JPH11234917A - Charger for combined batteries - Google Patents
Charger for combined batteriesInfo
- Publication number
- JPH11234917A JPH11234917A JP10042979A JP4297998A JPH11234917A JP H11234917 A JPH11234917 A JP H11234917A JP 10042979 A JP10042979 A JP 10042979A JP 4297998 A JP4297998 A JP 4297998A JP H11234917 A JPH11234917 A JP H11234917A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- battery
- charging
- capacity
- average
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 claims description 9
- 230000006866 deterioration Effects 0.000 claims description 7
- 238000007599 discharging Methods 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 11
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 7
- 229910001416 lithium ion Inorganic materials 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Battery Mounting, Suspending (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Tests Of Electric Status Of Batteries (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、組電池を充電す
る際、セル電池の電圧如何に関わらず、バラツキ補正が
可能な組電池の充電装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery pack charging apparatus capable of correcting variations when charging a battery pack regardless of the voltage of a cell battery.
【0002】[0002]
【従来の技術】組電池を充電する際、各セル電池のバラ
ツキに応じて容量調整を行なう必要がある。その容量調
整を行なうバラツキ補正装置としては、例えば図8に示
すような装置が用いられている。組電池を構成する各セ
ル電池aの両端子に抵抗21とスイッチング回路をなす
トランジスタ22で構成される調整回路2を接続する。
セル電池コントローラ30はセル電池の両端子から無負
荷時の端子電圧を検出し、セル電池の平均電圧との比較
でバラツキを判定する。平均電圧より高いセル電池に対
しては、調整回路2内のトランジスタ22をオンさせ、
平均電圧との偏差に対応した容量で放電するよう制御す
る。これによって、平均電圧以上のセル電池は容量が調
整され、平均電圧に基づいた充電を行なっても、過充電
することなく、組電池に損傷を与えずに充電することが
可能となる。2. Description of the Related Art When charging a battery pack, it is necessary to adjust the capacity according to the variation of each cell battery. For example, an apparatus as shown in FIG. 8 is used as a variation correction apparatus for adjusting the capacity. An adjustment circuit 2 composed of a resistor 21 and a transistor 22 forming a switching circuit is connected to both terminals of each cell battery a constituting the assembled battery.
The cell battery controller 30 detects the terminal voltage at the time of no load from both terminals of the cell battery, and determines the variation by comparing with the average voltage of the cell battery. For a cell battery higher than the average voltage, the transistor 22 in the adjustment circuit 2 is turned on,
Control is performed to discharge at a capacity corresponding to the deviation from the average voltage. As a result, the capacity of the cell battery having the average voltage or more is adjusted, and even if the battery is charged based on the average voltage, the battery can be charged without overcharging and without damaging the assembled battery.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記の
容量調整は充電開始時の各セル電池の無負荷開放電圧に
基づいて行なわれるもので、容量と開放電圧は比例関係
にあることが必要となる。リチウムイオン電池の場合、
容量と開放電圧の関係が比例関係にあるが、図9に示す
ように開放電圧の変化にともない比例関係が変化する。
すなわち開放電圧が所定の演算下限値以上であれば容量
と開放電圧は直線関係にあるが、演算下限値以下では、
容量と開放電圧の関係が複雑になる。したがって、組電
池がリチウムイオン電池の場合では、充電開始時の端子
電圧が演算下限値以下であると、放電容量算出が容易に
できないため、バラツキ補正が正確に行なえない問題が
あった。本発明は、上記の問題を鑑み、端子電圧と容量
が変化する比例関係の場合でも、充電開始時の端子電圧
の如何に関わらず正確なバラツキ補正が可能な組電池の
充電装置を提供することを目標としている。However, the above capacity adjustment is performed based on the no-load open voltage of each cell battery at the start of charging, and the capacity and the open voltage need to be in a proportional relationship. . For lithium ion batteries,
Although the relationship between the capacitance and the open-circuit voltage is proportional, as shown in FIG. 9, the proportional relationship changes with the change in the open-circuit voltage.
That is, if the open-circuit voltage is equal to or higher than the predetermined lower limit, the capacity and the open-circuit voltage are in a linear relationship.
The relationship between capacitance and open circuit voltage becomes complicated. Therefore, when the battery pack is a lithium-ion battery, if the terminal voltage at the start of charging is less than the lower limit of calculation, the discharge capacity cannot be easily calculated, and there has been a problem that the variation correction cannot be performed accurately. The present invention has been made in view of the above problems, and provides a battery charger for an assembled battery capable of accurately correcting variation regardless of the terminal voltage at the start of charging even in the case of a proportional relationship in which the terminal voltage and the capacity change. The goal is.
【0004】[0004]
【課題を解決するための手段】このため、本発明は、所
定の電流で組電池を充電する充電手段を有し、前記組電
池のセル電池の端子電圧を検出する電圧検出手段と、前
記セル電池の平均電圧を演算する平均電圧演算手段と、
前記演算された平均電圧を所定の基準電圧と比較する電
圧比較手段とセル電池を放電して容量調整を行なう調整
手段とを備えて、充電を開始する際、前記電圧検出手段
は各セル電池の無負荷端子電圧を検出し、前記平均電圧
演算手段で演算されたセル電池の平均無負荷電圧と所定
の基準電圧とを比較することによって、前記セル電池の
端子電圧が電池容量を演算できる領域にあるか否かが判
定され、容量演算可能な領域では、前記平均無負荷電圧
に対して偏差が正方向に大であるセル電池をその偏差に
対応する容量で前記調整手段による放電することによっ
てバラツキ補正を行なう組電池の充電装置において、前
記組電池の容量から出力可能なパワーを演算するパワー
演算手段と、該パワー演算手段の演算値をもとに組電池
の内部抵抗を演算する内部抵抗演算手段と、前記充電手
段の充電電流と内部抵抗で、充電時に内部抵抗における
電圧降下を演算し、セル電池の無負荷時の端子電圧を推
定する電圧推定手段と、前記電圧推定手段によって推定
された端子電圧と前記基準電圧とを比較する推定電圧比
較手段とを設け、前記平均電圧演算手段で演算されたセ
ル電池の平均無負荷電圧と所定の基準電圧との比較で、
前記セル電池の端子電圧が電池容量を演算できない領域
と判定された場合、前記充電手段による充電を開始さ
せ、前記電圧推定手段で推定された無負荷端子電圧が前
記基準電圧との比較で前記セル電池の端子電圧から電池
容量を演算可能な領域と判定されると、充電を停止し
て、上記電圧検出手段はセル電池の無負荷端子電圧を検
出し、演算されたセル電池の無負荷平均電圧とセル電池
の偏差に基づいてバラツキ補正を行なうものとした。Therefore, the present invention has a charging means for charging an assembled battery with a predetermined current, a voltage detecting means for detecting a terminal voltage of a cell battery of the assembled battery, Average voltage calculating means for calculating an average voltage of the battery;
A voltage comparing unit that compares the calculated average voltage with a predetermined reference voltage; and an adjusting unit that performs capacity adjustment by discharging the cell battery. By detecting the no-load terminal voltage and comparing the average no-load voltage of the cell battery calculated by the average voltage calculating means with a predetermined reference voltage, the terminal voltage of the cell battery becomes an area where the battery capacity can be calculated. In the area where the capacity can be calculated, the cell battery whose deviation is large in the positive direction with respect to the average no-load voltage is discharged by the adjusting means with a capacity corresponding to the deviation. In a battery charger for performing correction, a power calculating means for calculating output power from the capacity of the battery pack, and an internal resistance of the battery pack based on a calculated value of the power calculating means. An internal resistance calculating means, a voltage estimating means for calculating a voltage drop in the internal resistance at the time of charging based on a charging current and an internal resistance of the charging means, and estimating a terminal voltage of the cell battery at no load; An estimated voltage comparing means for comparing the terminal voltage estimated by the above with the reference voltage is provided, and a comparison between the average no-load voltage of the cell battery calculated by the average voltage calculating means and a predetermined reference voltage,
When it is determined that the terminal voltage of the cell battery is in a region where the battery capacity cannot be calculated, the charging by the charging unit is started, and the no-load terminal voltage estimated by the voltage estimating unit is compared with the reference voltage. When it is determined that the battery capacity can be calculated from the battery terminal voltage, charging is stopped, and the voltage detecting means detects the no-load terminal voltage of the cell battery, and calculates the calculated no-load average voltage of the cell battery. And a variation correction based on the deviation of the cell battery.
【0005】前記パワー演算手段は初期値データを格納
するパワーテーブルを用いて、組電池の出力可能なパワ
ーを演算し、前記組電池の容量低下を示す劣化係数を用
いてパワー算出値を修正することが可能である。前記組
電池に温度センサが設置され、前記パワー演算手段は算
出された出力可能なパワー算出値を温度の検出値で修正
することが可能である。前記調整手段は、前記平均無負
荷電圧とセル電池との偏差に対応した放電容量に組電池
の劣化係数および電池温度で補正を施した値で容量調整
を行なうのが望ましい。The power calculating means calculates the output power of the battery pack using a power table for storing initial value data, and corrects the calculated power value using a deterioration coefficient indicating a decrease in capacity of the battery pack. It is possible. A temperature sensor is provided in the battery pack, and the power calculation means can correct the calculated outputable power calculation value with a detected temperature value. It is preferable that the adjusting means adjusts the capacity with a value obtained by correcting the discharge capacity corresponding to the deviation between the average no-load voltage and the cell battery with the deterioration coefficient of the battery pack and the battery temperature.
【0006】前記所定の基準電圧を複数設定し、セル電
池を放電してバラツキ補正を行なうたびに基準電圧を高
くし、バラツキ補正を複数回行なうことができる。A plurality of the predetermined reference voltages may be set, and the reference voltage may be increased each time the cell battery is discharged to perform the variation correction, thereby performing the variation correction a plurality of times.
【0007】前記組電池の充電装置はハイブリッド自動
車に積み込まれた組電池の充電に用いられ、前記ハイブ
リッド自動車が停止している間に、バラツキ補正を行な
うように、電池の平均無負荷電圧と所定の基準電圧との
比較を行ない、バラツキ補正が可能な領域では、補正を
行なうことが可能である。[0007] The battery charger for charging the battery pack is used for charging the battery pack loaded in the hybrid vehicle, and while the hybrid vehicle is stopped, the average no-load voltage of the battery and a predetermined value are adjusted so as to perform variation correction. Is compared with the reference voltage, and correction can be performed in a region where variation can be corrected.
【0008】[0008]
【作用】充電開始時のセル電池の平均無負荷電圧が所定
の基準電圧より低く、セル電池の端子電圧から電池容量
を演算できない領域の場合、前記充電手段による充電が
まず開始される。充電の進行に伴なって容量が回復され
る。パワー演算手段は組電池の容量から出力可能なパワ
ーを演算し、出力可能なパワーをもとに組電池の内部抵
抗が演算される。これによって充電時に内部抵抗におけ
る電圧降下が算出され、無負荷時の端子電圧が推定され
る。その無負荷推定端子電圧と基準電圧との比較でセル
電池が端子電圧と容量が直線関係にある領域に容量回復
されたかの判定ができる。これによって端子電圧に基づ
いた容量調整ができ、端子電圧の如何に関わらずバラツ
キ補正が行なえる効果が得られる。In the case where the average no-load voltage of the cell battery at the start of charging is lower than a predetermined reference voltage and the battery capacity cannot be calculated from the terminal voltage of the cell battery, charging by the charging means is first started. As the charging progresses, the capacity is restored. The power calculating means calculates the output power from the capacity of the battery pack, and calculates the internal resistance of the battery pack based on the output power. Thus, the voltage drop in the internal resistance during charging is calculated, and the terminal voltage at no load is estimated. By comparing the estimated no-load terminal voltage with the reference voltage, it can be determined whether or not the cell battery has been restored to a region where the terminal voltage and the capacity have a linear relationship. As a result, the capacitance can be adjusted based on the terminal voltage, and an effect that variation correction can be performed regardless of the terminal voltage can be obtained.
【0009】前記所定の基準電圧を複数設定し、セル電
池を放電してバラツキ補正を行なうたびに基準電圧を高
くし、バラツキ補正を複数回行なうようにすると、補正
の不足分や充電進行時に現われるバラツキもその都度で
補正され、高精度でバラツキ補正ができる効果が得られ
る。When a plurality of the predetermined reference voltages are set, and the reference voltage is increased each time the variation is corrected by discharging the cell battery, the variation correction is performed a plurality of times. The variation is also corrected each time, and an effect is obtained in which the variation can be corrected with high accuracy.
【0010】前記組電池の充電装置をハイブリッド自動
車に積み込まれた組電池の充電に用いる場合、前記ハイ
ブリッド自動車が停止している間に、電池の平均無負荷
電圧と所定の基準電圧との比較を行ない、バラツキ補正
が可能な領域では、補正を行なうようにすると、ハイブ
リッド車が起動する時点で、組電池の充電することが可
能になる。When the battery charger is used for charging a battery pack loaded in a hybrid vehicle, the average no-load voltage of the battery is compared with a predetermined reference voltage while the hybrid vehicle is stopped. If the correction is performed in a region where the variation can be corrected, the assembled battery can be charged when the hybrid vehicle is started.
【0011】[0011]
【発明の実施の形態】以下、発明の実施形態を実施例に
より説明する。図1は、本発明の実施例の構成を示す図
ある。n個のセル電池aを有するモジュール電池1をm
個直列に接続して、総数m×n個のセル電池で組電池が
構成される。セル電池はリチウムイオン電池で、各セル
電池の両端子に容量調整を行なう調整手段としての調整
回路2が接続されている。調整回路2は放電用抵抗21
とスイッチング回路をなすトランジスタ22で構成され
る。Embodiments of the present invention will be described below with reference to examples. FIG. 1 is a diagram showing a configuration of an embodiment of the present invention. A module battery 1 having n cell batteries a is m
By connecting them in series, an assembled battery is composed of a total of m × n cell batteries. The cell battery is a lithium ion battery, and an adjusting circuit 2 as adjusting means for adjusting the capacity is connected to both terminals of each cell battery. The adjusting circuit 2 includes a discharging resistor 21.
And a transistor 22 forming a switching circuit.
【0012】各セル電池の両端子はさらにセル電池コン
トローラ3のE、F端子に接続される。セル電池コント
ローラ3は充電を行なうバッテリコントローラ5と通信
を行なうように接続され、調整回路2との間には制御端
子Dがトランジスタ22のベースと接続されている。な
お、図1には調整回路2は代表的に1つのみを示し、セ
ル電池コントローラと図示しない調整回路の接続は矢印
で簡略的に表示している。組電池に温度センサ4が取り
付けられ、組電池の温度情報をセル電池コントローラ3
に出力するようになっている。バッテリコントローラ5
は充電手段としての充電部をもち、組電池の充放電情報
など組電池に関わる多数の情報を管理している。Both terminals of each cell battery are further connected to the E and F terminals of the cell battery controller 3. The cell battery controller 3 is connected to communicate with a battery controller 5 for charging, and a control terminal D is connected to the base of the transistor 22 between itself and the adjustment circuit 2. In FIG. 1, only one adjustment circuit 2 is typically shown, and the connection between the cell battery controller and an adjustment circuit (not shown) is simply indicated by an arrow. A temperature sensor 4 is attached to the assembled battery, and the temperature information of the assembled battery is transmitted to the cell battery controller 3.
Output. Battery controller 5
Has a charging unit as a charging means, and manages a lot of information related to the assembled battery such as charge / discharge information of the assembled battery.
【0013】図2はセル電池コントローラ3とバッテリ
コントローラ5の働きを機能ブロックで示す図である。
送受信部32と送受信部51はそれぞれの制御部35と
制御部52の制御でセル電池コントローラ3とバッテリ
コントローラ5間の情報を送受信するようになってい
る。セル電池コントローラ3では、電圧検出部31と温
度センサ4は各セル電池の端子電圧および組電池の温度
を検出し、これらの情報が送受信部32からバッテリコ
ントローラ5に送信される。FIG. 2 is a functional block diagram showing the functions of the cell battery controller 3 and the battery controller 5.
The transmission / reception unit 32 and the transmission / reception unit 51 transmit and receive information between the cell battery controller 3 and the battery controller 5 under the control of the control unit 35 and the control unit 52, respectively. In the cell battery controller 3, the voltage detector 31 and the temperature sensor 4 detect the terminal voltage of each cell battery and the temperature of the battery pack, and these information are transmitted from the transceiver 32 to the battery controller 5.
【0014】比較部33はバッテリコントローラ5から
送られるセル電池の平均無負荷電圧と基準電圧とを比較
する。基準電圧は、リチウムイオン電池の容量と端子電
圧の直線部の下端、調整容量の演算下限値に合わせて設
定される。比較部33での比較で平均無負荷電圧が基準
電圧より高い場合は、補正部34は平均無負荷電圧に対
して偏差が正方向に大であるセル電池を所定の電流Ic
で放電するよう各セル電池の調整回路にオン信号を出力
する。タイマー36はオン信号の出力と同時にセットさ
れる。補正部34がタイマー時間Ttmをカウントして
セル電池を偏差の大きさに対応した容量で放電するよう
タイミングを図りオフ信号を出力して調整回路をオフさ
せる。制御部35は補正部34からオフ信号が出力され
または比較部33での比較で平均無負荷電圧が基準電圧
より低い場合、充電開始信号をバッテリコントローラ5
に送信する。The comparing section 33 compares the average no-load voltage of the cell battery sent from the battery controller 5 with a reference voltage. The reference voltage is set in accordance with the lower end of the linear portion of the capacity and terminal voltage of the lithium ion battery, and the lower limit of the calculation of the adjustment capacity. When the average no-load voltage is higher than the reference voltage in the comparison by the comparison unit 33, the correction unit 34 determines whether the cell battery having a large deviation in the positive direction with respect to the average no-load voltage has a predetermined current Ic.
And outputs an ON signal to the adjustment circuit of each cell battery so as to discharge. The timer 36 is set simultaneously with the output of the ON signal. The compensator 34 counts the timer time Ttm, sets a timing to discharge the cell battery with a capacity corresponding to the magnitude of the deviation, outputs an off signal, and turns off the adjustment circuit. The control unit 35 outputs the charging start signal to the battery controller 5 when the OFF signal is output from the correction unit 34 or the average no-load voltage is lower than the reference voltage in the comparison in the comparison unit 33.
Send to
【0015】バッテリコントローラ5側では、セル電池
コントローラ3からセル電池の無負荷端子電圧を受け
て、平均電圧演算部50で無負荷平均電圧を演算する。
また充電開始信号が送られると、充電部53による充電
が開始される。パワー算出部54は組電池の容量とパワ
ーの関係でパワーテーブルを引くことで出力可能なパワ
ーを算出する。無負荷電圧推定部55は出力可能なパワ
ーをもとに、組電池の内部抵抗を算出し、充電電流によ
る端子電圧の増加分を算出して、無負荷状態での平均的
なセル電池端子電圧を推定する。その推定値はさらに制
御部52で基準電圧と比較される。基準電圧より高い
と、制御部52は充電部53による充電を停止させる。On the battery controller 5 side, the no-load terminal voltage of the cell battery is received from the cell battery controller 3 and the average voltage calculating section 50 calculates the no-load average voltage.
When the charging start signal is sent, charging by the charging unit 53 is started. The power calculator 54 calculates the power that can be output by drawing a power table based on the relationship between the capacity and the power of the battery pack. The no-load voltage estimation unit 55 calculates the internal resistance of the battery pack based on the output power, calculates the increase in the terminal voltage due to the charging current, and calculates the average cell battery terminal voltage in the no-load state. Is estimated. The estimated value is further compared with a reference voltage by the control unit 52. If the voltage is higher than the reference voltage, the control unit 52 stops charging by the charging unit 53.
【0016】図3は上記構成における作動の流れを示す
フローチャートである。充電を開始する際、まずセル電
池コントローラ3が起動される。バッテリコントローラ
5が待機する状態となってフローチャートが実行される
ことになる。ステップ101において、タイマー36が
クリアされ、タイマー時間Ttmが0となる。ステップ
102においては、モジュール毎に各セル電池の無負荷
端子電圧Vceln(nはモジュール内のセル電池番
号、以下の説明でも同様の意味で使用される)が電圧検
出部31で検出され、バッテリコントローラ5に送信さ
れる。FIG. 3 is a flowchart showing the flow of operation in the above configuration. When charging is started, first, the cell battery controller 3 is started. The flowchart is executed with the battery controller 5 in a standby state. In step 101, the timer 36 is cleared, and the timer time Ttm becomes 0. In step 102, the no-load terminal voltage Vceln (n is the cell battery number in the module, which is used in the same manner in the following description) of each cell battery for each module is detected by the voltage detection unit 31, and the battery controller 5 is sent.
【0017】ステップ103において、バッテリコント
ローラ5の平均電圧演算部50で各セル電池の端子電圧
の総和すなわち組電池の端子電圧をセル電池数(m×
n)で除して無負荷電圧の平均値VMを算出し、セル電
池コントローラ3に送信される。ステップ104におい
て、平均値VMが比較部33で基準電圧(演算下限値)
VLと比較される。VM≧VLでれば、バラツキ補正が
行なえるのでステップ105へ進む。VM<VLであれ
ば、充電を行なうようにステップ113へ進む。In step 103, the average voltage calculator 50 of the battery controller 5 calculates the sum of the terminal voltages of each cell battery, that is, the terminal voltage of the assembled battery, by the number of cell batteries (m ×
The average value VM of the no-load voltage is calculated by dividing by n) and transmitted to the cell battery controller 3. In step 104, the average value VM is compared with the reference voltage (the lower limit value of the operation) by the comparator 33.
VL. If VM ≧ VL, the process proceeds to step 105 because the variation correction can be performed. If VM <VL, the process proceeds to step 113 to perform charging.
【0018】ステップ105において、補正部34で平
均値VMを仮想目標電圧VTとし、セル電池との電圧偏
差VDn(=Vceln−VT)を演算する。ステップ
106において、偏差が正方向に大であるセル電池を放
電するように、VDnの大きさに応じて調整容量テーブ
ルの補間演算により調整容量Ccelnを求める。In step 105, the correction unit 34 calculates the voltage deviation VDn (= Vcelln-VT) from the cell battery by using the average value VM as the virtual target voltage VT. In step 106, the adjustment capacity Cceln is obtained by interpolation calculation of the adjustment capacity table according to the magnitude of VDn so as to discharge the cell battery whose deviation is large in the positive direction.
【0019】ステップ107においては、補正部34は
正方向に偏差のあるセル電池毎にオン信号を出力してそ
れぞれの調整回路2をオンさせる。これによりセル電池
は調整電流Icで放電される。タイマー36はオン信号
の出力に同期してセットされる。ステップ108におい
て、補正部34は各セル電池毎に設定されるタイマー時
間Ttmをカウントし、放電残量Cc(Cceln−T
tm×Ic)を監視する。In step 107, the correction section 34 outputs an ON signal for each cell battery having a deviation in the positive direction to turn on the respective adjustment circuits 2. Thereby, the cell battery is discharged with the adjustment current Ic. The timer 36 is set in synchronization with the output of the ON signal. In step 108, the correction unit 34 counts the timer time Ttm set for each cell battery, and calculates the remaining discharge amount Cc (Cceln-T
tm × Ic).
【0020】ステップ109において、セル電池の放電
残量Ccが0になったかどうかをチェックする。放電残
量が0となったセル電池については、ステップ110に
おいて調整回路にオフ信号を出力してオフさせる。ステ
ップ111において、すべてのセル電池の調整回路がオ
フとなったかをチェックして、放電が終了すると、制御
部35は充電信号をバッテリコントローラ5に送り、ス
テップ112で充電が開始される。At step 109, it is checked whether or not the discharge remaining amount Cc of the cell battery has become zero. The cell battery having the remaining discharge amount of 0 is turned off by outputting an off signal to the adjustment circuit in step 110. In step 111, it is checked whether or not the adjustment circuits of all the cell batteries have been turned off. When the discharging is completed, the control unit 35 sends a charging signal to the battery controller 5, and charging is started in step 112.
【0021】図4は充電過程における平均電圧VMの変
化を示す図である。時刻t1までは無負荷電圧を検出し
容量調整を行なうので、端子電圧が上昇することがな
い。t1を過ぎてからは、充電により、リチウムイオン
電池の特性を反映して平均電圧VMが容量との関係を示
しながら上昇する。上記処理により、充電開始時に容量
の大きいセル電池は仮想目標電圧VLに容量調整され
る。FIG. 4 is a diagram showing changes in the average voltage VM during the charging process. Until the time t1, the no-load voltage is detected and the capacitance is adjusted, so that the terminal voltage does not increase. After the time t1, due to charging, the average voltage VM increases while showing a relationship with the capacity, reflecting the characteristics of the lithium ion battery. By the above processing, the capacity of the cell battery having a large capacity at the start of charging is adjusted to the virtual target voltage VL.
【0022】ステップ104で、無負荷電圧の平均電圧
VMがVL未満であると判定された場合、ステップ11
3で制御部35はバッテリコントローラ5に充電信号を
送り、バッテリコントローラ5では、充電部53が組電
池に対して充電を行なう。ステップ114において、パ
ワー算出部54は電池容量Cwhから図5に示す出カ可
能なパワーPmax(電池がその時点で出しうる最高出
カ)と電池容量とが対応したデータを格納するパワーテ
ープルを補間演算してPmaxを求める。If it is determined in step 104 that the average voltage VM of the no-load voltage is lower than VL, step 11
At 3, the control unit 35 sends a charge signal to the battery controller 5, and in the battery controller 5, the charging unit 53 charges the assembled battery. In step 114, the power calculator 54 interpolates the power table storing data corresponding to the output power Pmax (the maximum output that the battery can output at that time) and the battery capacity shown in FIG. 5 from the battery capacity Cwh. An operation is performed to obtain Pmax.
【0023】ステップ115においては、放電による劣
化補正係数Krを求めるとともに、セル電池コントロー
ラ3との通信で温度センサ4が検出した電池温度Tmo
dを要求し、温度係数テーブルを補間演算して温度係数
Ktmodを求める。ステップ116において、劣化補
正係数Krと温度係数Ktmodを用いて、式(1)に
基づいて出力可能パワーPmaxに補正を行なう。 Pmax=(Pmax/Kr)/Ktmod) (1)In step 115, a deterioration correction coefficient Kr due to discharge is obtained, and the battery temperature Tmo detected by the temperature sensor 4 in communication with the cell battery controller 3 is determined.
d is requested, and the temperature coefficient table is interpolated to obtain the temperature coefficient Ktmod. In step 116, the output power Pmax is corrected based on equation (1) using the deterioration correction coefficient Kr and the temperature coefficient Ktmod. Pmax = (Pmax / Kr) / Ktmod) (1)
【0024】ステップ117において、無負荷電圧推定
部55はパワー算出部54で算出されたPmaxを充電
電流Icで除すことによりその時点での内部抵抗Rを求
める。ステップ118において、Ic×Rで与えられる
充電による組電池の総電圧上昇分VUPを求める。In step 117, the no-load voltage estimating unit 55 obtains the internal resistance R at that time by dividing Pmax calculated by the power calculating unit 54 by the charging current Ic. In step 118, a total voltage increase VUP of the battery pack due to charging given by Ic × R is obtained.
【0025】ステップ119において、セル電池コント
ローラ3に電圧検出部31が検出したセルの端子電圧を
送信させ、その総電圧Vtot(充電時総電圧)から充
電による総電圧上昇分VUPを引いて、セル電池総数で
除してセル電圧の平均推定電圧VDを演算する。ステッ
プ120において、平均推定電圧VDが基準電圧VL以
上になったかをチェックする。なっていない場合、ステ
ップ114に戻り、上記演算を新たに行なう。平均推定
電圧VDが基準電圧VLより大きいと判断されると、ス
テップ121で、制御部52の制御により充電が停止さ
れてステップ102に戻る。その後は上記同様に容量調
整が行なわれて、仮想目標電圧VTに調整されると組電
池充電が再び行なわれる。In step 119, the cell battery controller 3 is caused to transmit the terminal voltage of the cell detected by the voltage detector 31, and the total voltage Vtot (total voltage during charging) is subtracted from the total voltage Vtot to obtain the cell voltage increase VUP. The average estimated voltage VD of the cell voltage is calculated by dividing by the total number of batteries. In step 120, it is checked whether the average estimated voltage VD has become equal to or higher than the reference voltage VL. If not, the process returns to step 114, and the above calculation is newly performed. When it is determined that the average estimated voltage VD is higher than the reference voltage VL, the charging is stopped by the control of the control unit 52 in step 121, and the process returns to step 102. After that, the capacity is adjusted in the same manner as described above, and when the battery is adjusted to the virtual target voltage VT, the battery pack is charged again.
【0026】図6は、充電開始時の無負荷電圧が基準電
圧より低い場合の平均電圧VMの変化を示す図である。
時刻0〜t1では無負荷電圧が検出されている。この域
では電圧上昇がない。t1〜t2では、充電により容量
が回復され、端子電圧が基準電圧VLより充電による電
圧上昇分VUPを足したところまで上昇する。t2〜t
3では、無負間電圧の検出と容量調整が行なわれ、無負
荷になった端子電圧が充電時より下降しほぼ基準電圧と
一致する。t3からは、充電が開始され、容量と電圧の
関係を示しながら電圧が上昇する。FIG. 6 is a diagram showing a change in the average voltage VM when the no-load voltage at the start of charging is lower than the reference voltage.
At time 0 to t1, a no-load voltage is detected. There is no voltage rise in this region. From t1 to t2, the capacity is recovered by charging, and the terminal voltage rises to a point where the voltage rise VUP due to charging is added from the reference voltage VL. t2-t
In No. 3, the non-negative voltage is detected and the capacity is adjusted, and the no-load terminal voltage falls from the time of charging and almost matches the reference voltage. From t3, charging is started, and the voltage increases while indicating the relationship between the capacity and the voltage.
【0027】本実施例は以上のように構成され、組電池
を充電する際、セル電池の無負荷端子電圧を検出し、そ
の平均無負荷電圧VMが基準電圧以上と判定された場
合、端子電圧から容量演算が可能で、端子電圧と容量の
関係で容量の大きいセル電池が仮想目標電圧に容量調整
される。また、平均無負荷電圧が基準電圧以下と判定さ
れた場合、充電を開始させ、セル電池の無負荷端子電圧
を推定し基準電圧に達した時点で、充電を停止し、容量
調整を行なうので、容量と端子電圧が直線でないリチウ
ムイオン電池でも、充電開始時の端子電圧の如何に関わ
らず、容量調整ができ、組電池に損傷を与えずに充電す
ることができる。また、充電による容量回復は端子電圧
の演算下限値に合わせて行なわれるから、可能な限り低
い電圧からの調整となり、調整時間が長くなり、バラツ
キは大きい場合でも、調整することが可能である。This embodiment is configured as described above. When charging the assembled battery, the no-load terminal voltage of the cell battery is detected, and when the average no-load voltage VM is determined to be equal to or higher than the reference voltage, the terminal voltage is determined. The capacity of the cell battery having a large capacity can be adjusted to the virtual target voltage by the relation between the terminal voltage and the capacity. Also, when the average no-load voltage is determined to be equal to or lower than the reference voltage, charging is started, and when the no-load terminal voltage of the cell battery reaches the reference voltage, charging is stopped and capacity adjustment is performed. Even for a lithium ion battery having a non-linear capacity and terminal voltage, the capacity can be adjusted regardless of the terminal voltage at the start of charging, and the battery can be charged without damaging the assembled battery. Further, since the capacity recovery by charging is performed in accordance with the lower limit of the calculation of the terminal voltage, the adjustment is performed from the lowest possible voltage, so that the adjustment time becomes longer and the adjustment can be performed even when the variation is large.
【0028】上記では、1つの基準電圧を設定して、容
量調整を行ない、その後充電を行なう手法を示したが、
このほかにも、図7のように基準電圧をVL1、VL
2、VL3、VL4のように複数設定することもでき
る。充電による端子電圧がVL1になると、容量調整を
行なって、充電を開始させる。次に基準電圧VL2が適
用され、推定される無負荷端子電圧がそれに達すると、
再び容量調整を行なうように複数回容量調整を行なう。
この場合、充電時に現われるバラツキや補正不足分もそ
の都度補正され、より精度の高い補正が可能となる。In the above description, a method has been described in which one reference voltage is set, capacity is adjusted, and then charging is performed.
In addition, as shown in FIG. 7, the reference voltages are VL1, VL
A plurality of values such as 2, VL3, and VL4 can be set. When the terminal voltage due to charging becomes VL1, the capacity is adjusted and charging is started. Next, the reference voltage VL2 is applied, and when the estimated no-load terminal voltage reaches it,
The capacity adjustment is performed a plurality of times to perform the capacity adjustment again.
In this case, variations appearing at the time of charging and insufficient correction are corrected each time, so that more accurate correction can be performed.
【0029】なお、調整回路で放電される容量もPma
xを補正した場合と同様、劣化係数と温度係数を乗じた
値の逆数を容量調整ゲインKgとし、調整容量CcにK
gを掛けて補正することもできる。さらに、本発明をハ
イブリッド自動車に用いる場合、車両が停車時に組電池
が調整容量演算可能な電圧領域にあるかどうかを判別し
て、可能な場合は、容量調整をさせておいて、車両を起
動した時点で充電可能な状態にすることも可能である。The capacity discharged by the adjustment circuit is also Pma
Similarly to the case where x is corrected, the reciprocal of the value obtained by multiplying the deterioration coefficient and the temperature coefficient is set as the capacity adjustment gain Kg, and K is set as the adjustment capacity Cc.
It can also be corrected by multiplying by g. Further, when the present invention is applied to a hybrid vehicle, it is determined whether or not the battery pack is in a voltage region where the adjusted capacity can be calculated when the vehicle is stopped, and if possible, the capacity is adjusted and the vehicle is started. It is also possible to bring the battery into a chargeable state at the point of time.
【0030】ステップ102は電圧手段を構成してい
る。ステップ103は平均電圧演算手段を構成してい
る。ステップ104は電圧比較手段を構成している。ス
テップ114はパワー演算手段を構成している。ステッ
プ117は内部抵抗演算手段を構成している。ステップ
119は電圧推定手段を構成している。ステップ120
は推定電圧比較手段を構成している。Step 102 constitutes voltage means. Step 103 constitutes an average voltage calculating means. Step 104 constitutes voltage comparison means. Step 114 constitutes power calculation means. Step 117 constitutes an internal resistance calculating means. Step 119 constitutes voltage estimating means. Step 120
Constitutes an estimated voltage comparing means.
【0031】[0031]
【発明の効果】以上のように、本発明によれば、充電開
始時に、組電池が容量演算可能な域では、容量を演算し
てバラツキ補正を行なう。容量演算ができない域では、
充電により容量を容量演算可能な域まで回復させてから
バラツキ補正を行なうので、無負荷セル電圧如何に関わ
らず、バラツキ補正が可能という効果が得られる。As described above, according to the present invention, at the start of charging, in a range where the capacity of the battery pack can be calculated, the capacity is calculated and the variation is corrected. In the area where capacity calculation is not possible,
Since the variation is corrected after the capacity is restored to a range where the capacity can be calculated by charging, an effect is obtained that the variation can be corrected regardless of the no-load cell voltage.
【0032】前記所定の基準電圧を複数設定し、セル電
池を放電してバラツキ補正を行なうたびに基準電圧を高
くし、バラツキ補正を複数回行なうようにすると、補正
の不足分や充電進行時に現われるバラツキもその都度で
補正され、高精度でバラツキ補正ができる効果が得られ
る。If a plurality of the predetermined reference voltages are set, and the reference voltage is increased each time the variation is corrected by discharging the cell battery, the variation is corrected a plurality of times. The variation is also corrected each time, and an effect is obtained in which the variation can be corrected with high accuracy.
【0033】前記組電池の充電装置をハイブリッド自動
車に積み込まれた組電池の充電に用いる場合、前記ハイ
ブリッド自動車が停止している間に、電池の平均無負荷
電圧と所定の基準電圧との比較を行ない、バラツキ補正
が可能な領域では、補正を行なうようにすると、ハイブ
リッド車が起動する時点で、組電池を充電することが可
能になる。When the battery charger is used for charging a battery pack loaded in a hybrid vehicle, the average no-load voltage of the battery is compared with a predetermined reference voltage while the hybrid vehicle is stopped. If the correction is performed in an area where the variation can be corrected, the assembled battery can be charged when the hybrid vehicle is started.
【図1】実施例の全体の構成を示す図である。FIG. 1 is a diagram showing an entire configuration of an embodiment.
【図2】セル電池コントローラ3とバッテリコントロー
ラ5の働きを機能ブロックで示す図である。FIG. 2 is a functional block diagram showing the functions of a cell battery controller 3 and a battery controller 5;
【図3】実施例の作動の流れを示すフローチャートであ
る。FIG. 3 is a flowchart showing a flow of operation of the embodiment.
【図4】充電過程における平均電圧VMの変化を示す図
である。FIG. 4 is a diagram showing a change in an average voltage VM during a charging process.
【図5】電池容量Cwhと出カ可能なパワーPmaxの
テーブルである。FIG. 5 is a table of a battery capacity Cwh and output power Pmax.
【図6】充電開始時の無負荷電圧が基準電圧より低い場
合の平均電圧VMの変化を示す図である。FIG. 6 is a diagram showing a change in average voltage VM when a no-load voltage at the start of charging is lower than a reference voltage.
【図7】複数回の容量調整演算、調整を行なう場合のセ
ル電池の端子電圧の変化を示す図である。FIG. 7 is a diagram illustrating a change in terminal voltage of a cell battery when performing a capacity adjustment calculation and adjustment a plurality of times.
【図8】従来例の構成を示す図である。FIG. 8 is a diagram showing a configuration of a conventional example.
【図9】リチウムイオン電池の特性を示す図である。FIG. 9 is a diagram showing characteristics of a lithium ion battery.
1 モジュール 2 調整回路 3、30 セル電池コントローラ 4 温度センサ 5 バッテリコントローラ 21 抵抗 22 トランジスタ 31 電圧検出部 32 送受信部 33 比較部 34 補正部 35 制御部 36 タイマー 50 平均電圧演算部 51 送受信部 52 制御部 53 充電部 54 パワー算出部 55 無負荷電圧推定部 a セル電池 E、F、D 端子 REFERENCE SIGNS LIST 1 module 2 adjustment circuit 3, 30 cell battery controller 4 temperature sensor 5 battery controller 21 resistor 22 transistor 31 voltage detection unit 32 transmission / reception unit 33 comparison unit 34 correction unit 35 control unit 36 timer 50 average voltage calculation unit 51 transmission / reception unit 52 control unit 53 charging unit 54 power calculation unit 55 no-load voltage estimation unit a cell battery E, F, D terminals
Claims (6)
を有し、前記組電池のセル電池の端子電圧を検出する電
圧検出手段と、前記セル電池の平均電圧を演算する平均
電圧演算手段と、前記演算された平均電圧を所定の基準
電圧と比較する電圧比較手段とセル電池を放電して容量
調整を行なう調整手段とを備えて、充電を開始する際、
前記電圧検出手段は各セル電池の無負荷端子電圧を検出
し、前記平均電圧演算手段で演算されたセル電池の平均
無負荷電圧と所定の基準電圧とを比較することによっ
て、前記セル電池の端子電圧が電池容量を演算できる領
域にあるか否かが判定され、容量演算可能な領域では、
前記平均無負荷電圧に対して偏差が正方向に大であるセ
ル電池をその偏差に対応する容量で前記調整手段による
放電することによってバラツキ補正を行なう組電池の充
電装置において、前記組電池の容量から出力可能なパワ
ーを演算するパワー演算手段と、該パワー演算手段の演
算値をもとに組電池の内部抵抗を演算する内部抵抗演算
手段と、前記充電手段の充電電流と内部抵抗で、充電時
に内部抵抗における電圧降下を演算し、セル電池の無負
荷時の端子電圧を推定する電圧推定手段と、前記電圧推
定手段によって推定された端子電圧と前記基準電圧とを
比較する推定電圧比較手段とを設け、前記平均電圧演算
手段で演算されたセル電池の平均無負荷電圧と所定の基
準電圧との比較で、前記セル電池の端子電圧が電池容量
を演算できない領域と判定された場合、前記充電手段に
よる充電を開始させ、前記電圧推定手段で推定された無
負荷端子電圧が前記基準電圧との比較で前記セル電池の
端子電圧から電池容量を演算可能な領域と判定される
と、充電を停止して、上記電圧検出手段はセル電池の無
負荷端子電圧を検出し、演算されたセル電池の無負荷平
均電圧とセル電池の偏差に基づいてバラツキ補正を行な
うことを特徴とする組電池の充電装置。A voltage detecting means for detecting a terminal voltage of a cell battery of the battery pack; and an average voltage calculating means for calculating an average voltage of the cell battery. And, comprising a voltage comparison means for comparing the calculated average voltage with a predetermined reference voltage and an adjustment means for discharging the cell battery and adjusting the capacity, when starting charging,
The voltage detecting means detects a no-load terminal voltage of each cell battery, and compares the average no-load voltage of the cell battery calculated by the average voltage calculating means with a predetermined reference voltage, thereby obtaining a terminal of the cell battery. It is determined whether the voltage is in an area where the battery capacity can be calculated, and in the area where the capacity can be calculated,
In the battery charger for performing variation correction by discharging the cell battery having a large deviation in the positive direction with respect to the average no-load voltage by the adjusting means with a capacity corresponding to the deviation, the capacity of the assembled battery is Power calculating means for calculating the power that can be output from the battery, internal resistance calculating means for calculating the internal resistance of the battery pack based on the calculated value of the power calculating means, and charging with the charging current and the internal resistance of the charging means. A voltage estimating means for calculating the voltage drop in the internal resistance at times, and estimating a terminal voltage of the cell battery at no load, and an estimated voltage comparing means for comparing the terminal voltage estimated by the voltage estimating means with the reference voltage. A comparison between the average no-load voltage of the cell battery calculated by the average voltage calculation means and a predetermined reference voltage indicates that the terminal voltage of the cell battery cannot calculate the battery capacity. When it is determined that the charging by the charging means is started, the no-load terminal voltage estimated by the voltage estimating means is a region where the battery capacity can be calculated from the terminal voltage of the cell battery in comparison with the reference voltage. When the determination is made, the charging is stopped, the voltage detecting means detects the no-load terminal voltage of the cell battery, and performs variation correction based on the calculated deviation of the no-load average voltage of the cell battery and the cell battery. A battery charger for an assembled battery.
納するパワーテーブルを用いて、組電池の出力可能なパ
ワーを演算し、前記組電池の容量低下を表わす劣化係数
を用いてパワー算出値を修正することを特徴とする請求
項1記載の組電池の充電装置。2. The power calculation means calculates a power that can be output from the battery pack using a power table that stores initial value data, and calculates a power calculation value using a deterioration coefficient indicating a decrease in capacity of the battery pack. The charging device for an assembled battery according to claim 1, wherein the charging device is modified.
記パワー演算手段は算出された出力可能なパワー算出値
を温度の検出値で修正することを特徴とする請求項2記
載の組電池の充電装置。3. The battery pack according to claim 2, wherein a temperature sensor is provided in the battery pack, and the power calculating means corrects the calculated output power value calculated by the detected temperature value. Charging device.
セル電池との偏差に対応した放電容量に組電池の劣化係
数および電池温度で補正を施した値で容量調整を行なう
ことを特徴とする請求項1記載の組電池の充電装置。4. The method according to claim 1, wherein the adjusting means adjusts a capacity obtained by correcting a discharge capacity corresponding to a deviation between the average no-load voltage and a cell battery with a deterioration coefficient and a battery temperature of the assembled battery. The charging device for a battery pack according to claim 1.
電池を放電してバラツキ補正を行なうたびに基準電圧を
高くし、バラツキ補正を複数回行なうようにしたことを
特徴とする請求項1記載の組電池の充電装置。5. The method according to claim 1, wherein a plurality of the predetermined reference voltages are set, and the reference voltage is increased each time the cell battery is discharged to perform the variation correction, and the variation correction is performed a plurality of times. The battery charger of the above-described battery pack.
自動車に積み込まれた組電池の充電に用いられ、前記ハ
イブリッド自動車が停止している間に、バラツキ補正を
行なうように、電池の平均無負荷電圧と所定の基準電圧
との比較を行ない、バラツキ補正が可能な領域では、補
正を行なっておくことを特徴とする請求項1記載の組電
池の充電装置。6. The battery pack charging device is used for charging a battery pack loaded in a hybrid vehicle, and performs an average no-load of the battery so as to perform variation correction while the hybrid vehicle is stopped. 2. The battery charger according to claim 1, wherein the voltage is compared with a predetermined reference voltage, and correction is performed in a region where variation can be corrected.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04297998A JP3663886B2 (en) | 1998-02-10 | 1998-02-10 | Battery charger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04297998A JP3663886B2 (en) | 1998-02-10 | 1998-02-10 | Battery charger |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11234917A true JPH11234917A (en) | 1999-08-27 |
JP3663886B2 JP3663886B2 (en) | 2005-06-22 |
Family
ID=12651167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04297998A Expired - Fee Related JP3663886B2 (en) | 1998-02-10 | 1998-02-10 | Battery charger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3663886B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008010296A (en) * | 2006-06-29 | 2008-01-17 | Nissan Motor Co Ltd | Variation detector for battery pack |
US7923969B2 (en) | 2007-12-27 | 2011-04-12 | Sanyo Electric Co., Ltd. | State of charge equalizing device and assembled battery system including same |
US8042633B2 (en) | 2007-02-13 | 2011-10-25 | Panasonic Ev Energy Co., Ltd. | Discharging system and electric vehicle |
US11114878B2 (en) | 2018-03-26 | 2021-09-07 | Milwaukee Electric Tool Corporation | High-power battery-powered portable power source |
USD933010S1 (en) | 2019-05-29 | 2021-10-12 | Milwaukee Electric Tool Corporation | Portable power source |
US11271415B2 (en) | 2018-05-18 | 2022-03-08 | Milwaukee Electric Tool Corporation | Portable power source |
-
1998
- 1998-02-10 JP JP04297998A patent/JP3663886B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008010296A (en) * | 2006-06-29 | 2008-01-17 | Nissan Motor Co Ltd | Variation detector for battery pack |
US8042633B2 (en) | 2007-02-13 | 2011-10-25 | Panasonic Ev Energy Co., Ltd. | Discharging system and electric vehicle |
US7923969B2 (en) | 2007-12-27 | 2011-04-12 | Sanyo Electric Co., Ltd. | State of charge equalizing device and assembled battery system including same |
US11114878B2 (en) | 2018-03-26 | 2021-09-07 | Milwaukee Electric Tool Corporation | High-power battery-powered portable power source |
US11996526B2 (en) | 2018-03-26 | 2024-05-28 | Milwaukee Electric Tool Corporation | High-power battery-powered portable power source |
US11271415B2 (en) | 2018-05-18 | 2022-03-08 | Milwaukee Electric Tool Corporation | Portable power source |
US11742771B2 (en) | 2018-05-18 | 2023-08-29 | Milwaukee Electric Tool Corporation | Portable power source |
USD933010S1 (en) | 2019-05-29 | 2021-10-12 | Milwaukee Electric Tool Corporation | Portable power source |
USD955334S1 (en) | 2019-05-29 | 2022-06-21 | Milwaukee Electric Tool Corporation | Portable power source |
USD1083828S1 (en) | 2019-05-29 | 2025-07-15 | Milwaukee Electric Tool Corporation | Portable power source |
Also Published As
Publication number | Publication date |
---|---|
JP3663886B2 (en) | 2005-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017170621A1 (en) | Secondary battery deterioration estimation device and secondary battery deterioration estimation method | |
EP3664247B1 (en) | Charging time computation method and charge control device | |
US9438059B2 (en) | Battery control apparatus and battery control method | |
JP3454657B2 (en) | Remaining battery capacity detection method | |
US11143710B2 (en) | Device for estimating degradation of secondary cell, and method for estimating degradation of secondary cell | |
US7609030B2 (en) | Capacity adjustment apparatus and capacity adjustment method for battery pack | |
EP3742539B1 (en) | Battery control method and battery control device | |
CN103138026B (en) | Battery pack control device | |
WO2012105492A1 (en) | Method for detecting full charge capacity of battery | |
CN102741699B (en) | Full-charge capacity correction circuit, charging system, battery pack, and full-charge capacity correction method | |
JP6770933B2 (en) | Power storage system | |
US20190094305A1 (en) | Amount of charge calculation device, recording medium, and amount of charge calculation method | |
US20170199250A1 (en) | Apparatus and method for estimating open circuit voltage | |
JP2004031254A (en) | Capacity control device and method for battery pack | |
JP3947952B2 (en) | Battery full charge judgment method | |
JP2009232659A (en) | Charge-discharge control method and charge-discharge control device of battery | |
JP3397187B2 (en) | Battery state of charge determination device | |
JP2007057379A (en) | Internal resistance detection method of secondary battery | |
JP3663886B2 (en) | Battery charger | |
WO2022186061A1 (en) | Control device of power storage cell, power storage device, electricity charging system, control method for electricity charging voltage | |
JP6672976B2 (en) | Charge amount calculation device, computer program, and charge amount calculation method | |
JP4872513B2 (en) | Battery current-voltage characteristic detection device and internal resistance detection device using the same | |
JP3855248B2 (en) | Battery full charge judgment method | |
US20240022089A1 (en) | Storage battery control device, power storage system, and storage battery control method | |
WO2022201913A1 (en) | Battery device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050308 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050321 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090408 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090408 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100408 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |