JPH11240730A - Break cutting of brittle material - Google Patents
Break cutting of brittle materialInfo
- Publication number
- JPH11240730A JPH11240730A JP10047348A JP4734898A JPH11240730A JP H11240730 A JPH11240730 A JP H11240730A JP 10047348 A JP10047348 A JP 10047348A JP 4734898 A JP4734898 A JP 4734898A JP H11240730 A JPH11240730 A JP H11240730A
- Authority
- JP
- Japan
- Prior art keywords
- heating
- strip
- crack
- dimensionless
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 22
- 238000010438 heat treatment Methods 0.000 claims abstract description 139
- 238000000034 method Methods 0.000 claims description 24
- 238000012545 processing Methods 0.000 claims description 15
- 230000001902 propagating effect Effects 0.000 abstract 1
- 230000035882 stress Effects 0.000 description 43
- 230000008646 thermal stress Effects 0.000 description 24
- 238000010586 diagram Methods 0.000 description 14
- 238000004458 analytical method Methods 0.000 description 10
- 239000000758 substrate Substances 0.000 description 6
- 230000000737 periodic effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 239000012776 electronic material Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000003685 thermal hair damage Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B33/00—Severing cooled glass
- C03B33/09—Severing cooled glass by thermal shock
- C03B33/091—Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
- C03B33/093—Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam using two or more focussed radiation beams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/40—Removing material taking account of the properties of the material involved
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B33/00—Severing cooled glass
- C03B33/09—Severing cooled glass by thermal shock
- C03B33/091—Severing cooled glass by thermal shock using at least one focussed radiation beam, e.g. laser beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/36—Electric or electronic devices
- B23K2101/40—Semiconductor devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
- B23K2103/52—Ceramics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T225/00—Severing by tearing or breaking
- Y10T225/10—Methods
- Y10T225/12—With preliminary weakening
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Thermal Sciences (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
- Processing Of Stones Or Stones Resemblance Materials (AREA)
- Laser Beam Processing (AREA)
- Dicing (AREA)
- Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はレーザなどの点熱源
による熱応力を利用した脆性材料の割断方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cutting brittle materials using thermal stress caused by a point heat source such as a laser.
【0002】[0002]
【従来の技術】半導体ウエハやセラミック基板やガラス
基板などの脆性材料を切断する方法としては、ダイヤモ
ンドブレードにより研削加工を行うダイシング法や、ロ
ーラチゼル、ダイヤモンドポイントなどを用いたスクラ
イビングにより亀裂を発生させ、次いで該亀裂に曲げ応
力を作用させて切断するスクライビング法が一般的であ
る。しかし、微細な電子回路が形成された電子材料を切
断する際、従来から行われている加工法ではマイクロク
ラックやパーティクルの発生が避けられず、製品に悪影
響を及ぼすことがある。この対策として、例えば、特開
平3―13040号公報にレーザなどの点熱源による熱
応力割断が開示されている。この方法は、図16に示す
ように脆性材料からなる帯板21の端面に硬質工具など
で切り欠き(初亀裂)22を形成し、次いで、切り欠き
22の近傍23を点熱源で局所的に加熱して帯板に熱応
力歪みを発生させて亀裂を進展させ、以後点熱源を割断
予定線24に沿って移動させることにより亀裂をさらに
進展させて帯板を割断するものである。2. Description of the Related Art As a method of cutting a brittle material such as a semiconductor wafer, a ceramic substrate or a glass substrate, a crack is generated by a dicing method of grinding with a diamond blade or scribing using a roller chisel, a diamond point, or the like. Next, a scribing method in which a bending stress is applied to the crack to cut the crack is generally used. However, when cutting an electronic material on which a fine electronic circuit is formed, a conventional processing method cannot avoid generation of microcracks and particles, which may adversely affect products. As a countermeasure, for example, Japanese Unexamined Patent Publication No. 3-134040 discloses thermal stress cutting by a point heat source such as a laser. In this method, as shown in FIG. 16, a notch (initial crack) 22 is formed on the end face of a strip 21 made of a brittle material with a hard tool or the like, and then the vicinity 23 of the notch 22 is locally formed by a point heat source. Heating causes thermal stress distortion in the strip to cause the crack to grow, and thereafter, the point heat source is moved along the planned cutting line 24 to further develop the crack to cut the strip.
【0003】[0003]
【発明が解決しようとする課題】従来のレーザなど点熱
源による帯板の割断方法は、帯板の幅や材質が変わる度
毎に加熱位置、加熱時間などの加工条件を試行錯誤的に
見つけて加工していた。このため加工条件の最適化が容
易でなく、多大な工数がかかり、コスト高となってい
た。これは、この種レーザ加工装置の自動化を阻害する
要因にもなっていた。また、加熱点の温度がかなりの高
温になり、特に、加工対象が小さい電子部品などでは、
温度上昇が著しく、重要な機能が損なわれる場合があっ
た。A conventional method of cutting a strip by a point heat source such as a laser is to find the processing conditions such as the heating position and the heating time by trial and error every time the width or the material of the strip changes. Had been processed. Therefore, it is not easy to optimize the processing conditions, which requires a great deal of man-hours and increases the cost. This has been a factor that hinders automation of this type of laser processing apparatus. In addition, the temperature of the heating point becomes considerably high, especially in the case of small electronic components to be processed.
Temperature rise was remarkable, and important functions were sometimes impaired.
【0004】本発明は上記の問題に鑑みて提案されたも
ので、その目的は、点熱源による帯板の熱応力割断にお
いて、帯板の幅や材質が変わっても容易に加工条件を最
適化でき、かつ、加熱点の最高到達温度を適正に抑制し
て品質を向上できる新規な汎用性のある脆性材料の割断
方法を提供することである。[0004] The present invention has been proposed in view of the above problems, and an object of the present invention is to easily optimize the processing conditions in the thermal stress cutting of a strip by a point heat source even if the width or the material of the strip changes. It is an object of the present invention to provide a new versatile method for cutting brittle materials, which is capable of improving the quality by appropriately suppressing the maximum temperature at the heating point.
【0005】[0005]
【課題を解決するための手段】本発明の脆性材料の割断
方法は、亀裂を持つ脆性材料からなる帯板を点熱源で加
熱し、加熱点を移動して亀裂を進展させて帯板を割断す
る脆性材料の割断方法において、帯板の線膨張係数を
α、熱拡散率をκ、縦弾性率をE、加熱点の上昇温度を
T、加熱時間をt、帯板の半幅をW、加熱領域半径を
R、亀裂先端から加熱中心までの距離をD、亀裂先端の
応力拡大係数をK1としたときに、無次元応力拡大係数
温度比(例えば、2K1/αET(πW)1/2)が最大値
または最大値に近い値となるように無次元加熱時間(例
えば、4κt/W2)、無次元距離(例えば、D/
W)、無次元加熱領域(例えば、R/DまたはR/W)
からなる3つのパラメータの1つ以上を決定することに
より加工条件を決定することを特徴とする。なお、上記
の(πW)1/2はπWの平方根である(以下同様)。According to the method of the present invention for cutting a brittle material, the strip made of a brittle material having a crack is heated by a point heat source, the heating point is moved to cause the crack to grow, and the strip is cut. In the method of cleaving brittle material, the coefficient of linear expansion of the strip is α, the thermal diffusivity is κ, the longitudinal elastic modulus is E, the temperature at the heating point is T, the heating time is t, the half width of the strip is W, the area radius R, the distance from the crack tip to heat the center D, and the stress intensity factor of crack tip when the K 1, dimensionless stress intensity factor temperature ratio (e.g., 2K 1 / αET (πW) 1/2 ) Is the maximum value or a value close to the maximum value, so that the dimensionless heating time (for example, 4 kt / W 2 ) and the dimensionless distance (for example, D /
W), dimensionless heating area (eg, R / D or R / W)
The processing condition is determined by determining one or more of the three parameters consisting of: The above (πW) 1/2 is the square root of πW (the same applies hereinafter).
【0006】また、4κt/W2≦10、かつR/D≧
0.3、かつ0.3≦D/W≦1.0の条件で加工する
ことを特徴とする。In addition, 4κt / W 2 ≦ 10 and R / D ≧
It is characterized by processing under conditions of 0.3 and 0.3 ≦ D / W ≦ 1.0.
【0007】[0007]
【発明の実施の形態】本発明の割断方法の特徴は、初亀
裂を持つ脆性材料からなる帯板の亀裂先端近傍をパルス
レーザなどの点熱源で局所的に加熱し、かつ加熱点を移
動させて亀裂を進展させることにより帯板を割断する方
法において、帯板の線膨張係数をα、熱拡散率をκ、縦
弾性率をE、加熱点の上昇温度をT、加熱時間をt、帯
板の半幅をW、加熱領域半径をR、亀裂先端から加熱中
心までの距離をD、亀裂先端の応力拡大係数をK1とし
たときに、無次元応力拡大係数温度比(例えば、2K1
/αET(πW)1/2)が最大値または最大値に近い値
となるように無次元加熱時間(例えば、4κt/
W2)、無次元距離(例えば、D/W)、無次元加熱領
域(例えば、R/DまたはR/W)からなる3つのパラ
メータの1つ以上を決定することにより加工条件を決定
することにある。特に、4κt/W2≦10、かつR/
D≧0.3、かつ0.3≦D/W≦1.0の条件で加工
することが望ましい。DESCRIPTION OF THE PREFERRED EMBODIMENTS The feature of the cleaving method of the present invention is that the vicinity of a crack tip of a strip made of a brittle material having an initial crack is locally heated by a point heat source such as a pulse laser and the heating point is moved. In the method of cleaving the strip by causing cracks to propagate, the coefficient of linear expansion of the strip is α, the thermal diffusivity is κ, the longitudinal elastic modulus is E, the temperature at the heating point is T, the heating time is t, and the strip is the half-width of the plate is W, the heating area radius R, the distance from the crack tip to heat the center D, and the stress intensity factor of crack tip when the K 1, dimensionless stress intensity factor temperature ratio (e.g., 2K 1
/ ΑET (πW) 1/2 ) becomes the maximum value or a value close to the maximum value so that the dimensionless heating time (for example, 4 kt /
W 2 ), determining a processing condition by determining one or more of three parameters consisting of a dimensionless distance (for example, D / W) and a dimensionless heating region (for example, R / D or R / W). It is in. In particular, 4 kt / W 2 ≦ 10 and R /
It is desirable to process under the condition of D ≧ 0.3 and 0.3 ≦ D / W ≦ 1.0.
【0008】すべてのパラメータは無次元化されている
ので、帯板の幾何学的条件や熱的、機械的物性値の如何
にかかわらず適用できる。この方法は汎用性があるので
帯板の幅や材質が変わっても容易に加工条件を最適化で
き、かつ、加熱点の最高到達温度を必要最小限度に抑制
できるので低コスト化、高品質化が図れる。特に、亀裂
の進展に必要な応力特異性の強さをできるだけ低い温度
上昇で得るためには、積極的に加熱点に広がりをもたせ
帯板加工時の最高温度を抑制することが有効であり、加
熱領域の大きさ、位置、形状等を最適にする必要があ
る。本発明により無次元応力拡大係数温度比が最大値ま
たは最大値に近い値となるように上記パラメータを決定
することにより加工条件を最適化できる。加熱領域の形
状は真円が好適するが、真円に近い非円形や、正方形、
正五角形、正六角形、正八角形などの正多角形、および
これらの正多角形に近い多角形など近似的に円形とみな
せる形状のものでもよい。具体的な脆性材料としては半
導体ウエハ、セラミック基板、ガラス基板などが好適す
る。[0008] Since all parameters are dimensionless, they can be applied irrespective of the geometrical conditions of the strip and the thermal and mechanical properties. Since this method is versatile, the processing conditions can be easily optimized even if the width and material of the strip change, and the maximum temperature at the heating point can be suppressed to the minimum necessary, resulting in lower cost and higher quality. Can be achieved. In particular, in order to obtain the strength of the stress singularity necessary for crack propagation at the lowest possible temperature rise, it is effective to actively expand the heating point and suppress the maximum temperature during strip processing. It is necessary to optimize the size, position, shape, etc. of the heating area. According to the present invention, the processing conditions can be optimized by determining the parameters so that the temperature ratio of the dimensionless stress intensity factor becomes the maximum value or a value close to the maximum value. The shape of the heating area is preferably a perfect circle, but a non-circular shape close to a perfect circle, a square,
Regular polygons such as regular pentagons, regular hexagons, regular octagons, and polygons close to these regular polygons may be shapes that can be regarded as approximately circular. As a specific brittle material, a semiconductor wafer, a ceramic substrate, a glass substrate, or the like is preferable.
【0009】次に、本発明の割断方法の根拠となる解析
について説明する。まず2点の加熱源が亀裂の延長線を
対称線とする位置にある場合の熱応力場を解析し、その
解を重ね合わせることにより、目的とする円形領域加熱
について、加熱時間に対する加熱領域中心部の温度上昇
と熱応力拡大係数を評価し、熱応力拡大係数/上昇温度
が加熱領域の変化に対してどのように変わるかを検討
し、その値が最大になる最適な領域寸法、領域位置を明
らかにする。さらに、これらの解析結果が電子材料基板
を用いた実験結果と良く一致することを説明する。Next, an analysis which is the basis of the cleaving method of the present invention will be described. First, we analyze the thermal stress field when the two heating sources are located at positions where the extension line of the crack is a symmetric line, and superimpose the solutions to obtain the center of the heating area with respect to the heating time for the target circular area heating. Evaluate the temperature rise of the part and the thermal stress intensity factor, examine how the thermal stress intensity factor / temperature rise changes with changes in the heating area, and determine the optimal area dimensions and area position where the value is maximized. To reveal. Furthermore, it will be explained that these analysis results agree well with the experimental results using the electronic material substrate.
【0010】(1) 2点加熱時の熱応力拡大係数 (1.1) 無限板の点熱源による熱弾性場 時刻τ=0からτ=tまで、初期温度T=0の薄い無限
平板を単位時間、単位厚さ当たりの熱量Qの持続点熱源
により加熱した場合の温度上昇および熱応力分布を考え
る。板厚が十分薄い場合には板厚方向の温度は均一と見
なされ、熱応力場は平面応力状態になる。板表面からの
放熱を無視すれば温度場T0(r,t)および熱応力場
σr 0(r,t)、σΘ0(r,t)は次式で与えられ
る。(1) Thermal stress intensity factor at the time of two-point heating (1.1) Thermoelastic field generated by a point heat source of an infinite plate From time τ = 0 to τ = t, a thin infinite plate with initial temperature T = 0 is united Consider a temperature rise and a thermal stress distribution when heating is performed by a continuous point heat source having a heat quantity Q per unit thickness per unit time. When the plate thickness is sufficiently small, the temperature in the plate thickness direction is regarded as uniform, and the thermal stress field is in a plane stress state. If the heat radiation from the plate surface is ignored, the temperature field T 0 (r, t) and the thermal stress fields σ r 0 (r, t), σΘ 0 (r, t) are given by the following equations.
【数1】 (Equation 1)
【数2】 (Equation 2)
【数3】 ここでλは熱伝導率、Eは縦弾性係数、κは熱拡散率、
αは線膨張係数であり、温度場および熱応力場は加熱点
を原点とする極座標(r,θ)に関するものとする。(Equation 3) Where λ is the thermal conductivity, E is the longitudinal modulus, κ is the thermal diffusivity,
α is a coefficient of linear expansion, and the temperature field and the thermal stress field relate to polar coordinates (r, θ) with the heating point as the origin.
【0011】(1.2) 無限板に作用する無限周期点
熱源による熱弾性場 図1に示すように幅2W、亀裂長cの断熱側壁を有する
薄い半無限帯板を左端面からL、中心軸に対して対称な
2V離れた位置に2点の点熱源で加熱した場合の非定常
温度場は重ね合わせの原理に基づいて、図2のような2
種類の無限周期熱源による温度場の和として表される。
この解法によれば図1の温度場は、点熱源が(±L,±
2nW−V)と(±L,±2nW+V)、(n=1,2,
…)にある場合の温度場を重ね合わせて得られる。ま
た、2種類の無限周期点熱源による無限平板の熱応力場
は温度場と同様に、点熱源が(±L,±2nW−V)と
(±L,±2nW+V)、(n=1,2,…)にある場合
の応力場を重ね合わせて得られ、温度場T(x,y,
t)、垂直応力場σx(x,y,t)、σy(x,y,
t)、せん断応力場τxy(x,y,t)は以下のように
求められる。(1.2) Thermoelastic field generated by an infinite periodic point heat source acting on an infinite plate As shown in FIG. 1, a thin semi-infinite strip having a heat-insulating side wall having a width of 2 W and a crack length c is L from the left end face, and the center is The unsteady temperature field when heated by two point heat sources at a position 2 V away from the axis symmetric with respect to the axis is based on the principle of superposition, as shown in FIG.
It is expressed as the sum of the temperature fields due to various infinite periodic heat sources.
According to this solution, the temperature field of FIG.
2nW-V), (± L, ± 2nW + V), (n = 1, 2,
…) Are obtained by superimposing the temperature fields in the case of In addition, the thermal stress field of an infinite plate due to the two kinds of infinite periodic point heat sources is similar to the temperature field when the point heat source is (± L, ± 2 nW-V).
(± L, ± 2 nW + V) and (n = 1, 2,...) Are obtained by superimposing stress fields, and a temperature field T (x, y,
t), normal stress field σ x (x, y, t), σ y (x, y,
t) and the shear stress field τ xy (x, y, t) are obtained as follows.
【数4】 (Equation 4)
【数5】 (Equation 5)
【数6】 (Equation 6)
【数7】 ここで、(Equation 7) here,
【数8】 であり、E1(u)は次の積分指数関数である。(Equation 8) And E 1 (u) is the following integral exponential function:
【数9】 (Equation 9)
【0012】この解析は加熱初期の亀裂先端まわりの熱
弾性場解析を目的としており、加熱時間tは非常に短い
ため板表面からの放熱は無視している。さらに、亀裂の
開口量は小さく、亀裂面の開口によって式(4)の温度
場が変化しないと仮定した。The purpose of this analysis is to analyze the thermoelastic field around the crack tip at the beginning of heating, and the heat radiation from the plate surface is ignored because the heating time t is very short. Furthermore, it was assumed that the opening amount of the crack was small, and the temperature field of Expression (4) did not change with the opening of the crack surface.
【0013】(1.3) 等温応力場の解析 上記の2種類の無限周期点熱源による無限平板の熱応力
場は、帯板の端面に表面力が作用する場合に対応してお
り、自由表面の条件を満足していない。境界が表面力を
受けていない自由表面であるような帯板の熱応力場を得
るためには、境界での応力を打ち消すような帯板の等温
応力場を重ね合わせる必要がある。ところで、無限平板
の熱応力場には亀裂は考慮していないので、帯板にある
亀裂先端の応力拡大係数は重ね合わせるべき等温応力場
のみで評価することができる。半無限帯板の等温応力場
の解析には、体積力法による二次元汎用解析プログラム
を利用できる。この解析法は、亀裂問題に対しては最適
の解法であり、高精度の解が容易に得られる。体積力法
では、通常の境界要素法と同様に境界をいくつかの要素
に離散化するが、ここで用いた要素分割を図3に示す。
この時、軸対称性を利用して半無限帯板の上半分を解析
対象とし、境界に線形要素を用いた。上端面は15Wの
範囲を通常の要素で、残りを1つの半無限要素で表し
た。(1.3) Analysis of Isothermal Stress Field The thermal stress field of an infinite flat plate generated by the two kinds of infinite periodic point heat sources corresponds to the case where a surface force acts on the end face of the strip, and the free surface Does not satisfy the conditions. In order to obtain a thermal stress field of a strip whose boundary is a free surface that is not subjected to a surface force, it is necessary to superpose an isothermal stress field of the strip that cancels the stress at the boundary. Incidentally, since cracks are not considered in the thermal stress field of an infinite flat plate, the stress intensity factor at the tip of a crack in a strip can be evaluated only by the isothermal stress field to be superimposed. For analysis of the isothermal stress field of the semi-infinite strip, a two-dimensional general-purpose analysis program by the body force method can be used. This analysis method is an optimal solution for a crack problem, and a highly accurate solution can be easily obtained. In the body force method, the boundary is discretized into several elements as in the normal boundary element method. The element division used here is shown in FIG.
At this time, the upper half of the semi-infinite strip was analyzed using the axial symmetry, and a linear element was used as the boundary. In the upper end surface, a range of 15 W is represented by a normal element, and the rest is represented by one semi-infinite element.
【0014】(1.4) 端面に沿う表面力 加熱位置を図1においてL=Wとし、色々なV/Wの値
に対して境界に重ね合わせるべき表面力の分布を計算し
た。その結果を図4に示す。帯板上端面に重ね合わせる
べき表面力は引張になっており、亀裂を開口させるよう
に作用する。一方、亀裂となるべき位置のx軸上に2点
加熱により生じた応力σyは圧縮であり、亀裂面を自由
境界とするために重ね合わせる表面力は、亀裂面を閉じ
る方向に作用し、亀裂の開口を妨げる。(1.4) Surface Force Along the End Surface The heating position was set to L = W in FIG. 1, and the distribution of the surface force to be superimposed on the boundary for various V / W values was calculated. FIG. 4 shows the results. The surface force to be superimposed on the upper end surface of the strip is tensile, and acts to open a crack. On the other hand, the stress σ y generated by the two-point heating on the x-axis at the position to be a crack is compression, and the surface force superimposed to make the crack surface a free boundary acts in a direction to close the crack surface, Blocks the opening of cracks.
【0015】(1.5) 熱応力拡大係数 亀裂長cがc/W>5になると、点熱源により帯板に生
じる応力拡大係数はほとんど亀裂長に依存しなくなる。
そこで、上記に示した表面力を受けるc=5Wの縁亀裂
を有する帯板について応力解析を行い、応力拡大係数K
1を加熱時間の関数として評価した。(1.5) Thermal Stress Intensity Factor When the crack length c is c / W> 5, the stress intensity factor generated in the strip by the point heat source hardly depends on the crack length.
Thus, a stress analysis was performed on a strip having an edge crack of c = 5 W subjected to the surface force described above, and a stress intensity factor K
1 was evaluated as a function of heating time.
【0016】図5に、種々の加熱位置に対して得られた
K1の時間的変化を示す。横軸は時間を代表する無次元
時間、縦軸はK1を加熱量Q等で無次元化している。同
図から加熱点が中央線に近いほど大きなK1を与え、V
/Wが0.7を越えるような場合には、加熱初期でK1
が負になることがわかる。FIG. 5 shows the change over time of K 1 obtained for various heating positions. Dimensionless time abscissa representing time and the vertical axis dimensionless a K 1 in the heating quantity Q or the like. It had a significant K 1 heating points from the figure closer to the center line, V
When / W exceeds 0.7, K 1 is determined at the beginning of heating.
It turns out that becomes negative.
【0017】図6に、同じ大きさのK1を与える加熱位
置を線で結んで得られた等強度線を示す。K1=0の等
強度線は加熱初期では三角形に近く、時間経過とともに
外側に膨らんでいく。この等強度線より外側の領域を加
熱すると、亀裂先端ではK1が負になるため、熱応力割
断では有害となる。また、高レベルのK1に対する等強
度線は円形に近く、時間経過とともに亀裂先端からわず
かに離れていく。FIG. 6 shows isointensity lines obtained by connecting the heating positions giving the same magnitude of K 1 by lines. The isointensity line of K 1 = 0 is close to a triangle at the beginning of heating, and expands outward with time. If the area outside the iso-strength line is heated, K 1 becomes negative at the crack tip, which is harmful to thermal stress cutting. Further, isointensity lines for K 1 High levels close to a circle, goes slightly away from the crack tip over time.
【0018】(2) 円形領域加熱時の熱応力拡大係数 2点加熱時の結果を利用して、加熱領域が円形に広がっ
た円形領域加熱の場合を解析した。加熱領域を図7に示
すように亀裂延長線上に中心を持つ半径Rの円形とし、
亀裂先端から加熱領域中心までの距離をD、単位厚さ、
単位面積当たりの加熱量をQ0とした。加熱領域を角度
方向にΔθ=π/50、半径方向にdR=D/20の微
小領域ΔA=RdRdθに分割し、ΔAの中心にQ0Δ
Aの点加熱源がある場合の亀裂先端応力拡大係数ΔK1
と加熱領域中心の温度上昇ΔTを評価し、加熱領域全体
で総和をとることにより、円形領域加熱時のK1、Tを
計算した。(2) Thermal Stress Intensity Factor at the Time of Heating Circular Area Using the result at the time of two-point heating, a case of heating a circular area where the heating area spreads in a circular shape was analyzed. As shown in FIG. 7, the heating region is a circle having a radius R having a center on the extension line of the crack,
The distance from the crack tip to the center of the heating area is D, unit thickness,
The heating amount per unit area was set to Q 0. The heating area is divided into a small area ΔA = RdRdθ of Δθ = π / 50 in the angular direction and dR = D / 20 in the radial direction, and Q 0 Δ is set at the center of ΔA.
Crack tip stress intensity factor ΔK 1 with point heating source A
Then, the temperature rise ΔT at the center of the heating area was evaluated, and K 1 , T at the time of heating the circular area was calculated by taking the sum of the entire heating area.
【0019】図8にc/W=5、D/W=1.0の場合
の加熱領域中心の温度上昇の計算結果を示す。縦軸はT
を加熱量Q0πR2等で無次元化している。温度上昇は加
熱時間に関わらず、加熱領域半径Rが増加するにつれて
減少し、温度上昇を抑制するためには加熱源に広がりを
持たせることが有効であることがわかる。また、加熱時
間の増加にともない温度が上昇する。FIG. 8 shows the calculation result of the temperature rise at the center of the heating area when c / W = 5 and D / W = 1.0. The vertical axis is T
Is made dimensionless by the heating amount Q 0 πR 2 or the like. It can be seen that the temperature rise decreases as the heating region radius R increases, regardless of the heating time, and that it is effective to make the heating source wider to suppress the temperature rise. In addition, the temperature rises as the heating time increases.
【0020】図9には、D/W=0.3、0.5、1.
0での応力拡大係数K1の加熱領域の大きさに対する変
化を示した。同図も縦軸はK1を加熱量Q0πR2等で無
次元化している。K1は加熱中心位置に関わらずR/D
=0、すなわち点熱源のとき最大となり、R/Dの増加
にともない減少する。この現象は加熱時間が長くなるに
したがい顕著になり、加熱時間が短い場合、加熱領域を
大きくしてもK1の減少に与える影響は小さくなる。ま
た、K1は加熱中心位置やR/Dに関わらず加熱時間の
増加にともない大きくなる。FIG. 9 shows D / W = 0.3, 0.5,.
Shows the change to the size of the heating region of the stress intensity factor K 1 at 0. Also vertical axis the figure is dimensionless and K 1 in the heating amount Q 0 .pi.R 2 or the like. K 1 regardless of the heating center position R / D
= 0, that is, at the time of the point heat source, and decreases as the R / D increases. This phenomenon becomes more remarkable as the heating time becomes longer. In the case where the heating time is short, even if the heating area is made larger, the influence on the decrease in K 1 becomes smaller. Also, K 1 increases with the increase of the heating time regardless of the heating center position and R / D.
【0021】(3) 円形領域加熱時の応力拡大係数温
度比 前節で計算した円形領域加熱時の温度と応力拡大係数の
結果から、温度上昇に対する応力拡大係数温度比K1/
Tが求められる。この値が大きいほど割断時の最高到達
温度となる加熱領域中心温度を低くすることができる。(3) Temperature Ratio of Stress Intensity Factor when Heating Circular Region From the results of the temperature and the stress intensity factor when heating the circular region calculated in the previous section, the temperature ratio of stress intensity factor to temperature rise K 1 /
T is required. The larger this value is, the lower the center temperature of the heating region, which is the highest attained temperature at the time of cutting, can be reduced.
【0022】図10にD/W=0.3、0.5、1.0
での応力拡大係数温度比K1/Tの加熱領域半径Rに対
する変化を示す。加熱領域が亀裂先端に達するまで広げ
た場合(R=D)、図9ではR/D=1での応力拡大係
数は最大値にくらべかなり減少していたが、その時の温
度上昇も小さいため、それらの比である応力拡大係数温
度比K1/Tは図10のようにR/D=1で最大値また
はそれに近い値を示している。また、同図の縦軸にW
1/2があるため、板幅のせまいものほど割断時の温度が
上昇することがわかる。FIG. 10 shows D / W = 0.3, 0.5, 1.0.
Shows the change of the stress intensity factor temperature ratio K 1 / T with respect to the radius R of the heating region in FIG. In the case where the heating area was expanded to reach the crack tip (R = D), the stress intensity factor at R / D = 1 was considerably reduced from the maximum value in FIG. 9, but the temperature rise at that time was also small. The stress intensity factor temperature ratio K 1 / T, which is their ratio, shows a maximum value or a value close to it at R / D = 1 as shown in FIG. The vertical axis in FIG.
Since there is 1/2, it can be seen that the narrower the sheet width, the higher the temperature at the time of cutting.
【0023】図11には、加熱領域半径を応力拡大係数
温度比K1/Tが最大値またはそれに近い値を示すR=
Dに設定したときに得られるK1/Tと加熱位置Dの関
係を示す。加熱時間が短いほどK1/Tが大きく、加熱
時間が4κt/W2=0.1の場合、温度上昇を低く抑
え、効率良く応力拡大係数を発生させるための最適加熱
領域はR=D、D/W=0.7の近傍にある。加熱時間
4κt/W2が大きくなるとK1/Tが最大となるD/W
が小さくなり、最適加熱位置が亀裂先端に近づくことが
わかる。FIG. 11 shows the relationship between the radius of the heating area and the stress intensity factor temperature ratio K 1 / T at which the temperature ratio K 1 / T is at or near the maximum value.
The relation between K 1 / T obtained when D is set and the heating position D is shown. When the heating time is shorter, K 1 / T is larger, and when the heating time is 4κt / W 2 = 0.1, the optimal heating region for suppressing the temperature rise and efficiently generating the stress intensity factor is R = D, It is near D / W = 0.7. D / W at which K 1 / T becomes maximum as heating time 4κt / W 2 increases
It can be seen that the optimum heating position approaches the crack tip.
【0024】以上のように、脆性材料からなる縁亀裂を
持つ帯板状の基板を点熱源により割断する際、品質面か
ら加工時の最高温度を抑制する必要があり、そのために
は加熱領域に広がりを持たせることが有効であるから、
基本となる円形領域加熱について加熱時間に対する加熱
領域中心部の温度上昇と熱応力拡大係数を解析し、熱応
力拡大係数/上昇温度(熱応力拡大係数温度比)K1/
Tに注目してこれが加熱領域の変化に対してどのように
変わるかを検討し、K1/Tを最大にする加熱位置、加
熱領域半径、加熱時間などの最適条件を計算し決定し
た。なお、加熱領域の形状が真円に近い非円形の場合
や、正方形、正五角形、正六角形、正八角形などの正多
角形、およびこれらの正多角形に近い多角形などの場合
も近似的に上記の円形領域加熱とみなして扱うことがで
きる。その場合、加熱領域半径はこれらの形状に外接ま
たは内接する円の半径をRとすればよい。As described above, when a strip-shaped substrate made of brittle material having an edge crack is cut by a point heat source, it is necessary to suppress the maximum temperature during processing from the viewpoint of quality. Because it is effective to have a spread,
For the basic circular area heating, the temperature rise at the center of the heating area with respect to the heating time and the thermal stress intensity factor are analyzed, and the thermal stress intensity factor / rising temperature (thermal stress intensity factor temperature ratio) K 1 /
By paying attention to T, it was examined how this would change with changes in the heating area, and optimal conditions such as the heating position, heating area radius, and heating time that maximized K 1 / T were calculated and determined. In addition, when the shape of the heating region is a non-circular shape close to a perfect circle, a square, a regular pentagon, a regular hexagon, a regular polygon such as a regular octagon, and a case close to these regular polygons, etc. It can be treated as the above-mentioned circular area heating. In this case, the radius of the heating area may be R, which is the radius of a circle circumscribing or inscribed in these shapes.
【0025】[0025]
【実施例】上記の解析結果を立証するために、図12に
示すような配置でNd:YAGレーザからなる点熱源1
を用いて帯板2の割断実験を行った。帯板1の端部には
中心線上にあらかじめ亀裂3が形成されている。なお、
板板の半幅をW、亀裂長をc、亀裂先端から加熱中心ま
での距離をD、加熱領域半径をRとした。使用したレー
ザ発振機は出力が大きいので絞りにより出力を調節し
た。種々の加工条件において、レーザ出力を徐々に上げ
ながら亀裂進展に必要な最低出力QLと、帯板に熱損傷
が発生する最低出力QUを測定した。ただし、QL、QU
は絞りのない状態での出力である。割断時の加熱中心温
度を局所的に測定することは困難なためQU/QLを余裕
度とし、加熱時間に対する余裕度の変化を調べ、この値
が大きいほど低い温度で割断されたとした。QU/QLと
K1/Tの関係は次のように説明できる。EXAMPLE In order to verify the above analysis results, a point heat source 1 composed of an Nd: YAG laser in an arrangement as shown in FIG.
The cutting experiment of the strip 2 was performed using. At the end of the strip 1, a crack 3 is formed in advance on the center line. In addition,
The half width of the plate was W, the crack length was c, the distance from the crack tip to the heating center was D, and the radius of the heating area was R. Since the laser oscillator used had a large output, the output was adjusted by a diaphragm. In various processing conditions, and the lowest output Q L required crack growth while increasing the laser output gradually, thermal damage was measured minimum output Q U generated in the strip. Where Q L and Q U
Is the output without the stop. And locally margin of Q U / Q L Since it is difficult to measure the heating center temperature during cleaving, examine the change of the margin for the heating time, and to have been fractured by the larger the value of a low temperature. The relationship between Q U / Q L and K 1 / T can be explained as follows.
【0026】K1/Tは図10からわかるようにc/
W、D/Wが一定のとき、As can be seen from FIG. 10, K 1 / T is c /
When W and D / W are constant,
【数10】 なる関係で表される。したがって、(Equation 10) It is expressed by the following relationship. Therefore,
【数11】 となる。また、TとQは比例するため、加熱量QL、QU
のときの温度上昇をTL、TUとすると、[Equation 11] Becomes Further, since the T and Q are proportional, the amount of heating Q L, Q U
Assuming that the temperature rise at the time is T L and T U ,
【数12】 となる。このときTUは帯板の融点TMと一致する。ま
た、TLのとき発生するK1は破壊じん性値K1cと一致す
る。式(10)〜(12)より、(Equation 12) Becomes At this time, T U coincides with the melting point T M of the strip. Further, K 1 generated at the time of T L matches the fracture toughness value K 1c . From equations (10) to (12),
【数13】 となり、QU/QLからK1/Tの変化が実験的に確認で
きる。使用した帯板の厚さは0.1mm、予亀裂長はす
べてc/W=5である。また、帯板の物性値を表1に示
す。(Equation 13) Next, the change from Q U / Q L K 1 / T can be confirmed experimentally. The used strips have a thickness of 0.1 mm and the pre-crack lengths are all c / W = 5. Table 1 shows the physical properties of the strip.
【0027】[0027]
【表1】 [Table 1]
【0028】次に、実験結果を説明する。幅2.2m
m、長さ15mmの帯板でD/W=0.5、4κt/W
2=0.288(加熱時間2ms)における加熱半径R
に対するQLおよび余裕度QU/QLの変化を図13、図
14に示す。図13から加熱半径Rの増加にしたがって
割断に必要な加熱量も大きくなり、応力拡大係数K1が
発生しにくくなっていることがわかる。しかし、加熱半
径が大きくなると、熱損傷の発生する最低出力QUも大
きくなるため、図14に示すようにQU/QLはK1の発
生とは逆にRの増加にしたがって大きくなる。また、そ
の値は解析結果と同様にR=Dのとき最大になる。Next, the experimental results will be described. 2.2m width
m, D / W = 0.5 on a 15 mm long strip, 4 kt / W
Heating radius R at 2 = 0.288 (heating time 2 ms)
13, FIG. 14 shows changes in Q L and margin Q U / Q L for. From FIG. 13, it can be seen that as the heating radius R increases, the amount of heating required for cutting increases, and the stress intensity factor K 1 is less likely to occur. However, as the heating radius increases, the minimum output Q U at which thermal damage occurs also increases, so that Q U / Q L increases as R increases, contrary to the generation of K 1 , as shown in FIG. Further, the value becomes maximum when R = D as in the analysis result.
【0029】次に、図15には幅1.2mm、長さ10
mmの帯板で4κt/W2=0.969(加熱時間2m
s)、R=Dにおける加熱位置Dに対する余裕度QU/
QLの変化を示す。この場合D/W=0.5付近でQU/
QLが最大になり、図11に示す4κt/W2=1.0の
解析結果とよく一致していることが確認できる。Next, FIG. 15 shows a width of 1.2 mm and a length of 10 mm.
4κt / W 2 = 0.969 (heating time 2 m
s), the margin Q U / for the heating position D at R = D
The change in Q L is shown. In this case, Q U / D / W around 0.5
Q L is maximized, it can be confirmed that agree well with the analytical results of 4κt / W 2 = 1.0 shown in FIG. 11.
【0030】以上に説明した解析結果と実験結果から、
無次元応力拡大係数温度比(例えば、2K1/αET
(πW)1/2)が最大値または最大値に近い値となるよ
うに無次元加熱時間(例えば、4κt/W2)、無次元
距離(例えば、D/W)、無次元加熱領域(例えば、R
/DまたはR/W)からなる3つのパラメータの1つ以
上を決定することにより好適な加工条件を得ることがで
きる。実用上これらのパラメータは図10、図11など
を用いて決定することが望ましい。その際、4κt/W
2は10以下で小さいほどよく、このとき、R/Dは
1.0に近いほどよく、実用上略0.3以上が好適す
る。D/Wは最適値があって、4κt/W2の値によっ
ても異なるが、概略0.3以上で1.0以下が好適す
る。From the analysis results and experimental results described above,
Non-dimensional stress intensity factor temperature ratio (for example, 2K 1 / αET
(ΠW) 1/2 is the maximum value or a value close to the maximum value, the dimensionless heating time (for example, 4 kt / W 2 ), the dimensionless distance (for example, D / W), the dimensionless heating region (for example, , R
/ D or R / W), it is possible to obtain suitable processing conditions by determining one or more of the three parameters. Practically, it is desirable to determine these parameters with reference to FIGS. At that time, 4kt / W
The value 2 is preferably as small as 10 or less, and at this time, the R / D is preferably as close to 1.0 as possible. D / W has an optimum value and varies depending on the value of 4κt / W 2 , but is preferably about 0.3 or more and 1.0 or less.
【0031】[0031]
【発明の効果】以上に説明したように、本発明の脆性材
料の割断方法は、亀裂を持つ脆性材料からなる帯板を点
熱源で加熱し、加熱点を移動して亀裂を進展させて帯板
を割断する脆性材料の割断方法において、帯板の線膨張
係数をα、熱拡散率をκ、縦弾性率をE、加熱点の上昇
温度をT、加熱時間をt、帯板の半幅をW、加熱領域半
径をR、亀裂先端から加熱中心までの距離をD、亀裂先
端の応力拡大係数をK1としたときに、無次元応力拡大
係数温度比(例えば、2K1/αET(πW)1/2)が最
大値または最大値に近い値となるように無次元加熱時間
(例えば、4κt/W2)、無次元距離(例えば、D/
W)、無次元加熱領域(例えば、R/DまたはR/W)
からなる3つのパラメータの1つ以上を決定することに
より加工条件を決定するので、すべてのパラメータは無
次元化されており帯板の幾何学的条件や熱的、機械的物
性値の如何にかかわらず加熱点の最高到達温度を適正に
抑制でき、しかも容易に低温で割断加工ができ、低コス
ト化、高品質化が図れるという従来にない利点がある。As described above, according to the method of the present invention for cutting a brittle material, a strip made of a brittle material having a crack is heated by a point heat source, and the heating point is moved to cause the crack to grow. In the method for cleaving a brittle material that cuts a plate, the coefficient of linear expansion of the band is α, the thermal diffusivity is κ, the longitudinal modulus is E, the temperature at which the heating point rises is T, the heating time is t, and the half width of the band is W, the heating area radius R, the distance from the crack tip to heat the center D, and the stress intensity factor of crack tip when the K 1, dimensionless stress intensity factor temperature ratio (e.g., 2K 1 / αET (πW) 1/2) is to a value close to the maximum value or the maximum value dimensionless heating time (e.g., 4κt / W 2), the dimensionless distance (e.g., D /
W), dimensionless heating area (eg, R / D or R / W)
Since the processing conditions are determined by determining one or more of the three parameters consisting of, all the parameters are dimensionless and are independent of the geometrical conditions of the strip, thermal and mechanical properties. In addition, there is an unprecedented advantage that the maximum temperature at the heating point can be appropriately suppressed, and the cutting can be easily performed at a low temperature, thereby reducing costs and improving quality.
【図1】 2点加熱による半無限帯板の割断モデルを示
す図FIG. 1 is a diagram showing a breaking model of a semi-infinite strip by two-point heating.
【図2】 図1の非定常温度場を重ね合わせの原理で解
析する方法を示す図FIG. 2 is a diagram showing a method of analyzing the unsteady temperature field of FIG. 1 based on the principle of superposition;
【図3】 半無限帯板の等温応力場を体積力法で解析す
るための境界要素分割を示す図FIG. 3 is a diagram showing boundary element division for analyzing the isothermal stress field of a semi-infinite strip by the body force method.
【図4】 点熱源による熱応力場に重ね合わせるべき境
界上の等温応力場の表面力分布を示す図FIG. 4 is a diagram showing a surface force distribution of an isothermal stress field on a boundary to be superimposed on a thermal stress field by a point heat source.
【図5】 加熱時間に対する亀裂先端の応力拡大係数の
変化を示す図FIG. 5 is a diagram showing a change in a stress intensity factor at a crack tip with respect to a heating time.
【図6】 同一の大きさの応力拡大係数を与える加熱位
置を示す図FIG. 6 is a diagram showing a heating position at which the same magnitude of stress intensity factor is applied.
【図7】 亀裂を有する半無限帯板の円形領域加熱によ
る割断を示す図FIG. 7 is a diagram showing the cleavage of a semi-infinite strip having a crack by heating in a circular region.
【図8】 円形領域加熱時の加熱領域半径と加熱領域中
心温度の関係を示す図FIG. 8 is a diagram showing a relationship between a heating area radius and a heating area center temperature at the time of heating a circular area.
【図9】 円形領域加熱時の加熱領域の大きさと亀裂先
端の応力拡大係数の関係を示す図FIG. 9 is a diagram showing the relationship between the size of the heating area and the stress intensity factor at the crack tip when heating the circular area.
【図10】 円形領域加熱時の加熱領域の大きさと応力
拡大係数温度比の関係を示す図FIG. 10 is a diagram showing the relationship between the size of the heating area and the temperature ratio of the stress intensity factor when heating the circular area.
【図11】 加熱領域半径を応力拡大係数温度比K1/
Tが最大値またはそれに近い値を示すR=Dに設定した
ときに得られるK1/Tと加熱位置Dの関係を示す図FIG. 11 shows the relationship between the heating area radius and the stress intensity factor temperature ratio K 1 /
Diagram showing the relationship between K 1 / T and the heating position D obtained when T is set to R = D indicating the maximum value or a value close to
【図12】 Nd:YAGレーザを用いて帯板を割断す
る実験装置の概要と各因子を示す図FIG. 12 is a diagram showing an outline of an experimental apparatus for cutting a strip using an Nd: YAG laser and each factor.
【図13】 亀裂進展に必要な最低レーザ出力QLと加
熱半径との関係を示す図13 is a graph showing the relationship between the lowest laser output Q L and the heating radius required crack growth
【図14】 正常な割断ができるレーザ出力余裕度と加
熱半径との関係を示す図FIG. 14 is a diagram showing a relationship between a laser output margin capable of performing normal cutting and a heating radius.
【図15】 正常な割断ができるレーザ出力余裕度と加
熱位置との関係を示す図FIG. 15 is a diagram showing a relationship between a laser output margin allowing normal cutting and a heating position.
【図16】 レーザなどの点熱源による従来の熱応力割
断を説明する図FIG. 16 is a view for explaining conventional thermal stress cutting by a point heat source such as a laser.
1 Nd:YAGレーザ(点熱源) 2 半無限帯板 3 亀裂 4 保護膜 c 亀裂の長さ D 亀裂先端から加熱中心までの距離 R 加熱領域半径 W 帯板の半幅 α 線膨張係数 κ 熱拡散率 E 縦弾性率 T 上昇温度 t 加熱時間 K1 応力拡大係数Reference Signs List 1 Nd: YAG laser (point heat source) 2 Semi-infinite strip 3 Crack 4 Protective film c Length of crack D Distance from crack tip to heating center R Heating zone radius W Half width of strip α Linear expansion coefficient κ Thermal diffusivity E longitudinal modulus T raised temperature t heating time K 1 stress intensity factor
Claims (2)
で加熱し、加熱点を移動して亀裂を進展させて帯板を割
断する脆性材料の割断方法において、帯板の線膨張係数
をα、熱拡散率をκ、縦弾性率をE、加熱点の上昇温度
をT、加熱時間をt、帯板の半幅をW、加熱領域半径を
R、亀裂先端から加熱中心までの距離をD、亀裂先端の
応力拡大係数をK1としたときに、無次元応力拡大係数
温度比(例えば、2K1/αET(πW)1/2)が最大値
または最大値に近い値となるように無次元加熱時間(例
えば、4κt/W2)、無次元距離(例えば、D/
W)、無次元加熱領域(例えば、R/DまたはR/W)
からなる3つのパラメータの1つ以上を決定することに
より加工条件を決定することを特徴とする脆性材料の割
断方法。1. A method for cleaving a strip made of a brittle material having a crack by heating the strip made of a brittle material with a point heat source, moving a heating point to cause a crack to progress, and cleaving the strip. Α, thermal diffusivity κ, longitudinal elasticity modulus E, heating temperature rise temperature T, heating time t, strip half width W, heating area radius R, distance from crack tip to heating center D, and the stress intensity factor of crack tip when the K 1, dimensionless stress intensity factor temperature ratio (e.g., 2K 1 / αET (πW) 1/2) such that a value close to the maximum value or the maximum value Dimensionless heating time (eg, 4 kt / W 2 ), dimensionless distance (eg, D /
W), dimensionless heating area (eg, R / D or R / W)
A method for cleaving a brittle material, wherein the processing condition is determined by determining one or more of three parameters consisting of:
3、かつ0.3≦D/W≦1.0の条件で加工すること
を特徴とする請求項1に記載の脆性材料の割断方法。2. The method according to claim 1, wherein 4 κt / W 2 ≦ 10 and R / D ≧ 0.
3. The method for cutting a brittle material according to claim 1, wherein the working is performed under a condition of 0.3 and D / W ≦ 1.0.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10047348A JPH11240730A (en) | 1998-02-27 | 1998-02-27 | Break cutting of brittle material |
KR1019990006470A KR100313260B1 (en) | 1998-02-27 | 1999-02-26 | Method of cleaving a brittle material |
US09/260,139 US6186384B1 (en) | 1998-02-27 | 1999-03-01 | Method of cleaving a brittle material using a point heat source for providing a thermal stress |
EP99103886A EP0938946A1 (en) | 1998-02-27 | 1999-03-01 | Method of cleaving a brittle material using a point heat source for providing a thermal stress |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10047348A JPH11240730A (en) | 1998-02-27 | 1998-02-27 | Break cutting of brittle material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11240730A true JPH11240730A (en) | 1999-09-07 |
Family
ID=12772655
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10047348A Pending JPH11240730A (en) | 1998-02-27 | 1998-02-27 | Break cutting of brittle material |
Country Status (4)
Country | Link |
---|---|
US (1) | US6186384B1 (en) |
EP (1) | EP0938946A1 (en) |
JP (1) | JPH11240730A (en) |
KR (1) | KR100313260B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012526721A (en) * | 2009-05-13 | 2012-11-01 | コーニング インコーポレイテッド | How to cut brittle materials |
WO2023195455A1 (en) * | 2022-04-05 | 2023-10-12 | 公立大学法人大阪 | Prediction method and program for predicting plastic strain distribution, residual stress distribution, or deformation |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4659300B2 (en) | 2000-09-13 | 2011-03-30 | 浜松ホトニクス株式会社 | Laser processing method and semiconductor chip manufacturing method |
JP4803884B2 (en) * | 2001-01-31 | 2011-10-26 | キヤノン株式会社 | Method for manufacturing thin film semiconductor device |
JP2002229473A (en) | 2001-01-31 | 2002-08-14 | Canon Inc | Manufacturing method for display device |
JP4708577B2 (en) * | 2001-01-31 | 2011-06-22 | キヤノン株式会社 | Method for manufacturing thin film semiconductor device |
TWI326626B (en) | 2002-03-12 | 2010-07-01 | Hamamatsu Photonics Kk | Laser processing method |
CN100355032C (en) | 2002-03-12 | 2007-12-12 | 浜松光子学株式会社 | Substrate dividing method |
TWI520269B (en) | 2002-12-03 | 2016-02-01 | Hamamatsu Photonics Kk | Cutting method of semiconductor substrate |
US9362439B2 (en) * | 2008-05-07 | 2016-06-07 | Silicon Genesis Corporation | Layer transfer of films utilizing controlled shear region |
US20080169273A1 (en) * | 2007-01-12 | 2008-07-17 | Nickolas Bizzio | Laser cavity particularly for laser welding apparatus |
US8482837B2 (en) | 2010-03-05 | 2013-07-09 | Sage Electrochromics, Inc. | Lamination of electrochromic device to glass substrates |
CN103119488B (en) * | 2010-06-28 | 2015-11-25 | 毫微精密产品股份有限公司 | The determinacy cutting of optical fiber |
FR2962682B1 (en) | 2010-07-16 | 2015-02-27 | Saint Gobain | ELECTROCHEMICAL WINDOW WITH ELECTRONICALLY CONTROLLED OPTICAL AND / OR ENERGY PROPERTIES |
JP5696393B2 (en) * | 2010-08-02 | 2015-04-08 | 日本電気硝子株式会社 | Cleaving method of glass film |
EP2834036B1 (en) * | 2012-04-05 | 2020-04-29 | Sage Electrochromics, Inc. | Method of thermal laser scribe cutting for electrochromic device production ; corresponding electrochromic panel |
KR101355807B1 (en) * | 2012-09-11 | 2014-02-03 | 로체 시스템즈(주) | Curve cutting method for non-metallic materials |
WO2014079478A1 (en) | 2012-11-20 | 2014-05-30 | Light In Light Srl | High speed laser processing of transparent materials |
EP2754524B1 (en) | 2013-01-15 | 2015-11-25 | Corning Laser Technologies GmbH | Method of and apparatus for laser based processing of flat substrates being wafer or glass element using a laser beam line |
EP2781296B1 (en) | 2013-03-21 | 2020-10-21 | Corning Laser Technologies GmbH | Device and method for cutting out contours from flat substrates using a laser |
US9517963B2 (en) | 2013-12-17 | 2016-12-13 | Corning Incorporated | Method for rapid laser drilling of holes in glass and products made therefrom |
US9676167B2 (en) | 2013-12-17 | 2017-06-13 | Corning Incorporated | Laser processing of sapphire substrate and related applications |
US9701563B2 (en) | 2013-12-17 | 2017-07-11 | Corning Incorporated | Laser cut composite glass article and method of cutting |
US11556039B2 (en) | 2013-12-17 | 2023-01-17 | Corning Incorporated | Electrochromic coated glass articles and methods for laser processing the same |
US20150165560A1 (en) | 2013-12-17 | 2015-06-18 | Corning Incorporated | Laser processing of slots and holes |
US9815730B2 (en) | 2013-12-17 | 2017-11-14 | Corning Incorporated | Processing 3D shaped transparent brittle substrate |
US10442719B2 (en) | 2013-12-17 | 2019-10-15 | Corning Incorporated | Edge chamfering methods |
US9850160B2 (en) | 2013-12-17 | 2017-12-26 | Corning Incorporated | Laser cutting of display glass compositions |
TWI730945B (en) | 2014-07-08 | 2021-06-21 | 美商康寧公司 | Methods and apparatuses for laser processing materials |
EP3169479B1 (en) | 2014-07-14 | 2019-10-02 | Corning Incorporated | Method of and system for arresting incident crack propagation in a transparent material |
LT3169477T (en) | 2014-07-14 | 2020-05-25 | Corning Incorporated | System for and method of processing transparent materials using laser beam focal lines adjustable in length and diameter |
CN208586209U (en) * | 2014-07-14 | 2019-03-08 | 康宁股份有限公司 | A system for forming contoured multiple defects in a workpiece |
EP3169476A1 (en) | 2014-07-14 | 2017-05-24 | Corning Incorporated | Interface block; system for and method of cutting a substrate being transparent within a range of wavelengths using such interface block |
US10047001B2 (en) | 2014-12-04 | 2018-08-14 | Corning Incorporated | Glass cutting systems and methods using non-diffracting laser beams |
KR20170105562A (en) | 2015-01-12 | 2017-09-19 | 코닝 인코포레이티드 | Laser cutting of thermally tempered substrates using multiple photon absorption methods |
KR102546692B1 (en) | 2015-03-24 | 2023-06-22 | 코닝 인코포레이티드 | Laser Cutting and Processing of Display Glass Compositions |
EP3274313A1 (en) | 2015-03-27 | 2018-01-31 | Corning Incorporated | Gas permeable window and method of fabricating the same |
KR102499697B1 (en) | 2015-07-10 | 2023-02-14 | 코닝 인코포레이티드 | Method for continuously manufacturing holes in a flexible substrate sheet and articles related thereto |
US11111170B2 (en) | 2016-05-06 | 2021-09-07 | Corning Incorporated | Laser cutting and removal of contoured shapes from transparent substrates |
US10410883B2 (en) | 2016-06-01 | 2019-09-10 | Corning Incorporated | Articles and methods of forming vias in substrates |
US10794679B2 (en) | 2016-06-29 | 2020-10-06 | Corning Incorporated | Method and system for measuring geometric parameters of through holes |
KR20190035805A (en) | 2016-07-29 | 2019-04-03 | 코닝 인코포레이티드 | Apparatus and method for laser processing |
JP2019532908A (en) | 2016-08-30 | 2019-11-14 | コーニング インコーポレイテッド | Laser cutting of materials with an intensity mapping optical system |
US10730783B2 (en) | 2016-09-30 | 2020-08-04 | Corning Incorporated | Apparatuses and methods for laser processing transparent workpieces using non-axisymmetric beam spots |
US11542190B2 (en) | 2016-10-24 | 2023-01-03 | Corning Incorporated | Substrate processing station for laser-based machining of sheet-like glass substrates |
US10752534B2 (en) | 2016-11-01 | 2020-08-25 | Corning Incorporated | Apparatuses and methods for laser processing laminate workpiece stacks |
US10688599B2 (en) | 2017-02-09 | 2020-06-23 | Corning Incorporated | Apparatus and methods for laser processing transparent workpieces using phase shifted focal lines |
US11078112B2 (en) | 2017-05-25 | 2021-08-03 | Corning Incorporated | Silica-containing substrates with vias having an axially variable sidewall taper and methods for forming the same |
US10580725B2 (en) | 2017-05-25 | 2020-03-03 | Corning Incorporated | Articles having vias with geometry attributes and methods for fabricating the same |
US10626040B2 (en) | 2017-06-15 | 2020-04-21 | Corning Incorporated | Articles capable of individual singulation |
US12180108B2 (en) | 2017-12-19 | 2024-12-31 | Corning Incorporated | Methods for etching vias in glass-based articles employing positive charge organic molecules |
US11554984B2 (en) | 2018-02-22 | 2023-01-17 | Corning Incorporated | Alkali-free borosilicate glasses with low post-HF etch roughness |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1244346B (en) * | 1964-10-19 | 1967-07-13 | Menzel Gerhard Glasbearbeitung | Method of cutting glass |
US3790744A (en) * | 1971-07-19 | 1974-02-05 | American Can Co | Method of forming a line of weakness in a multilayer laminate |
US4615765A (en) * | 1985-02-01 | 1986-10-07 | General Electric Company | Self-registered, thermal processing technique using a pulsed heat source |
EP0397236B1 (en) * | 1989-05-08 | 1994-10-05 | Koninklijke Philips Electronics N.V. | Method of severing a plate of brittle material |
JPH0639572A (en) * | 1991-01-11 | 1994-02-15 | Souei Tsusho Kk | Wafer cutting device |
US5387776A (en) * | 1993-05-11 | 1995-02-07 | General Electric Company | Method of separation of pieces from super hard material by partial laser cut and pressure cleavage |
JP3175463B2 (en) * | 1994-02-24 | 2001-06-11 | 三菱電機株式会社 | Laser cutting method |
US5776220A (en) * | 1994-09-19 | 1998-07-07 | Corning Incorporated | Method and apparatus for breaking brittle materials |
JPH0929472A (en) * | 1995-07-14 | 1997-02-04 | Hitachi Ltd | Cleaving method, cleaving device and chip material |
JPH10128567A (en) * | 1996-10-30 | 1998-05-19 | Nec Kansai Ltd | Laser beam splitting method |
US5998759A (en) * | 1996-12-24 | 1999-12-07 | General Scanning, Inc. | Laser processing |
MY120533A (en) * | 1997-04-14 | 2005-11-30 | Schott Ag | Method and apparatus for cutting through a flat workpiece made of brittle material, especially glass. |
JP3691221B2 (en) * | 1997-09-24 | 2005-09-07 | 三菱電機株式会社 | Laser processing method |
-
1998
- 1998-02-27 JP JP10047348A patent/JPH11240730A/en active Pending
-
1999
- 1999-02-26 KR KR1019990006470A patent/KR100313260B1/en not_active Expired - Fee Related
- 1999-03-01 EP EP99103886A patent/EP0938946A1/en not_active Withdrawn
- 1999-03-01 US US09/260,139 patent/US6186384B1/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012526721A (en) * | 2009-05-13 | 2012-11-01 | コーニング インコーポレイテッド | How to cut brittle materials |
WO2023195455A1 (en) * | 2022-04-05 | 2023-10-12 | 公立大学法人大阪 | Prediction method and program for predicting plastic strain distribution, residual stress distribution, or deformation |
Also Published As
Publication number | Publication date |
---|---|
EP0938946A1 (en) | 1999-09-01 |
KR100313260B1 (en) | 2001-11-05 |
KR19990072974A (en) | 1999-09-27 |
US6186384B1 (en) | 2001-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH11240730A (en) | Break cutting of brittle material | |
JPH10128567A (en) | Laser beam splitting method | |
Gvozdev et al. | Multiparametric optimization of laser cutting of steel sheets | |
JP3923526B2 (en) | Method and apparatus for breaking fragile materials | |
JP5612289B2 (en) | Laser division method of glass sheet | |
Saklakoglu et al. | Investigation of micro-milling process parameters for surface roughness and milling depth | |
US20040251290A1 (en) | Cutting method for brittle non-metallic materials (two variants) | |
TWI753257B (en) | Method for producing a strip steel knife, and strip steel knife for tools | |
US20150053657A1 (en) | Method for blunting sharp edges of glass objects | |
JPS62112385A (en) | Selective etching of piezoelectric material | |
Saman et al. | A study on separating of a silicon wafer with moving laser beam by using thermal stress cleaving technique | |
JPH01108006A (en) | Splitting of brittle material | |
JP2004536759A (en) | How to cut brittle non-metallic materials | |
Xiao et al. | Research on material removal of Ti-6Al-4V by laser-belt machining | |
Paterson et al. | On the numerical modelling of laser shearing of glass sheets used to optimize production methods | |
CN104476326B (en) | A kind of method of sintex groove wear prediction | |
Mohid et al. | Chip pattern, burr and surface roughness in laser assisted micro milling of Ti6Al4V using micro ball end mill | |
JP2007076953A (en) | Method and device for cutting glass plate | |
CN111843615B (en) | A Rapid Identification Method of Fracture Toughness of Materials in Ultrasonic Vibration Assisted Machining | |
Yilbas et al. | Laser cutting of rectangular blanks in thick sheet steel: Effect of cutting speed on thermal stresses | |
Lee | Analysis of precision deburring using a laser—An experimental study and FEM simulation | |
JP4709599B2 (en) | Laser processing method, laser processing apparatus, and structural member manufactured by laser processing method | |
CN112645580A (en) | Glass cutting method and glass material | |
JP2008246808A (en) | Method and apparatus for processing workpiece made of highly brittle non-metallic material | |
Liu et al. | Thermal stress cleaving of silicon wafer by pulsed Nd: YAG laser |