグルコースデ
ヒドロゲナーゼである。 (e)配列表・配列番号3に記載されたアミノ酸配列か
らなるタンパク質 (f)アミノ酸配列(e)において、1もしくは数個の
アミノ酸配列が欠失、置換もしくは付加されたアミノ酸
配列からなり、かつグルコースデヒドロゲナーゼ活性を
有するタンパク質 本発明は、配列表・配列番号3に記載されるアミノ酸配
列からなるタンパク質であるPQQを補欠分子族とする
グルコースデヒドロゲナーゼである。
The present invention is a glucose dehydrogenase having PQQ, which is a protein of the following (e) or (f), as a prosthetic group. (E) a protein comprising the amino acid sequence described in SEQ ID NO: 3 (f) an amino acid sequence (e) wherein one or several amino acid sequences are deleted, substituted or added, and TECHNICAL FIELD The present invention relates to a glucose dehydrogenase having PQQ, which is a protein having the amino acid sequence shown in SEQ ID NO: 3 in the Sequence Listing and having a prosthetic group, as a prosthetic group.

【0012】本発明は、以下の(a)または(b)のタ
ンパク質であるPQQを補欠分子族とするグルコースデ
ヒドロゲナーゼをコードする遺伝子である。 (a)配列表・配列番号1に記載されたアミノ酸配列か
らなるタンパク質 (b)アミノ酸配列(a)において、1もしくは数個の
アミノ酸配列が欠失、置換もしくは付加されたアミノ酸
配列からなり、かつグルコースデヒドロゲナーゼ活性を
有するタンパク質 本発明は、配列表・配列番号1に記載されるアミノ酸配
列からなるタンパク質であるPQQを補欠分子族とする
グルコースデヒドロゲナーゼをコードする遺伝子であ
る。
The present invention is a gene encoding a glucose dehydrogenase having PQQ, a protein of the following (a) or (b), as a prosthetic group: (A) a protein consisting of the amino acid sequence described in Sequence Listing / SEQ ID NO: 1 (b) an amino acid sequence (a) comprising one or several amino acid sequences deleted, substituted or added, and TECHNICAL FIELD The present invention is a gene encoding a glucose dehydrogenase having PQQ, which is a protein consisting of the amino acid sequence shown in Sequence Listing and SEQ ID NO: 1, as a prosthetic group.

【0013】本発明は、以下の(c)または(d)のタ
ンパク質であるPQQを補欠分子族とするグルコースデ
ヒドロゲナーゼをコードする遺伝子である。 (c)配列表・配列番号2に記載された塩基配列からな
るDNA (d)上記(c)の配列において、1もしくは数個の塩
基が欠失、置換もしくは付加されており、かつグルコー
スデヒドロゲナーゼ活性を有するタンパク質をコードす
るDNA 本発明は、配列表・配列番号2に記載される塩基配列か
らなるDNAを有するPQQを補欠分子族とするグルコ
ースデヒドロゲナーゼをコードする遺伝子である。
The present invention relates to a gene encoding glucose dehydrogenase having PQQ, which is a protein of the following (c) or (d), as a prosthetic group. (C) DNA consisting of the nucleotide sequence described in SEQ ID NO: 2 (d) In the above sequence (c), one or several bases are deleted, substituted or added, and glucose dehydrogenase activity TECHNICAL FIELD The present invention is a gene encoding glucose dehydrogenase having PQQ having a DNA consisting of the nucleotide sequence shown in SEQ ID NO: 2 as a prosthetic group.

【0014】本発明は、以下の(e)または(f)のタ
ンパク質であるPQQを補欠分子族とするグルコースデ
ヒドロゲナーゼをコードする遺伝子である。 (e)配列表・配列番号3に記載されたアミノ酸配列か
らなるタンパク質 (f)アミノ酸配列(e)において、1もしくは数個の
アミノ酸配列が欠失、置換もしくは付加されたアミノ酸
配列からなり、かつグルコースデヒドロゲナーゼ活性を
有するタンパク質 本発明は、配列表・配列番号3に記載されるアミノ酸配
列からなるタンパク質であるPQQを補欠分子族とする
グルコースデヒドロゲナーゼをコードする遺伝子であ
る。
The present invention is a gene encoding a glucose dehydrogenase having PQQ, a protein of the following (e) or (f), as a prosthetic group. (E) a protein comprising the amino acid sequence described in SEQ ID NO: 3 (f) an amino acid sequence (e) wherein one or several amino acid sequences are deleted, substituted or added, and TECHNICAL FIELD The present invention is a gene encoding a glucose dehydrogenase having PQQ, which is a protein consisting of the amino acid sequence shown in Sequence Listing and SEQ ID NO: 3, as a prosthetic group.

【0015】本発明は、以下の(g)または(h)のタ
ンパク質であるPQQを補欠分子族とするグルコースデ
ヒドロゲナーゼをコードする遺伝子である。 (g)配列表・配列番号4に記載された塩基配列からな
るDNA (h)上記(g)の配列において、1もしくは数個の塩
基が欠失、置換もしくは付加されており、かつグルコー
スデヒドロゲナーゼ活性を有するタンパク質をコードし
ているDNA 本発明は、配列表・配列番号4に記載される塩基配列か
らなるDNAを有するPQQを補欠分子族とするグルコ
ースデヒドロゲナーゼをコードする遺伝子である。
The present invention relates to a gene encoding glucose dehydrogenase having PQQ, a protein of the following (g) or (h), as a prosthetic group. (G) DNA consisting of the base sequence described in SEQ ID NO: 4 (h) In the above sequence (g), one or several bases are deleted, substituted or added, and glucose dehydrogenase activity TECHNICAL FIELD The present invention is a gene encoding glucose dehydrogenase having PQQ having a DNA consisting of the nucleotide sequence shown in SEQ ID NO: 4 as a prosthetic group.

【0016】本発明は、上記PQQを補欠分子族とする
グルコースデヒドロゲナーゼをコードする遺伝子を含有
する組換えベクターである。本発明は、PQQを補欠分
子族とするグルコースデヒドロゲナーゼをコードする遺
伝子を含むDNA断片が組み込まれ、かつPQQ生産能
を有する微生物において複製できることを特徴とする上
記組換えベクターである。
The present invention is a recombinant vector containing a gene encoding glucose dehydrogenase having PQQ as a prosthetic group. The present invention is the above-mentioned recombinant vector, wherein a DNA fragment containing a gene encoding glucose dehydrogenase having PQQ as a prosthetic group is integrated and can be replicated in a microorganism capable of producing PQQ.

【0017】本発明は、上記の組換えベクターでPQQ
生産能を有する微生物を形質転換した形質転換体であ
る。本発明は、PQQを補欠分子族とするグルコースデ
ヒドロゲナーゼがアシネトバクター・カルコアセティカ
ス(Acinetobacter calcoaceticus )もしくはアシネト
バクター・バウマンニ(Acinetobacter baumannii )由
来である上記形質転換体である。本発明は、PQQ生産
能を有する微生物がシュードモナス(Pseudomonas )属
またはアシネトバクター(Acinetobacter )属に属する
微生物である上記形質転換体である。
[0017] The present invention provides a recombinant vector comprising PQQ
It is a transformant obtained by transforming a microorganism having productivity. The present invention is the above transformant, wherein the glucose dehydrogenase having PQQ as a prosthetic group is derived from Acinetobacter calcoaceticus or Acinetobacter baumannii. The present invention is the above transformant, wherein the microorganism having PQQ-producing ability is a microorganism belonging to the genus Pseudomonas or the genus Acinetobacter.

【0018】本発明は、PQQ生産能を有する微生物が
シュードモナス・エルギノサ(Pseudomonas aeruginos
a)、シュードモナス・フルオレッセンス(Pseudomonas
fluorescens )、シュードモナス・プチダ(Pseudomon
as putida)、アシネトバクター・カルコアセティカス
(Acinetobacter calcoaceticus )、アシネトバクター
・バウマンニ(Acinetobacter baumannii )からなる群
より選ばれた微生物である上記形質転換体である。本発
明は、PQQ生産能を有する微生物がシュードモナス・
プチダ(Pseudomonas putida)である上記形質転換体で
ある。本発明は、PQQ生産能を有する微生物がアシネ
トバクター・カルコアセティカス(Acinetobacter calc
oaceticus )もしくはアシネトバクター・バウマンニ
(Acinetobacter baumannii )である上記の形質転換体
である。本発明は、PQQを補欠分子族とするグルコー
スデヒドロゲナーゼが可溶性である上記形質転換体であ
る。
According to the present invention, the microorganism having the ability to produce PQQ is Pseudomonas aeruginos
a), Pseudomonas fluorescens
fluorescens), Pseudomon
as putida), Acinetobacter calcoaceticus, and Acinetobacter baumannii. The above transformant which is a microorganism selected from the group consisting of Acinetobacter baumannii. The present invention relates to a method for producing PQQ-producing microorganisms comprising Pseudomonas sp.
The above transformant which is Pseudomonas putida. The present invention relates to a method wherein the microorganism having PQQ-producing ability is Acinetobacter calcoaceticas.
oaceticus) or Acinetobacter baumannii. The present invention is the above transformant, in which glucose dehydrogenase having PQQ as a prosthetic group is soluble.

【0019】本発明は、PQQを補欠分子族とするグル
コースデヒドロゲナーゼをコードする遺伝子を含むDN
A断片を組込んでなる組換えベクターでPQQ生産能を
有する微生物が形質転換された形質転換微生物を培養し
て、該培養物からPQQを補欠分子族とするグルコース
デヒドロゲナーゼを採取するグルコースデヒドロゲナー
ゼの製造方法である。
The present invention relates to a DN containing a gene encoding glucose dehydrogenase having PQQ as a prosthetic group.
Production of glucose dehydrogenase by culturing a transformed microorganism in which a microorganism having PQQ-producing ability has been transformed with a recombinant vector incorporating the A fragment, and collecting glucose dehydrogenase having PQQ as a prosthetic group from the culture Is the way.

【0020】本発明は、PQQを補欠分子族とするグル
コースデヒドロゲナーゼがアシネトバクター・カルコア
セティカス(Acinetobacter calcoaceticus )もしくは
アシネトバクター・バウマンニ(Acinetobacter bauman
nii )由来の微生物である上記のグルコースデヒドロゲ
ナーゼの製造方法である。本発明は、PQQ生産能を有
する微生物がシュードモナス(Pseudomonas )属または
アシネトバクター(Acinetobacter )属に属する微生物
である上記グルコースデヒドロゲナーゼの製造方法であ
る。
According to the present invention, glucose dehydrogenase having PQQ as a prosthetic group is Acinetobacter calcoaceticus or Acinetobacter baumani.
nii) A method for producing the above-mentioned glucose dehydrogenase, which is a microorganism derived from the present invention. The present invention is the method for producing glucose dehydrogenase, wherein the microorganism having PQQ-producing ability is a microorganism belonging to the genus Pseudomonas or the genus Acinetobacter.

【0021】本発明は、PQQ生産能を有する微生物が
シュードモナス・エルギノサ(Pseudomonas aeruginos
a)、シュードモナス・フルオレッセンス(Pseudomonas
fluorescens )、シュードモナス・プチダ(Pseudomon
as putida)、アシネトバクター・カルコアセティカス
(Acinetobacter calcoaceticus )、アシネトバクター
・バウマンニ(Acinetobacter baumannii )からなる群
より選ばれた微生物である上記グルコースデヒドロゲナ
ーゼの製造方法である。本発明は、PQQ生産能を有す
る微生物がシュードモナス・プチダ(Pseudomonas puti
da)である上記グルコースデヒドロゲナーゼの製造方法
である。本発明は、PQQ生産能を有する微生物がアシ
ネトバクター・カルコアセティカス(Acinetobacter ca
lcoaceticus )もしくはアシネトバクター・バウマンニ
(Acinetobacter baumannii )である上記グルコースデ
ヒドロゲナーゼの製造方法である。本発明は、PQQを
補欠分子族とするグルコースデヒドロゲナーゼが可溶性
である上記グルコースデヒドロゲナーゼの製造方法であ
る。
According to the present invention, the microorganism having the ability to produce PQQ is Pseudomonas aeruginos
a), Pseudomonas fluorescens
fluorescens), Pseudomon
asputida), Acinetobacter calcoaceticus, and Acinetobacter baumannii, a method for producing the above glucose dehydrogenase, which is a microorganism selected from the group consisting of Acinetobacter baumannii. The present invention relates to a method for producing a PQQ-producing microorganism comprising Pseudomonas puti.
da) is a method for producing the above glucose dehydrogenase. The present invention relates to a method for producing PQQ-producing microorganisms using Acinetobacter cacoaceticus.
lcoaceticus) or Acinetobacter baumannii. The present invention is the method for producing glucose dehydrogenase, wherein glucose dehydrogenase having PQQ as a prosthetic group is soluble.

【0022】本発明は、PQQを補欠分子族とするグル
コースデヒドロゲナーゼをGOODの緩衝液の存在下に
凍結乾燥して保持することを特徴とするグルコースデヒ
ドロゲナーゼの安定化方法である。本発明は、カルシウ
ムが共存する上記グルコースデヒドロゲナーゼの安定化
方法である。本発明は、GOODの緩衝液がPIPE
S、MES、MOPSからなる群より選ばれた緩衝液で
ある上記グルコースデヒドロゲナーゼの安定化方法であ
る。
The present invention provides a method for stabilizing glucose dehydrogenase, comprising freeze-drying glucose dehydrogenase having PQQ as a prosthetic group in the presence of a GOOD buffer. The present invention is a method for stabilizing the above glucose dehydrogenase in which calcium coexists. In the present invention, the GOOD buffer is PIPE
This is a method for stabilizing glucose dehydrogenase, which is a buffer selected from the group consisting of S, MES, and MOPS.

【0023】本発明は、PQQを補欠分子族とするグル
コースデヒドロゲナーゼをGOODの緩衝液の存在下に
凍結乾燥して保持されたものであることを特徴とする安
定化されたグルコースデヒドロゲナーゼ組成物である。
本発明は、カルシウムが共存する上記のグルコースデヒ
ドロゲナーゼ組成物である。本発明は、GOODの緩衝
液がPIPES、MES、MOPSからなる群より選ば
れた緩衝液である上記のグルコースデヒドロゲナーゼ組
成物である。
The present invention provides a stabilized glucose dehydrogenase composition characterized in that glucose dehydrogenase having PQQ as a prosthetic group is freeze-dried and maintained in the presence of a GOOD buffer. .
The present invention is the above glucose dehydrogenase composition in which calcium coexists. The present invention is the above glucose dehydrogenase composition, wherein the GOOD buffer is a buffer selected from the group consisting of PIPES, MES, and MOPS.

【0024】[0024]

【発明の実施の形態】本発明のPQQを補欠分子族とす
るGDHをコードする遺伝子を含むDNA断片は、GD
H生産菌より得ることができる。該GDH生産菌とし
て、具体的には、例えばアシネトバクター・カルコアセ
ティカス、アシネトバクター・バウマンニ(Acinetobac
ter baumannii )、シュードモナス・エルギノサ(Pseu
domonasaeruginosa)、シュードモナス・プチダ(Pseud
omonas putida)、シュードモナス・フルオレッセンス
(Pseudomonas fluorescens )、グルコノバクター・オ
キシダンス等の酸化細菌やアグロバクテリウム・ラジオ
バクター(Agrobacteriumradiobacter )、エシェリヒ
ア・コリ、クレブシーラ・エーロジーンズ(Klebsiella
aerogenes)等の腸内細菌を挙げることができる。なか
でも、アシネトバクター・カルコアセティカスもしくは
アシネトバクター・バウマンニの可溶性GDHが好まし
い。
BEST MODE FOR CARRYING OUT THE INVENTION A DNA fragment containing a gene encoding GDH having PQQ as a prosthetic group according to the present invention is GD
It can be obtained from H-producing bacteria. As the GDH-producing bacteria, specifically, for example, Acinetobacter calcoaceticus, Acinetobacter baumannii (Acinetobacca)
ter baumannii), Pseudomonas aeruginosa (Pseu)
domonasaeruginosa), Pseud (Pseud)
omonas putida), oxidizing bacteria such as Pseudomonas fluorescens, and Gluconobacter oxydans, Agrobacterium radiobacter, Escherichia coli, and Klebsiella aerojeans.
aerogenes). Among them, soluble GDH of Acinetobacter calcoaceticus or Acinetobacter baumannii is preferable.

【0025】該GDHをコードする遺伝子はこれらの菌
株より抽出してもよく、また化学的に合成することもで
きる。さらに、PCR法の利用により、PQQを補欠分
子族とするグルコースデヒドロゲナーゼ遺伝子を含むD
NA断片を得ることも可能である。
The GDH-encoding gene may be extracted from these strains or may be chemically synthesized. Furthermore, by utilizing the PCR method, DQ containing a glucose dehydrogenase gene having PQQ as a prosthetic group is obtained.
It is also possible to obtain NA fragments.

【0026】上記GDHをコードする遺伝子としては、
例えば(a)配列表・配列番号1に記載されたアミノ酸
配列からなるタンパク質をコードする遺伝子、または
(b)アミノ酸配列(a)において、1もしくは数個の
アミノ酸配列が欠失、置換もしくは付加されたアミノ酸
配列からなり、かつグルコースデヒドロゲナーゼ活性を
有するタンパク質であるPQQを補欠分子族とするグル
コースデヒドロゲナーゼをコードする遺伝子が挙げられ
る。
The genes encoding GDH include:
For example, (a) a gene encoding a protein consisting of the amino acid sequence described in SEQ ID NO: 1 or (b) an amino acid sequence (a) in which one or several amino acid sequences are deleted, substituted or added. And a gene encoding glucose dehydrogenase having PQQ, which is a protein having the above amino acid sequence and having glucose dehydrogenase activity, as a prosthetic group.

【0027】また、(e)配列表・配列番号3に記載さ
れたアミノ酸配列からなるタンパク質をコードする遺伝
子、または(f)アミノ酸配列(e)において、1もし
くは数個のアミノ酸配列が欠失、置換もしくは付加され
たアミノ酸配列からなり、かつグルコースデヒドロゲナ
ーゼ活性を有するタンパク質であるPQQを補欠分子族
とするグルコースデヒドロゲナーゼをコードする遺伝子
も挙げることができる。
Further, (e) a gene encoding a protein consisting of the amino acid sequence described in SEQ ID NO: 3 or (f) one or several amino acid sequences in the amino acid sequence (e) are deleted, A gene consisting of a substituted or added amino acid sequence and encoding glucose dehydrogenase having PQQ, a protein having glucose dehydrogenase activity, as a prosthetic group can also be mentioned.

【0028】さらに、(c)配列表・配列番号2に記載
された塩基配列からなるDNA、または(d)上記
(c)の配列において、1もしくは数個の塩基が欠失、
置換もしくは付加されており、かつグルコースデヒドロ
ゲナーゼ活性を有するタンパク質をコードしているDN
Aがある。
Further, (c) a DNA consisting of the nucleotide sequence shown in SEQ ID NO: 2 or (d) one or several bases deleted in the above sequence (c);
DN which is substituted or added and encodes a protein having glucose dehydrogenase activity
There is A.

【0029】さらに、(g)配列表・配列番号4に記載
された塩基配列からなるDNA、または(h)上記
(g)の配列において、1もしくは数個の塩基が欠失、
置換もしくは付加されており、かつグルコースデヒドロ
ゲナーゼ活性を有するタンパク質をコードしているDN
Aがある。
Further, (g) a DNA consisting of the base sequence described in SEQ ID NO: 4 or (h) one or several bases deleted in the above sequence (g);
DN which is substituted or added and encodes a protein having glucose dehydrogenase activity
There is A.

【0030】本発明において、GDHをコードする遺伝
子を得る方法としては、次のような方法が挙げられる。
例えばアシネトバクター・カルコアセティカスNCIB1151
7 の染色体を分離、精製した後、超音波処理、制限酵素
処理等を用いてDNAを切断したものと、リニアーな発
現ベクターと両DNAの平滑末端または付着末端におい
てDNAリガーゼなどにより結合閉鎖させて組換えベク
ターを構築する。該組換えベクターを複製可能な宿主微
生物に移入した後、ベクターのマーカーと酵素活性の発
現を指標としてスクリーニングして、PQQを補欠分子
族とするGDHをコードする遺伝子を含有する組換えベ
クターを保持する微生物を得る。
In the present invention, a method for obtaining a gene encoding GDH includes the following method.
For example, Acinetobacter calcoaceticus NCIB1151
After isolating and purifying the chromosome 7, the DNA was cut using sonication, restriction enzyme treatment, etc., and the linear expression vector was ligated and closed with DNA ligase at the blunt or cohesive ends of both DNAs. Construct a recombinant vector. After transferring the recombinant vector into a replicable host microorganism, screening is performed using the vector marker and the expression of enzyme activity as indices, and the recombinant vector containing the gene encoding GDH with PQQ as the prosthetic group is retained. Get the microorganisms that work.

【0031】次いで、上記組換えベクターを保持する微
生物を培養して、該培養微生物の菌体から該組換えベク
ターを分離、精製し、該発現ベクターからGDHをコー
ドする遺伝子を採取することができる。例えば、遺伝子
供与体であるアシネトバクター・カルコアセティカスNC
IB11517 の染色体DNAは、具体的には以下のようにし
て採取される。
Next, the microorganism carrying the recombinant vector is cultured, the recombinant vector is separated and purified from the cells of the cultured microorganism, and the gene encoding GDH can be collected from the expression vector. . For example, the gene donor Acinetobacter calcoaceticus NC
The chromosomal DNA of IB11517 is specifically collected as follows.

【0032】該遺伝子供与微生物を例えば1〜3日間攪
拌培養して得られた培養液を遠心分離により集菌し、次
いで、これを溶菌させることによりPQQを補欠分子族
とするGDH遺伝子の含有溶菌物を調製することができ
る。溶菌の方法としては、例えばリゾチーム等の溶菌酵
素により処理が施され、必要に応じてプロテアーゼや他
の酵素やラウリル硫酸ナトリウム(SDS)等の界面活
性剤が併用される。さらに、凍結融解やフレンチプレス
処理のような物理的破砕方法と組み合わせてもよい。
A culture solution obtained by stirring and culturing the gene-donating microorganism for 1 to 3 days, for example, is collected by centrifugation, and then lysed to thereby lyse the lysate. Can be prepared. As a lysis method, for example, treatment is performed with a lytic enzyme such as lysozyme, and a protease, another enzyme, or a surfactant such as sodium lauryl sulfate (SDS) is used as needed. Further, the method may be combined with a physical crushing method such as freeze-thawing or French pressing.

【0033】上記のようにして得られた溶菌物からDN
Aを分離精製するには、常法に従って、例えばフェノー
ル処理やプロテアーゼ処理による除蛋白処理や、リボヌ
クレアーゼ処理、アルコール沈殿処理などの方法を適宜
組み合わせることにより行うことができる。
From the lysate obtained as described above, DN
A can be separated and purified according to a conventional method, for example, by appropriately combining methods such as protein removal treatment by phenol treatment or protease treatment, ribonuclease treatment, and alcohol precipitation treatment.

【0034】微生物から分離、精製されたDNAを切断
する方法は、例えば超音波処理、制限酵素処理などによ
り行うことができる。好ましくは特定のヌクレオチド配
列に作用するII型制限酵素が適している。
The method of cutting DNA isolated and purified from microorganisms can be performed by, for example, ultrasonic treatment, restriction enzyme treatment, or the like. Preferably, a type II restriction enzyme that acts on a specific nucleotide sequence is suitable.

【0035】クローニングする際のベクターとしては、
宿主微生物内で自律的に増殖し得るファージまたはプラ
スミドから遺伝子組換え用として構築されたものが適し
ている。ファージとしては、例えばエシェリヒア・コリ
を宿主微生物とする場合にはLambda gt10 、Lambda gt1
1 などが例示される。また、プラスミドとしては、例え
ば、エシェリヒア・コリを宿主微生物とする場合には、
pBR322、pUC19 、pBluescript などが例示される。
As a vector for cloning,
Those constructed for gene recombination from phages or plasmids capable of autonomous growth in a host microorganism are suitable. As the phage, for example, when Escherichia coli is used as a host microorganism, Lambda gt10, Lambda gt1
1 and the like. As a plasmid, for example, when Escherichia coli is used as a host microorganism,
Examples are pBR322, pUC19, pBluescript and the like.

【0036】クローニングの際、上記のようなベクター
を、上述したGDHをコードする遺伝子供与体である微
生物DNAの切断に使用した制限酵素で切断してベクタ
ー断片を得ることができるが、必ずしも該微生物DNA
の切断に使用した制限酵素と同一の制限酵素を用いる必
要はない。微生物DNA断片とベクターDNA断片とを
結合させる方法は、公知のDNAリガーゼを用いる方法
であればよく、例えば微生物DNA断片の付着末端とベ
クター断片の付着末端とのアニーリングの後、適当なD
NAリガーゼの使用により微生物DNA断片とベクター
DNA断片との組換えベクターを作成する。必要に応じ
て、アニーリングの後、宿主微生物に移入して生体内の
DNAリガーゼを利用し組換えベクターを作製すること
もできる。
At the time of cloning, the vector as described above can be obtained by cutting the above-mentioned vector with the restriction enzyme used for cutting the above-mentioned GDH-encoding gene donor microbial DNA. DNA
It is not necessary to use the same restriction enzyme as the restriction enzyme used for the cleavage of DNA. The method for binding the microorganism DNA fragment to the vector DNA fragment may be any method using a known DNA ligase. For example, after annealing the cohesive end of the microbial DNA fragment and the cohesive end of the vector fragment, appropriate DIG
A recombinant vector of a microorganism DNA fragment and a vector DNA fragment is prepared by using NA ligase. If necessary, after annealing, it can be transferred to a host microorganism and a recombinant vector can be prepared using in vivo DNA ligase.

【0037】クローニングに使用する宿主微生物として
は、組換えベクターが安定であり、かつ自律増殖可能で
外来性遺伝子の形質発現できるものであれば特に制限さ
れない。一般的には、エシェリヒア・コリW3110 、エシ
ェリヒア・コリC600、エシェリヒア・コリHB101 、エシ
ェリヒア・コリJM109 、エシェリヒア・コリDH5 αなど
を用いることができる。
The host microorganism used for cloning is not particularly limited as long as the recombinant vector is stable, can be autonomously propagated, and can express a foreign gene. Generally, Escherichia coli W3110, Escherichia coli C600, Escherichia coli HB101, Escherichia coli JM109, Escherichia coli DH5α and the like can be used.

【0038】宿主微生物に組換えベクターを移入する方
法としては、例えば宿主微生物がエシェリヒア・コリの
場合には、カルシウム処理によるコンピテントセル法や
エレクトロポーレーション法などを用いることができ
る。
As a method for transferring the recombinant vector to the host microorganism, for example, when the host microorganism is Escherichia coli, a competent cell method or an electroporation method by calcium treatment can be used.

【0039】上記のように得られた形質転換体である微
生物は、栄養培地で培養されることにより、多量のGD
Hを安定に生産し得る。宿主微生物への目的組換えベク
ターの移入の有無についての選択は、目的とするDNA
を保持するベクターの薬剤耐性マーカーとPQQの添加
によりGDH活性を同時に発現する微生物を検索すれば
よい。例えば、薬剤耐性マーカーに基づく選択培地で生
育し、かつGDHを生成する微生物を選択すればよい。
The microorganism, which is a transformant obtained as described above, is cultured in a nutrient medium to produce a large amount of GD.
H can be produced stably. Selection of the presence or absence of the transfer of the target recombinant vector into the host microorganism depends on the target DNA.
Microorganisms that simultaneously express GDH activity by the addition of a drug resistance marker and a PQQ of a vector that retains the DNA may be searched. For example, a microorganism which grows on a selective medium based on a drug resistance marker and produces GDH may be selected.

【0040】上記の方法により得られたPQQを補欠分
子族とするGDH遺伝子の塩基配列は、Science ,第2
14巻,1205(1981)に記載されたジデオキシ
法により解読した。また、GDHのアミノ酸配列は上記
のように決定された塩基配列より推定した。
The nucleotide sequence of the GDH gene obtained by the above method and having PQQ as a prosthetic group is described in Science, Second Edition.
14, 1205 (1981). The amino acid sequence of GDH was deduced from the nucleotide sequence determined as described above.

【0041】上記のようにして、一度選択されたPQQ
を補欠分子族とするGDH遺伝子を保有する組換えベク
ターより、PQQ生産能を有する微生物にて複製できる
組換えベクターへの移入は、GDH遺伝子を保持する組
換えベクターから制限酵素やPCR法によりGDH遺伝
子であるDNAを回収し、他のベクター断片と結合させ
ることにより容易に実施できる。また、これらのベクタ
ーによるPQQ生産能を有する微生物の形質転換は、カ
ルシウム処理によるコンピテントセル法やエレクトロポ
ーレーション法などを用いることができる。
As described above, the PQQ once selected
Transfer from a recombinant vector carrying a GDH gene having a prosthetic group to a recombinant vector capable of replicating in a PQQ-producing microorganism can be carried out by a restriction enzyme or PCR method from a recombinant vector carrying the GDH gene. It can be easily carried out by recovering DNA as a gene and ligating it to another vector fragment. The transformation of a microorganism having PQQ-producing ability with these vectors can be performed by a competent cell method or an electroporation method using calcium treatment.

【0042】PQQ生産能を有する微生物としては、メ
チロバクテリウム(Methylobacterium)属等のメタノー
ル資化性細菌、アセトバクター(Acetobacter )属やグ
ルコノバクター(Gluconobacter )属の酢酸菌、フラボ
バクテリウム(Flavobacterium)属、シュードモナス
属、アシネトバクター属等の細菌を挙げることができ
る。なかでも、シュードモナス属細菌とアシネトバクタ
ー属細菌が利用できる宿主−ベクター系が確立されてお
り利用しやすいので好ましい。
Microorganisms having the ability to produce PQQ include methanol assimilating bacteria such as Methylobacterium, acetic acid bacteria belonging to the genus Acetobacter and Gluconobacter, and flavobacterium ( Flavobacterium), Pseudomonas, Acinetobacter and the like. Among them, a host-vector system in which Pseudomonas bacteria and Acinetobacter bacteria can be used has been established and is easy to use.

【0043】シュードモナス属細菌では、シュードモナ
ス・エルギノサ、シュードモナス・フルオレッセンス、
シュードモナス・プチダなどを用いることができる。ま
た、アシネトバクター属細菌ではアシネトバクター・カ
ルコアセティカス、アシネトバクター・バウマンニ等を
用いることができる。
Pseudomonas bacteria include Pseudomonas aeruginosa, Pseudomonas fluorescens,
Pseudomonas putida and the like can be used. In addition, Acinetobacter calcoaceticus, Acinetobacter baumannii and the like can be used as Acinetobacter bacteria.

【0044】上記微生物にて複製できる組換えベクター
としては、RSF1010 由来のベクターもしくはとその類似
のレプリコンを有するベクターがシュードモナス属細菌
に利用可能である。例えば、pKT240、pMMB24等(M.M.Ba
gdasarian ら,Gene,26,273(1983))、pC
N40 、pCN60 等(C.C.Nieto ら,Gene,87,145
(1990))やpTS1137 等を挙げることができる。ま
た、pME290等(Y.Itohら、Gene,36,27(198
5))、pNI111、pNI20C(N.Itohら,J.Biochem.,11
0,614(1991))も利用できる。
As a recombinant vector capable of replicating in the above microorganism, a vector derived from RSF1010 or a vector having a replicon similar thereto can be used for Pseudomonas bacteria. For example, pKT240, pMMB24, etc. (MMBa
gdasarian et al., Gene, 26, 273 (1983)), pC
N40, pCN60, etc. (CCNieto et al., Gene, 87, 145)
(1990)) and pTS1137. Also, pME290 and the like (Y. Itoh et al., Gene, 36, 27 (198)
5)), pNI111, pNI20C (N. Itoh et al., J. Biochem., 11)
0,614 (1991)).

【0045】アシネトバクター属細菌では、pWM43 等
(W.Minas ら,Appl.Environ.Microbiol. ,59,28
07(1993))、pKT230、pWH1266 等(M.Hunger
ら,Gene,87,45(1990))がベクターとして
利用可能である。
For bacteria belonging to the genus Acinetobacter, pWM43 and the like (W. Minas et al., Appl. Environ. Microbiol., 59, 28)
07 (1993)), pKT230, pWH1266, etc. (M. Hunger
Gene, 87, 45 (1990)) is available as a vector.

【0046】形質転換体である宿主微生物の培養形態
は、宿主の栄養生理的性質を考慮して培養条件を選択す
ればよく、多くの場合は液体培養で行う。工業的には通
気攪拌培養を行うのが有利である。
The culture form of the host microorganism, which is a transformant, may be selected in consideration of the nutritional and physiological properties of the host, and in most cases, liquid culture is used. Industrially, it is advantageous to carry out aeration stirring culture.

【0047】培地の栄養源としては,微生物の培養に通
常用いられるものが広く使用され得る。炭素源としては
資化可能な炭素化合物であればよく、例えば、グルコー
ス、シュークロース、ラクトース、マルトース、ラクト
ース、糖蜜、ピルビン酸などが使用される。また、窒素
源としては利用可能な窒素化合物であればよく、例え
ば、ペプトン、肉エキス、酵母エキス、カゼイン加水分
解物、大豆粕アルカリ抽出物などが使用される。その
他、リン酸塩、炭酸塩、硫酸塩、マグネシウム、カルシ
ウム、カリウム、鉄、マンガン、亜鉛などの塩類、特定
のアミノ酸、特定のビタミンなどが必要に応じて使用さ
れる。
As the nutrient of the medium, those commonly used for culturing microorganisms can be widely used. The carbon source may be any carbon compound that can be assimilated, and for example, glucose, sucrose, lactose, maltose, lactose, molasses, pyruvic acid and the like are used. The nitrogen source may be any nitrogen compound that can be used, and examples thereof include peptone, meat extract, yeast extract, casein hydrolyzate, and soybean meal alkaline extract. In addition, salts such as phosphate, carbonate, sulfate, magnesium, calcium, potassium, iron, manganese, and zinc, specific amino acids, specific vitamins, and the like are used as necessary.

【0048】培養温度は菌が成育し、GDHを生産する
範囲で適宜変更し得るが、上記のようなPQQ生産能を
有する微生物の場合、好ましくは20〜42℃程度であ
る。培養時間は条件によって多少異なるが、GDHが最
高収量に達する時期を見計らって適当時期に培養を完了
すればよく、通常は12〜72時間程度である。培地の
pHは菌が発育し、GDHを生産する範囲で適宜変更し
得るが、好ましくはpH6.0〜9.0程度の範囲であ
る。
The culture temperature can be appropriately changed within the range in which the bacteria grow and produce GDH. In the case of the microorganism having the PQQ-producing ability as described above, the temperature is preferably about 20 to 42 ° C. The cultivation time varies somewhat depending on the conditions, but the cultivation may be completed at an appropriate time in consideration of the time when GDH reaches the maximum yield, and is usually about 12 to 72 hours. The pH of the medium can be appropriately changed within a range in which the bacteria grow and produce GDH, but is preferably in a range of about pH 6.0 to 9.0.

【0049】培養物中のGDHを生産する菌体を含む培
養液をそのまま採取し、利用することもできるが、一般
には、常法に従って、GDHが培養液中に存在する場合
はろ過、遠心分離などにより、GDH含有溶液と微生物
菌体とを分離した後に利用される。GDHが菌体内に存
在する場合には、得られた培養物からろ過または遠心分
離などの手段により菌体を採取し、次いで、この菌体を
機械的方法またはリゾチームなどの酵素的方法で破壊
し、また、必要に応じて、EDTA等のキレート剤及び
界面活性剤を添加してGDHを可溶化し、水溶液として
分離採取する。
The culture solution containing the cells producing GDH in the culture can be directly collected and used. However, in general, when GDH is present in the culture solution, filtration and centrifugation are performed according to a conventional method. It is used after separating the GDH-containing solution and the microbial cells by, for example, When GDH is present in the cells, the cells are collected from the obtained culture by means such as filtration or centrifugation, and then the cells are disrupted by a mechanical method or an enzymatic method such as lysozyme. If necessary, a chelating agent such as EDTA and a surfactant are added to solubilize GDH, and the GDH is separated and collected as an aqueous solution.

【0050】上記のようにして得られたGDH含有溶液
を、例えば減圧濃縮、膜濃縮、さらに硫酸アンモニウ
ム、硫酸ナトリウムなどの塩析処理、あるいは親水性有
機溶媒、例えばメタノール、エタノール、アセトンなど
による分別沈殿法により沈殿せしめればよい。また、加
熱処理や等電点処理も有効な精製手段である。その後、
吸着剤あるいはゲルろ過剤などによるゲルろ過、吸着ク
ロマトグラフィー、イオン交換クロマトグラフィー、ア
フィニティクロマトグラフィーを行うことにより、精製
されたGDHを得ることができる。
The GDH-containing solution obtained as described above is concentrated under reduced pressure, membrane concentration, salting-out treatment with ammonium sulfate, sodium sulfate or the like, or fractional precipitation with a hydrophilic organic solvent such as methanol, ethanol, acetone or the like. What is necessary is just to precipitate by the method. Heat treatment and isoelectric point treatment are also effective purification means. afterwards,
Purified GDH can be obtained by performing gel filtration using an adsorbent or a gel filtration agent, adsorption chromatography, ion exchange chromatography, or affinity chromatography.

【0051】例えば、セファデックス(Sephadex)ゲル
(ファルマシアバイオテク)などによるゲルろ過、DE
AEセファロースCL-6B (ファルマシアバイオテク)、
オクチルセファロースCL-6B (ファルマシアバイオテ
ク)等のカラムクロマトグラフィーにより分離、精製
し、精製酵素標品を得ることができる。該精製酵素標品
は、電気泳動(SDS−PAGE)的に単一のバンドを
示す程度に純化されていることが好ましい。
For example, gel filtration using Sephadex gel (Pharmacia Biotech), DE
AE Sepharose CL-6B (Pharmacia Biotech),
Separation and purification by column chromatography such as octyl sepharose CL-6B (Pharmacia Biotech) can yield a purified enzyme preparation. The purified enzyme preparation is preferably purified to such an extent that it shows a single band by electrophoresis (SDS-PAGE).

【0052】上記のようにして得られた精製酵素を、例
えば凍結乾燥、真空乾燥やスプレードライなどにより粉
末化して流通させることが可能である。その際、精製酵
素はリン酸緩衝液、トリス塩酸緩衝液やGOODの緩衝
液に溶解しているものを用いることができる。好適なも
のはGOODの緩衝液であり、なかでも、PIPES、
MESもしくはMOPS緩衝液が特に好ましい。また、
カルシウムイオンまたはその塩、およびグルタミン酸、
グルタミン、リジン等のアミノ酸類、さらに血清アルブ
ミン等を添加することによりGDHをより安定化するこ
とができる。
The purified enzyme obtained as described above can be distributed as a powder by freeze drying, vacuum drying, spray drying, or the like. At this time, the purified enzyme that is dissolved in a phosphate buffer, a Tris-HCl buffer, or a GOOD buffer can be used. Preferred are GOOD buffers, especially PIPES,
MES or MOPS buffers are particularly preferred. Also,
Calcium ions or salts thereof, and glutamic acid,
GDH can be further stabilized by adding amino acids such as glutamine and lysine and further serum albumin and the like.

【0053】本発明のPQQを補欠分子とするGDHの
一例は、以下に示すような理化学的性質を有する。 作用:Dーグルコース + 人工電子受容体 → δ−
グルコノラクトン+還元型電子受容体 熱安定性:約50℃以下(pH7.5、30分間処理) pH安定性:3.5〜8.5(25℃、16時間処理) 至適温度:約40℃ 至適pH:7.0 分子量:50000
An example of the GDH of the present invention using PQQ as a prosthetic molecule has the following physicochemical properties. Action: D-glucose + artificial electron acceptor → δ-
Gluconolactone + reduced electron acceptor Thermal stability: about 50 ° C. or less (treatment at pH 7.5 for 30 minutes) pH stability: 3.5 to 8.5 (treatment at 25 ° C. for 16 hours) Optimum temperature: about 40 ° C Optimum pH: 7.0 Molecular weight: 50,000

【0054】本発明において、補欠分子族とするGDH
活性の測定は以下の条件で行う。
In the present invention, GDH which is a prosthetic group
The activity is measured under the following conditions.

【0055】<試薬> 50mM PIPES緩衝液(pH6.5) 0.2mM PMS 0.2mM NTB 30.6mM グルコース 0.19% トリトンX−100<Reagent> 50 mM PIPES buffer (pH 6.5) 0.2 mM PMS 0.2 mM NTB 30.6 mM Glucose 0.19% Triton X-100

【0056】<測定条件>上記試薬混液3mlを37℃
で約5分予備加温後、0.1mlの酵素溶液を加え、緩
やかに混和後、水を対照に37℃に制御された分光光度
計で5分間記録し、その直線部分から1分間あたりの吸
光度変化を測定する。盲検は酵素溶液の代わりに蒸留水
を試薬混液に加えて、以下同様に吸光度変化を測定す
る。上記条件で1分間に1/2μmolのジホルマザン
を生成する酵素量を1単位(U)とする。
<Measurement conditions> 3 ml of the above reagent mixture was mixed at 37 ° C.
After preliminarily heating for about 5 minutes, 0.1 ml of the enzyme solution was added and mixed gently. After that, recording was performed for 5 minutes with a spectrophotometer controlled at 37 ° C. using water as a control. Measure the change in absorbance. In the blind test, distilled water is added to the reagent mixture instead of the enzyme solution, and the absorbance change is measured in the same manner. The amount of the enzyme that produces 1/2 μmol of diformazan per minute under the above conditions is defined as 1 unit (U).

【0057】[0057]

【実施例】以下、実施例により、本発明を具体的に説明
する。 実施例1:染色体DNAの分離 アシネトバクター・カルコアセティカスNCIB11517 の染
色体DNAを次の方法で分離した。同菌株を100ml
のLB培地で30℃、一晩振とう培養した後、遠心分離
(8000rpm、10分間)により集菌した。20%
シュークロース、50mMトリス/塩酸緩衝液(pH
7.6)、1mM EDTAを含んだ溶液5mlに懸濁
し、1mlのプロティナーゼK溶液(100mg/m
l)を加えて37℃、30分間保温し、次いで、1ml
の10%ラウロイルサルコシンナトリウム溶液を加え
た。
The present invention will be described below in detail with reference to examples. Example 1 Isolation of Chromosomal DNA The chromosomal DNA of Acinetobacter calcoaceticus NCIB11517 was isolated by the following method. 100 ml of the same strain
After shaking culture in an LB medium at 30 ° C. overnight, the cells were collected by centrifugation (8000 rpm, 10 minutes). 20%
Sucrose, 50 mM Tris / HCl buffer (pH
7.6) Suspended in 5 ml of a solution containing 1 mM EDTA, 1 ml of proteinase K solution (100 mg / m
l) and keep the mixture at 37 ° C for 30 minutes.
Of 10% sodium lauroyl sarcosine solution was added.

【0058】上記溶液に等量のクロロホルム・フェノー
ル溶液(1:1)を加え、攪拌混合し、10000rp
m、3分間の遠心で水層と溶媒層に分け、水層を分取し
た。該水層に2倍量のエタノールを静かに重層し、ガラ
ス棒でゆっくり攪拌しながらDNAをガラス棒に巻き付
かせて分離した。これを1mM EDTAを含んだトリ
ス/塩酸緩衝液(pH8.0;以下、TEと略記する)
で溶解した。これを等量のクロロホルム・フェノール溶
液で処理後、遠心分離により水層を分取し、2倍量のエ
タノールを加えて、上記方法で再度DNAを分離し、2
mlのTEで溶解した。
An equal volume of a chloroform / phenol solution (1: 1) was added to the above solution, and mixed by stirring.
m, and the mixture was separated into an aqueous layer and a solvent layer by centrifugation for 3 minutes, and the aqueous layer was separated. Twice the amount of ethanol was gently overlaid on the aqueous layer, and the DNA was wound around a glass rod while slowly stirring with a glass rod to separate the DNA. This was mixed with a Tris / HCl buffer containing 1 mM EDTA (pH 8.0; hereinafter abbreviated as TE).
And dissolved. After treating this with an equal volume of a chloroform / phenol solution, the aqueous layer is separated by centrifugation, twice the amount of ethanol is added, and the DNA is separated again by the above method.
Dissolved in ml of TE.

【0059】実施例2:PQQを補欠分子族とする可溶
性GDHをコードする遺伝子を含有するDNA断片及び
該DNA断片を有する組換えベクターの調製 実施例1で得たDNA5μgを制限酵素Sau3AI(東洋紡
績製)で部分分解し、2kbp以上の断片にした後、Ba
mHI (東洋紡績製)で切断したpBluescript KS(+) 1μ
gとT4 DNAリガーゼ(東洋紡績製)1単位で16
℃、16時間反応させ、DNAを連結した。連結したD
NAはエシェリヒアJM109 のコンピテントセル(東洋紡
績製)を用いて形質転換した。使用したDNA1μg当
たり約105 個の形質転換体のコロニーが得られた。
Example 2 Preparation of DNA Fragment Containing a Gene Encoding Soluble GDH Having PQQ as a Prosthetic Group and Recombinant Vector Having the DNA Fragment 5 μg of the DNA obtained in Example 1 was digested with the restriction enzyme Sau3AI (Toyobo Co., Ltd.) After partial digestion into fragments of 2 kbp or more,
pBluescript KS (+) 1μ cut with mHI (Toyobo)
g and 1 unit of T4 DNA ligase (Toyobo) 16
The reaction was carried out at 16 ° C. for 16 hours to ligate the DNA. Connected D
NA was transformed using competent cells of Escherichia JM109 (manufactured by Toyobo). Approximately 10 5 transformant colonies were obtained per μg of DNA used.

【0060】次いで、得られたコロニーは50μg/m
lアンピシリンを含んだLB培地で30℃、24時間培
養し、リゾチーム破砕後、PQQを添加し、該粗酵素液
の可溶性GDH活性を測定した。その結果、1株のPQ
Qを補欠分子族とするGDH生産株を見出した。該菌株
の保有するプラスミドには約8kbpの挿入DNAが存
在しており、該プラスミドをpPGH1 とした。
Next, the obtained colony was 50 μg / m
The cells were cultured in an LB medium containing 1 ampicillin at 30 ° C. for 24 hours, lysozyme was crushed, PQQ was added, and the soluble GDH activity of the crude enzyme solution was measured. As a result, one stock PQ
A GDH-producing strain having Q as a prosthetic group was found. The plasmid contained in the strain had an inserted DNA of about 8 kbp, and this plasmid was designated as pPGH1.

【0061】該プラスミドDNA5μgを制限酵素MboI
I (東洋紡績製)で切断してアガロースゲル電気泳動を
行ない、可溶性GDH遺伝子を含む長さ約1.9kbの
断片を切り出した。単離したDNAとEcoRV (東洋紡績
製)で切断したpBluescriptKS(+) 1μgとをT4 D
NAリガーゼ1単位で16℃、16時間反応させ、DN
Aを連結した。連結したDNAはエシェリヒア・コリJM
109 のコンピテントセルを用いて形質転換を行った。得
られたコロニー中にGDH遺伝子を有するプラスミドを
有するコロニーを見出し、該プラスミドをpPGH2 と命名
した。
The plasmid DNA (5 μg) was digested with the restriction enzyme MboI.
The fragment was cut with I (Toyobo) and subjected to agarose gel electrophoresis to cut out a fragment of about 1.9 kb in length containing the soluble GDH gene. The isolated DNA and 1 μg of pBluescriptKS (+) cut with EcoRV (manufactured by Toyobo) were mixed with T4D.
The reaction was carried out with 1 unit of NA ligase at 16 ° C. for 16 hours.
A was connected. The ligated DNA is Escherichia coli JM
Transformation was performed using 109 competent cells. A colony having a plasmid having the GDH gene was found in the obtained colonies, and the plasmid was named pPGH2.

【0062】実施例3:塩基配列の決定 pPGH2 の挿入DNA断片について常法に従い、デリーシ
ョンミュータントを調製した。種々のサブクローンは常
法に従い、シーケンシング・キット(Radioactive Sequ
encing Kit)(東洋紡績製)を用いて塩基配列を決定し
た。決定した塩基配列およびアミノ酸配列は配列番号1
および2に示す通りである。アミノ酸配列から求められ
る蛋白質の分子量は約52800であり、アシネトバク
ター・カルコアセティカスNCIB11517 のGDHの分子量
とほぼ一致した。
Example 3 Determination of Nucleotide Sequence A deletion mutant was prepared from the inserted DNA fragment of pPGH2 according to a conventional method. Various subclones can be prepared in a conventional manner using a sequencing kit (Radioactive Sequencing).
base kit) (Toyobo Co., Ltd.). The determined nucleotide sequence and amino acid sequence are as shown in SEQ ID NO: 1.
And 2. The molecular weight of the protein determined from the amino acid sequence was about 52800, which was almost the same as the molecular weight of GDH of Acinetobacter calcoaceticus NCIB11517.

【0063】実施例4:アシネトバクター・バウマンニ
JCM6841 の可溶性GDHの塩基配列の決定 アシネトバクター・バウマンニJCM6841 の染色体DNA
を実施例1と同様の方法で分離し、PQQを補欠分子族
とする可溶性GDHをコードする遺伝子を含有するDN
A断片及び該DNA断片を有する組換えベクターの調製
を実施例2と同様に実施し、約7Kbpの挿入断片を有
するpPGH6 を取得した。該プラスミドよりGDHをコー
ドする遺伝子を含有するDNA断片を含む4kbのDN
A断片を常法により、サブクローニングしてpPGH7 を構
築した。
Example 4: Acinetobacter baumannii
Determination of base sequence of soluble GDH of JCM6841 Chromosomal DNA of Acinetobacter baumannii JCM6841
Was isolated in the same manner as in Example 1, and DN containing a gene encoding soluble GDH having PQQ as a prosthetic group.
Preparation of the recombinant vector having the A fragment and the DNA fragment was carried out in the same manner as in Example 2 to obtain pPGH6 having an insert fragment of about 7 Kbp. 4 kb DN containing a DNA fragment containing the gene encoding GDH from the plasmid
The fragment A was subcloned by a conventional method to construct pPGH7.

【0064】次に、pPGH7 の挿入DNA断片について常
法に従いデリーションミュータントを調製した。種々の
サブクローンは常法に従い、シーケンシング・キット
(Radioactive Sequencing Kit)(東洋紡績製)を用い
て塩基配列を決定した。決定した塩基配列およびアミノ
酸配列は配列番号3および4に示す通りである。アミノ
酸配列から求められる蛋白質の分子量は約53000で
あり、アシネトバクター・バウマンニJCM6841 のGDH
の分子量とほぼ一致した。
Next, a deletion mutant was prepared for the inserted DNA fragment of pPGH7 according to a conventional method. The nucleotide sequences of the various subclones were determined using a sequencing kit (Radioactive Sequencing Kit) (manufactured by Toyobo) according to a conventional method. The determined base sequence and amino acid sequence are as shown in SEQ ID NOs: 3 and 4. The molecular weight of the protein determined from the amino acid sequence is about 53000, and GDH of Acinetobacter baumannii JCM6841
Almost coincided with the molecular weight of

【0065】実施例5:シュードモナス属細菌で複製で
きる発現ベクターの構築 実施例3で得たプラスミドDNA5μgを制限酵素BamH
I およびXhoI(東洋紡績製)で切断して、GDH遺伝子
を含む長さ1.9Kbの断片を含むDNAを単離した。
単離したDNAとBamHI およびXhoIで切断したpTS1137
を1μgとをT4 DNAリガーゼ1単位で16℃、1
6時間反応させ、DNAを連結した。連結したDNAは
エシェリヒア・コリDH5 αのコンピテントセルを用いて
形質転換を行った。得られたコロニー中にGDH遺伝子
を有するプラスミドを有するコロニーを見出し、該プラ
スミドをpGLD3 と命名した。
Example 5: Construction of an expression vector capable of replicating in Pseudomonas spp. 5 μg of the plasmid DNA obtained in Example 3 was digested with the restriction enzyme BamH.
By digestion with I and XhoI (manufactured by Toyobo), DNA containing a 1.9 Kb fragment containing the GDH gene was isolated.
Isolated DNA and pTS1137 cut with BamHI and XhoI
And 1 μg of T4 DNA ligase at 16 ° C.
After reacting for 6 hours, the DNA was ligated. The ligated DNA was transformed using competent cells of Escherichia coli DH5α. A colony having a plasmid having the GDH gene was found in the obtained colonies, and the plasmid was named pGLD3.

【0066】実施例6:アシネトバクター属細菌で複製
できる発現ベクターの構築 実施例3で得たプラスミドDNA5μgを制限酵素MboI
I (東洋紡績製)で切断して、GDH遺伝子を含む長さ
1.9Kbの断片を含むDNAを単離した。単離したD
NAとMscI(東洋紡績製)で切断したpWH1266 を1μg
とをT4 DNAリガーゼ1単位で16℃、16時間反
応させ、DNAを連結した。連結したDNAはエシェリ
ヒア・コリDH5 αのコンピテントセルを用いて形質転換
を行った。得られたコロニー中にGDH遺伝子を有する
プラスミドを有するコロニーを見出し、該プラスミドを
pGLD4 と命名した。
Example 6: Construction of an expression vector capable of replicating in Acinetobacter bacteria 5 μg of the plasmid DNA obtained in Example 3 was digested with the restriction enzyme MboI.
The DNA was digested with I (manufactured by Toyobo Co., Ltd.) and a DNA containing a 1.9 Kb fragment containing the GDH gene was isolated. Isolated D
1 μg of pWH1266 cut with NA and MscI (Toyobo)
Were reacted with 1 unit of T4 DNA ligase at 16 ° C. for 16 hours to ligate DNA. The ligated DNA was transformed using competent cells of Escherichia coli DH5α. A colony having a plasmid having the GDH gene was found in the obtained colonies, and the plasmid was replaced with the plasmid.
It was named pGLD4.

【0067】比較例1:エシェリヒア・コリ宿主用発現
ベクターの構築 実施例3で得たプラスミドDNA5μgを制限酵素MboI
I (東洋紡績製)で切断して、GDH遺伝子を含む長さ
1.8Kbの断片を含むDNAを単離した。単離したD
NAとEcoRV で切断したpBluescript KS(+) 1μgとを
T4 DNAリガーゼ1単位で16℃、16時間反応さ
せ、DNAを連結した。連結したDNAはエシェリヒア
・コリJM109 のコンピテントセルを用いて形質転換を行
った。得られたコロニー中にGDH遺伝子を有するプラ
スミドを有するコロニーを見出し、該プラスミドをpGLD
5 と命名した。
Comparative Example 1 Construction of Expression Vector for Escherichia coli Host 5 μg of the plasmid DNA obtained in Example 3 was digested with the restriction enzyme MboI.
The DNA was digested with I (manufactured by Toyobo Co., Ltd.) and a DNA containing a 1.8 Kb fragment containing the GDH gene was isolated. Isolated D
NA and 1 μg of pBluescript KS (+) digested with EcoRV were reacted with 1 unit of T4 DNA ligase at 16 ° C. for 16 hours to ligate the DNA. The ligated DNA was transformed using competent cells of Escherichia coli JM109. A colony having a plasmid having the GDH gene was found in the obtained colonies, and the plasmid was replaced with pGLD.
Named 5

【0068】比較例2:エシェリヒア・コリJM109 /pG
LD5 からのPQQを補欠分子族とするGDHの製造 Terrific broth500mlを2Lフラスコに分注し、1
21℃、15分間オートクレーブを行い、放冷後、別途
無菌ろ過した50mg/mlアンピシリン0.5mlを
添加した。該培地にLB培地で予め、30℃、24時間
振とう培養したエシェリヒア・コリJM109 /pPGLD5の培
養液5mlを接種し、37℃で24時間通気攪拌培養し
た。培養終了時のGDH活性は約0.34U/mlであ
った。一方、活性測定試薬に10μmolのPQQを添
加後、活性測定すると120U/mlであった。
Comparative Example 2: Escherichia coli JM109 / pG
Production of GDH with PQQ as Prosthetic Group from LD5 Terrific broth 500 ml was dispensed into a 2 L flask, and
After autoclaving at 21 ° C. for 15 minutes, the mixture was allowed to cool, and then 0.5 ml of 50 mg / ml ampicillin, which was separately sterilized and filtered, was added. The culture medium was inoculated with 5 ml of a culture solution of Escherichia coli JM109 / pPGLD5 previously cultured with shaking at 30 ° C. for 24 hours in an LB medium, and cultured with aeration and agitation at 37 ° C. for 24 hours. The GDH activity at the end of the culture was about 0.34 U / ml. On the other hand, after adding 10 μmol of PQQ to the activity measurement reagent, the activity was measured to be 120 U / ml.

【0069】実施例7:PQQ生産能を有する微生物の
形質転換体の作製 シュードモナス・プチダTE3493(微工研寄12298
号)をLBG培地(LB培地+0.3%グリセロール)
で30℃、16時間培養し、遠心分離(12000rp
m、10分間)により菌体を回収し、この菌体に氷冷し
た300mMシュークロースを含む5mM K−リン酸
緩衝液(pH7.0)8mlを加え、菌体を懸濁した。
再度遠心分離(12000rpm、10分間)により菌
体を回収し、この菌体に氷冷した300mMシュークロ
ースを含む5mM K−リン酸緩衝液(pH7.0)
0.4mlを加え、菌体を懸濁した。
Example 7: Preparation of transformant of microorganism having PQQ-producing ability Pseudomonas putida TE3493 (produced by Microtechnical Laboratory 12298)
No.) in LBG medium (LB medium + 0.3% glycerol)
At 30 ° C for 16 hours, and centrifuged (12000 rpm).
for 10 minutes), 8 ml of ice-cooled 5 mM K-phosphate buffer (pH 7.0) containing 300 mM sucrose was added, and the cells were suspended.
The cells were collected by centrifugation again (12000 rpm, 10 minutes), and the cells were ice-cooled and contained 5 mM K-phosphate buffer (pH 7.0) containing 300 mM sucrose.
0.4 ml was added to suspend the cells.

【0070】該懸濁液に実施例5で得たプラスミドDN
A(pGLD3 )0.5μgを加え、エレクトロポーレーシ
ョン法により形質転換した。50μg/mlストレプト
マイシンを含んだLB培地に生育したコロニーより、P
QQを補欠分子族とする可溶性GDH活性を有するクロ
ーンを得た。
[0070] The plasmid DN obtained in Example 5 was added to the suspension.
A (pGLD3) (0.5 μg) was added, and the cells were transformed by electroporation. From colonies grown on LB medium containing 50 μg / ml streptomycin, P
A clone having a soluble GDH activity having QQ as a prosthetic group was obtained.

【0071】同様に、上記pGLD3 を用いて、シュードモ
ナス・プチダTN1126株、シュードモナス・エルギノサPA
O1162 株、シュードモナス・フルオレッセンスIFO12568
株より形質転換体を取得した。
Similarly, using the above pGLD3, Pseudomonas putida TN1126 strain, Pseudomonas aeruginosa PA
O1162 strain, Pseudomonas fluorescens IFO12568
A transformant was obtained from the strain.

【0072】また、アシネトバクター・カルコアセティ
カスNCIB11517 をLB培地で30℃、16時間培養し、
遠心分離(12000rpm、10分間)により菌体を
回収し、この菌体に氷冷した滅菌水8mlを加え、菌体
を懸濁した。再度遠心分離(12000rpm、10分
間)により菌体を回収し、該菌体に10%グリセロール
0.4mlを加え、菌体を懸濁した。
Further, Acinetobacter calcoaceticus NCIB11517 was cultured in an LB medium at 30 ° C. for 16 hours.
The cells were collected by centrifugation (12000 rpm, 10 minutes), and 8 ml of ice-cooled sterilized water was added to the cells to suspend the cells. The cells were collected again by centrifugation (12000 rpm, 10 minutes), and 0.4 ml of 10% glycerol was added to the cells to suspend the cells.

【0073】該懸濁液50μlに実施例6で得たプラス
ミドDNA(pGLD4 )0.5μgを加え、エレクトロポ
ーレーション法により形質転換した。テトラサイクリン
50μg/mlを含んだLB培地に生育したコロニーよ
り、PQQを補欠分子族とする可溶性GDH活性を有す
るクローンを得た。
To 50 μl of the suspension, 0.5 μg of the plasmid DNA (pGLD4) obtained in Example 6 was added, followed by transformation by electroporation. From the colonies grown on the LB medium containing 50 μg / ml of tetracycline, a clone having soluble GDH activity having PQQ as a prosthetic group was obtained.

【0074】実施例8:得られた形質転換体によるGD
H活性発現量の比較 実施例7で得られた5種の形質転換体、比較例2で得ら
れた形質転換体および対照としてアシネトバクター・カ
ルコアセティカスNCIB11517 をTerrific broth50ml
(1.2%ポリペプトン、2.4%酵母エキス、0.4
%NaCl、17mMKH2 PO4 、72mM K2
PO4 、pH7.0)で30℃、24時間培養し、遠心
分離(12000rpm、3分間)により菌体を回収し
た。該菌体を1mMのCaCl2 を含んだ50mMトリ
ス/塩酸緩衝液、pH7.5に懸濁後、超音波により菌
体を破砕した。遠心分離(12000rpm、5分間)
によって菌体残さを除去した、粗酵素液を調製後、GD
H活性を測定した。その結果を表1に示す。
Example 8: GD using the obtained transformant
Comparison of the expression levels of H activity Five types of the transformants obtained in Example 7, the transformants obtained in Comparative Example 2, and Acinetobacter calcoaceticus NCIB11517 as a control were used in 50 ml of Terrific broth.
(1.2% polypeptone, 2.4% yeast extract, 0.4
% NaCl, 17 mM KH 2 PO 4 , 72 mM K 2 H
(PO 4 , pH 7.0) at 30 ° C. for 24 hours, and the cells were collected by centrifugation (12,000 rpm, 3 minutes). The cells were suspended in a 50 mM Tris / HCl buffer containing 1 mM CaCl 2 , pH 7.5, and then disrupted by ultrasonication. Centrifugation (12000 rpm, 5 minutes)
After preparing a crude enzyme solution from which cell residues have been removed by
H activity was measured. Table 1 shows the results.

【0075】実施例9:シュードモナス・プチダTE3493
/pGLD3 からのPQQを補欠分子族とするGDHの製造 Terrific broth500mlを2Lフラスコに分注し、1
21℃、15分間オートクレーブを行い、放冷後、別途
無菌ろ過した50mg/mlストレプトマイシン0.5
mlを添加した。該培地にLB培地で予め、30℃、2
4時間振とう培養した実施例7で得られたシュードモナ
ス・プチダTE3493/pGLD3 の培養液5mlを接種し、3
7℃で48時間通気攪拌培養した。培養終了時のGDH
活性は約45U/mlであった。
Example 9 Pseudomonas putida TE3493
Production of GDH Using PQQ as Prosthetic Group from / pGLD3 500 ml of Terrific broth is dispensed into a 2 L flask, and
The mixture was autoclaved at 21 ° C. for 15 minutes, allowed to cool, and then sterile-filtered separately at 50 mg / ml streptomycin 0.5%.
ml was added. The medium is previously LB medium at 30 ° C., 2
5 ml of the culture solution of Pseudomonas putida TE3493 / pGLD3 obtained in Example 7 obtained by culturing with shaking for 4 hours was inoculated.
The cells were cultured at 7 ° C. for 48 hours with aeration and stirring. GDH at the end of culture
The activity was about 45 U / ml.

【0076】上記菌体を遠心分離にて集菌し、20mM
リン酸緩衝液、pH7.0に懸濁した。該菌体懸濁液を
フレンチプレスで破砕後、遠心分離を行い、上清液を粗
酵素液として得た。該粗酵素液をポリエチレンイミンに
よる除核酸処理および硫安分画処理を行った後、セファ
デックスG−25(ファルマシアバイオテク)によるゲ
ルろ過により脱塩し、CMセファロース(ファルマシア
バイオテク)、フェニルセファロース(ファルマシアバ
イオテク)カラムクロマトグラフィーにより分離、精製
して、精製酵素標品を得た。
The above cells were collected by centrifugation, and
Suspended in phosphate buffer, pH 7.0. The cell suspension was crushed by a French press and then centrifuged to obtain a supernatant as a crude enzyme solution. The crude enzyme solution was subjected to a nucleic acid removal treatment with polyethyleneimine and an ammonium sulfate fractionation treatment, and then desalted by gel filtration with Sephadex G-25 (Pharmacia Biotech), CM Sepharose (Pharmacia Biotech), Phenyl Sepharose (Pharmacia Biotech). ) Separation and purification by column chromatography gave a purified enzyme preparation.

【0077】上記の方法により得られたGDH標品は電
気泳動(SDS−PAGE)的にほぼ単一のバンドを示
し、この際の比活性は約2100U/mg−タンパク質
であった。
The GDH sample obtained by the above method showed a substantially single band by electrophoresis (SDS-PAGE), and the specific activity at this time was about 2100 U / mg-protein.

【0078】以下に、上記方法により得られたPQQを
補欠分子族とするGDHの性質を示す。 作用:Dーグルコース + 人工電子受容体 → δ−
グルコノラクトン+還元型電子受容体 熱安定性:約50℃以下(pH7.5,30分間処理) pH安定性:3.5〜8.5(25℃,16時間処理) 至適温度:約40℃ 至適pH:7.0 分子量:50000
The properties of GDH having PQQ obtained by the above method as a prosthetic group will be described below. Action: D-glucose + artificial electron acceptor → δ-
Gluconolactone + reduced electron acceptor Thermal stability: about 50 ° C. or less (treatment at pH 7.5 for 30 minutes) pH stability: 3.5 to 8.5 (treatment at 25 ° C. for 16 hours) Optimum temperature: about 40 ° C Optimum pH: 7.0 Molecular weight: 50,000

【0079】上記菌体を遠心分離にて集菌し、20mM
リン酸緩衝液(pH7.0)に懸濁した。該菌体懸濁液
をフレンチプレスで破砕後、遠心分離を行い、上清液を
粗酵素液として得た。該粗酵素液をポリエチレンイミン
による除核酸処理および硫安分画処理を行った後、セフ
ァデックスG−25(ファルマシアバイオテク)による
ゲルろ過により脱塩し、CMセファロース(ファルマシ
アバイオテク)、フェニルセファロース(ファルマシア
バイオテク)カラムクロマトグラフィーにより分離、精
製し、精製酵素標品を得た。
The above cells were collected by centrifugation,
It was suspended in a phosphate buffer (pH 7.0). The cell suspension was crushed by a French press and then centrifuged to obtain a supernatant as a crude enzyme solution. The crude enzyme solution was subjected to a nucleic acid removal treatment with polyethyleneimine and an ammonium sulfate fractionation treatment, and then desalted by gel filtration with Sephadex G-25 (Pharmacia Biotech), CM Sepharose (Pharmacia Biotech), Phenyl Sepharose (Pharmacia Biotech). ) Separation and purification by column chromatography to obtain a purified enzyme preparation.

【0080】本方法により得られたGDH標品は電気泳
動(SDS−PAGE)的にほぼ単一のバンドを示し、
この際の比活性は約85U/mg−タンパク質であっ
た。この酵素を1mMのCaCl2 および10μmol
のPQQ存在下、37℃、1時間インキュベートした
後、比活性を測定したが、約460U/mg−タンパク
質に過ぎなかった。
The GDH preparation obtained by this method shows almost a single band by electrophoresis (SDS-PAGE),
The specific activity at this time was about 85 U / mg-protein. This enzyme was mixed with 1 mM CaCl 2 and 10 μmol
After incubating at 37 ° C. for 1 hour in the presence of PQQ, specific activity was measured but was only about 460 U / mg-protein.

【0081】実施例10:GDHの粉末化 1mMのCaCl2 およびBSA(GDH1.0重量部
に対して1.0重量部)を含む各種緩衝液中に溶解した
実施例9のGDHを凍結乾燥した後、37℃におけるG
DH活性の残存性を測定した。その結果を表2に示す。
Example 10 Powderization of GDH The GDH of Example 9 dissolved in various buffers containing 1 mM CaCl 2 and BSA (1.0 part by weight to 1.0 part by weight of GDH) was freeze-dried. Then, at 37 ° C.
The persistence of DH activity was measured. Table 2 shows the results.

【0082】[0082]

【表1】 [Table 1]

【0083】[0083]

【表2】 [Table 2]

【0084】[0084]

【発明の効果】上述したように、本発明において、PQ
Qを補欠分子族とするグルコースデヒドロゲナーゼが単
離された。また、PQQ生産能を有する微生物を用いた
宿主−ベクター系を利用する遺伝子工学技術により、P
QQを補欠分子族とするGDHの製造方法が確立され
た。本発明の製造方法によれば、高純度なPQQを補欠
分子族とするGDHを安価に効率よく生産することが可
能である。
As described above, in the present invention, the PQ
Glucose dehydrogenase with Q as the prosthetic group was isolated. In addition, by genetic engineering technology utilizing a host-vector system using a microorganism capable of producing PQQ,
A method for producing GDH having QQ as a prosthetic group has been established. According to the production method of the present invention, it is possible to efficiently and inexpensively produce GDH having high-purity PQQ as a prosthetic group.

【0085】[0085]

【配列表】[Sequence list]

配列番号:1 配列の長さ:480 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:蛋白質 起源 生物名:アシネトバクター・カルコアセティカス(Acin
etobacter calcoaceticus ) 株名:NCIB11517 配列 Met Asn Lys His Leu Leu Ala Lys Ile Thr Leu Leu Gly Ala Ala Gln 1 5 10 15 Leu Phe Thr Phe His Thr Ala Phe Ala Asp Ile Pro Leu Thr Pro Ala 20 25 30 Gln Phe Ala Lys Ala Lys Thr Glu Asn Phe Asp Lys Lys Val Ile Leu 35 40 45 Ser Asn Leu Asn Lys Pro His Ala Leu Leu Trp Gly Pro Asp Asn Gln 50 55 60 Ile Trp Leu Thr Glu Arg Ala Thr Gly Lys Ile Leu Arg Val Asn Pro 65 70 75 80 Val Ser Gly Ser Ala Lys Thr Val Phe Gln Val Pro Glu Ile Val Ser 85 90 95 Asp Ala Asp Gly Gln Asn Gly Leu Leu Gly Phe Ala Phe His Pro Asp 100 105 110 Phe Lys His Asn Pro Tyr Ile Tyr Ile Ser Gly Thr Phe Lys Asn Pro 115 120 125 Lys Ser Thr Asp Lys Glu Leu Pro Asn Gln Thr Ile Ile Arg Arg Tyr 130 135 140 Thr Tyr Asn Lys Thr Thr Asp Thr Phe Glu Lys Pro Ile Asp Leu Ile 145 150 155 160 Ala Gly Leu Pro Ser Ser Lys Asp His Gln Ser Gly Arg Leu Val Ile 165 170 175 Gly Pro Asp Gln Lys Ile Tyr Tyr Thr Ile Gly Asp Gln Gly Arg Asn 180 185 190 Gln Leu Ala Tyr Leu Phe Leu Pro Asn Gln Ala Gln His Thr Pro Thr 195 200 205 Gln Gln Glu Leu Asn Ser Lys Asp Tyr His Thr Tyr Met Gly Lys Val 210 215 220 Leu Arg Leu Asn Leu Asp Gly Ser Val Pro Lys Asp Asn Pro Ser Phe 225 230 235 240 Asn Gly Val Val Ser His Ile Tyr Thr Leu Gly His Arg Asn Pro Gln 245 250 255 Gly Leu Ala Phe Ala Pro Asn Gly Lys Leu Leu Gln Ser Glu Gln Gly 260 265 270 Pro Asn Ser Asp Asp Glu Ile Asn Leu Val Leu Lys Gly Gly Asn Tyr 275 280 285 Gly Trp Pro Asn Val Ala Gly Tyr Lys Asp Asp Ser Gly Tyr Ala Tyr 290 295 300 Ala Asn Tyr Ser Ala Ala Thr Asn Lys Ser Gln Ile Lys Asp Leu Ala 305 310 315 320 Gln Asn Gly Ile Lys Val Ala Thr Gly Val Pro Val Thr Lys Glu Ser 325 330 335 Glu Trp Thr Gly Lys Asn Phe Val Pro Pro Leu Lys Thr Leu Tyr Thr 340 345 350 Val Gln Asp Thr Tyr Asn Tyr Asn Asp Pro Thr Cys Gly Glu Met Ala 355 360 365 Tyr Ile Cys Trp Pro Thr Val Ala Pro Ser Ser Ala Tyr Val Tyr Thr 370 375 380 Gly Gly Lys Lys Ala Ile Pro Gly Trp Glu Asn Thr Leu Leu Val Pro 385 390 395 400 Ser Leu Lys Arg Gly Val Ile Phe Arg Ile Lys Leu Asp Pro Thr Tyr 405 410 415 Ser Thr Thr Leu Asp Asp Ala Ile Pro Met Phe Lys Ser Asn Asn Arg 420 425 430 Tyr Arg Asp Val Ile Ala Ser Pro Glu Gly Asn Thr Leu Tyr Val Leu 435 440 445 Thr Asp Thr Ala Gly Asn Val Gln Lys Asp Asp Gly Ser Val Thr His 450 455 460 Thr Leu Glu Asn Pro Gly Ser Leu Ile Lys Phe Thr Tyr Asn Gly Lys 465 470 475 480
SEQ ID NO: 1 Sequence length: 480 Sequence type: Amino acid Topology: Linear Sequence type: Protein Origin Organism name: Acinetobacter calcoaceticus (Acin)
etobacter calcoaceticus) Strain name: NCIB11517 Sequence Met Asn Lys His Leu Leu Ala Lys Ile Thr Leu Leu Gly Ala Ala Gln 1 5 10 15 Leu Phe Thr Phe His Thr Ala Phe Ala Asp Ile Pro Leu Thr Pro Ala 20 25 30 Gln Phe Ala Lys Ala Lys Thr Glu Asn Phe Asp Lys Lys Val Ile Leu 35 40 45 Ser Asn Leu Asn Lys Pro His Ala Leu Leu Trp Gly Pro Asp Asn Gln 50 55 60 Ile Trp Leu Thr Glu Arg Ala Thr Gly Lys Ile Leu Arg Val Asn Pro 65 70 75 80 Val Ser Gly Ser Ala Lys Thr Val Phe Gln Val Pro Glu Ile Val Ser 85 90 95 Asp Ala Asp Gly Gln Asn Gly Leu Leu Gly Phe Ala Phe His Pro Asp 100 105 110 Phe Lys His Asn Pro Tyr Ile Tyr Ile Ser Gly Thr Phe Lys Asn Pro 115 120 125 Lys Ser Thr Asp Lys Glu Leu Pro Asn Gln Thr Ile Ile Arg Arg Tyr 130 135 140 Thr Tyr Asn Lys Thr Thr Asp Thr Phe Glu Lys Pro Ile Asp Leu Ile 145 150 155 160 Ala Gly Leu Pro Ser Ser Lys Asp His Gln Ser Gly Arg Leu Val Ile 165 170 175 Gly Pro Asp Gln Lys Ile Tyr Tyr Thr Ile Gly Asp Gln Gly Arg Asn 180 185 190 Gln Leu Ala Tyr Leu Phe Le u Pro Asn Gln Ala Gln His Thr Pro Thr 195 200 205 Gln Gln Glu Leu Asn Ser Lys Asp Tyr His Thr Tyr Met Gly Lys Val 210 215 220 Leu Arg Leu Asn Leu Asp Gly Ser Val Pro Lys Asp Asn Pro Ser Phe 225 230 235 240 Asn Gly Val Val Ser His Ile Tyr Thr Leu Gly His Arg Asn Pro Gln 245 250 255 Gly Leu Ala Phe Ala Pro Asn Gly Lys Leu Leu Gln Ser Glu Gln Gly 260 265 270 Pro Asn Ser Asp Asp Glu Ile Asn Leu Val Leu Lys Gly Gly Asn Tyr 275 280 285 Gly Trp Pro Asn Val Ala Gly Tyr Lys Asp Asp Ser Gly Tyr Ala Tyr 290 295 300 Ala Asn Tyr Ser Ala Ala Thr Asn Lys Ser Gln Ile Lys Asp Leu Ala 305 310 315 320 Gln Asn Gly Ile Lys Val Ala Thr Gly Val Pro Val Thr Lys Glu Ser 325 330 335 Glu Trp Thr Gly Lys Asn Phe Val Pro Pro Leu Lys Thr Leu Tyr Thr 340 345 350 Val Gln Asp Thr Tyr Asn Tyr Asn Asp Pro Thr Cys Gly Glu Met Ala 355 360 365 Tyr Ile Cys Trp Pro Thr Val Ala Pro Ser Ser Ala Tyr Val Tyr Thr 370 375 380 Gly Gly Lys Lys Ala Ile Pro Gly Trp Glu Asn Thr Leu Leu Val Pro 385 390 395 400 400 Ser Leu Lys Arg Gly Val Il e Phe Arg Ile Lys Leu Asp Pro Thr Tyr 405 410 415 Ser Thr Thr Leu Asp Asp Ala Ile Pro Met Phe Lys Ser Asn Asn Arg 420 425 430 Tyr Arg Asp Val Ile Ala Ser Pro Glu Gly Asn Thr Leu Tyr Val Leu 435 440 445 Thr Asp Thr Ala Gly Asn Val Gln Lys Asp Asp Gly Ser Val Thr His 450 455 460 Thr Leu Glu Asn Pro Gly Ser Leu Ile Lys Phe Thr Tyr Asn Gly Lys 465 470 475 475 480

【0086】配列番号:2 配列の長さ:1443 配列の型:核酸 トポロジー:直鎖状 配列の種類:ゲノムDNA 起源 生物名:アシネトバクター・カルコアセティカス(Acin
etobacter calcoaceticus ) 株名:NCIB11517 配列 ATG AAT AAA CAT TTA TTA GCA AAA ATC ACT CTT TTA GGT GCT GCA CAA 48 Met Asn Lys His Leu Leu Ala Lys Ile Thr Leu Leu Gly Ala Ala Gln 1 5 10 15 CTA TTT ACG TTT CAT ACG GCA TTT GCA GAT ATA CCT CTG ACA CCT GCT 96 Leu Phe Thr Phe His Thr Ala Phe Ala Asp Ile Pro Leu Thr Pro Ala 20 25 30 CAG TTC GCA AAA GCG AAA ACA GAA AAT TTT GAT AAA AAA GTG ATT CTG 144 Gln Phe Ala Lys Ala Lys Thr Glu Asn Phe Asp Lys Lys Val Ile Leu 35 40 45 TCC AAT TTA AAT AAA CCA CAT GCT TTG TTA TGG GGG CCA GAT AAT CAA 192 Ser Asn Leu Asn Lys Pro His Ala Leu Leu Trp Gly Pro Asp Asn Gln 50 55 60 ATT TGG TTA ACC GAA CGT GCA ACT GGC AAA ATT TTA AGA GTA AAT CCT 240 Ile Trp Leu Thr Glu Arg Ala Thr Gly Lys Ile Leu Arg Val Asn Pro 65 70 75 80 GTA TCT GGT AGC GCG AAA ACA GTA TTT CAG GTT CCT GAA ATT GTG AGT 288 Val Ser Gly Ser Ala Lys Thr Val Phe Gln Val Pro Glu Ile Val Ser 85 90 95 GAT GCT GAT GGG CAA AAT GGT TTG TTA GGT TTT GCT TTT CAT CCT GAC 336 Asp Ala Asp Gly Gln Asn Gly Leu Leu Gly Phe Ala Phe His Pro Asp 100 105 110 TTT AAA CAT AAC CCT TAT ATC TAT ATT TCA GGC ACT TTT AAA AAT CCA 384 Phe Lys His Asn Pro Tyr Ile Tyr Ile Ser Gly Thr Phe Lys Asn Pro 115 120 125 AAA TCT ACA GAT AAA GAG TTA CCT AAT CAG ACG ATT ATT CGT AGA TAT 432 Lys Ser Thr Asp Lys Glu Leu Pro Asn Gln Thr Ile Ile Arg Arg Tyr 130 135 140 ACC TAT AAT AAA ACT ACA GAT ACA TTT GAA AAG CCT ATT GAT TTG ATT 480 Thr Tyr Asn Lys Thr Thr Asp Thr Phe Glu Lys Pro Ile Asp Leu Ile 145 150 155 160 GCA GGT TTA CCG TCA TCA AAA GAT CAT CAG TCT GGT CGT CTC GTT ATT 528 Ala Gly Leu Pro Ser Ser Lys Asp His Gln Ser Gly Arg Leu Val Ile 165 170 175 GGT CCA GAC CAA AAA ATC TAC TAT ACG ATT GGT GAC CAA GGT CGT AAT 576 Gly Pro Asp Gln Lys Ile Tyr Tyr Thr Ile Gly Asp Gln Gly Arg Asn 180 185 190 CAG TTA GCT TAT CTG TTC TTA CCG AAT CAG GCA CAG CAT ACT CCG ACT 624 Gln Leu Ala Tyr Leu Phe Leu Pro Asn Gln Ala Gln His Thr Pro Thr 195 200 205 CAG CAA GAG CTC AAT AGT AAA GAC TAC CAT ACA TAT ATG GGT AAA GTA 672 Gln Gln Glu Leu Asn Ser Lys Asp Tyr His Thr Tyr Met Gly Lys Val 210 215 220 TTA CGC TTA AAT CTG GAC GGC AGT GTA CCT AAA GAC AAC CCA AGC TTT 720 Leu Arg Leu Asn Leu Asp Gly Ser Val Pro Lys Asp Asn Pro Ser Phe 225 230 235 240 AAC GGC GTA GTG AGT CAT ATC TAC ACT TTA GGG CAC CGT AAT CCA CAA 768 Asn Gly Val Val Ser His Ile Tyr Thr Leu Gly His Arg Asn Pro Gln 245 250 255 GGT TTA GCA TTT GCC CCA AAT GGA AAG CTT TTA CAA TCT GAG CAA GGA 816 Gly Leu Ala Phe Ala Pro Asn Gly Lys Leu Leu Gln Ser Glu Gln Gly 260 265 270 CCA AAT TCT GAT GAT GAA ATT AAC CTT GTA TTA AAA GGT GGT AAC TAT 864 Pro Asn Ser Asp Asp Glu Ile Asn Leu Val Leu Lys Gly Gly Asn Tyr 275 280 285 GGC TGG CCA AAT GTA GCT GGT TAT AAA GAT GAC AGT GGT TAT GCC TAT 912 Gly Trp Pro Asn Val Ala Gly Tyr Lys Asp Asp Ser Gly Tyr Ala Tyr 290 295 300 GCA AAC TAT TCG GCA GCA ACC AAT AAA TCA CAA ATT AAA GAT TTA GCT 960 Ala Asn Tyr Ser Ala Ala Thr Asn Lys Ser Gln Ile Lys Asp Leu Ala 305 310 315 320 CAA AAC GGG ATA AAA GTA GCA ACA GGT GTT CCT GTG ACT AAA GAG TCT 1008 Gln Asn Gly Ile Lys Val Ala Thr Gly Val Pro Val Thr Lys Glu Ser 325 330 335 GAA TGG ACT GGT AAA AAC TTT GTG CCG CCT TTG AAA ACT TTA TAT ACG 1056 Glu Trp Thr Gly Lys Asn Phe Val Pro Pro Leu Lys Thr Leu Tyr Thr 340 345 350 GTA CAA GAT ACC TAT AAC TAT AAT GAC CCT ACT TGT GGT GAG ATG GCA 1104 Val Gln Asp Thr Tyr Asn Tyr Asn Asp Pro Thr Cys Gly Glu Met Ala 355 360 365 TAT ATT TGC TGG CCA ACG GTT GCA CCG TCA TCA GCA TAT GTA TAT ACG 1152 Tyr Ile Cys Trp Pro Thr Val Ala Pro Ser Ser Ala Tyr Val Tyr Thr 370 375 380 GGA GGC AAA AAA GCG ATT CCA GGG TGG GAA AAT ACA TTA TTG GTC CCA 1200 Gly Gly Lys Lys Ala Ile Pro Gly Trp Glu Asn Thr Leu Leu Val Pro 385 390 395 400 TCT TTA AAA CGT GGG GTG ATT TTC CGT ATT AAA TTG GAC CCG ACA TAT 1248 Ser Leu Lys Arg Gly Val Ile Phe Arg Ile Lys Leu Asp Pro Thr Tyr 405 410 415 AGC ACG ACT TTG GAT GAT GCT ATC CCA ATG TTT AAA AGC AAT AAC CGT 1296 Ser Thr Thr Leu Asp Asp Ala Ile Pro Met Phe Lys Ser Asn Asn Arg 420 425 430 TAT CGT GAT GTC ATC GCT AGT CCA GAA GGT AAT ACC TTA TAT GTG CTG 1344 Tyr Arg Asp Val Ile Ala Ser Pro Glu Gly Asn Thr Leu Tyr Val Leu 435 440 445 ACT GAT ACA GCG GGG AAT GTA CAA AAA GAT GAT GGT TCT GTC ACT CAT 1392 Thr Asp Thr Ala Gly Asn Val Gln Lys Asp Asp Gly Ser Val Thr His 450 455 460 ACT TTA GAG AAT CCC GGT TCT CTC ATT AAA TTT ACA TAT AAC GGT AAG 1440 Thr Leu Glu Asn Pro Gly Ser Leu Ile Lys Phe Thr Tyr Asn Gly Lys 465 470 475 480 TAA 1443
SEQ ID NO: 2 Sequence length: 1443 Sequence type: nucleic acid Topology: linear Sequence type: genomic DNA Origin Organism name: Acinetobacter calcoaceticus (Acin)
etobacter calcoaceticus) Strain name: NCIB11517 sequence ATG AAT AAA CAT TTA TTA GCA AAA ATC ACT CTT TTA GGT GCT GCA CAA 48 Met Asn Lys His Leu Leu Ala Lys Ile Thr Leu Leu Gly Ala Ala Gln 15 15 CTA TTT ACG TTT CAT ACG GCA TTT GCA GAT ATA CCT CTG ACA CCT GCT 96 Leu Phe Thr Phe His Thr Ala Phe Ala Asp Ile Pro Leu Thr Pro Ala 20 25 30 CAG TTC GCA AAA GCG AAA ACA GAA AAT TTT GAT AAA AAA GTG ATT CTG 144 Gln Phe Ala Lys Ala Lys Thr Glu Asn Phe Asp Lys Lys Val Ile Leu 35 40 45 TCC AAT TTA AAT AAA CCA CAT GCT TTG TTA TGG GGG CCA GAT AAT CAA 192 Ser Asn Leu Asn Lys Pro His Ala Leu Leu Trp Gly Pro Asp Asn Gln 50 55 60 ATT TGG TTA ACC GAA CGT GCA ACT GGC AAA ATT TTA AGA GTA AAT CCT 240 Ile Trp Leu Thr Glu Arg Ala Thr Gly Lys Ile Leu Arg Val Asn Pro 65 70 75 80 GTA TCT GGT AGC GCG AAA ACA GTA TTT CAG GTT CCT GAA ATT GTG AGT 288 Val Ser Gly Ser Ala Lys Thr Val Phe Gln Val Pro Glu Ile Val Ser 85 90 95 GAT GCT GAT GGG CAA AAT GGT TTG TTA GGT TTT GCT TTT CAT CCT GAC 336 Asp Ala Asp Gly Gln Asn Gly Leu Leu Gly Phe Ala Phe His Pro Asp 100 105 110 TTT AAA CAT AAC CCT TAT ATC TAT ATT TCA GGC ACT TTT AAA AAT CCA 384 Phe Lys His Asn Pro Tyr Ile Tyr Ile Ser Gly Thr Phe Lys Asn Pro 115 120 125 AAA TCT ACA GAT AAA GAG TTA CCT AAT CAG ACG ATT ATT CGT AGA TAT 432 Lys Ser Thr Asp Lys Glu Leu Pro Asn Gln Thr Ile Ile Arg Arg Tyr 130 135 140 ACC TAT AAT AAA ACT ACA GAT ACA TTT GAA AAG CCT ATT GAT TTG ATT 480 Thr Tyr Asn Lys Thr Thr Asp Thr Phe Glu Lys Pro Ile Asp Leu Ile 145 150 155 160 GCA GGT TTA CCG TCA TCA AAA GAT CAT CAG TCT GGT CGT CTC GTT ATT 528 Ala Gly Leu Pro Ser Ser Lys Asp His Gln Ser Gly Arg Leu Val Ile 165 170 175 GGT CCA GAC CAA AAA ATC TAC TAT ACG ATT GGT GAC CAA GGT CGT AAT 576 Gly Pro Asp Gln Lys Ile Tyr Tyr Thr Ile Gly Asp Gln Gly Arg Asn 180 185 190 CAG TTA GCT TAT CTG TTC TTA CCG AAT CAG GCA CAG CAT ACT CCG ACT 624 Gln Leu Ala Tyr Leu Phe Leu Pro Asn Gln Ala Gln His Thr Pro Thr 195 200 205 CAG CAA GAG CTC AAT AGT AAA GAC TAC CAT ACA TAT ATG GGT AAA GTA 672 Gln Gln Glu Leu Asn Ser Lys Asp Tyr His Thr Tyr Met Gly Lys Val 210 215 220 TTA CGC TTA AAT CTG GAC GGC AGT GTA CCT AAA GAC AAC CCA AGC TTT 720 Leu Arg Leu Asn Leu Asp Gly Ser Val Pro Lys Asp Asn Pro Ser Phe 225 230 235 240 AAC GGC GTA GTG AGT CAT ATC TAC ACT TTA GGG CAC CGT AAT CCA CAA 768 Asn Gly Val Val Ser His Ile Tyr Thr Leu Gly His Arg Asn Pro Gln 245 250 255 GGT TTA GCA TTT GCC CCA AAT GGA AAG CTT TTA CAA TCT GAG CAA GGA 816 Gly Leu Ala Phe Ala Pro Asn Gly Lys Leu Leu Gln Ser Glu Gln Gly 260 265 270 CCA AAT TCT GAT GAT GAA ATT AAC CTT GTA TTA AAA GGT GGT AAC TAT 864 Pro Asn Ser Asp Asp Glu Ile Asn Leu Val Leu Lys Gly Gly Asn Tyr 275 280 285 GGC TGG CCA AAT GTA GCT GGT TAT AAA GAT GAC AGT GGT TAT GCC TAT 912 Gly Trp Pro Asn Val Ala Gly Tyr Lys Asp Asp Ser Gly Tyr Ala Tyr 290 295 300 GCA AAC TAT TCG GCA GCA ACC AAT AAA TCA CAA ATT AAA GAT TTA GCT 960 Ala Asn Tyr Ser Ala Ala Thr Asn Lys Ser Gln Ile Lys Asp Leu Ala 305 310 315 320 CAA AAC GGG ATA AAA GTA GCA ACA GGT GTT CCT GTG ACT AAA GAG TCT 1008 Gln Asn Gly Ile Lys Val Ala Thr Gly Val Pro Val Thr Lys Glu Ser 325 330 335 GAA TGG ACT GGT AAA AAC TTT GTG CCG CCT TTG AAA ACT TTA TAT ACG 1056 Glu Trp Thr Gly Lys Asn Phe Val Pro Pro Leu Lys Thr Leu Tyr Thr 340 345 350 GTA CAA GAT ACC TAT AAC TAT AAT GAC CCT ACT TGT GGT GAG ATG GCA 1104 Val Gln Asp Thr Tyr Asn Tyr Asn Asp Pro Thr Cys Gly Glu Met Ala 355 360 365 TAT ATT TGC TGG CCA ACG GTT GCA CCG TCA TCA GCA TAT GTA TAT ACG 1152 Tyr Ile Cys Trp Pro Thr Val Ala Pro Ser Ser Ala Tyr Val Tyr Thr 370 375 380 GGA GGC AAA AAA GCG ATT CCA GGG TGG GAA AAT ACA TTA TTG GTC CCA 1200 Gly Gly Lys Lys Ala Ile Pro Gly Trp Glu Asn Thr Leu Leu Val Pro 385 390 395 400 TCT TTA AAA CGT GGG GTG ATT TTC CGT ATT AAA TTG GAC CCG ACA TAT 1248 Ser Leu Lys Arg Gly Val Ile Phe Arg Ile Lys Leu Asp Pro Thr Tyr 405 410 415 AGC ACG ACT TTG GAT GAT GCT ATC CCA ATG TTT AAA AGC AAT AAC CGT 1296 Ser Thr Thr Leu Asp Asp Ala Ile Pro Met Phe Lys Ser Asn Asn Arg 420 425 430 TAT CGT GAT GTC ATC GCT AGT CCA G AA GGT AAT ACC TTA TAT GTG CTG 1344 Tyr Arg Asp Val Ile Ala Ser Pro Glu Gly Asn Thr Leu Tyr Val Leu 435 440 445 ACT GAT ACA GCG GGG AAT GTA CAA AAA GAT GAT GGT TCT GTC ACT CAT 1392 Thr Asp Thr Ala Gly Asn Val Gln Lys Asp Asp Gly Ser Val Thr His 450 450 455 460 ACT TTA GAG AAT CCC GGT TCT CTC ATT AAA TTT ACA TAT AAC GGT AAG 1440 Thr Leu Glu Asn Pro Gly Ser Leu Ile Lys Phe Thr Tyr Asn Gly Lys 465 470 475 480 TAA 1443

【0087】配列番号:3 配列の長さ:480 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:蛋白質 起源 生物名:アシネトバクター・バウマンニ(Acinetobacte
r baumannii ) 株名:JCM6841 配列 Met Asn Lys His Leu Leu Ala Lys Ile Thr Leu Leu Gly Ala Ala Gln 1 5 10 15 Leu Phe Thr Phe His Thr Ala Phe Ala Asp Ile Pro Leu Thr Pro Ala 20 25 30 Gln Phe Ala Lys Ala Lys Thr Glu Asn Phe Asp Lys Lys Val Ile Leu 35 40 45 Ser Asn Leu Asn Lys Pro His Ala Leu Leu Trp Gly Pro Asp Asn Gln 50 55 60 Ile Trp Leu Thr Glu Arg Ala Thr Gly Lys Ile Leu Arg Val Asn Pro 65 70 75 80 Val Ser Gly Ser Ala Lys Thr Val Phe Gln Val Pro Glu Ile Val Ser 85 90 95 Asp Ala Asp Gly Gln Asn Gly Leu Leu Gly Phe Ala Phe His Pro Asp 100 105 110 Phe Lys His Asn Pro Tyr Ile Tyr Ile Ser Gly Thr Phe Lys Asn Pro 115 120 125 Lys Ser Thr Asp Lys Glu Leu Pro Asn Gln Thr Ile Ile Arg Arg Tyr 130 135 140 Thr Tyr Asn Lys Thr Thr Asp Thr Phe Glu Lys Pro Ile Asp Leu Ile 145 150 155 160 Ala Gly Leu Pro Ser Ser Lys Asp His Gln Ser Gly Arg Leu Val Ile 165 170 175 Gly Pro Asp Gln Lys Ile Tyr Tyr Thr Ile Gly Asp Gln Gly Arg Asn 180 185 190 Gln Leu Ala Tyr Leu Phe Leu Ser Asn Gln Ala Gln His Thr Pro Thr 195 200 205 Gln Gln Glu Leu Asn Ser Lys Asp Tyr His Thr Tyr Met Gly Lys Val 210 215 220 Leu Arg Leu Asn Leu Asp Gly Ser Ile Pro Lys Asp Asn Pro Ser Phe 225 230 235 240 Asn Gly Val Val Ser His Ile Tyr Thr Leu Gly His Arg Asn Pro Gln 245 250 255 Gly Leu Ala Phe Ala Pro Asn Gly Lys Leu Leu Gln Ser Glu Gln Gly 260 265 270 Pro Asn Ser Asp Asp Glu Ile Asn Leu Val Leu Lys Gly Gly Asn Tyr 275 280 285 Gly Trp Pro Asn Val Ala Gly Tyr Lys Asp Asp Ser Gly Tyr Ala Tyr 290 295 300 Ala Asn Tyr Ser Ala Ala Thr Asn Lys Ser Gln Ile Lys Asp Leu Ala 305 310 315 320 Gln Asn Gly Ile Lys Val Ala Thr Gly Val Pro Val Thr Lys Glu Ser 325 330 335 Glu Trp Thr Gly Lys Asn Phe Val Pro Pro Leu Lys Thr Leu Tyr Thr 340 345 350 Val Gln Asp Thr Tyr Asn Tyr Asn Asp Pro Thr Cys Gly Glu Met Ala 355 360 365 Tyr Ile Cys Trp Pro Thr Val Ala Pro Ser Ser Ala Tyr Val Tyr Thr 370 375 380 Gly Gly Lys Lys Ala Ile Pro Gly Trp Glu Asn Thr Leu Leu Val Pro 385 390 395 400 Ser Leu Lys Arg Gly Val Ile Phe Arg Ile Lys Leu Asp Pro Thr Tyr 405 410 415 Ser Thr Thr Leu Asp Asp Ala Ile Pro Met Phe Lys Ser Asn Asn Arg 420 425 430 Tyr Arg Asp Val Ile Ala Ser Pro Glu Gly Asn Thr Leu Tyr Val Leu 435 440 445 Thr Asp Thr Ala Gly Asn Val Gln Lys Asp Asp Gly Ser Val Thr His 450 455 460 Thr Leu Glu Asn Pro Gly Ser Leu Ile Lys Phe Thr Tyr Asn Gly Lys 465 470 475 480
SEQ ID NO: 3 Sequence length: 480 Sequence type: amino acid Topology: linear Sequence type: protein Origin Organism name: Acinetobacte
r baumannii) Strain name: JCM6841 sequence Met Asn Lys His Leu Leu Ala Lys Ile Thr Leu Leu Gly Ala Ala Gln 1 5 10 15 Leu Phe Thr Phe His Thr Ala Phe Ala Asp Ile Pro Leu Thr Pro Ala 20 25 30 Gln Phe Ala Lys Ala Lys Thr Glu Asn Phe Asp Lys Lys Val Ile Leu 35 40 45 Ser Asn Leu Asn Lys Pro His Ala Leu Leu Trp Gly Pro Asp Asn Gln 50 55 60 Ile Trp Leu Thr Glu Arg Ala Thr Gly Lys Ile Leu Arg Val Asn Pro 65 70 75 80 Val Ser Gly Ser Ala Lys Thr Val Phe Gln Val Pro Glu Ile Val Ser 85 90 95 Asp Ala Asp Gly Gln Asn Gly Leu Leu Gly Phe Ala Phe His Pro Asp 100 105 110 Phe Lys His Asn Pro Tyr Ile Tyr Ile Ser Gly Thr Phe Lys Asn Pro 115 120 125 Lys Ser Thr Asp Lys Glu Leu Pro Asn Gln Thr Ile Ile Arg Arg Tyr 130 135 140 Thr Tyr Asn Lys Thr Thr Asp Thr Phe Glu Lys Pro Ile Asp Leu Ile 145 150 155 160 Ala Gly Leu Pro Ser Ser Lys Asp His Gln Ser Gly Arg Leu Val Ile 165 170 175 Gly Pro Asp Gln Lys Ile Tyr Tyr Thr Ile Gly Asp Gln Gly Arg Asn 180 185 190 Gln Leu Ala Tyr Leu Phe Leu Ser Asn Gln Ala Gln His Thr Pro Thr 195 200 205 Gln Gln Glu Leu Asn Ser Lys Asp Tyr His Thr Tyr Met Gly Lys Val 210 215 220 Leu Arg Leu Asn Leu Asp Gly Ser Ile Pro Lys Asp Asn Pro Ser Phe 225 230 235 240 Asn Gly Val Val Ser His Ile Tyr Thr Leu Gly His Arg Asn Pro Gln 245 250 255 Gly Leu Ala Phe Ala Pro Asn Gly Lys Leu Leu Gln Ser Glu Gln Gly 260 265 270 Pro Asn Ser Asp Asp Glu Ile Asn Leu Val Leu Lys Gly Gly Asn Tyr 275 280 285 Gly Trp Pro Asn Val Ala Gly Tyr Lys Asp Asp Ser Gly Tyr Ala Tyr 290 295 300 Ala Asn Tyr Ser Ala Ala Thr Asn Lys Ser Gln Ile Lys Asp Leu Ala 305 310 310 315 320 Gln Asn Gly Ile Lys Val Ala Thr Gly Val Pro Val Thr Lys Glu Ser 325 330 335 Glu Trp Thr Gly Lys Asn Phe Val Pro Pro Leu Lys Thr Leu Tyr Thr 340 345 350 Val Gln Asp Thr Tyr Asn Tyr Asn Asp Pro Thr Cys Gly Glu Met Ala 355 360 365 Tyr Ile Cys Trp Pro Thr Val Ala Pro Ser Ser Ala Tyr Val Tyr Thr 370 375 380 Gly Gly Lys Lys Ala Ile Pro Gly Trp Glu Asn Thr Leu Leu Val Pro 385 390 395 400 Ser Leu Lys Arg Gly Val Ile Phe Arg Ile Lys Leu Asp Pro Thr Tyr 405 410 415 Ser Thr Thr Leu Asp Asp Ala Ile Pro Met Phe Lys Ser Asn Asn Arg 420 425 430 Tyr Arg Asp Val Ile Ala Ser Pro Glu Gly Gly Asn Thr Leu Tyr Val Leu 435 440 445 445 Thr Asp Thr Ala Gly Asn Val Gln Lys Asp Asp Gly Ser Val Thr His 450 455 460 Thr Leu Glu Asn Pro Gly Ser Leu Ile Lys Phe Thr Tyr Asn Gly Lys 465 470 475 480

【0088】配列番号:4 配列の長さ:1443 配列の型:核酸 トポロジー:直鎖状 配列の種類:ゲノムDNA 起源 生物名:アシネトバクター・バウマンニ(Acinetobacte
r baumannii ) 株名:JCM6841 配列 ATG AAT AAA CAT TTA TTA GCA AAA ATC ACT CTT TTA GGT GCT GCA CAA 48 Met Asn Lys His Leu Leu Ala Lys Ile Thr Leu Leu Gly Ala Ala Gln 1 5 10 15 CTA TTT ACG TTT CAT ACG GCA TTT GCA GAT ATA CCT CTG ACA CCT GCT 96 Leu Phe Thr Phe His Thr Ala Phe Ala Asp Ile Pro Leu Thr Pro Ala 20 25 30 CAG TTC GCA AAA GCG AAA ACA GAA AAT TTT GAT AAA AAA GTG ATT CTG 144 Gln Phe Ala Lys Ala Lys Thr Glu Asn Phe Asp Lys Lys Val Ile Leu 35 40 45 TCC AAT TTA AAT AAA CCA CAT GCT TTG TTA TGG GGG CCA GAT AAT CAA 192 Ser Asn Leu Asn Lys Pro His Ala Leu Leu Trp Gly Pro Asp Asn Gln 50 55 60 ATT TGG TTA ACC GAA CGT GCA ACT GGC AAA ATT TTA AGA GTA AAT CCT 240 Ile Trp Leu Thr Glu Arg Ala Thr Gly Lys Ile Leu Arg Val Asn Pro 65 70 75 80 GTA TCT GGT AGC GCG AAA ACA GTA TTT CAG GTT CCT GAA ATT GTG AGT 288 Val Ser Gly Ser Ala Lys Thr Val Phe Gln Val Pro Glu Ile Val Ser 85 90 95 GAT GCT GAT GGG CAA AAt GGT TTG TTA GGT TTT GCT TTT CAT CCT GAC 336 Asp Ala Asp Gly Gln Asn Gly Leu Leu Gly Phe Ala Phe His Pro Asp 100 105 110 TTT AAA CAT AAC CCT TAT ATC TAT ATT TCA GGC ACT TTT AAA AAT CCA 384 Phe Lys His Asn Pro Tyr Ile Tyr Ile Ser Gly Thr Phe Lys Asn Pro 115 120 125 AAA TCT ACA GAT AAA GAG TTA CCT AAT CAG ACA ATT ATT CGT AGA TAT 432 Lys Ser Thr Asp Lys Glu Leu Pro Asn Gln Thr Ile Ile Arg Arg Tyr 130 135 140 ACC TAT AAT AAA ACT ACA GAT ACA TTT GAA AAG CCT ATT GAT TTG ATT 480 Thr Tyr Asn Lys Thr Thr Asp Thr Phe Glu Lys Pro Ile Asp Leu Ile 145 150 155 160 GCA GGT TTA CCG TCA TCA AAA GAT CAT CAG TCT GGT CGT CTC GTT ATT 528 Ala Gly Leu Pro Ser Ser Lys Asp His Gln Ser Gly Arg Leu Val Ile 165 170 175 GGT CCA GAC CAA AAA ATC TAC TAT ACG ATT GGT GAC CAA GGT CGT AAT 576 Gly Pro Asp Gln Lys Ile Tyr Tyr Thr Ile Gly Asp Gln Gly Arg Asn 180 185 190 CAG TTA GCT TAT CTA TTC TTA TCG AAT CAG GCA CAG CAT ACT CCG ACT 624 Gln Leu Ala Tyr Leu Phe Leu Ser Asn Gln Ala Gln His Thr Pro Thr 195 200 205 CAG CAA GAG CTC AAT AGT AAA GAC TAC CAT ACA TAT ATG GGT AAA GTA 672 Gln Gln Glu Leu Asn Ser Lys Asp Tyr His Thr Tyr Met Gly Lys Val 210 215 220 TTA CGC TTA AAT CTG GAC GGC AGT ATA CCT AAA GAC AAC CCA AGC TTT 720 Leu Arg Leu Asn Leu Asp Gly Ser Ile Pro Lys Asp Asn Pro Ser Phe 225 230 235 240 AAC GGC GTA GTG AGT CAT ATC TAC ACT TTA GGG CAC CGT AAT CCA CAA 768 Asn Gly Val Val Ser His Ile Tyr Thr Leu Gly His Arg Asn Pro Gln 245 250 255 GGT TTA GCA TTT GCC CCA AAT GGA AAG CTT TTA CAA TCT GAG CAA GGG 816 Gly Leu Ala Phe Ala Pro Asn Gly Lys Leu Leu Gln Ser Glu Gln Gly 260 265 270 CCA AAT TCT GAT GAT GAA ATT AAC CTT GTA TTA AAA GGT GGT AAC TAT 864 Pro Asn Ser Asp Asp Glu Ile Asn Leu Val Leu Lys Gly Gly Asn Tyr 275 280 285 GGC TGG CCA AAT GTA GCT GGT TAT AAA GAT GAC AGT GGT TAT GCC TAT 912 Gly Trp Pro Asn Val Ala Gly Tyr Lys Asp Asp Ser Gly Tyr Ala Tyr 290 295 300 GCA AAC TAT TCG GCA GCA ACC AAT AAA TCA CAA ATT AAA GAT TTA GCT 960 Ala Asn Tyr Ser Ala Ala Thr Asn Lys Ser Gln Ile Lys Asp Leu Ala 305 310 315 320 CAA AAC GGG ATA AAA GTA GCA ACA GGT GTT CCT GTG ACT AAA GAG TCT 1008 Gln Asn Gly Ile Lys Val Ala Thr Gly Val Pro Val Thr Lys Glu Ser 325 330 335 GAA TGG ACT GGT AAA AAC TTT GTG CCA CCT TTG AAA ACT TTA TAT ACG 1056 Glu Trp Thr Gly Lys Asn Phe Val Pro Pro Leu Lys Thr Leu Tyr Thr 340 345 350 GTA CAA GAT ACC TAT AAC TAT AAT GAC CCT ACT TGT GGT GAG ATG GCA 1104 Val Gln Asp Thr Tyr Asn Tyr Asn Asp Pro Thr Cys Gly Glu Met Ala 355 360 365 TAT ATT TGC TGG CCA ACG GTT GCA CCG TCA TCG GCA TAT GTA TAT ACG 1152 Tyr Ile Cys Trp Pro Thr Val Ala Pro Ser Ser Ala Tyr Val Tyr Thr 370 375 380 GGA GGC AAA AAA GCG ATT CCA GGG TGG GAA AAT ACA TTA TTG GTC CCA 1200 Gly Gly Lys Lys Ala Ile Pro Gly Trp Glu Asn Thr Leu Leu Val Pro 385 390 395 400 TCT TTA AAA CGT GGG GTG ATT TTC CGT ATT AAA TTG GAC CCG ACA TAT 1248 Ser Leu Lys Arg Gly Val Ile Phe Arg Ile Lys Leu Asp Pro Thr Tyr 405 410 415 AGC ACG ACT TTG GAT GAT GCT ATC CCA ATG TTT AAA AGC AAT AAC CGT 1296 Ser Thr Thr Leu Asp Asp Ala Ile Pro Met Phe Lys Ser Asn Asn Arg 420 425 430 TAT CGT GAT GTC ATC GCT AGT CCA GAA GGT AAT ACC TTA TAT GTG CTG 1344 Tyr Arg Asp Val Ile Ala Ser Pro Glu Gly Asn Thr Leu Tyr Val Leu 435 440 445 ACT GAT ACA GCG GGA AAT GTA CAA AAA GAT GAT GGT TCA GTC ACT CAT 1392 Thr Asp Thr Ala Gly Asn Val Gln Lys Asp Asp Gly Ser Val Thr His 450 455 460 ACT TTA GAG AAT CCC GGT TCT CTC ATT AAA TTT ACA TAT AAC GGT AAG 1440 Thr Leu Glu Asn Pro Gly Ser Leu Ile Lys Phe Thr Tyr Asn Gly Lys 465 470 475 480 TAA 1443
SEQ ID NO: 4 Sequence length: 1443 Sequence type: nucleic acid Topology: linear Sequence type: genomic DNA Origin Organism name: Acinetobacte
r baumannii) Strain name: JCM6841 sequence ATG AAT AAA CAT TTA TTA GCA AAA ATC ACT CTT TTA GGT GCT GCA CAA 48 Met Asn Lys His Leu Leu Ala Lys Ile Thr Leu Leu Gly Ala Ala Gln 1 5 10 15 CTA TTT ACG TTT CAT ACG GCA TTT GCA GAT ATA CCT CTG ACA CCT GCT 96 Leu Phe Thr Phe His Thr Ala Phe Ala Asp Ile Pro Leu Thr Pro Ala 20 25 30 CAG TTC GCA AAA GCG AAA ACA GAA AAT TTT GAT AAA AAA GTG ATT CTG 144 Gln Phe Ala Lys Ala Lys Thr Glu Asn Phe Asp Lys Lys Val Ile Leu 35 40 45 TCC AAT TTA AAT AAA CCA CAT GCT TTG TTA TGG GGG CCA GAT AAT CAA 192 Ser Asn Leu Asn Lys Pro His Ala Leu Leu Trp Gly Pro Asp Asn Gln 50 55 60 ATT TGG TTA ACC GAA CGT GCA ACT GGC AAA ATT TTA AGA GTA AAT CCT 240 Ile Trp Leu Thr Glu Arg Ala Thr Gly Lys Ile Leu Arg Val Asn Pro 65 70 75 80 GTA TCT GGT AGC GCG AAA ACA GTA TTT CAG GTT CCT GAA ATT GTG AGT 288 Val Ser Gly Ser Ala Lys Thr Val Phe Gln Val Pro Glu Ile Val Ser 85 90 95 GAT GCT GAT GGG CAA AAt GGT TTG TTA GGT TTT GCT TTT CAT CCT GAC 336 Asp Ala Asp Gly Gln Asn Gly Le u Leu Gly Phe Ala Phe His Pro Asp 100 105 110 TTT AAA CAT AAC CCT TAT ATC TAT ATT TCA GGC ACT TTT AAA AAT CCA 384 Phe Lys His Asn Pro Tyr Ile Tyr Ile Ser Gly Thr Phe Lys Asn Pro 115 120 125 AAA TCT ACA GAT AAA GAG TTA CCT AAT CAG ACA ATT ATT CGT AGA TAT 432 Lys Ser Thr Asp Lys Glu Leu Pro Asn Gln Thr Ile Ile Arg Arg Tyr 130 135 140 ACC TAT AAT AAA ACT ACA GAT ACA TTT GAA AAG CCT ATT GAT TTG ATT 480 Thr Tyr Asn Lys Thr Thr Asp Thr Phe Glu Lys Pro Ile Asp Leu Ile 145 150 155 160 GCA GGT TTA CCG TCA TCA AAA GAT CAT CAG TCT GGT CGT CTC GTT ATT 528 Ala Gly Leu Pro Ser Ser Lys Asp His Gln Ser Gly Arg Leu Val Ile 165 170 175 GGT CCA GAC CAA AAA ATC TAC TAT ACG ATT GGT GAC CAA GGT CGT AAT 576 Gly Pro Asp Gln Lys Ile Tyr Tyr Thr Ile Gly Asp Gln Gly Arg Asn 180 185 190 CAG TTA GCT TAT CTA TTC TTA TCG AAT CAG GCA CAG CAT ACT CCG ACT 624 Gln Leu Ala Tyr Leu Phe Leu Ser Asn Gln Ala Gln His Thr Pro Thr 195 200 205 CAG CAA GAG CTC AAT AGT AAA GAC TAC CAT ACA TAT ATG GGT AAA GTA 672 Gln Gln Glu Leu As n Ser Lys Asp Tyr His Thr Tyr Met Gly Lys Val 210 215 220 TTA CGC TTA AAT CTG GAC GGC AGT ATA CCT AAA GAC AAC CCA AGC TTT 720 Leu Arg Leu Asn Leu Asp Gly Ser Ile Pro Lys Asp Asn Pro Ser Phe 225 230 235 240 AAC GGC GTA GTG AGT CAT ATC TAC ACT TTA GGG CAC CGT AAT CCA CAA 768 Asn Gly Val Val Ser His Ile Tyr Thr Leu Gly His Arg Asn Pro Gln 245 250 255 GGT TTA GCA TTT GCC CCA AAT GGA AAG CTT TTA CAA TCT GAG CAA GGG 816 Gly Leu Ala Phe Ala Pro Asn Gly Lys Leu Leu Gln Ser Glu Gln Gly 260 265 270 CCA AAT TCT GAT GAT GAA ATT AAC CTT GTA TTA AAA GGT GGT AAC TAT 864 Pro Asn Ser Asp Asp Glu Ile Asn Leu Val Leu Lys Gly Gly Asn Tyr 275 280 285 285 GGC TGG CCA AAT GTA GCT GGT TAT AAA GAT GAC AGT GGT TAT GCC TAT 912 Gly Trp Pro Asn Val Ala Gly Tyr Lys Asp Asp Ser Gly Tyr Ala Tyr 290 295 300 GCA AAC TAT TCG GCA GCA ACC AAT AAA TCA CAA ATT AAA GAT TTA GCT 960 Ala Asn Tyr Ser Ala Ala Thr Asn Lys Ser Gln Ile Lys Asp Leu Ala 305 310 315 320 CAA AAC GGG ATA AAA GTA GCA ACA GGT GTT CCT GTG ACT AAA GAG TCT 1008 G ln Asn Gly Ile Lys Val Ala Thr Gly Val Pro Val Thr Lys Glu Ser 325 330 335 GAA TGG ACT GGT AAA AAC TTT GTG CCA CCT TTG AAA ACT TTA TAT ACG 1056 Glu Trp Thr Gly Lys Asn Phe Val Pro Pro Leu Lys Thr Leu Tyr Thr 340 345 350 GTA CAA GAT ACC TAT AAC TAT AAT GAC CCT ACT TGT GGT GAG ATG GCA 1104 Val Gln Asp Thr Tyr Asn Tyr Asn Asp Pro Thr Cys Gly Glu Met Ala 355 360 365 TAT ATT TGC TGG CCA ACG GTT GCA CCG TCA TCG GCA TAT GTA TAT ACG 1152 Tyr Ile Cys Trp Pro Thr Val Ala Pro Ser Ser Ala Tyr Val Tyr Thr 370 375 380 GGA GGC AAA AAA GCG ATT CCA GGG TGG GAA AAT ACA TTA TTG GTC CCA 1200 Gly Gly Lys Lys Ala Ile Pro Gly Trp Glu Asn Thr Leu Leu Val Pro 385 390 395 400 TCT TTA AAA CGT GGG GTG ATT TTC CGT ATT AAA TTG GAC CCG ACA TAT 1248 Ser Leu Lys Arg Gly Val Ile Phe Arg Ile Lys Leu Asp Pro Thr Tyr 405 410 415 AGC ACG ACT TTG GAT GAT GCT ATC CCA ATG TTT AAA AGC AAT AAC CGT 1296 Ser Thr Thr Leu Asp Asp Ala Ile Pro Met Phe Lys Ser Asn Asn Arg 420 425 430 TAT CGT GAT GTC ATC GCT AGT CCA GAA GGT AAT ACC TTA TAT GTG CTG 1344 Tyr Arg Asp Val Ile Ala Ser Pro Glu Gly Asn Thr Leu Tyr Val Leu 435 440 445 ACT GAT ACA GCG GGA AAT GTA CAA AAA GAT GAT GGT TCA GTC ACT CAT 1392 Thr Asp Thr Ala Gly Asn Val Gln Lys Asp Asp Gly Ser Val Thr His 450 455 460 ACT TTA GAG AAT CCC GGT TCT CTC ATT AAA TTT ACA TAT AAC GGT AAG 1440 Thr Leu Glu Asn Pro Gly Ser Leu Ile Lys Phe Thr Tyr Asn Gly Lys 465 470 475 475 480 TAA 1443

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C12R 1:19) (C12N 1/21 C12R 1:19) (C12N 15/09 ZNA C12R 1:01) (72)発明者 足立 収生 山口県山口市芝崎町2番2−204 (72)発明者 松下 一信 山口県山口市吉敷2645−27──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification symbol FI C12R 1:19) (C12N 1/21 C12R 1:19) (C12N 15/09 ZNA C12R 1:01) (72) Inventor Adachi Tosei 2-2-204 Shibazaki-cho, Yamaguchi-shi, Yamaguchi Prefecture (72) Inventor Kazunobu Matsushita 2645-27, Yoshikiki, Yamaguchi-shi

Claims (34)

【特許請求の範囲】[Claims] 【請求項1】 以下の(a)または(b)のタンパク質
であるPQQを補欠分子族とするグルコースデヒドロゲ
ナーゼ。 (a)配列表・配列番号1に記載されたアミノ酸配列か
らなるタンパク質 (b)アミノ酸配列(a)において、1もしくは数個の
アミノ酸配列が欠失、置換もしくは付加されたアミノ酸
配列からなり、かつグルコースデヒドロゲナーゼ活性を
有するタンパク質
1. A glucose dehydrogenase comprising PQQ which is a protein of the following (a) or (b) as a prosthetic group: (A) a protein consisting of the amino acid sequence described in Sequence Listing / SEQ ID NO: 1 (b) an amino acid sequence (a) comprising one or several amino acid sequences deleted, substituted or added, and Protein having glucose dehydrogenase activity
【請求項2】 配列表・配列番号1に記載されるアミノ
酸配列からなるタンパク質であるPQQを補欠分子族と
するグルコースデヒドロゲナーゼ。
2. A glucose dehydrogenase having PQQ, which is a protein consisting of the amino acid sequence shown in SEQ ID NO: 1 as a prosthetic group.
【請求項3】 以下の(e)または(f)のタンパク質
であるPQQを補欠分子族とするグルコースデヒドロゲ
ナーゼ。 (e)配列表・配列番号3に記載されたアミノ酸配列か
らなるタンパク質 (f)アミノ酸配列(e)において、1もしくは数個の
アミノ酸配列が欠失、置換もしくは付加されたアミノ酸
配列からなり、かつグルコースデヒドロゲナーゼ活性を
有するタンパク質
3. A glucose dehydrogenase comprising PQQ which is a protein of the following (e) or (f) as a prosthetic group: (E) a protein comprising the amino acid sequence described in SEQ ID NO: 3 (f) an amino acid sequence (e) wherein one or several amino acid sequences are deleted, substituted or added, and Protein having glucose dehydrogenase activity
【請求項4】 配列表・配列番号3に記載されるアミノ
酸配列からなるタンパク質であるPQQを補欠分子族と
するグルコースデヒドロゲナーゼ。
4. A glucose dehydrogenase comprising PQQ, which is a protein consisting of the amino acid sequence shown in SEQ ID NO: 3 as a prosthetic group.
【請求項5】 以下の(a)または(b)のタンパク質
であるPQQを補欠分子族とするグルコースデヒドロゲ
ナーゼをコードする遺伝子。 (a)配列表・配列番号1に記載されたアミノ酸配列か
らなるタンパク質 (b)アミノ酸配列(a)において、1もしくは数個の
アミノ酸配列が欠失、置換もしくは付加されたアミノ酸
配列からなり、かつグルコースデヒドロゲナーゼ活性を
有するタンパク質
5. A gene encoding glucose dehydrogenase having PQQ which is a protein of the following (a) or (b) as a prosthetic group: (A) a protein consisting of the amino acid sequence described in Sequence Listing / SEQ ID NO: 1 (b) an amino acid sequence (a) comprising one or several amino acid sequences deleted, substituted or added, and Protein having glucose dehydrogenase activity
【請求項6】 配列表・配列番号1に記載されるアミノ
酸配列からなるタンパク質であるPQQを補欠分子族と
するグルコースデヒドロゲナーゼをコードする遺伝子。
6. A gene encoding glucose dehydrogenase having PQQ which is a protein consisting of the amino acid sequence shown in SEQ ID NO: 1 as a prosthetic group.
【請求項7】 以下の(c)または(d)のタンパク質
であるPQQを補欠分子族とするグルコースデヒドロゲ
ナーゼをコードする遺伝子。 (c)配列表・配列番号2に記載された塩基配列からな
るDNA (d)上記(c)の配列において、1もしくは数個の塩
基が欠失、置換もしくは付加されており、かつグルコー
スデヒドロゲナーゼ活性を有するタンパク質をコードす
るDNA
7. A gene encoding glucose dehydrogenase having PQQ, a protein of the following (c) or (d), as a prosthetic group: (C) DNA consisting of the nucleotide sequence described in SEQ ID NO: 2 (d) In the above sequence (c), one or several bases are deleted, substituted or added, and glucose dehydrogenase activity DNA encoding a protein having
【請求項8】 配列表・配列番号2に記載される塩基配
列からなるDNAを有するPQQを補欠分子族とするグ
ルコースデヒドロゲナーゼをコードする遺伝子。
8. A gene encoding glucose dehydrogenase having PQQ having a DNA consisting of the nucleotide sequence of SEQ ID NO: 2 as a prosthetic group.
【請求項9】 以下の(e)または(f)のタンパク質
であるPQQを補欠分子族とするグルコースデヒドロゲ
ナーゼをコードする遺伝子。 (e)配列表・配列番号3に記載されたアミノ酸配列か
らなるタンパク質 (f)アミノ酸配列(e)において、1もしくは数個の
アミノ酸配列が欠失、置換もしくは付加されたアミノ酸
配列からなり、かつグルコースデヒドロゲナーゼ活性を
有するタンパク質
9. A gene encoding glucose dehydrogenase having PQQ, a protein of the following (e) or (f), as a prosthetic group: (E) a protein comprising the amino acid sequence described in SEQ ID NO: 3 (f) an amino acid sequence (e) wherein one or several amino acid sequences are deleted, substituted or added, and Protein having glucose dehydrogenase activity
【請求項10】 配列表・配列番号3に記載されるアミ
ノ酸配列からなるタンパク質であるPQQを補欠分子族
とするグルコースデヒドロゲナーゼをコードする遺伝
子。
10. A gene encoding glucose dehydrogenase having PQQ which is a protein consisting of the amino acid sequence shown in SEQ ID NO: 3 as a prosthetic group.
【請求項11】 以下の(g)または(h)のタンパク
質であるPQQを補欠分子族とするグルコースデヒドロ
ゲナーゼをコードする遺伝子。 (g)配列表・配列番号4に記載された塩基配列からな
るDNA (h)上記(g)の配列において、1もしくは数個の塩
基が欠失、置換もしくは付加されており、かつグルコー
スデヒドロゲナーゼ活性を有するタンパク質をコードし
ているDNA
11. A gene encoding glucose dehydrogenase having PQQ, which is a protein of the following (g) or (h), as a prosthetic group: (G) DNA consisting of the base sequence described in SEQ ID NO: 4 (h) In the above sequence (g), one or several bases are deleted, substituted or added, and glucose dehydrogenase activity DNA encoding a protein having
【請求項12】 配列表・配列番号4に記載される塩基
配列からなるDNAを有するPQQを補欠分子族とする
グルコースデヒドロゲナーゼをコードする遺伝子。
12. A gene encoding glucose dehydrogenase having PQQ having a DNA consisting of the nucleotide sequence of SEQ ID NO: 4 as a prosthetic group.
【請求項13】 請求項5〜12のいずれかに記載のP
QQを補欠分子族とするグルコースデヒドロゲナーゼを
コードする遺伝子を含有する組換えベクター。
13. The P according to claim 5, wherein
A recombinant vector containing a gene encoding glucose dehydrogenase having QQ as a prosthetic group.
【請求項14】 PQQを補欠分子族とするグルコース
デヒドロゲナーゼをコードする遺伝子を含むDNA断片
が組み込まれ、かつPQQ生産能を有する微生物におい
て複製できることを特徴とする請求項13記載の組換え
ベクター。
14. The recombinant vector according to claim 13, wherein a DNA fragment containing a gene encoding glucose dehydrogenase having PQQ as a prosthetic group is integrated and can be replicated in a microorganism capable of producing PQQ.
【請求項15】 請求項13または14に記載の組換え
ベクターでPQQ生産能を有する微生物を形質転換した
形質転換体。
15. A transformant obtained by transforming a microorganism capable of producing PQQ with the recombinant vector according to claim 13 or 14.
【請求項16】 PQQを補欠分子族とするグルコース
デヒドロゲナーゼがアシネトバクター・カルコアセティ
カス(Acinetobacter calcoaceticus )もしくはアシネ
トバクター・バウマンニ(Acinetobacter baumannii )
由来である請求項15記載の形質転換体。
16. A glucose dehydrogenase having PQQ as a prosthetic group is Acinetobacter calcoaceticus or Acinetobacter baumannii.
The transformant according to claim 15, which is derived.
【請求項17】 PQQ生産能を有する微生物がシュー
ドモナス(Pseudomonas )属またはアシネトバクター
(Acinetobacter )属に属する微生物である請求項15
記載の形質転換体。
17. The microorganism capable of producing PQQ is a microorganism belonging to the genus Pseudomonas or the genus Acinetobacter.
The transformant as described above.
【請求項18】 PQQ生産能を有する微生物がシュー
ドモナス・エルギノサ(Pseudomonas aeruginosa)、シ
ュードモナス・フルオレッセンス(Pseudomonas fluore
scens )、シュードモナス・プチダ(Pseudomonas puti
da)、アシネトバクター・カルコアセティカス(Acinet
obacter calcoaceticus )、アシネトバクター・バウマ
ンニ(Acinetobacter baumannii )からなる群より選ば
れた微生物である請求項15記載の形質転換体。
18. The microorganism having PQQ-producing ability may be Pseudomonas aeruginosa or Pseudomonas fluorescens.
scens), Pseudomonas puti
da), Acinetobacter calcoaceticus (Acinet
The transformant according to claim 15, which is a microorganism selected from the group consisting of A. bacterium calcoaceticus) and Acinetobacter baumannii.
【請求項19】 PQQ生産能を有する微生物がシュー
ドモナス・プチダ(Pseudomonas putida)である請求項
17記載の形質転換体。
19. The transformant according to claim 17, wherein the microorganism capable of producing PQQ is Pseudomonas putida.
【請求項20】 PQQ生産能を有する微生物がアシネ
トバクター・カルコアセティカス(Acinetobacter calc
oaceticus )もしくはアシネトバクター・バウマンニ
(Acinetobacter baumannii )である請求項17記載の
形質転換体。
20. A microorganism capable of producing PQQ is Acinetobacter calcoaceticas.
18. The transformant according to claim 17, which is Oaceticus) or Acinetobacter baumannii.
【請求項21】 PQQを補欠分子族とするグルコース
デヒドロゲナーゼが可溶性である請求項19または20
に記載の形質転換体。
21. The glucose dehydrogenase having PQQ as a prosthetic group is soluble.
The transformant according to item 1.
【請求項22】 PQQを補欠分子族とするグルコース
デヒドロゲナーゼをコードする遺伝子を含むDNA断片
を組込んでなる組換えベクターでPQQ生産能を有する
微生物が形質転換された形質転換微生物を培養して、該
培養物からPQQを補欠分子族とするグルコースデヒド
ロゲナーゼを採取するグルコースデヒドロゲナーゼの製
造方法。
22. A transformant obtained by transforming a microorganism capable of producing PQQ with a recombinant vector comprising a DNA fragment containing a gene encoding glucose dehydrogenase having PQQ as a prosthetic group, A method for producing glucose dehydrogenase, comprising collecting glucose dehydrogenase having PQQ as a prosthetic group from the culture.
【請求項23】 PQQを補欠分子族とするグルコース
デヒドロゲナーゼがアシネトバクター・カルコアセティ
カス(Acinetobacter calcoaceticus )もしくはアシネ
トバクター・バウマンニ(Acinetobacter baumannii )
由来の微生物である請求項22記載のグルコースデヒド
ロゲナーゼの製造方法。
23. A glucose dehydrogenase having PQQ as a prosthetic group is Acinetobacter calcoaceticus or Acinetobacter baumannii.
The method for producing glucose dehydrogenase according to claim 22, which is derived from a microorganism.
【請求項24】 PQQ生産能を有する微生物がシュー
ドモナス(Pseudomonas )属またはアシネトバクター
(Acinetobacter )属に属する微生物である請求項23
記載のグルコースデヒドロゲナーゼの製造方法。
24. The microorganism having PQQ-producing ability is a microorganism belonging to the genus Pseudomonas or the genus Acinetobacter.
A method for producing the glucose dehydrogenase described above.
【請求項25】 PQQ生産能を有する微生物がシュー
ドモナス・エルギノサ(Pseudomonas aeruginosa)、シ
ュードモナス・フルオレッセンス(Pseudomonas fluore
scens )、シュードモナス・プチダ(Pseudomonas puti
da)、アシネトバクター・カルコアセティカス(Acinet
obacter calcoaceticus )、アシネトバクター・バウマ
ンニ(Acinetobacter baumannii )からなる群より選ば
れた微生物である請求項23記載のグルコースデヒドロ
ゲナーゼの製造方法。
25. A microorganism capable of producing PQQ is Pseudomonas aeruginosa, Pseudomonas fluorescens.
scens), Pseudomonas puti
da), Acinetobacter calcoaceticus (Acinet
24. The method for producing glucose dehydrogenase according to claim 23, wherein the microorganism is a microorganism selected from the group consisting of A. bacterium calcoaceticus) and Acinetobacter baumannii.
【請求項26】 PQQ生産能を有する微生物がシュー
ドモナス・プチダ(Pseudomonas putida)である請求項
23記載のグルコースデヒドロゲナーゼの製造方法。
26. The method for producing glucose dehydrogenase according to claim 23, wherein the microorganism having PQQ producing ability is Pseudomonas putida.
【請求項27】 PQQ生産能を有する微生物がアシネ
トバクター・カルコアセティカス(Acinetobacter calc
oaceticus )もしくはアシネトバクター・バウマンニ
(Acinetobacter baumannii )である請求項23記載の
グルコースデヒドロゲナーゼの製造方法。
27. The microorganism capable of producing PQQ is Acinetobacter calcoaceticas.
24. The method for producing glucose dehydrogenase according to claim 23, which is Oaceticus) or Acinetobacter baumannii.
【請求項28】 PQQを補欠分子族とするグルコース
デヒドロゲナーゼが可溶性である請求項26または27
に記載のグルコースデヒドロゲナーゼの製造方法。
28. The glucose dehydrogenase having PQQ as a prosthetic group is soluble.
3. The method for producing glucose dehydrogenase according to 1.).
【請求項29】 PQQを補欠分子族とするグルコース
デヒドロゲナーゼをGOODの緩衝液の存在下に凍結乾
燥して保持することを特徴とするグルコースデヒドロゲ
ナーゼの安定化方法。
29. A method for stabilizing glucose dehydrogenase, comprising freeze-drying and maintaining glucose dehydrogenase having PQQ as a prosthetic group in the presence of a GOOD buffer.
【請求項30】 カルシウムが共存する請求項29記載
のグルコースデヒドロゲナーゼの安定化方法。
30. The method for stabilizing glucose dehydrogenase according to claim 29, wherein calcium coexists.
【請求項31】 GOODの緩衝液がPIPES、ME
S、MOPSからなる群より選ばれた緩衝液である請求
項30または31に記載のグルコースデヒドロゲナーゼ
の安定化方法。
31. The GOOD buffer is PIPES, ME
32. The method for stabilizing glucose dehydrogenase according to claim 30 or 31, which is a buffer selected from the group consisting of S and MOPS.
【請求項32】 PQQを補欠分子族とするグルコース
デヒドロゲナーゼをGOODの緩衝液の存在下に凍結乾
燥して保持されたものであることを特徴とする安定化さ
れたグルコースデヒドロゲナーゼ組成物。
32. A stabilized glucose dehydrogenase composition, wherein glucose dehydrogenase having PQQ as a prosthetic group is freeze-dried and maintained in the presence of a GOOD buffer.
【請求項33】 カルシウムが共存する請求項32記載
ののグルコースデヒドロゲナーゼ組成物。
33. The glucose dehydrogenase composition according to claim 32, wherein calcium is present.
【請求項34】 GOODの緩衝液がPIPES、ME
S、MOPSからなる群より選ばれた緩衝液である請求
項32または33に記載のグルコースデヒドロゲナーゼ
組成物。
34. The GOOD buffer is PIPES, ME
The glucose dehydrogenase composition according to claim 32 or 33, which is a buffer selected from the group consisting of S and MOPS.
JP10050817A 1998-03-03 1998-03-03 Glucose dehydrogenase having pqq as prosthetic group and its production Pending JPH11243949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10050817A JPH11243949A (en) 1998-03-03 1998-03-03 Glucose dehydrogenase having pqq as prosthetic group and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10050817A JPH11243949A (en) 1998-03-03 1998-03-03 Glucose dehydrogenase having pqq as prosthetic group and its production

Publications (1)

Publication Number Publication Date
JPH11243949A true JPH11243949A (en) 1999-09-14

Family

ID=12869326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10050817A Pending JPH11243949A (en) 1998-03-03 1998-03-03 Glucose dehydrogenase having pqq as prosthetic group and its production

Country Status (1)

Country Link
JP (1) JPH11243949A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000061730A1 (en) * 1999-04-08 2000-10-19 Koji Sode Glucose dehydrogenase
EP1367120A3 (en) * 2002-05-27 2004-06-02 Toyo Boseki Kabushiki Kaisha Modified pyrroloquinoline quinone (PQQ) dependent glucose dehydrogenase with superior substrate specificity and stability
EP1331272A4 (en) * 2000-10-31 2004-08-18 Koji Sode Novel glucose dehydrogenase and process for producing the dehydrogenase
WO2004099399A1 (en) * 2003-05-07 2004-11-18 Bayer Technology Services Gmbh Glucose dehydrogenase and production thereof
WO2005026340A1 (en) 2003-09-08 2005-03-24 Toyo Boseki Kabushiki Kaisha Pyrroloquinoline quinone (pqq)-dependent glucose dehydrogenase modification having excellent substrate specificity
US7005048B1 (en) 1999-10-05 2006-02-28 Matsushita Electric Industrial Co., Ltd. Glucose sensor
JP2008506375A (en) * 2004-07-20 2008-03-06 エフ.ホフマン−ラ ロシュ アーゲー Genetically engineered pyrroloquinoline quinone-dependent glucose dehydrogenase containing an amino acid insertion
US7381540B2 (en) 2005-08-11 2008-06-03 Toyo Boseki Kabushiki Kaisha Composition for measuring glucose having improved substrate specificity
US7781196B2 (en) 2004-10-15 2010-08-24 Roche Diagnostics Operations, Inc. Thermostable mutants of pyrroloquinoline quinone dependent glucose dehydrogenase
US7867728B2 (en) 2004-08-24 2011-01-11 Bayer Healthcare Llc Determining the concentration of analytes in sample by direct mediation of enzymes
EP2194116A4 (en) * 2007-08-24 2013-02-20 Cytopathfinder Inc TRANSFECTION DEVICE USING SERICIN
US8940528B2 (en) 2008-10-31 2015-01-27 Molecular Machines & Industries Ag Petri-dish for cell cultivation and microscopy
EP3246402A1 (en) 2006-04-13 2017-11-22 Roche Diabetes Care GmbH Improved mutants of pyrroloquinoline quinone dependent soluble glucose dehydrogenase
US10752934B2 (en) 2015-10-29 2020-08-25 Leadway (Hk) Limited PQQ-sGDH mutant, polynucleotide and glucose detection biosensor
CN114438000A (en) * 2020-11-05 2022-05-06 万华化学(四川)有限公司 Pseudomonas aeruginosa and construction method and application thereof

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000061730A1 (en) * 1999-04-08 2000-10-19 Koji Sode Glucose dehydrogenase
US7067295B1 (en) 1999-04-08 2006-06-27 Koji Sode Glucose dehydrogenase
US7005048B1 (en) 1999-10-05 2006-02-28 Matsushita Electric Industrial Co., Ltd. Glucose sensor
US7960156B2 (en) 2000-10-31 2011-06-14 Koji Sode Glucose dehydrogenase and method for producing the dehydrogenase
US8367385B2 (en) 2000-10-31 2013-02-05 Koji Sode Glucose dehydrogenase and method for producing the dehydrogenase
EP1331272A4 (en) * 2000-10-31 2004-08-18 Koji Sode Novel glucose dehydrogenase and process for producing the dehydrogenase
US9187734B2 (en) 2000-10-31 2015-11-17 Koji Sode Glucose dehydrogenase and glucose sensor with same
US7867742B2 (en) 2000-10-31 2011-01-11 Koji Sode Glucose dehydrogenase and method for producing the dehydrogenase
US8715990B2 (en) 2000-10-31 2014-05-06 Koji Sode Glucose dehydrogenase and method for producing the dehydrogenase
US7741090B2 (en) 2000-10-31 2010-06-22 Koji Sode Glucose dehydrogenase and process for producing the dehydrogenase
US8715989B2 (en) 2000-10-31 2014-05-06 Koji Sode Glucose dehydrogenase and method for producing the dehydrogenase
EP1367120A3 (en) * 2002-05-27 2004-06-02 Toyo Boseki Kabushiki Kaisha Modified pyrroloquinoline quinone (PQQ) dependent glucose dehydrogenase with superior substrate specificity and stability
US7476525B2 (en) 2002-05-27 2009-01-13 Toyo Boseki Kabushiki Kaisha Modified pyrroloquinoline quinone (PQQ) dependent glucose dehydrogenase with superior substrate specificity and stability
WO2004099399A1 (en) * 2003-05-07 2004-11-18 Bayer Technology Services Gmbh Glucose dehydrogenase and production thereof
JP2006525005A (en) * 2003-05-07 2006-11-09 バイエル・テクノロジー・サービシーズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Glucose dehydrogenase and its production
US7432096B2 (en) 2003-05-07 2008-10-07 Bayer Technology Services Gmbh Glucose dehydrogenase and production thereof
WO2005026340A1 (en) 2003-09-08 2005-03-24 Toyo Boseki Kabushiki Kaisha Pyrroloquinoline quinone (pqq)-dependent glucose dehydrogenase modification having excellent substrate specificity
US7479383B2 (en) 2003-09-08 2009-01-20 Toyo Boseki Kabushiki Kaisha Modified pyrroloquinoline quinone (PQQ) dependent glucose dehydrogenase excellent in substrate specificity
JP2008506375A (en) * 2004-07-20 2008-03-06 エフ.ホフマン−ラ ロシュ アーゲー Genetically engineered pyrroloquinoline quinone-dependent glucose dehydrogenase containing an amino acid insertion
JP4842938B2 (en) * 2004-07-20 2011-12-21 エフ.ホフマン−ラ ロシュ アーゲー Genetically engineered pyrroloquinoline quinone-dependent glucose dehydrogenase containing an amino acid insertion
US7547524B2 (en) 2004-07-20 2009-06-16 Roche Diagnostics Operations, Inc. Genetically engineered pyrroloquinoline quinone dependent glucose dehydrogenase comprising an amino acid insertion
EP3521421A1 (en) 2004-07-20 2019-08-07 Roche Diabetes Care GmbH Genetically engineered pyrroloquinoline quinone dependent glucose dehydrogenase comprising an amino acid insertion
US7867728B2 (en) 2004-08-24 2011-01-11 Bayer Healthcare Llc Determining the concentration of analytes in sample by direct mediation of enzymes
EP2251420A1 (en) 2004-10-15 2010-11-17 Roche Diagnostics GmbH Thermostable mutants of pyrroloquinoline quinone dependent glucose dehydrogenase
US7781196B2 (en) 2004-10-15 2010-08-24 Roche Diagnostics Operations, Inc. Thermostable mutants of pyrroloquinoline quinone dependent glucose dehydrogenase
US7381540B2 (en) 2005-08-11 2008-06-03 Toyo Boseki Kabushiki Kaisha Composition for measuring glucose having improved substrate specificity
EP3246402A1 (en) 2006-04-13 2017-11-22 Roche Diabetes Care GmbH Improved mutants of pyrroloquinoline quinone dependent soluble glucose dehydrogenase
EP2194116A4 (en) * 2007-08-24 2013-02-20 Cytopathfinder Inc TRANSFECTION DEVICE USING SERICIN
US8940528B2 (en) 2008-10-31 2015-01-27 Molecular Machines & Industries Ag Petri-dish for cell cultivation and microscopy
US10752934B2 (en) 2015-10-29 2020-08-25 Leadway (Hk) Limited PQQ-sGDH mutant, polynucleotide and glucose detection biosensor
CN114438000A (en) * 2020-11-05 2022-05-06 万华化学(四川)有限公司 Pseudomonas aeruginosa and construction method and application thereof
CN114438000B (en) * 2020-11-05 2024-02-27 万华化学(四川)有限公司 Pseudomonas aeruginosa strain and construction method and application thereof

Similar Documents

Publication Publication Date Title
JP4107386B2 (en) Novel glucose dehydrogenase and method for producing the dehydrogenase
JPH11243949A (en) Glucose dehydrogenase having pqq as prosthetic group and its production
JP4216719B2 (en) Halogen compound-resistant novel formate dehydrogenase and method for producing the same
JP4332794B2 (en) Modified pyrroloquinoline quinone (PQQ) -dependent glucose dehydrogenase excellent in substrate specificity or stability
JP4036667B2 (en) Novel glucose dehydrogenase and gene encoding the same
US20090087874A1 (en) Glucose dehydrogenase and production thereof
JP4022784B2 (en) Novel hexokinase
JP3850557B2 (en) Novel gene and transformed cell carrying the gene
JP4352286B2 (en) Mutant glucose-6-phosphate dehydrogenase and method for producing the same
JPH10248574A (en) New lactic acid-oxidizing enzyme
JP4415247B2 (en) Novel glycerol kinase, gene and method for producing glycerol kinase using the gene
JP2729045B2 (en) Sarcosine oxidase and method for producing the same
JP3829950B2 (en) Novel creatinine amide hydrolase
JP2001204473A (en) New plasmid, transformant containing the same, and method for producing enzyme using the same
JP4161232B2 (en) Novel protein having sarcosine oxidase activity and method for producing the same
JP4239046B2 (en) Mutant hexokinase and method for producing the same
JP2706223B2 (en) Use of DNA having genetic information of pyruvate oxidase
JP2004089052A (en) Method for producing glucose dehydrogenase
JP2001120273A (en) Method for modifying protein and modified protein
JP4066203B2 (en) Novel creatinine amide hydrolase
JP4591074B2 (en) Heat-treated dehydrogenase
JPH10262674A (en) Gene coding for alkaline phosphatase
JP2006081407A (en) Method for producing pqq-dependent glucose dehydrogenase
JP3112146B2 (en) Protein with thermostable malate dehydrogenase activity
JP2001275669A (en) New catalase gene and method for producing new catalase using the gene

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060202