[go: up one dir, main page]

JPH11232617A - Magnetoresistive effect element and magnetic head using the same - Google Patents

Magnetoresistive effect element and magnetic head using the same

Info

Publication number
JPH11232617A
JPH11232617A JP2898598A JP2898598A JPH11232617A JP H11232617 A JPH11232617 A JP H11232617A JP 2898598 A JP2898598 A JP 2898598A JP 2898598 A JP2898598 A JP 2898598A JP H11232617 A JPH11232617 A JP H11232617A
Authority
JP
Japan
Prior art keywords
film
layer
ferromagnetic
magnetization
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2898598A
Other languages
Japanese (ja)
Inventor
Masanori Kiyouho
昌則 享保
Masaji Doujima
正司 道嶋
Tomohisa Komoda
智久 薦田
Haruhiko Deguchi
治彦 出口
Keiya Nakabayashi
敬哉 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2898598A priority Critical patent/JPH11232617A/en
Publication of JPH11232617A publication Critical patent/JPH11232617A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetoresistive effect element, in which the lowering of a switched-connection magnetic field and the increase of the coercive force of a second magnetic layer due to thermal disturbance or magnetic disturbance are inhibited and which has a spin valve type magnetoresistive effect film having the high switched- connection magnetic field and excellent thermal stability. SOLUTION: In the magnetoresistive effect element with a spin valve type magnetoresistive effect film using the four-layer structure of a free layer 3/a nonmagnetic layer 4/a pin layer 5/a magnetization fixing layer 6 as basic structure, the magnetization fixing layer 6 is composed of an antiferromagnetic-substance film and the pin layer 5 is formed in a three-layer laminated film. In the pin layer 5, a ferromagnetic-substance film 5a on the side brought into contact with the magnetization fixing layer 6 consists of a ferromagnetic-substance film, in which high switched- connection energy is obtained on an interface with the magnetization fixing layer 6, a central ferromagnetic-substance film 5b is made up of a ferromagnetic-substance film having saturation magnetization smaller than the ferromagnetic-substance film 5a and a ferromagnetic-substance film 5c adjacent to the nonmagnetic layer 4 is composed of a ferromagnetic-substance film being difficult to be mutually diffused between the nonmagnetic layer and the ferromagnetic-substance film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、第1磁性層(フリ
ー層)/非磁性層/第2磁性層(ピン層)/磁化固定層
という基本構造を有するスピンバルブ型磁気抵抗効果膜
を備え、磁気抵抗効果を利用した磁気記録用再生ヘッ
ド、あるいは磁気センサに使用される磁気抵抗効果素子
及びそれを用いた磁気ヘッドに関するものである。
The present invention comprises a spin-valve magnetoresistive film having a basic structure of a first magnetic layer (free layer) / non-magnetic layer / second magnetic layer (pin layer) / fixed magnetization layer. The present invention relates to a magnetic recording reproducing head utilizing a magnetoresistive effect, or a magnetoresistive element used for a magnetic sensor and a magnetic head using the same.

【0002】[0002]

【従来の技術】近年、磁気ディスク等の磁気記録装置に
おいては、記録密度の向上に伴い磁気ヘッドの高性能化
が求められている。一般に、磁気記録媒体に記録された
情報の読み出しは、コイルを有する再生用磁気ヘッドを
媒体に対して相対的に移動させその際に電磁誘導により
コイルに誘起される電圧を検出する方法によって行われ
てきた。
2. Description of the Related Art In recent years, in a magnetic recording device such as a magnetic disk, there has been a demand for higher performance of a magnetic head along with an increase in recording density. Generally, reading of information recorded on a magnetic recording medium is performed by a method in which a reproducing magnetic head having a coil is relatively moved with respect to the medium and a voltage induced in the coil by electromagnetic induction is detected. Have been.

【0003】しかしながら、磁気記録媒体の小型化及び
大容量化に伴い、情報読み出し時の再生用磁気ヘッドと
磁気記録媒体との相対速度が小さくなってきている。こ
のため、再生出力が磁気ヘッドの相対速度に依存せず、
小さい相対速度であっても大きな出力を取り出すことの
できる、磁気抵抗効果を利用したいわゆるMRヘッドが
用いられてきている。
However, as the size and capacity of magnetic recording media have been reduced, the relative speed between the reproducing magnetic head and the magnetic recording media during information reading has been reduced. Therefore, the reproduction output does not depend on the relative speed of the magnetic head,
So-called MR heads utilizing the magnetoresistance effect, which can take out a large output even at a small relative speed, have been used.

【0004】このような磁気抵抗効果を示す材料として
は、従来より、Ni−Fe,Ni−Co等の薄膜がよく
知られており、これらの薄膜の抵抗変化率は、Ni−F
e膜で2〜3%程度、Ni−Co膜では最大6%程度で
ある。このような薄膜の磁気抵抗効果は、スピン軌道相
互作用によるもので、測定電流の方向と磁性体の磁化方
向のなす角度に依存しており、通常、異方性磁気抵抗効
果(AMR)と呼ばれている。
As materials exhibiting such a magnetoresistive effect, thin films of Ni—Fe, Ni—Co and the like are well known, and the resistance change rate of these thin films is Ni—F
It is about 2 to 3% for the e film and about 6% at the maximum for the Ni—Co film. The magnetoresistance effect of such a thin film is due to the spin-orbit interaction and depends on the angle between the direction of the measured current and the magnetization direction of the magnetic material, and is usually called the anisotropic magnetoresistance effect (AMR). Have been.

【0005】これに対して最近では、磁性体薄膜と非磁
性薄膜を交互に積層した人工格子膜において、一桁以上
大きな抵抗変化率が報告され注目されている。この人工
格子薄膜における磁気抵抗効果は従来のAMRと発現機
構が異なり、人工格子膜の非磁性層を介して上下に配置
された磁性層の磁化が反平行と平行の場合で伝導電子の
散乱が大きく異なるために抵抗変化が現れるものであ
る。
On the other hand, recently, an artificial lattice film in which a magnetic thin film and a non-magnetic thin film are alternately laminated has been reported and has attracted attention because a resistance change rate that is one order of magnitude or more has been reported. The mechanism of the magnetoresistance effect of this artificial lattice thin film is different from that of the conventional AMR, and scattering of conduction electrons occurs when the magnetizations of the magnetic layers arranged above and below via the nonmagnetic layer of the artificial lattice film are antiparallel and parallel. A resistance change appears due to a large difference.

【0006】磁性層間の磁化が反平行の場合、伝導電子
の散乱が大きく、抵抗値は高くなる。一方、磁性層間の
磁化が平行の時、散乱が減少し、抵抗値は小さくなる。
このときの抵抗変化の値がAMRに比較して非常に大き
いため、巨大磁気抵抗効果(GMR)と呼ばれている。
When the magnetization between the magnetic layers is antiparallel, the scattering of conduction electrons is large and the resistance value is high. On the other hand, when the magnetization between the magnetic layers is parallel, scattering decreases and the resistance value decreases.
The value of the resistance change at this time is much larger than that of the AMR, and is therefore called the giant magnetoresistance effect (GMR).

【0007】現在最大の磁気抵抗変化を示す材料系であ
るCo/Cu多層膜では、常温においても60%以上の
抵抗変化率が得られている。しかしながら、この様な人
工格子多層膜では抵抗変化率は非常に大きいものの、無
磁場で磁化の反平行状態を実現するために磁性層間の交
換相互作用を用いているため磁性層間の結合が非常に強
く、この交換相互作用を断ち切り、磁化の平行状態を実
現するためには数KOeから数百Oeの磁界が必要とな
る。このため微弱な磁界に対する感度が小さく、磁気記
録用ヘッドとして用いるには不十分である。
[0007] In a Co / Cu multilayer film, which is currently a material system showing the largest magnetoresistance change, a resistance change rate of 60% or more is obtained even at room temperature. However, although the rate of change of resistance in such an artificial lattice multilayer film is very large, the coupling between the magnetic layers is extremely large because the exchange interaction between the magnetic layers is used in order to realize an antiparallel state of magnetization without a magnetic field. Strongly, a magnetic field of several KOe to several hundreds Oe is required to break this exchange interaction and realize a parallel state of magnetization. For this reason, the sensitivity to a weak magnetic field is small, and it is insufficient for use as a magnetic recording head.

【0008】そこで、磁界感度を向上させるために、人
工格子多層膜の他に、第1磁性層(フリー層)/非磁性
層/第2磁性層(ピン層)/磁化固定層の4層構造を有
するスピンバルブ構造が注目されている。
In order to improve the magnetic field sensitivity, a four-layer structure of a first magnetic layer (free layer) / non-magnetic layer / second magnetic layer (pinned layer) / fixed magnetization layer is provided in addition to the artificial lattice multilayer film. Are attracting attention.

【0009】図24に、従来のスピンバルブ型磁気抵抗
効果膜の断面図を示す。該磁気抵抗効果膜では、ガラス
からなる基板31上に、Ta膜等からなる下地膜32を
介して、強磁性体膜からなる第1磁性層33、非磁性層
34、強磁性体膜からなる第2磁性層35、及び反強磁
性体膜からなる磁化固定層36がこの順に積層されてお
り、さらにその上にTa膜等からなる保護膜37が形成
されている。
FIG. 24 is a sectional view of a conventional spin-valve magnetoresistive film. In the magnetoresistive film, a first magnetic layer 33 made of a ferromagnetic film, a nonmagnetic layer 34, and a ferromagnetic film are formed on a substrate 31 made of glass via a base film 32 made of a Ta film or the like. A second magnetic layer 35 and a magnetization fixed layer 36 made of an antiferromagnetic material film are stacked in this order, and a protective film 37 made of a Ta film or the like is further formed thereon.

【0010】スピンバルブ構造は、強磁性体膜からなる
片側の第2磁性層35の磁化を、該第2磁性層35と反
強磁性体膜からなる磁化固定層36との交換結合を利用
して一方向に固定し、他方の第1磁性層33の磁化は磁
界に対して自由に回転するようにNi−Fe等のソフト
性の高い薄膜を用いることで感度の向上を図っており、
最も実用的な構造と言える。以下、磁化が固定された第
2磁性層35をピン層35と称し、磁化が自由に回転す
る第1磁性33をフリー層33と称する。
In the spin valve structure, the magnetization of the second magnetic layer 35 on one side made of a ferromagnetic film is formed by utilizing the exchange coupling between the second magnetic layer 35 and the magnetization fixed layer 36 made of an antiferromagnetic film. The sensitivity of the first magnetic layer 33 is improved by using a thin film having high softness such as Ni-Fe so that the magnetization of the other first magnetic layer 33 rotates freely with respect to a magnetic field.
This is the most practical structure. Hereinafter, the second magnetic layer 35 whose magnetization is fixed is referred to as a pinned layer 35, and the first magnetism 33 whose magnetization rotates freely is referred to as a free layer 33.

【0011】このスピンバルブ構造において、ピン層3
5と磁化固定層36との間の交換結合エネルギーの大き
さは、これらピン層35と磁化固定層36との界面の組
合わせによって決定され、さらにピン層35の総磁化量
との関係で交換結合磁界の大きさが決まる。実際に、磁
化固定層36に反強磁性体膜を利用し、ピン層35であ
る強磁性体膜の磁化を一方向に固定する交換結合膜につ
いては、様々な反強磁性材料を用いた報告がなされてお
り、Fe−Mn膜やPt−Mn合金膜などのMn系反強
磁性膜を用いる例が従来よりよく報告されている。
In this spin valve structure, the pin layer 3
The magnitude of the exchange coupling energy between the pinned layer 5 and the magnetization fixed layer 36 is determined by a combination of the interfaces between the pinned layer 35 and the magnetization fixed layer 36, and further, the magnitude of the exchange coupling energy depends on the total magnetization amount of the pinned layer 35. The magnitude of the coupling magnetic field is determined. Actually, an exchange coupling film that uses an antiferromagnetic material film for the magnetization fixed layer 36 and fixes the magnetization of the ferromagnetic film serving as the pinned layer 35 in one direction has been reported using various antiferromagnetic materials. The use of a Mn-based antiferromagnetic film such as an Fe-Mn film or a Pt-Mn alloy film has been reported well in the prior art.

【0012】例えば、「Exchange−Coupl
ed Ni−Fe/Fe−Mn,Ni−Fe/Ni−M
n and NiO/Ni−Fe Fi1ms for
Stabi1ization of Magneto
−resistive Sensors」等では、Fe
Mn合金膜を、また「Inproved exchan
ge coup1ing between ferro
magnetic Ni−Fe and antife
rromagnetic Ni−Fe−based f
i1ms」Appl.Phys.Lett.65(9)
1994 1183−1185では、MnNi合金膜を
用いた例が開示されている。
[0012] For example, "Exchange-Coupl
ed Ni-Fe / Fe-Mn, Ni-Fe / Ni-M
n and NiO / Ni-Fe Fi1ms for
Stabilization of Magneto
-Resistive Sensors "
The Mn alloy film is also referred to as “Inproved exchan”
ge cupping between ferro
magnetic Ni-Fe and antife
rrmagnetic Ni-Fe-based f
i1ms "Appl. Phys. Lett. 65 (9)
1994 1183-1185 discloses an example using a MnNi alloy film.

【0013】また、特開平3−314617号公報に
は、反強磁性体膜としてMnにCu,Ru,Rh,R
e,Ag,Au,Os,Irを25〜76at%を添
加、あるいはPd,Ptを25〜60at%または65
〜76at%添加することにより、反強磁性材料の耐食
性と熱的安定性を向上させ、強磁性体膜と積層すること
によって交換結合膜を形成する例が開示されている。
Japanese Patent Application Laid-Open No. 3-314617 discloses that Mn contains Cu, Ru, Rh, and R as an antiferromagnetic film.
e, Ag, Au, Os, Ir at 25 to 76 at%, or Pd, Pt at 25 to 60 at% or 65 at%.
There is disclosed an example in which the addition of up to 76 at% improves the corrosion resistance and thermal stability of the antiferromagnetic material, and forms an exchange coupling film by laminating with a ferromagnetic film.

【0014】このMn系反強磁性膜には、Fe−Mn,
Ir−Mn,Rh−Mnの様に熱処理することなしに交
換結合磁界を得ることができる不規則合金と、Pt−M
nやNi−Mnの様に成膜後に230〜255℃で熱処
理を行うことによってはじめて交換結合磁界が得られる
規則合金とがある。
The Mn-based antiferromagnetic film includes Fe—Mn,
An irregular alloy capable of obtaining an exchange coupling magnetic field without heat treatment such as Ir-Mn or Rh-Mn;
There are ordered alloys, such as n and Ni-Mn, in which an exchange coupling magnetic field can be obtained only by performing a heat treatment at 230 to 255 ° C. after film formation.

【0015】Mn系不規則合金の代表的な例として、F
e−Mnを用いたものでは交換結合磁界は温度の上昇と
ともに減少し、約150℃で交換結合磁界は消失する。
すなわち約150℃でFe−Mnは反強磁性を失う。こ
の温度をブロッキング温度(Tb)とよんでいる。この
ようにFe−MnではTbが約150℃と低く、交換結
合磁界が温度の上昇とともに単調に減少するため、Fe
−Mnを磁気抵抗効果素子に応用した際、前記素子の使
用温度を低温に維持しておく必要がある。
As a typical example of a Mn-based disordered alloy, F
In the case of using e-Mn, the exchange coupling magnetic field decreases with increasing temperature, and disappears at about 150 ° C.
That is, at about 150 ° C., Fe—Mn loses antiferromagnetism. This temperature is called a blocking temperature (Tb). As described above, in Fe-Mn, Tb is as low as about 150 ° C., and the exchange coupling magnetic field monotonously decreases with the temperature.
When -Mn is applied to a magnetoresistive element, it is necessary to keep the operating temperature of the element at a low temperature.

【0016】また、このFe−Mnを用いた交換結合膜
は、昇温降温プロセス(熱履歴)によって交換結合磁界
が大幅に減少する。このため、Fe−Mnを交換結合膜
に用いた磁気抵抗効果素子や薄膜磁気ヘッドを作製する
際、プロセス温度を常に低温に制御する必要がある。こ
のことは薄膜ヘッドの構造的な信頼性低下及び生産性の
低下の原因につながる。
Further, in the exchange-coupling film using this Fe-Mn, the exchange-coupling magnetic field is greatly reduced by a temperature raising / lowering process (thermal history). For this reason, when manufacturing a magnetoresistive element or a thin film magnetic head using Fe—Mn for the exchange coupling film, it is necessary to always control the process temperature to a low temperature. This leads to a reduction in the structural reliability and productivity of the thin film head.

【0017】また、このFe−Mnは耐食性が悪く、素
子や薄膜ヘッドの使用環境で、特性が大きく劣化してし
まうという危険性が付きまとう。このためこれらの材料
を応用して磁気特性や信頼性が優れた磁気デバイスを製
造することは困難である。
In addition, Fe-Mn has poor corrosion resistance, and there is a danger that the characteristics of the element and the thin film head are greatly deteriorated in the use environment. Therefore, it is difficult to apply these materials to manufacture a magnetic device having excellent magnetic characteristics and reliability.

【0018】これに対して、Pt−Mnに代表されるよ
うなMn系規則合金をスピンバルブ構造の磁化固定層3
6として用いた場合、Tbは約380℃と高く交換結合
磁界も300℃程度まで高い値を維持している。また、
熱履歴に対しても強く安定して高い交換結合磁界が得ら
れている。
On the other hand, a Mn-based ordered alloy typified by Pt—Mn is formed by using a magnetization fixed layer 3 having a spin valve structure.
When used as 6, Tb is as high as about 380 ° C., and the exchange coupling magnetic field maintains a high value up to about 300 ° C. Also,
A high exchange coupling magnetic field is obtained stably with respect to the thermal history.

【0019】実際に磁化固定層36にPt−Mn膜を用
いたスピンバルブ膜の例としては、日本応用磁気学会誌
Vo121,No4−2,1997,505−508の
例が挙げられる。この報告では、ピン層35にNi−F
e単層膜及びCo単層膜を用いた実験結果が報告されて
いる。但し、交換結合磁界を発生させるのに235〜2
55℃の高温での長時間アニールを必要とするため、素
子の他の部分の耐熱性が必要となる。
As an example of a spin valve film in which a Pt-Mn film is actually used for the magnetization fixed layer 36, there is the example of Journal of the Japan Society of Applied Magnetics, Vo121, No. 4-2, 1997, 505-508. In this report, the Ni-F
Experimental results using an e single layer film and a Co single layer film have been reported. However, it is 235 to 2 to generate the exchange coupling magnetic field.
Since long-time annealing at a high temperature of 55 ° C. is required, heat resistance of other parts of the element is required.

【0020】また、スピンバルブ構造のピン層35とし
ては、Ni−Fe系やCo及びCo−Fe系の合金を用
いた例がよく報告されている。実際にGMR素子を製造
する際、スピンバルブ構造ではフリー層33とピン層3
5との磁化の向きのなす角によって磁気抵抗効果が生じ
て再生出力が得られる。したがって、磁気的な外乱に対
して、安定した再生出力を得るためには、ピン層35の
磁化の向きが磁気的な外乱に対して常に一定方向を向い
ていることが必要とされる。
Further, examples of using a Ni—Fe-based alloy, a Co alloy, and a Co—Fe-based alloy as the pin layer 35 having the spin valve structure are well reported. When the GMR element is actually manufactured, the free layer 33 and the pinned layer 3 are used in the spin valve structure.
The magnetoresistive effect is generated by the angle formed by the direction of magnetization with 5, and a reproduction output is obtained. Therefore, in order to obtain a stable reproduction output with respect to a magnetic disturbance, it is necessary that the magnetization direction of the pinned layer 35 always be in a fixed direction with respect to the magnetic disturbance.

【0021】つまり、熱的及び磁気的に安定して再生出
力が得られる素子を製造するためには、できるだけ高い
交換結合磁界と低い保磁力、つまり交換結合磁界と保磁
力の差が大きいことが必要な条件である。
That is, in order to manufacture an element capable of obtaining a reproduction output stably thermally and magnetically, the exchange coupling magnetic field and the coercive force should be as high as possible, that is, the difference between the exchange coupling magnetic field and the coercive force should be large. This is a necessary condition.

【0022】高い交換結合磁界を得るためには、ピン層
35の総磁化量を低減することが考えられる。ピン層3
5の総磁化量を低減する方法としては、単純に膜厚を薄
くする、或いは特開平7−169026号公報に開示さ
れているように強磁性層を反強磁性的結合膜によって分
離された2つの強磁性膜の積層膜によって構成するとい
った方法が報告されている。
In order to obtain a high exchange coupling magnetic field, it is conceivable to reduce the total magnetization of the pinned layer 35. Pin layer 3
As a method of reducing the total amount of magnetization of No. 5, a method of simply reducing the film thickness or a method of separating a ferromagnetic layer by an antiferromagnetic coupling film as disclosed in Japanese Patent Application Laid-Open No. There has been reported a method in which a ferromagnetic film is formed by a laminated film.

【0023】[0023]

【発明が解決しようとする課題】先に述べたように、ス
ピンバルブ構造には外部磁界に応じて磁化方向が回転す
るフリー層33と、非磁性層34と、磁化方向が1方向
に固定されるピン層35とがこの順に配置されフリー層
33とピン層35との磁化の向きのなす角によって磁気
抵抗効果が生じて再生出力が得られる。
As described above, the spin valve structure has a free layer 33 whose magnetization direction rotates in response to an external magnetic field, a non-magnetic layer 34, and a magnetization direction fixed in one direction. The pinned layers 35 are arranged in this order, and a magnetoresistive effect is generated by the angle between the magnetization directions of the free layer 33 and the pinned layer 35 to obtain a reproduction output.

【0024】このときフリー層33とピン層35の磁気
特性が同様のものであると、外部磁界によってフリー層
33とピン層35の磁化が同時に回転してしまい、フリ
ー層33とピン層35の磁化の向きに角度が生じず、磁
気抵抗効果が得られない。
At this time, if the magnetic characteristics of the free layer 33 and the pinned layer 35 are the same, the magnetization of the free layer 33 and the pinned layer 35 are simultaneously rotated by the external magnetic field, and the free layer 33 and the pinned layer 35 are rotated. An angle does not occur in the direction of magnetization, and the magnetoresistance effect cannot be obtained.

【0025】このために、ピン層35に接して反強磁性
体膜からなる磁化固定層36を積層し、ピン層35と磁
化固定層36の交換結合磁界によってピン層35の磁化
を一方向に固定し、フリー層33の磁化とピン層35の
磁化の向きに角度を生じさせることによって、磁気抵抗
効果が得られるものである。
For this purpose, a pinned layer 36 made of an antiferromagnetic film is laminated on the pinned layer 35, and the magnetization of the pinned layer 35 is changed in one direction by the exchange coupling magnetic field between the pinned layer 35 and the pinned layer 36. The magnetoresistance effect can be obtained by fixing the angle and by causing an angle between the magnetization of the free layer 33 and the magnetization of the pinned layer 35.

【0026】したがって、交換結合磁界が小さいと、外
乱磁界によって容易にピン層35の磁化が回転してしま
い、信号磁界からの出力が安定して得られなくなってし
まう。また、ピン層35の保磁力が大きくなり交換結合
磁界との差が小さくなると、大きな外乱磁界によってピ
ン層35の磁化が一度回転してしまった後で、動作磁界
においてピン層35の磁化の向きが変化してしまい、安
定した磁気抵抗効果特性が得られない。つまり、熱的及
び磁気的に安定して再生出力が得られる素子を製造する
ためには、できるだけ高い交換結合磁界と低い保磁力、
つまり交換結合磁界と保磁力の差が大きいことが必要で
ある。
Therefore, when the exchange coupling magnetic field is small, the magnetization of the pinned layer 35 is easily rotated by the disturbance magnetic field, and the output from the signal magnetic field cannot be stably obtained. When the coercive force of the pinned layer 35 is increased and the difference from the exchange coupling magnetic field is reduced, the magnetization of the pinned layer 35 is rotated once by a large disturbance magnetic field, and then the direction of the magnetization of the pinned layer 35 in the operating magnetic field. Changes, and stable magnetoresistance effect characteristics cannot be obtained. In other words, in order to manufacture an element capable of obtaining a read output stably thermally and magnetically, the exchange coupling magnetic field and the coercive force should be as high as possible.
That is, it is necessary that the difference between the exchange coupling magnetic field and the coercive force is large.

【0027】上述した磁化固定層36にPt−Mnを用
いたスピンバルブ膜においては、ピン層35にNi−F
e単層膜及びCo単層膜を用いた場合、Ni−Fe単層
膜ではピン層35の保磁力は小さく抑えられるものの、
Pt−Mn反強磁性膜との交換結合エネルギーが小さく
なり、一方、Co単層膜ではPt−Mn反強磁性膜との
交換結合エネルギーは大きいが、Co膜の飽和磁化が大
きいために交換結合磁界としては小さく、ピン層35の
保磁力が大きくなってしまう。
In the above-described spin valve film using Pt-Mn for the magnetization fixed layer 36, Ni-F
When the e single layer film and the Co single layer film are used, the coercive force of the pinned layer 35 can be suppressed small in the Ni—Fe single layer film,
The exchange coupling energy with the Pt-Mn antiferromagnetic film is small, while the exchange coupling energy with the Pt-Mn antiferromagnetic film is large in the Co single layer film, but the exchange coupling energy is large due to the large saturation magnetization of the Co film. The magnetic field is small, and the coercive force of the pinned layer 35 increases.

【0028】その結果、どちらの場合も交換結合磁界と
保磁力との差が小さくなってしまい、実際にヘッドとし
て用いるには不十分である。
As a result, in both cases, the difference between the exchange coupling magnetic field and the coercive force becomes small, which is insufficient for actually using as a head.

【0029】また、高い交換結合磁界を得るためには、
ピン層35の総磁化量を低減することが要求されるが、
単純に膜厚を薄くしてやるだけでは、詳細には後述する
が、膜厚の減少に伴い保磁力の増大が交換結合磁界の増
大を上回ってしまい、交換結合磁界と保磁力との差は逆
に小さくなってしまう。
In order to obtain a high exchange coupling magnetic field,
Although it is required to reduce the total magnetization of the pin layer 35,
Simply reducing the film thickness will be described in detail later, but as the film thickness decreases, the increase in the coercive force exceeds the increase in the exchange coupling magnetic field, and the difference between the exchange coupling magnetic field and the coercive force is reversed. It will be smaller.

【0030】また、特開平7−169026号公報に開
示されているようにピン層35として、反強磁性的結合
膜によって分離された2つの強磁性体膜の積層膜によっ
て構成するといった方法では、反強磁性的結合が生じる
膜厚が非常に狭い範囲に限定されており、かつ非常に薄
いために、安定して反強磁性的結合を発生させることが
困難である。
Further, as disclosed in Japanese Patent Application Laid-Open No. Hei 7-169026, in the method in which the pinned layer 35 is constituted by a laminated film of two ferromagnetic films separated by an antiferromagnetic coupling film, Since the film thickness at which antiferromagnetic coupling occurs is limited to a very narrow range and is very thin, it is difficult to stably generate antiferromagnetic coupling.

【0031】本発明は、スピンバルブ型磁気抵抗効果膜
における、磁化が固定される第2磁性層(ピン層)の構
成を工夫することによって、高い交換結合磁界と低保磁
力を安定して得られる磁気抵抗効果素子、及びそれを用
いた磁気ヘッドの提供を目的としている。
According to the present invention, a high exchange coupling magnetic field and a low coercive force can be stably obtained by devising the structure of the second magnetic layer (pin layer) in which the magnetization is fixed in the spin valve type magnetoresistive film. And a magnetic head using the same.

【0032】[0032]

【課題を解決するための手段】上述したように磁界及び
熱による外乱に対して安定な磁気抵抗効果膜を製造する
ためには、交換結合磁界ができるだけ大きく、かつ保磁
力との差が大きいことが求められる。
As described above, in order to produce a magnetoresistive film that is stable against disturbances caused by magnetic fields and heat, the exchange coupling magnetic field must be as large as possible and the difference from the coercive force must be large. Is required.

【0033】本発明の請求項1記載の磁気抵抗効果素子
は、上記目的を達成するために、第1磁性層/非磁性層
/第2磁性層/磁化固定層の4層構造を基本構造とする
スピンバルブ型磁気抵抗効果膜を備えた磁気抵抗効果素
子において、上記磁化固定層が反強磁性体膜から構成さ
れる一方、上記第2磁性層は、2層以上の強磁性体膜か
らなる多層膜で、そのうちの磁化固定層と接する側の層
が、磁化固定層との界面で高い交換結合エネルギーが得
られる強磁性体膜からなり、かつ、該磁化固定層と接す
る側の層以外の層に、飽和磁化の小さい強磁性体膜から
なる層を含むことを特徴としている。
In order to achieve the above object, the magnetoresistive element according to claim 1 of the present invention has a four-layer structure of a first magnetic layer / nonmagnetic layer / second magnetic layer / fixed magnetization layer as a basic structure. In the magnetoresistive element having a spin valve type magnetoresistive film, the magnetization fixed layer is formed of an antiferromagnetic film, while the second magnetic layer is formed of two or more ferromagnetic films. In the multilayer film, the layer on the side in contact with the magnetization fixed layer is formed of a ferromagnetic film in which high exchange coupling energy is obtained at the interface with the magnetization fixed layer, and other than the layer on the side in contact with the magnetization fixed layer. It is characterized in that the layer includes a layer made of a ferromagnetic film having a small saturation magnetization.

【0034】このような構成の磁気抵抗効果素子では、
まずは、第2磁性層における磁化固定層と接する、磁化
固定層の反強磁性膜界面でより高い交換結合エネルギー
を得られる強磁性体膜にて、高い交換結合磁界を得るこ
とができる。そしてさらに、それ以外の部分に用いた飽
和磁化の低い強磁性体膜により、第2磁性層自体の飽和
磁化を小さくできる。
In the magnetoresistance effect element having such a configuration,
First, a high exchange coupling magnetic field can be obtained in a ferromagnetic film that is in contact with the magnetization fixed layer in the second magnetic layer and that can obtain higher exchange coupling energy at the antiferromagnetic film interface of the magnetization fixed layer. Further, the saturation magnetization of the second magnetic layer itself can be reduced by the ferromagnetic film having a low saturation magnetization used in other portions.

【0035】その結果、従来の構成に比べて保磁力を低
く抑えたまま高い交換結合磁界を得ることができ、交換
結合磁界と保磁力との差が大きくなり、磁界及び熱的な
外乱に対して高い安定性を有する磁気抵抗効果素子を実
現することができる。
As a result, a high exchange coupling magnetic field can be obtained while keeping the coercive force low as compared with the conventional configuration, and the difference between the exchange coupling magnetic field and the coercive force increases. Thus, a magnetoresistance effect element having high stability can be realized.

【0036】本発明の請求項2記載の磁気抵抗効果素子
は、請求項1に記載の構成において、第2磁性層をなす
多層膜における磁化固定層と接する側の層以外の層が、
飽和磁化の小さい強磁性体膜からなる層と該強磁性体膜
とは異なる強磁性体膜からなる層との多層膜であること
を特徴としている。
According to a second aspect of the present invention, there is provided the magnetoresistive element according to the first aspect, wherein the layers other than the layer in contact with the magnetization fixed layer in the multilayer film constituting the second magnetic layer are:
It is characterized by being a multilayer film of a layer made of a ferromagnetic film having a small saturation magnetization and a layer made of a ferromagnetic film different from the ferromagnetic film.

【0037】これによれば、第2磁性層における、磁化
固定層と接する側の層以外が、飽和磁化の小さい強磁性
体膜を含む多層膜構造であるので、磁化の反転モードが
揃い、磁区構造の乱れが抑制され、優れた磁気抵抗効果
が得られるといった効果がある。
According to this, since the second magnetic layer other than the layer in contact with the fixed magnetization layer has a multilayer structure including a ferromagnetic film having a small saturation magnetization, the magnetization reversal modes are uniform and the magnetic domain is uniform. There is an effect that the disorder of the structure is suppressed and an excellent magnetoresistance effect is obtained.

【0038】本発明の請求項3記載の磁気抵抗効果素子
は、請求項1又は2に記載の構成において、第2磁性層
をなす多層膜における非磁性層と接する側の層が、非磁
性層との間で相互拡散し難い強磁性体膜からなることを
特徴としている。
According to a third aspect of the present invention, there is provided a magnetoresistive element according to the first or second aspect, wherein a layer on the side of the multilayer film constituting the second magnetic layer which is in contact with the nonmagnetic layer is a nonmagnetic layer. And a ferromagnetic film that does not easily diffuse between them.

【0039】これによれば、さらに、第2磁性層におけ
る非磁性層との間の熱拡散が少さくなるため、熱拡散に
よる磁気抵抗変化率(MR比)の低下を抑制し、磁気抵
抗変化率を大きくできる。
According to this, since the thermal diffusion between the second magnetic layer and the non-magnetic layer is reduced, the decrease in the magnetoresistance ratio (MR ratio) due to the thermal diffusion is suppressed, and the magnetoresistance change is suppressed. The rate can be increased.

【0040】本発明の請求項4記載の磁気抵抗効果素子
は、請求項1ないし3のいずれかに記載の構成におい
て、第2磁性層をなす多層膜における飽和磁化の小さい
強磁性体膜からなる層の層厚が、該多層膜におけるそれ
以外の層より厚いことを特徴としている。
A magnetoresistive element according to a fourth aspect of the present invention, in the structure according to any one of the first to third aspects, comprises a ferromagnetic film having a small saturation magnetization in the multilayer film forming the second magnetic layer. The layer is characterized in that the layer thickness is larger than the other layers in the multilayer film.

【0041】飽和磁化の小さい強磁性体膜からなる層
を、第2磁性層を構成する他の強磁性体膜に比べて厚く
することで、第2磁性層自体の総磁化量を効果的に低減
することができる。
By making the layer made of a ferromagnetic film having a small saturation magnetization thicker than other ferromagnetic films constituting the second magnetic layer, the total amount of magnetization of the second magnetic layer itself can be effectively reduced. Can be reduced.

【0042】本発明の請求項5記載の磁気抵抗効果素子
は、請求項1ないし4のいずれかに記載の構成におい
て、磁化固定層が、Mn系反強磁性規則合金膜からな
り、かつ、少なくとも第2磁性層と磁化固定層とを積層
した後で、磁化中の熱処理が施されていることを特徴と
している。
According to a fifth aspect of the present invention, in the magnetoresistance effect element according to any one of the first to fourth aspects, the magnetization fixed layer is made of a Mn-based antiferromagnetic ordered alloy film, and The heat treatment during the magnetization is performed after the second magnetic layer and the magnetization fixed layer are stacked.

【0043】Mn系反強磁性規則合金は、Mn系反強磁
性不規則合金に比べ、反強磁性を失うブロッキング温度
が高く、交換結合磁界も300℃程度まで高い値を維持
し、熱履歴に対しても強く安定して高い交換結合磁界が
得られるため、磁化固定層の反強磁性体膜として用いる
のに好ましい。
The Mn-based antiferromagnetic ordered alloy has a higher blocking temperature at which the Mn-based antiferromagnetic disordered alloy loses antiferromagnetism, maintains a high value of the exchange coupling magnetic field up to about 300 ° C., and reduces heat history. On the other hand, since a high exchange coupling magnetic field can be obtained stably and strongly, it is preferable to use as an antiferromagnetic film of the magnetization fixed layer.

【0044】以下、請求項6ないし11は、磁化固定層
にMn系反強磁性規則合金を用いた場合に、本発明の磁
気抵抗効果素子を実現するための要件である。
Hereinafter, claims 6 to 11 are requirements for realizing the magnetoresistance effect element of the present invention when a Mn-based antiferromagnetic ordered alloy is used for the magnetization fixed layer.

【0045】本発明の請求項6に記載したように、Mn
系反強磁性規則合金としては、PtMn合金膜、或いは
PdPtMn合金膜を用いることができ、本発明の請求
項7に記載したように、磁化固定層に用いるPtMn合
金膜、或いはPdPtMn合金膜からなる層の層厚は、
150Å以上であればよい。
As described in claim 6 of the present invention, Mn
As the ordered antiferromagnetic alloy, a PtMn alloy film or a PdPtMn alloy film can be used. As described in claim 7 of the present invention, the PtMn alloy film or the PdPtMn alloy film used for the magnetization fixed layer is used. The layer thickness of the layer is
The angle may be 150 ° or more.

【0046】また、本発明の請求項8に記載したよう
に、磁化固定層にMn系反強磁性規則合金を用いた場
合、第2磁性層における磁化固定層と接する側の層は、
Co膜、或いはCoFe膜等のCo系合金膜から構成す
ればよく、さらに、本発明の請求項9に記載したよう
に、第2磁性層における磁化固定層と接する側の層を構
成するCo膜、或いはCo系合金膜からなる層の層厚
は、5Å以上とすればよい。
Further, as described in claim 8 of the present invention, when a Mn-based antiferromagnetic ordered alloy is used for the magnetization fixed layer, the layer of the second magnetic layer that is in contact with the magnetization fixed layer is:
It may be made of a Co-based alloy film such as a Co film or a CoFe film, and further, as described in claim 9 of the present invention, a Co film constituting a layer of the second magnetic layer on the side in contact with the magnetization fixed layer. Alternatively, the thickness of the layer made of the Co-based alloy film may be 5 ° or more.

【0047】また、本発明の請求項の10に記載したよ
うに、磁化固定層にMn系反強磁性規則合金を用いた場
合、第2磁性層をなす多層膜における飽和磁化の小さい
強磁性体膜からなる層としては、NiFe合金膜を用い
ることができる。
Further, when the Mn-based antiferromagnetic ordered alloy is used for the magnetization fixed layer as described in claim 10 of the present invention, the ferromagnetic material having a small saturation magnetization in the multilayer film forming the second magnetic layer. As the film layer, a NiFe alloy film can be used.

【0048】また、本発明の請求項の11に記載したよ
うに、磁化固定層にMn系反強磁性規則合金を用いた場
合、第2磁性層をなす多層膜における飽和磁化の小さい
強磁性体膜からなる層が、NiFe合金膜からなる層と
Co膜からなる層との多層膜を含む構成とすることがで
きる。
Further, when the Mn-based antiferromagnetic ordered alloy is used for the magnetization fixed layer as described in claim 11 of the present invention, the ferromagnetic material having a small saturation magnetization in the multilayer film forming the second magnetic layer. The film layer may be configured to include a multilayer film of a layer made of a NiFe alloy film and a layer made of a Co film.

【0049】本発明の請求項12記載の磁気抵抗効果素
子は、請求項3ないし11のいずれかに記載の構成にお
いて、非磁性層との間で相互拡散し難い強磁性体膜から
なる層が、Co膜、或いはCoFe合金膜等のCo系合
金膜からなることを特徴としている。
According to a twelfth aspect of the present invention, in the magnetoresistance effect element according to any one of the third to eleventh aspects, the layer made of a ferromagnetic film which is hardly interdiffused with the nonmagnetic layer is provided. , Co film, or a Co-based alloy film such as a CoFe alloy film.

【0050】請求項3にて記載した第2磁性層をなす多
層膜における非磁性層と接する、非磁性層との間で相互
拡散し難い強磁性体膜からなる層を、具体的に示すもの
で、該層は、Co膜、或いはCoFe膜等のCo系合金
膜にて容易に実現できる。また、請求項13に記載した
ように、磁化固定層にMn系反強磁性規則合金を用いた
場合、これらCo膜、或いはCo系合金膜からなる層の
層厚は、5Å以上であればよい。
In the multilayer film constituting the second magnetic layer according to claim 3, a layer made of a ferromagnetic film which is in contact with the non-magnetic layer and which is not easily diffused with the non-magnetic layer is specifically shown. The layer can be easily realized by a Co film or a Co alloy film such as a CoFe film. In the case where a Mn-based antiferromagnetic ordered alloy is used for the magnetization fixed layer, the thickness of the Co film or the layer made of the Co-based alloy film may be 5 ° or more. .

【0051】また、本発明の請求項14記載の磁気抵抗
効果素子は、請求項4ないし13のいずれかに記載の構
成において、非磁性層がCu膜からなり、層厚が28Å
〜36Åであることを特徴としている。
According to a fourteenth aspect of the present invention, there is provided the magnetoresistive element according to any one of the fourth to thirteenth aspects, wherein the nonmagnetic layer comprises a Cu film and has a thickness of 28 °.
Å36 °.

【0052】非磁性層の具体的構成を示すもので、磁化
固定層にMn系反強磁性規則合金を用いた場合、Cuか
らなる非磁性層の層厚を28Å〜36Åとすることで、
必要な磁気抵抗効果膜の感度を得ることができる。
This shows the specific structure of the nonmagnetic layer. When a Mn-based antiferromagnetic ordered alloy is used for the magnetization fixed layer, the thickness of the nonmagnetic layer made of Cu is set to 28 ° to 36 °.
The required sensitivity of the magnetoresistive film can be obtained.

【0053】本発明の請求項15記載の磁気抵抗効果素
子は、請求項1から14のいずれかに記載の構成におい
て、上記スピンバルブ型磁気抵抗効果膜が基板上に配向
を制御して結晶性を向上させる下地層を介して設けられ
ていることを特徴としている。
According to a fifteenth aspect of the present invention, there is provided the magnetoresistive element according to any one of the first to fourteenth aspects, wherein the spin-valve type magnetoresistive film controls the orientation on the substrate so that the crystallinity is improved. Is provided via a base layer for improving

【0054】このように下地層を介して形成すること
で、上記した本発明の磁気抵抗効果素子を安定して得る
ことができる。
By forming the magnetoresistance effect element according to the present invention as described above by forming it through the underlayer, the above-mentioned magnetoresistance effect element of the present invention can be stably obtained.

【0055】本発明の請求項16記載の磁気ヘッドは、
請求項1ないし15のいずれかに記載の磁気抵抗効果素
子と、該磁気抵抗効果素子に電流を流す通電手段と、磁
気記録媒体に記録された磁気的な情報に応じた磁場の大
きさに対応して変化する該磁気抵抗効果素子の電気抵抗
を検出する検出手段とを備えていることを特徴としてい
る。
A magnetic head according to a sixteenth aspect of the present invention provides:
16. A magnetoresistive element according to claim 1, energizing means for supplying a current to said magnetoresistive element, and a magnitude of a magnetic field corresponding to magnetic information recorded on a magnetic recording medium. Detecting means for detecting the electrical resistance of the magnetoresistive element which changes as a result.

【0056】これにより、熱安定性及び磁界安定性に優
れ、ヘッド作製工程における高温熱処理プロセス、ある
いは実使用条件下の熱的及び磁気的外乱に対しても、高
い磁気抵抗効果特性を維持できる安定性の高い磁気ヘッ
ドを提供することができる。
As a result, it is excellent in thermal stability and magnetic field stability, and can maintain a high magnetoresistance effect characteristic even in a high-temperature heat treatment process in a head manufacturing process or a thermal and magnetic disturbance under actual use conditions. It is possible to provide a highly reliable magnetic head.

【0057】[0057]

【発明の実施の形態】本発明に係る実施の一形態を、図
1に基づいて説明すれば、以下の通りである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIG.

【0058】本実施形態のスピンバルブ型磁気抵抗効果
膜(以下、磁気抵抗効果膜と略記する)は、図1に示す
ように、ガラス等からなる基板1上に、下地膜(下地
層)2を介して、第1磁性層3/非磁性層4/第2磁性
層5/磁化固定層6がこの順に積層され、その上に、保
護膜7が形成されてなる。
As shown in FIG. 1, a spin-valve type magnetoresistive film (hereinafter abbreviated as a magnetoresistive effect film) of this embodiment is provided on a substrate 1 made of glass or the like, as an underlayer (underlayer) 2. , A first magnetic layer 3 / non-magnetic layer 4 / second magnetic layer 5 / fixed magnetization layer 6 are laminated in this order, and a protective film 7 is formed thereon.

【0059】磁化固定層6は、反強磁性体膜からなり、
隣接する第2磁性層(以下、ピン層と称する)5の磁化
を、該磁化固定層6とピン層5との界面に働く交換結合
磁界にて1方向に固定するものである。磁化固定層6と
しては、例えばMn系反強磁性体膜を用いることができ
る。
The magnetization fixed layer 6 is made of an antiferromagnetic film,
The magnetization of the adjacent second magnetic layer (hereinafter, referred to as a pinned layer) 5 is fixed in one direction by an exchange coupling magnetic field acting on an interface between the magnetization fixed layer 6 and the pinned layer 5. As the magnetization fixed layer 6, for example, a Mn-based antiferromagnetic film can be used.

【0060】Mn系反強磁性体には、Fe−Mn(Fe
Mn合金:以下、合金を−で表す),Ir−Mn,Rh
−Mnの様に熱処理することなしに交換結合磁界を得る
ことができる不規則合金と、Pt−MnやNi−Mnの
様に成膜後に230〜255℃で熱処理を行うことによ
ってはじめて交換結合磁界が得られる規則合金とがあ
る。
The Mn-based antiferromagnetic material includes Fe—Mn (Fe
Mn alloy: hereinafter, the alloy is represented by-), Ir-Mn, Rh
-An exchange alloy which can obtain an exchange coupling magnetic field without heat treatment like Mn, and an exchange coupling magnetic field only by heat treatment at 230 to 255 ° C after film formation like Pt-Mn or Ni-Mn. And an ordered alloy that gives

【0061】何れを用いることも可能であるが、Mn系
不規則合金は、交換結合磁界が温度の上昇とともに減少
し、反強磁性を失うブロッキング温度(Tb)が低いと
いった欠点があるので、Mn系規則合金を用いることが
好ましい。Mn系規則合金は、Tbが高く、交換結合磁
界もPt−Mnの場合、300℃程度まで高い値を維持
し、熱履歴に対しても強く安定して高い交換結合磁界が
得られている。但し、上述したように交換結合磁界を発
生させるのに235〜255℃の高温での長時間アニー
ルを必要とするため、素子の他の部分の耐熱性が必要と
なる。
Any of them can be used. However, the Mn-based disordered alloy has the drawback that the exchange coupling magnetic field decreases as the temperature rises and the blocking temperature (Tb) at which antiferromagnetism is lost is low. It is preferable to use a systematic alloy. When the Mn-based ordered alloy has a high Tb and the exchange coupling magnetic field is also Pt-Mn, a high value is maintained up to about 300 ° C., and a high exchange coupling magnetic field is obtained stably with respect to the heat history. However, as described above, since long-time annealing at a high temperature of 235 to 255 ° C. is required to generate the exchange coupling magnetic field, heat resistance of other parts of the element is required.

【0062】ピン層5は強磁性体膜からなり、ここでは
第1強磁性体膜5a、第2強磁性体膜5b、及び第3強
磁性体膜5cの3層積層膜構造を有する。
The pinned layer 5 is made of a ferromagnetic film, and has a three-layer structure of a first ferromagnetic film 5a, a second ferromagnetic film 5b, and a third ferromagnetic film 5c.

【0063】このうち、前述の磁化固定層6と接する第
1強磁性体膜5aは、磁化固定層6に用いられている反
強磁性体膜との界面で高い交換結合エネルギーが得られ
る強磁性体膜からなる。例えば、磁化固定層6にPt−
Mn膜等のMn系規則合金膜が用いられている場合は、
Co膜が用いられる。一方、磁化固定層6にFe−Mn
膜等のMn系不規則合金膜が用いられている場合は、N
i−Fe膜が用いられる。これにより、ピン層5と磁化
固定層6との交換結合磁界が大きくなる。
The first ferromagnetic film 5 a in contact with the magnetization fixed layer 6 is a ferromagnetic film having a high exchange coupling energy at the interface with the antiferromagnetic film used for the magnetization fixed layer 6. Consists of a body membrane. For example, Pt-
When a Mn-based ordered alloy film such as a Mn film is used,
A Co film is used. On the other hand, Fe-Mn
When a Mn-based disordered alloy film such as a film is used, N
An i-Fe film is used. Thereby, the exchange coupling magnetic field between pinned layer 5 and magnetization fixed layer 6 increases.

【0064】中央の第2強磁性体膜5bは、磁化固定層
6と接する第1強磁性体膜5aよりも、飽和磁化の小さ
い強磁性体膜から構成されている。例えば、磁化固定層
6にPt−Mn膜等のMn系規則合金膜が用いられ、第
1強磁性体膜5aがCo膜からなる場合は、第2強磁性
体膜5bにはCo膜より飽和磁化の小さいNi−Fe膜
等が用いられる。これにより、ピン層5自体の総磁化量
を低減することができる。
The second ferromagnetic film 5b at the center is made of a ferromagnetic film having a smaller saturation magnetization than the first ferromagnetic film 5a in contact with the magnetization fixed layer 6. For example, when a Mn-based ordered alloy film such as a Pt—Mn film is used for the magnetization fixed layer 6 and the first ferromagnetic film 5a is a Co film, the second ferromagnetic film 5b is more saturated than the Co film. A Ni—Fe film having a small magnetization is used. Thereby, the total magnetization amount of the pinned layer 5 itself can be reduced.

【0065】ピン層5における非磁性層4と接する第3
強磁性体膜5cは、非磁性層4との間の相互拡散を防止
するために相互拡散し難い強磁性体膜を用いる。これに
より、ピン層5と非磁性層4との熱拡散によるMR比の
低減を抑制できる。
The third pin layer 5 in contact with the nonmagnetic layer 4
As the ferromagnetic film 5c, a ferromagnetic film hardly interdiffused to prevent interdiffusion with the nonmagnetic layer 4 is used. Thereby, a decrease in the MR ratio due to thermal diffusion between the pinned layer 5 and the nonmagnetic layer 4 can be suppressed.

【0066】なお、ここでは、ピン層5を3層積層膜と
したが、磁化固定層6と接する側に磁化固定層6に用い
られている反強磁性体膜との界面で高い交換結合エネル
ギーが得られる第1強磁性体膜5aが配設され、かつ、
それ以外の部分に、第1強磁性体膜5aよりも飽和磁化
の小さい第2強磁性体膜5bが含まれていればよく、第
1強磁性体膜5aと第2強磁性体膜5bとの2層積層膜
構造でもよい。したがって、第2強磁性体膜5bが他の
強磁性体膜との多層構造をなしていてもよい。但し、一
層構造よりも多層構造の方が、界面数が増えるので磁化
の反転モードが揃い、磁気抵抗効果が現れ易いといった
利点がある。
Here, although the pinned layer 5 is a three-layer laminated film, a high exchange coupling energy is provided on the side in contact with the magnetization fixed layer 6 at the interface with the antiferromagnetic film used for the magnetization fixed layer 6. Is provided, and a first ferromagnetic film 5a is obtained, and
The other portions only need to include the second ferromagnetic film 5b having a smaller saturation magnetization than the first ferromagnetic film 5a, and the first ferromagnetic film 5a and the second ferromagnetic film 5b May be used. Therefore, the second ferromagnetic film 5b may have a multilayer structure with other ferromagnetic films. However, the multi-layer structure has the advantage that the number of interfaces increases, the magnetization reversal modes are uniform, and the magnetoresistance effect is more likely to appear than the single-layer structure.

【0067】さらに、第1強磁性体膜5aよりも飽和磁
化の小さい強磁性体膜からなる第2強磁性体膜5bは、
ピン層5自体の飽和磁化を低減する上で、該ピン層5を
構成する他の強磁性体膜(第1及び第3強磁性体膜5
a,5c、或いはその他の強磁性体膜)よりもその膜厚
が厚く形成されていることが好ましい。
Further, the second ferromagnetic film 5b made of a ferromagnetic film having a smaller saturation magnetization than the first ferromagnetic film 5a
In order to reduce the saturation magnetization of the pinned layer 5 itself, other ferromagnetic films (the first and third ferromagnetic films 5
a, 5c, or other ferromagnetic films).

【0068】非磁性層4は、例えばCu膜等の非磁性膜
からなり、第1磁性層(以下、フリー層)3とピン層5
とを分離するものである。
The non-magnetic layer 4 is made of a non-magnetic film such as a Cu film, for example, and includes a first magnetic layer (hereinafter, a free layer) 3 and a pinned layer 5.
And to separate them.

【0069】フリー層3は、強磁性体膜からなり、ここ
では強磁性体膜3aと強磁性体膜3bの2層積層膜構造
を有する。これら強磁性体膜3a,3bとしては、C
o、Ni−Fe等の薄膜が用いられる。
The free layer 3 is made of a ferromagnetic film, and has a two-layer structure of a ferromagnetic film 3a and a ferromagnetic film 3b. As the ferromagnetic films 3a and 3b, C
o, a thin film of Ni—Fe or the like is used.

【0070】下地膜2は、必ずしも必要ではないが、ガ
ラス基板1上にフリー層3から順に薄膜を形成する際の
配向を制御し、結晶性を向上させるためのもので、T
a、Ti、Cr等の薄膜を用いることができる。保護膜
7にも、Ta膜等が用いられる。
The base film 2 is not always necessary, but is used to control the orientation when forming a thin film in order from the free layer 3 on the glass substrate 1 and to improve the crystallinity.
A thin film of a, Ti, Cr or the like can be used. As the protective film 7, a Ta film or the like is used.

【0071】このような構成の磁気抵抗効果膜では、ピ
ン層5における磁化固定層6と接する第1強磁性体膜5
aには、磁化固定層6の反強磁性体膜界面でより高い交
換結合エネルギーを得られる強磁性体膜を用い、かつ、
第2強磁性体膜5bには、第1強磁性体膜5aよりも飽
和磁化の低い強磁性体膜を用いているため、従来に比べ
て保磁力を低く抑えたまま高い交換結合磁界を得ること
ができる。
In the magnetoresistance effect film having such a configuration, the first ferromagnetic film 5 in contact with the magnetization fixed layer 6 in the pinned layer 5
For a, use is made of a ferromagnetic film capable of obtaining higher exchange coupling energy at the antiferromagnetic film interface of the magnetization fixed layer 6, and
Since the second ferromagnetic film 5b is a ferromagnetic film having a lower saturation magnetization than the first ferromagnetic film 5a, a high exchange coupling magnetic field can be obtained while keeping the coercive force low as compared with the related art. be able to.

【0072】加えて、本実施形態の磁気抵抗効果膜で
は、ピン層5における非磁性層4と接する第3強磁性体
膜5cに、非磁性層4との熱拡散が少さく、MR比が大
きくなる強磁性体膜を用いているので、非磁性層4との
熱拡散を抑制してMR比をさらに大きくできる。
In addition, in the magnetoresistive effect film of the present embodiment, the third ferromagnetic film 5c in contact with the nonmagnetic layer 4 in the pinned layer 5 has little heat diffusion with the nonmagnetic layer 4 and has an MR ratio. Since the ferromagnetic film which becomes large is used, thermal diffusion with the nonmagnetic layer 4 can be suppressed, and the MR ratio can be further increased.

【0073】その結果、本実施形態の磁気抵抗効果膜で
は、交換結合磁界と保磁力との差が大きいために、磁界
及び熱的な外乱に対して高い安定性を有する磁気抵抗効
果素子を実現することができる。
As a result, in the magnetoresistive film of this embodiment, a large difference between the exchange coupling magnetic field and the coercive force realizes a magnetoresistive element having high stability against magnetic fields and thermal disturbances. can do.

【0074】また、上記磁気抵抗効果膜を備えた磁気抵
抗効果素子を、磁気ヘッドに適用した場合、熱安定性及
び磁界安定性に優れ、ヘッド作製工程における高温熱処
理プロセス、あるいは実使用条件下の熱的及び磁気的外
乱に対しても、高い磁気抵抗効果特性を維持できる安定
性の高い磁気ヘッドを提供することができる。
When a magnetoresistive element having the above-described magnetoresistive film is applied to a magnetic head, it has excellent thermal stability and magnetic field stability. It is possible to provide a highly stable magnetic head that can maintain high magnetoresistance effect characteristics even against thermal and magnetic disturbances.

【0075】図2、図3に、上記磁気抵抗効果膜を備え
た磁気抵抗効果素子を示す。図において、21が磁気抵
抗効果膜であり、該磁気抵抗効果膜21と電極22・2
2をシールド層23・24で挟み込んだ構造である。図
3の磁気抵抗効果素子は、磁壁の移動に伴うバルクハウ
ゼンノイズを抑制するため、磁気抵抗効果膜21におけ
るフリー層3(図1参照)を単磁区化する磁区制御層2
5・25がさらに設けられた構成である。上記電極22
・22には、例えばTa/Cu/Ta積層膜を用いるこ
とができる。また、磁区制御層25・25には、例えば
Co−Ptを用いることができる。
FIGS. 2 and 3 show a magnetoresistive element having the magnetoresistive film. In the figure, reference numeral 21 denotes a magnetoresistive film, and the magnetoresistive film 21 and the electrodes 22.2
2 is sandwiched between shield layers 23 and 24. In the magnetoresistive element of FIG. 3, the free layer 3 (see FIG. 1) in the magnetoresistive film 21 is made into a single magnetic domain in order to suppress Barkhausen noise caused by the movement of the domain wall.
5 and 25 are further provided. The above electrode 22
For example, a Ta / Cu / Ta laminated film can be used for 22. For the magnetic domain control layers 25, for example, Co-Pt can be used.

【0076】このような磁気抵抗効果素子の電極22・
22に、電流を流す通電手段を設けると共に、磁気記録
媒体に記録された磁気的な情報に応じた磁場の大きさに
対応して変化する該磁気抵抗効果素子の電気抵抗を検出
する検出手段(不図示)とを備えることで、磁気ヘッド
が実現する。
The electrode 22 of such a magneto-resistance effect element
And a detecting means for detecting an electric resistance of the magnetoresistive element which changes in accordance with the magnitude of a magnetic field corresponding to magnetic information recorded on a magnetic recording medium. (Not shown), a magnetic head is realized.

【0077】[0077]

【実施例】〔実施例1〕実施例1では、磁化固定層の反
強磁性体膜にMn系不規則合金のRu−Mn膜を用い、
ピン層の強磁性体膜としてCo、Ni−Feの各単層膜
を用いて従来のスピンバルブ型磁気抵抗効果膜と、本発
明に係る、前述の図1に示した、ピン層5に3層積層膜
を用いたスピンバルブ型磁気抵抗効果膜とを作成し、交
換結合磁界及び保持力のピン層膜厚依存性について比較
した。
[Embodiment 1] In Embodiment 1, a Ru—Mn film made of a Mn-based disordered alloy is used as the antiferromagnetic film of the magnetization fixed layer.
A conventional spin-valve magnetoresistive film using a single-layer film of Co or Ni—Fe as the ferromagnetic film of the pin layer and the pin layer 5 according to the present invention shown in FIG. A spin-valve type magnetoresistive film using a layer laminated film was prepared, and the dependence of the exchange coupling magnetic field and the coercive force on the pin layer thickness was compared.

【0078】まず、従来の図24に示した磁気抵抗効果
膜を、磁化固定層36にRu−Mn膜を用い、ピン層3
5にNi−Fe単層膜、Co単層膜をそれぞれ用いて作
成した。
First, the conventional magnetoresistive film shown in FIG. 24 is replaced with a pinned layer 3 using a Ru—Mn film as the magnetization fixed layer 36.
5, a Ni—Fe single-layer film and a Co single-layer film were used.

【0079】図4に強磁性体膜としてCo単層膜を用い
たサンプルと、図5にNi−Fe単層膜を用いたサンプ
ルの、各交換結合磁界及び保磁力のピン層35膜厚依存
性を示す。Co単層膜の場合、図4に示すように、膜厚
の減少に伴い保磁力の増大が交換結合の増大を上回って
しまい交換結合磁界と保磁力との差は逆に小さくなって
しまうことがわかる。また、ピン層35がNi−Fe単
層膜の場合にも、図5に示すように、それぞれの絶対値
は大きくなるものの、膜厚に対する依存性に関してはC
o単層膜の場合とほとんど変わらない。
FIG. 4 shows the dependence of the exchange coupling magnetic field and the coercive force on the thickness of the pinned layer 35 in the sample using the Co single layer film as the ferromagnetic film and in FIG. 5 on the sample using the Ni—Fe single layer film. Shows sex. In the case of a Co single layer film, as shown in FIG. 4, the increase in coercive force exceeds the increase in exchange coupling as the film thickness decreases, and the difference between the exchange coupling magnetic field and the coercive force becomes smaller on the contrary. I understand. Also, when the pinned layer 35 is a Ni—Fe single layer film, as shown in FIG.
o It is almost the same as the case of a single layer film.

【0080】ここで、交換結合磁界の値から、Co単層
膜とNi−Fe単層膜の飽和磁化をそれぞれ1350em
u /cm3 ,780emu /cm3 として交換結合エネルギー
を計算すると、表1に示すように、Co単層膜は0.0
7erg /cm2 、Ni−Fe単層膜は0.11erg /cm2
であった。
Here, from the value of the exchange coupling magnetic field, the saturation magnetization of the Co single layer film and the saturation magnetization of the Ni—Fe single layer film are each 1350 em.
When the exchange coupling energy was calculated as u / cm 3 and 780 emu / cm 3, as shown in Table 1, the Co single layer film was 0.0
7 erg / cm 2 , Ni—Fe single layer film is 0.11 erg / cm 2
Met.

【0081】[0081]

【表1】 [Table 1]

【0082】これより、磁化固定層36の反強磁性体膜
にRu−Mn膜を用いた場合には、強磁性体膜としてN
i−Fe膜の方が交換結合エネルギーが高いことがわか
った。
Thus, when the Ru—Mn film is used as the antiferromagnetic film of the magnetization fixed layer 36, N
It was found that the i-Fe film had higher exchange coupling energy.

【0083】したがって、本実施例の本発明に係る磁気
抵抗効果膜におけるピン層5を3層積層膜構造とする
際、磁化固定層6側から(第1、第2、第3の強磁性体
膜の順)、Ni−Fe/Ni−Fe−Nb/Coの3層
積層膜とした。以下に、磁気抵抗効果膜の作成手順を示
す。
Therefore, when the pinned layer 5 in the magnetoresistive effect film according to the present invention of this embodiment has a three-layer laminated structure, the first, second, and third ferromagnetic materials are arranged from the magnetization fixed layer 6 side. Film order) and a three-layer laminated film of Ni—Fe / Ni—Fe—Nb / Co. The procedure for forming the magnetoresistive film will be described below.

【0084】まず、ガラス基板1上にTaからなる下地
膜2を成膜し、その上にNi−Fe膜からなる強磁性体
膜3b、Co膜からなる強磁性体膜3a、Cu膜からな
る非磁性層4、さらに、Co膜からなる第3強磁性体膜
5c、Ni−Fe−Nb膜からなる第2強磁性体膜5
b、Ni−Fe膜からなる第1強磁性体膜5aを積層し
た後、Ru−Mn膜からなる磁化固定層6、及びTaか
らなる保護膜7を積層した。
First, a base film 2 made of Ta is formed on a glass substrate 1, and a ferromagnetic film 3b made of a Ni—Fe film, a ferromagnetic film 3a made of a Co film, and a Cu film are formed thereon. A non-magnetic layer 4, a third ferromagnetic film 5c made of a Co film, and a second ferromagnetic film 5 made of a Ni—Fe—Nb film
(b) After laminating the first ferromagnetic film 5a made of a Ni-Fe film, a magnetization fixed layer 6 made of a Ru-Mn film and a protective film 7 made of Ta were laminated.

【0085】このとき下地膜2から保護膜7までは一つ
の成膜装置を用いて、5×10-8Torr以下まで排気
後、一度も真空を破ることなく同一真空中で連続積層成
膜した。非磁性層4のCu膜、及び磁化固定層6のRu
−Mn膜は、DCマグネトロンスパッタ法を用いて成膜
し、下地膜2や保護膜7のTa膜、及び第3強磁性体膜
5cや強磁性体膜3aのCo膜はRFマグネトロンスパ
ッタ法、第1強磁性体膜5aや第2強磁性体膜5bのN
i−Fe膜やNi−Fe−Nb膜はRFコンベンショナ
ルスパッタ法をそれぞれ用いて成膜した。
At this time, from the base film 2 to the protective film 7, a single film forming apparatus was used to evacuate to 5 × 10 −8 Torr or less, and then a continuous film was formed in the same vacuum without breaking the vacuum. . Cu film of the nonmagnetic layer 4 and Ru of the magnetization fixed layer 6
-The Mn film is formed using a DC magnetron sputtering method, and the Ta film of the base film 2 and the protective film 7 and the Co film of the third ferromagnetic film 5c and the ferromagnetic film 3a are formed by RF magnetron sputtering. N of the first ferromagnetic film 5a and the second ferromagnetic film 5b
The i-Fe film and the Ni-Fe-Nb film were formed by using RF conventional sputtering.

【0086】各層の膜厚は、下地膜2=50Å、強磁性
体膜3b=70Å、強磁性体膜3a=7Å、非磁性層4
=28Å、第3強磁性体膜5c=10Å、第2強磁性体
膜5b=30〜100Å、第1強磁性体膜5a=5Å、
磁化固定層6=120Åと設定した。なお、本実施例の
磁化固定層6のRu組成は約18at%一定とし、Ni
−Fe−Nb膜のNb組成は約2at%とした。
The thickness of each layer is as follows: base film 2 = 50 °, ferromagnetic film 3b = 70 °, ferromagnetic film 3a = 7 °, nonmagnetic layer 4
= 28 °, third ferromagnetic film 5c = 10 °, second ferromagnetic film 5b = 30 to 100 °, first ferromagnetic film 5a = 5 °,
The magnetization fixed layer 6 was set to 120 °. In this embodiment, the Ru composition of the magnetization fixed layer 6 is set to be constant at about 18 at%,
The Nb composition of the -Fe-Nb film was about 2 at%.

【0087】そのときのNi−Fe−Nb膜の飽和磁化
は660emu /cm3 、ピン層5全体の総磁化量はNi−
Fe/Coの2層積層膜を1.0として0.89となっ
た。また、ピン層5全体としての軟磁気特性の劣化はほ
とんど見られず、保磁力は1〜3Oeの値を保持してい
た。
At this time, the saturation magnetization of the Ni—Fe—Nb film is 660 emu / cm 3 , and the total magnetization of the entire pinned layer 5 is Ni—
The value was 0.89 when the Fe / Co two-layer laminated film was 1.0. The soft magnetic characteristics of the entire pinned layer 5 were hardly degraded, and the coercive force maintained a value of 1 to 3 Oe.

【0088】図6に、ピン層5に磁化固定層6側から、
Ni−Fe/Ni−Fe−Nb/Coの3層積層膜を用
いた場合の、交換結合磁界及び保磁力の、ピン層5(第
2強磁性体膜5b)膜厚依存性を示す。これより、ピン
層5にNi−Fe/Ni−Fe−Nb/Coの3層積層
膜を用いた場合、交換結合磁界及び保磁力の絶対値が、
図5に示すNi−Fe単層膜、あるいは図4に示すCo
単層膜を用いた場合と比較して大きくなっていることが
わかる。しかしながら、ピン層5の膜厚減少に伴う保磁
力の増大が、Ni−Fe単層膜あるいはCo単層膜を用
いた場合に比べて低く抑えられており、結果的に交換結
合磁界と保磁力の差が大きくなっていることがわかる。
FIG. 6 shows that the pinned layer 5 is
The graph shows the dependence of the exchange coupling magnetic field and the coercive force on the thickness of the pinned layer 5 (second ferromagnetic film 5b) when a three-layered film of Ni-Fe / Ni-Fe-Nb / Co is used. Thus, when the three-layered film of Ni—Fe / Ni—Fe—Nb / Co is used for the pinned layer 5, the absolute values of the exchange coupling magnetic field and the coercive force are:
The Ni—Fe single layer film shown in FIG.
It turns out that it is larger than the case where the single layer film is used. However, the increase in the coercive force due to the decrease in the thickness of the pinned layer 5 is suppressed to be lower than when the Ni—Fe single-layer film or the Co single-layer film is used. As a result, the exchange coupling magnetic field and the coercive force are reduced. It can be seen that the difference is larger.

【0089】なお、本実施例では、基板1とフリー層3
との間に、フリー層3を(111)面配向させ、かつ結
晶性を向上させるためにTa膜からなる下地膜2を用い
たが、下地膜2を用いない場合においても、本発明の効
果は同様に得られた。
In this embodiment, the substrate 1 and the free layer 3
In between, the underlayer 2 made of a Ta film is used to orient the free layer 3 in the (111) plane and improve the crystallinity, but the effect of the present invention can be obtained even when the underlayer 2 is not used. Was similarly obtained.

【0090】〔実施例2〕実施例2では、実施例1の磁
気抵抗効果膜におけるピン層5の第2強磁性体膜5b
を、Ni−Fe−X(X=Nb,Zr,Cr)膜として
ピン層5の総磁化量を低下させ、交換結合磁界及び保磁
力の変化について検討した。
[Embodiment 2] In Embodiment 2, the second ferromagnetic film 5b of the pinned layer 5 in the magnetoresistive effect film of Embodiment 1 is used.
Was used as a Ni—Fe—X (X = Nb, Zr, Cr) film to reduce the total magnetization of the pinned layer 5 and to examine changes in the exchange coupling magnetic field and the coercive force.

【0091】なお、各添加元素はNi−Feターゲット
上にペレットを配置し、その数を変えることによって添
加量を調節した。また、成膜方法に関しては、実施例1
と同様の方法により成膜し、磁化固定層6側から、Ni
−Fe/Ni−Fe−X/Coの3層積層膜の膜厚は、
5Å/50Å/10Åとした。
The amount of each additive element was adjusted by arranging pellets on a Ni—Fe target and changing the number thereof. As for the film forming method, the first embodiment
A film is formed in the same manner as described above, and Ni is deposited from the magnetization fixed layer 6 side.
-Fe / Ni-Fe-X / Co has a three-layered film thickness of:
5 ° / 50 ° / 10 °.

【0092】図7に、各添加元素を添加した際のピン層
5全体の飽和磁化の値を示す。これより、Nb,Zr,
Crの順に飽和磁化が低下していることがわかる。な
お、Ni−Fe膜にNb,Zr,Crを添加したとき、
各膜の軟磁気特性はほとんど劣化せず、保磁力は1〜3
Oeの値を保っていた。
FIG. 7 shows the values of the saturation magnetization of the entire pinned layer 5 when each additive element is added. From this, Nb, Zr,
It can be seen that the saturation magnetization decreases in the order of Cr. When Nb, Zr, and Cr are added to the Ni—Fe film,
The soft magnetic properties of each film hardly deteriorated, and the coercive force was 1 to 3
The value of Oe was kept.

【0093】図8〜図10に、実際に、ピン層5の第2
強磁性体膜5bのNi−Fe−Xに、Nb,Zr,Cr
を添加した場合の、交換結合磁界及び保磁力の変化を示
す。これより、Ni−Feにどの添加元素を添加した場
合でも、添加量の増大、つまりピン層5の総磁化量の低
下に伴って交換結合磁界が増大していることがわかる。
FIGS. 8 to 10 show actually the second layer of the pinned layer 5.
Nb, Zr, Cr are added to Ni-Fe-X of the ferromagnetic film 5b.
3 shows changes in the exchange coupling magnetic field and the coercive force in the case where is added. From this, it can be seen that the exchange coupling magnetic field increases with an increase in the addition amount, that is, a decrease in the total magnetization amount of the pinned layer 5, regardless of which addition element is added to Ni-Fe.

【0094】その際、ピン層5の保磁力の増大はCoの
単層膜あるいはNi−Feの単層膜を用いた場合に比べ
て低く抑えられており、低保磁力かつ高交換結合磁界を
有する磁気抵抗効果膜を実現できていることがわかる。
また、MR比に関してはNb,Zr,Cr等の添加元素
の添加量に関わらず、ほぼ6.0〜6.5%の値を保っ
ていた。
At this time, the increase in the coercive force of the pinned layer 5 is suppressed to be lower than when a single-layer film of Co or a single-layer film of Ni—Fe is used, and a low coercive force and a high exchange coupling magnetic field are reduced. It can be seen that the magnetoresistive effect film having the above is realized.
In addition, the MR ratio was maintained at a value of approximately 6.0 to 6.5% irrespective of the amount of the additional element such as Nb, Zr, or Cr.

【0095】〔実施例3〕実施例3では、磁化固定層の
反強磁性体膜にMn系規則合金のPt−Mn膜を用い、
ピン層の強磁性体膜としてCo、Ni−Feの各単層膜
を用いて従来のスピンバルブ型磁気抵抗効果膜と、本発
明に係る、前述の図1に示した、ピン層5に3層積層膜
を用いたスピンバルブ型磁気抵抗効果膜とを作成し、交
換結合磁界及び保持力のピン層膜厚依存性について比較
した。
Embodiment 3 In Embodiment 3, a Pt—Mn film of a Mn-based ordered alloy was used for the antiferromagnetic film of the magnetization fixed layer.
A conventional spin-valve magnetoresistive film using a single-layer film of Co or Ni—Fe as the ferromagnetic film of the pin layer and the pin layer 5 according to the present invention shown in FIG. A spin-valve type magnetoresistive film using a layer laminated film was prepared, and the dependence of the exchange coupling magnetic field and the coercive force on the pin layer thickness was compared.

【0096】まず、従来の図24にした磁気抵抗効果膜
を、磁化固定層36にPt−Mn膜を用い、ピン層35
にNi−Feの単層膜、Coの単層膜を用いて作成し
た。
First, the conventional magnetoresistive film shown in FIG. 24 is replaced with a pinned layer 35 using a Pt-Mn film as the magnetization fixed layer 36.
Was formed using a single-layer film of Ni—Fe and a single-layer film of Co.

【0097】図11に強磁性体膜としてNi−Fe単層
膜を用いたサンプルと、図12に強磁性体膜としてCo
単層膜を用いたサンプルの、交換結合磁界及び保磁力の
ピン層膜厚依存性を示す。これより、Ni−Feの単層
膜を用いると、図11に示すように、膜厚の減少に伴い
保磁力の増大が交換結合の増大を上回ってしまい交換結
合磁界と保磁力との差は小さくなってしまうことがわか
る。また、図12に示すように、ピン層35がCoの単
層膜の場合にも、それぞれの絶対値は大きくなるもの
の、膜厚に対する依存性に関してはNi−Fe膜の場合
とほとんど変わらない。
FIG. 11 shows a sample using a Ni—Fe single layer film as a ferromagnetic film, and FIG. 12 shows a sample using Co as a ferromagnetic film.
4 shows the pin-layer thickness dependence of the exchange coupling magnetic field and coercive force of a sample using a single-layer film. Thus, when a single-layer film of Ni—Fe is used, as shown in FIG. 11, the increase in coercive force exceeds the increase in exchange coupling as the film thickness decreases, and the difference between the exchange coupling magnetic field and the coercive force is It turns out that it becomes small. Also, as shown in FIG. 12, when the pinned layer 35 is a single-layer film of Co, the absolute value of each is large, but the dependency on the film thickness is almost the same as that of the Ni-Fe film.

【0098】ここで、実施例1と同様に、交換結合エネ
ルギーを計算すると、表1に示すように、Co単層膜は
0.29erg /cm2 、Ni−Fe単層膜は0.15erg
/cm2 となり、磁化固定層36の反強磁性体膜にPt−
Mn膜を用いた場合にはCo膜の方が交換結合エネルギ
ーが高いことがわかった。
Here, when the exchange coupling energy was calculated in the same manner as in Example 1, as shown in Table 1, the Co single layer film was 0.29 erg / cm 2 , and the Ni—Fe single layer film was 0.15 erg / cm 2 .
/ Cm 2 , and the antiferromagnetic film of the magnetization fixed layer 36 has Pt-
It was found that when a Mn film was used, the Co film had a higher exchange coupling energy.

【0099】したがって、本実施例の本発明に係る磁気
抵抗効果膜のピン層5を3層積層膜とする際、磁化固定
層6側からCo/Ni−Fe/Coの3層積層膜とし
た。
Therefore, when the pinned layer 5 of the magnetoresistive effect film according to the present invention of this embodiment is formed as a three-layer laminated film, a three-layer laminated film of Co / Ni—Fe / Co is formed from the magnetization fixed layer 6 side. .

【0100】本実施例において磁気抵抗効果膜は、実施
例1と同様の方法で成膜し、各層の膜厚は、下地膜2=
50Å、強磁性体膜3b=70Å、強磁性体膜3a=7
Å、非磁性層4=28Å、第3強磁性体膜5c=10
Å、第2強磁性体膜5b=30〜100Å、第1強磁性
体膜5a=5Å、磁化固定層6=200Åと設定した。
なお、本実施例では、磁化固定層6中のPt組成は約4
8at%一定とし、交換結合磁界発現のためのアニール
は300Oeの磁界印加中で、250℃、6hの条件で
行った。
In this embodiment, the magnetoresistive effect film is formed in the same manner as in the first embodiment.
50 °, ferromagnetic film 3b = 70 °, ferromagnetic film 3a = 7
{, Nonmagnetic layer 4 = 28}, third ferromagnetic film 5c = 10
Å, the second ferromagnetic film 5b = 30〜100 °, the first ferromagnetic film 5a = 5Å, and the magnetization fixed layer 6 = 200Å.
In this embodiment, the Pt composition in the magnetization fixed layer 6 is about 4%.
Annealing for generating the exchange coupling magnetic field was performed at 250 ° C. for 6 hours while applying a magnetic field of 300 Oe.

【0101】図13に、ピン層5に磁化固定層6側から
Co/Ni−Fe/Coの3層積層膜を用いた場合の、
交換結合磁界及び保磁力のピン層5(第2強磁性体膜5
b)膜厚依存性を示す。これより、ピン層5にCo/N
i−Fe/Coの3層積層膜を用いた場合、交換結合磁
界及び保磁力の絶対値が、図11に示すNi−Fe単層
膜、あるいは図12に示すCo単層膜を用いた場合と比
較して大きくなっていることがわかる。しかしながら、
ピン層5の膜厚減少に伴う保磁力の増大がNi−Fe単
層膜あるいはCo単層膜を用いた場合に比べて低く抑え
られており、結果的に交換結合磁界と保磁力の差が大き
くなっていることがわかる。
FIG. 13 shows a case where a three-layer laminated film of Co / Ni—Fe / Co is used as the pinned layer 5 from the magnetization fixed layer 6 side.
The pin layer 5 (the second ferromagnetic film 5) having the exchange coupling magnetic field and the coercive force.
b) Dependence on film thickness. Thus, Co / N is applied to the pin layer 5.
In the case of using a three-layer laminated film of i-Fe / Co, the absolute values of the exchange coupling magnetic field and the coercive force are determined by using the Ni-Fe single-layer film shown in FIG. 11 or the Co single-layer film shown in FIG. It turns out that it is large compared with. However,
The increase in the coercive force due to the decrease in the thickness of the pinned layer 5 is suppressed to be lower than in the case of using the Ni—Fe single layer film or the Co single layer film. As a result, the difference between the exchange coupling magnetic field and the coercive force is reduced. You can see that it is getting bigger.

【0102】なお、本実施例では、基板1とフリー層3
との間に、フリー層3を(111)面配向させ、かつ結
晶性を向上させるためにTa膜からなる下地膜2を用い
たが、下地膜2を用いない場合においても、本発明の効
果は同様に得られた。
In this embodiment, the substrate 1 and the free layer 3
In between, the underlayer 2 made of a Ta film is used to orient the free layer 3 in the (111) plane and improve the crystallinity, but the effect of the present invention can be obtained even when the underlayer 2 is not used. Was similarly obtained.

【0103】〔実施例4〕実施例4では、磁化固定層6
にPt−Mn膜を用いて、実施例2と同様、実施例3の
磁気抵抗効果膜におけるピン層5の第2強磁性体膜5b
のNi−Feに、Nb,Zr,Crを添加し、ピン層5
の総磁化量を低減した場合の、交換結合磁界及び保磁力
の変化について検討した。
[Fourth Embodiment] In the fourth embodiment, the magnetization fixed layer 6
The second ferromagnetic film 5b of the pinned layer 5 in the magnetoresistive effect film of the third embodiment, similarly to the second embodiment, using a Pt—Mn film
Nb, Zr, and Cr were added to Ni-Fe of
The change in the exchange coupling magnetic field and the coercive force when the total magnetization was reduced was examined.

【0104】なお、本実施例の本発明に係る磁気抵抗効
果膜は、実施例1及び実施例2と同様の方法で成膜し、
磁化固定層6側からCo/Ni−Fe−X/Coの3層
積層膜の膜厚は、5Å/50Å/10Åとした。また、
交換結合磁界発現のためのアニールは、実施例3と同様
300Oeの磁界印加中で、250℃、6hの条件で行
った。
The magnetoresistive film according to the present invention of this embodiment is formed by the same method as in the first and second embodiments.
From the side of the magnetization fixed layer 6, the thickness of the three-layered film of Co / Ni—Fe—X / Co was 5 ° / 50 ° / 10 °. Also,
Annealing for developing the exchange coupling magnetic field was performed in the same manner as in Example 3 while applying a magnetic field of 300 Oe and at 250 ° C. for 6 hours.

【0105】図14〜図16には、第2強磁性体膜5b
のNi−FeにNb,Zr,Crを添加した場合の、交
換結合磁界及び保磁力の変化について示した。これよ
り、磁化固定層6の反強磁性体膜にPt−Mn膜を用い
た場合にも、Ru−Mn膜を用いた時と同様に、Ni−
Feにどの添加元素を添加した場合でも、添加量の増
大、つまりピン層5の総磁化量の低下に伴って交換結合
磁界が増大していることがわかる。その際、ピン層5の
保磁力の増大はCo単層膜あるいはNi−Fe単層膜を
用いた場合に比べて低く抑えられており、結果的に低保
磁力かつ高交換結合磁界を有する磁気抵抗効果膜を実現
できていることがわかる。
FIGS. 14 to 16 show the second ferromagnetic film 5b.
The change of the exchange coupling magnetic field and the coercive force when Nb, Zr, and Cr were added to Ni-Fe of No. 1 were shown. Thus, when the Pt—Mn film is used as the antiferromagnetic film of the magnetization fixed layer 6, similarly to the case where the Ru—Mn film is used, Ni—
It can be seen that regardless of which additive element is added to Fe, the exchange coupling magnetic field increases as the amount of addition increases, that is, as the total magnetization of the pinned layer 5 decreases. At this time, the increase in the coercive force of the pinned layer 5 is suppressed to be lower than in the case of using a single-layer Co film or a single-layer Ni—Fe film. It can be seen that a resistance effect film has been realized.

【0106】また、MR比に関してはNb,Zr,Cr
等の添加元素の添加量に関わらず、ほぼ5.5〜6.0
%の値を保っていた。
Further, regarding the MR ratio, Nb, Zr, Cr
5.5 to 6.0 regardless of the amount of the additional element
% Value was maintained.

【0107】〔実施例5〕本実施例では、磁化固定層6
にMn系規則合金を用いて交換結合磁界の温度特性を良
好としながら、ピン層5における磁化固定層6と接する
第1強磁性体膜5aの必要性を検討した。
[Embodiment 5] In this embodiment, the magnetization fixed layer 6
The necessity of the first ferromagnetic film 5a in contact with the magnetization fixed layer 6 in the pinned layer 5 was examined while using a Mn-based ordered alloy to improve the temperature characteristics of the exchange coupling magnetic field.

【0108】ここでは、ガラス基板1上にTa膜からな
る下地膜2を成膜し、その上にNi−Fe膜からなる強
磁性体膜3b、Co膜からなる強磁性体膜3a、Cu膜
からなる非磁性層4、さらに、Co膜からなる第3強磁
性体膜5c、Ni−Fe膜からなる第2強磁性体膜5
b、Co膜からなる第1強磁性体膜5aを積層した後、
Pt−Mn膜からなる磁化固定層6、及びTa膜からな
る保護膜7を積層して、サンプル♯1を作成した。
Here, a base film 2 made of a Ta film is formed on a glass substrate 1, and a ferromagnetic film 3b made of a Ni—Fe film, a ferromagnetic film 3a made of a Co film, and a Cu film are formed thereon. Non-magnetic layer 4, a third ferromagnetic film 5 c made of a Co film, and a second ferromagnetic film 5 made of a Ni—Fe film
b, after laminating the first ferromagnetic film 5a made of a Co film,
A sample # 1 was prepared by stacking a magnetization fixed layer 6 made of a Pt-Mn film and a protective film 7 made of a Ta film.

【0109】このとき下地膜2から保護膜7までは一つ
の成膜装置を用いて、5×10-8Torr以下まで排気
後、一度も真空を破ることなく同一真空中で連続積層成
膜した。非磁性層4のCu膜、及び磁化固定層6のPt
−Mn膜は、DCマグネトロンスパッタ法を用いて成膜
し、下地膜2や保護膜7のTa膜、及び強磁性体膜3a
や第1、第3強磁性体膜5a,5cのCo膜はRFマグ
ネトロンスパッタ法、強磁性体膜3bや第2第強磁性体
膜5bのNi−Fe膜はRFコンベンショナルスパッタ
法をそれぞれ用いて成膜した。
At this time, from the base film 2 to the protective film 7, after evacuation was performed to 5 × 10 −8 Torr or less by using a single film forming apparatus, continuous lamination was performed in the same vacuum without breaking the vacuum. . Cu film of the nonmagnetic layer 4 and Pt of the magnetization fixed layer 6
The Mn film is formed by using a DC magnetron sputtering method, and the Ta film of the base film 2 and the protective film 7 and the ferromagnetic film 3a
The Co films of the first and third ferromagnetic films 5a and 5c are formed by RF magnetron sputtering, and the Ni—Fe films of the ferromagnetic film 3b and the second ferromagnetic film 5b are formed by RF conventional sputtering. A film was formed.

【0110】各層の膜厚は、下地膜2=50Å、強磁性
体膜3b=70Å、強磁性体膜3a=7Å、非磁性層4
=28Å、第3強磁性体膜5c=10Å、第2強磁性体
膜5b=30〜100Å、第1強磁性体膜5a=5Å、
磁化固定層6=200Åと設定した。なお、本実施例の
磁化固定層6のPt組成は約48at%一定とし、アニ
ールは300Oeの磁界を印加しながら、真空中250
℃で6時間保持して行った。
The thickness of each layer is as follows: base film 2 = 50 °, ferromagnetic film 3b = 70 °, ferromagnetic film 3a = 7 °, nonmagnetic layer 4
= 28 °, third ferromagnetic film 5c = 10 °, second ferromagnetic film 5b = 30 to 100 °, first ferromagnetic film 5a = 5 °,
The magnetization fixed layer 6 was set to 200 °. In this embodiment, the Pt composition of the magnetization fixed layer 6 is set to be constant at about 48 at%, and annealing is performed in a vacuum while applying a magnetic field of 300 Oe.
C. for 6 hours.

【0111】そして、比較のために、ピン層5における
磁化固定層6と接するCo膜からなる第1強磁性体膜5
aの膜厚を0Åとして、サンプル♯2を作成した。
For comparison, the first ferromagnetic film 5 made of a Co film in contact with the magnetization fixed layer 6 in the pinned layer 5 is used.
Sample # 2 was prepared with the thickness of a set to 0 °.

【0112】図17(b)にNi−Fe膜からなる第2
強磁性体膜5bを50Åとした場合の、Co膜からなる
第1強磁性体膜5aが有る場合(サンプル♯1)と、同
図(a)に該第1強磁性体膜5aが無い場合(サンプル
♯2)との磁化曲線を示す。図17(a)(b)より、C
o膜を磁化固定層6をなす反強磁性体に接する界面に用
いることによって、交換結合磁界が大きくなっているこ
とがわかる。
FIG. 17B shows a second structure made of a Ni—Fe film.
When the ferromagnetic film 5b is set at 50 °, there is a first ferromagnetic film 5a made of a Co film (sample # 1), and when the first ferromagnetic film 5a is not shown in FIG. (Sample # 2) shows the magnetization curve thereof. From FIGS. 17A and 17B, C
It can be seen that the exchange coupling magnetic field is increased by using the o film at the interface in contact with the antiferromagnetic material forming the magnetization fixed layer 6.

【0113】また、図18に、Co膜からなる第1強磁
性体膜5aの膜厚を0Åあるいは5Åとして2層成膜し
た磁気抵抗効果膜(サンプル♯2,♯1)の、前記条件
での磁界中熱処理後の、交換結合磁界及び保磁力の、第
2強磁性体膜5bであるNi−Fe膜厚依存性を示す。
これより、Ni−Fe膜の膜厚によらず、Co膜(第1
強磁性体膜5a)を磁化固定層6側の界面に用いること
によって、保磁力を上げることなく交換結合磁界が大き
くなっている。この時、MR比はほとんど変化しておら
ず、Co膜によるMR比への影響は見られない。
FIG. 18 shows that the first ferromagnetic film 5a made of a Co film has a thickness of 0 ° or 5 °, and the magnetoresistive effect film (samples # 2 and # 1) is formed under two conditions. 4 shows the dependence of the exchange coupling magnetic field and the coercive force on the Ni—Fe film thickness of the second ferromagnetic film 5b after the heat treatment in the magnetic field.
Thus, regardless of the thickness of the Ni—Fe film, the Co film (first
By using the ferromagnetic film 5a) at the interface on the magnetization fixed layer 6, the exchange coupling magnetic field is increased without increasing the coercive force. At this time, the MR ratio hardly changes, and the Co film does not affect the MR ratio.

【0114】なお、本実施例では、一例として磁化固定
層6の反強磁性体膜にはPt−Mn膜を用いたが、Pd
−Pt−Mn膜も同様の結果が得られた。また、磁化固
定層6と接する第1強磁性体膜5aとしても、Co−F
e等のCo系合金膜を用いても同様の結果が得られた。
In this embodiment, a Pt—Mn film is used as the antiferromagnetic film of the magnetization fixed layer 6 as an example.
Similar results were obtained with the -Pt-Mn film. Further, the first ferromagnetic film 5a in contact with the magnetization fixed layer 6 is also made of Co-F
Similar results were obtained using a Co-based alloy film such as e.

【0115】また、本実施例では、基板1とフリー層3
との間に、フリー層3を(111)面配向させ、かつ結
晶性を向上させるためにTa膜からなる下地膜2を用い
たが、下地膜2を用いない場合においても、本発明によ
る効果は同様に得ることができた。
In this embodiment, the substrate 1 and the free layer 3
The underlayer 2 made of a Ta film is used to orient the (111) plane of the free layer 3 and to improve the crystallinity between the two. However, even when the underlayer 2 is not used, the effect of the present invention can be obtained. Could be obtained as well.

【0116】〔実施例6〕本実施例では、実施例5と同
様の成膜方法で、磁化固定層6と接するCo膜からなる
第1強磁性体膜5aの膜厚を0Åから15Åまで変化さ
せた磁気抵抗効果膜を作成し、前記条件での磁界中熱処
理後の各特性のCo膜厚依存性について検討した。
[Embodiment 6] In this embodiment, the film thickness of the first ferromagnetic film 5a made of a Co film in contact with the magnetization fixed layer 6 is changed from 0 ° to 15 ° by the same film forming method as in the fifth embodiment. The magnetoresistive film thus formed was prepared, and the dependency of each characteristic on the Co film thickness after the heat treatment in the magnetic field under the above conditions was examined.

【0117】図19に、交換結合磁界及び保磁力のCo
膜厚依存性を示す、図20に、磁気抵抗変化率のCo膜
厚依存性を示す。これより、交渉結合磁界及び保磁力は
Co膜厚5Å以上で飽和状態にあることがわかる。ま
た、磁気抵抗変化率はCo膜厚に依存しないことがわか
る。したがって、磁化固定層6にMn系規則合金を用い
た場合、反強磁性体膜との界面に設けるCo膜からなる
第1強磁性体膜5aの膜厚は、5Å以上あれぱよいこと
がわかる。
FIG. 19 shows the exchange coupling magnetic field and the coercive force Co.
FIG. 20 shows the dependency of the magnetoresistance change rate on the Co film thickness. From this, it can be seen that the negotiation coupling magnetic field and the coercive force are saturated when the Co film thickness is 5 ° or more. Further, it can be seen that the magnetoresistance ratio does not depend on the Co film thickness. Therefore, when a Mn-based ordered alloy is used for the magnetization fixed layer 6, it is understood that the thickness of the first ferromagnetic film 5a made of the Co film provided at the interface with the antiferromagnetic film is preferably 5 mm or more. .

【0118】〔実施例7〕本実施例では、交換結合磁界
の磁化固定層6であるPt−Mn膜厚依存性について検
討した。検討に用いたサンプルは、実施例5と同様の成
膜方法で、ピン層5を磁化固定層6側からCo(5Å)
/Ni−Fe(50Å)/Co(5Å)として作成し、
磁化固定層6であるPt−Mn膜の膜厚を50〜500
Åまで変化させて交換結合磁界と保磁力の変化を調べ
た。
[Embodiment 7] In this embodiment, the dependence of the exchange coupling magnetic field on the thickness of the Pt-Mn film serving as the magnetization fixed layer 6 was examined. The sample used in the study was formed by depositing the pinned layer 5 from the magnetization fixed layer 6 side using Co (5 °) by the same film forming method as in the fifth embodiment.
/ Ni-Fe (50 °) / Co (5 °)
The thickness of the Pt—Mn film as the magnetization fixed layer 6 is set to 50 to 500.
The change in the exchange coupling magnetic field and the coercive force was examined by changing the value to Å.

【0119】その結果、図21に示すように、交換結合
磁界はPt−Mn膜の膜厚が150Åになるところで急
激に増大し、保磁力との差が最大になる。それ以上のP
t−Mn膜の膜厚の増大に対しては交換結合磁界、保磁
力ともに緩やかに増加している。
As a result, as shown in FIG. 21, the exchange coupling magnetic field sharply increases when the thickness of the Pt—Mn film reaches 150 °, and the difference from the coercive force becomes maximum. More P
As the thickness of the t-Mn film increases, both the exchange coupling magnetic field and the coercive force gradually increase.

【0120】これより、ピン層5における磁化固定層6
との界面に、交換結合エネルギーの大きくなる強磁性体
膜からなる第1強磁性体膜5a(Co膜)を設けること
で、十分な交換結合磁界を得るのに必要な磁化固定層6
としてのPt−Mn膜の膜厚は、従来よりも薄い150
Å以上あれば良いことがわかる。
Thus, the magnetization fixed layer 6 in the pinned layer 5
By providing a first ferromagnetic film 5a (Co film) made of a ferromagnetic film having a large exchange coupling energy at the interface with the magnetization fixed layer 6 necessary for obtaining a sufficient exchange coupling magnetic field.
The thickness of the Pt—Mn film is 150
わ か る It turns out that it is good if it is above.

【0121】〔実施例8〕本実施例では、実施例5と同
様の成膜方法で、ピン層5における非磁性層4と接する
第3強磁性体膜5c(Co膜)の膜厚を0Åから15Å
まで変化させた磁気抵抗効果膜を作成し、前記条件での
磁界中熱処理後の磁気抵抗変化率(MR比)の第3強磁
性体膜5cであるCo膜厚依存性について検討した。
[Embodiment 8] In this embodiment, the thickness of the third ferromagnetic film 5c (Co film) in contact with the nonmagnetic layer 4 in the pinned layer 5 is reduced to 0 ° by the same film forming method as in the fifth embodiment. From 15Å
The magnetoresistive effect film was fabricated with the above changes, and the dependency of the magnetoresistance ratio (MR ratio) after the heat treatment in a magnetic field under the above conditions on the Co film thickness as the third ferromagnetic film 5c was examined.

【0122】図22に、磁気抵抗変化率(MR比)のC
o膜厚依存性を示す。これより、MR比は、第3強磁性
体膜5cであるCo膜が膜厚5Åのところで大きく増加
しており、5Å以上で飽和状態にあることがわかる。し
たがって、磁化固定層6にMn系規則合金膜を用いた構
成で、非磁性層4との界面に設ける第3強磁性体膜5c
のCo膜の膜厚は、5Å以上あればよいことがわかる。
FIG. 22 shows the relationship between the magnetoresistance ratio (MR ratio) and the C ratio.
o Shows film thickness dependence. From this, it can be seen that the MR ratio of the Co film, which is the third ferromagnetic film 5c, greatly increases at a thickness of 5 °, and is saturated at 5 ° or more. Therefore, the third ferromagnetic film 5 c provided at the interface with the nonmagnetic layer 4 has a configuration in which the Mn-based ordered alloy film is used for the magnetization fixed layer 6.
It can be seen that the thickness of the Co film should be 5 ° or more.

【0123】〔実施例9〕本実施例では、実施例5と同
様の成膜方法で、Cuからなる非磁性層4の膜厚を18
〜38Åまで変化させた磁気抵抗効果膜を作成し、感度
の非磁性層4であるCu膜厚依存性を調べることによっ
てCuの最適膜厚を検討した。
[Embodiment 9] In this embodiment, the film thickness of the nonmagnetic layer 4 made of Cu is set to 18
An optimum film thickness of Cu was studied by forming a magnetoresistive film having a thickness of up to 38 ° and examining the dependence of the sensitivity on the thickness of the Cu film as the nonmagnetic layer 4.

【0124】Cu膜厚が増大すると、自由層/固定層間
のカップリングは小さくなるが、MR比の絶対値も低下
してしまう。その結果、図23に見られるように磁気抵
抗効果膜の感度はCu膜厚28〜36Åで最大値をとる
ようなCu膜厚依存性を示しており、Cu膜厚は28〜
36Åが最適であることがわかる。ここで、感度の測定
は、ある一定の磁界を印加した後で測定したMR比の変
化傾き(%/Oe)とした。
As the Cu film thickness increases, the coupling between the free layer and the fixed layer decreases, but the absolute value of the MR ratio also decreases. As a result, as shown in FIG. 23, the sensitivity of the magnetoresistive effect film shows a dependency on the Cu film thickness such that it takes a maximum value at a Cu film thickness of 28 to 36 °, and the Cu film thickness is 28 to 36 °.
It can be seen that 36 ° is optimal. Here, the sensitivity was measured as a change gradient (% / Oe) of the MR ratio measured after applying a certain magnetic field.

【0125】〔実施例10〕本実施例では、実施例5と
同様の成膜方法で、ピン層5をCo単層膜、磁化固定層
6側からそれぞれ、Ni−Fe/Coの2層積層膜、C
o/Ni−Fe/Coの3層積層膜の3種類の構成から
なる磁気抵抗効果膜を作成し、前記条件での磁界中熱処
理後の各特性について比較した。
[Embodiment 10] In this embodiment, the pinned layer 5 is a single layer of Co, and the two layers of Ni—Fe / Co are laminated from the side of the magnetization fixed layer 6 by the same film forming method as in Embodiment 5. Membrane, C
Magnetoresistance effect films having three types of three-layered films of o / Ni—Fe / Co were prepared, and respective characteristics after heat treatment in a magnetic field under the above conditions were compared.

【0126】ここで、CoとNi−Feでは飽和磁化の
値が異なり、単純に膜厚依存性を比較することができな
いため、強磁性層の総磁化量(Ms*t)に対する変化
を比較し、総磁化量がほぼ等しくなるような各構造につ
いて交換結合磁界及び保磁力とその差について表2にま
とめた。
Here, the values of the saturation magnetization are different between Co and Ni—Fe, and the dependency on the film thickness cannot be simply compared. Therefore, the change with respect to the total magnetization (Ms * t) of the ferromagnetic layer is compared. Table 2 summarizes the exchange coupling magnetic field, coercive force, and the difference between the structures in which the total magnetization amounts are substantially equal.

【0127】[0127]

【表2】 [Table 2]

【0128】この結果より、交換結合磁界、保磁力とも
にCo単層膜で構成された磁気抵抗効果膜が3種類の構
造の中で最も大きな値を示していることがわかる。しか
しながら、交換結合磁界と保磁力との差をについてみる
と、Co/Ni−Fe/Coの3層積層膜が最も大きな
値を示しており、安定した磁気抵抗効果が得られている
ことがわかる。
From these results, it can be seen that the magnetoresistive effect film composed of a single-layer Co film has the largest values of the exchange coupling magnetic field and the coercive force among the three types of structures. However, looking at the difference between the exchange coupling magnetic field and the coercive force, the Co / Ni-Fe / Co three-layer laminated film shows the largest value, indicating that a stable magnetoresistance effect is obtained. .

【0129】〔実施例11〕本実施例では、実施例1で
述べた磁気抵抗効果膜を用いて、前述の図2に示す磁気
抵抗効果素子を作製した。本磁気抵抗効果素子は、磁気
的に情報を記録している媒体に対して相対的に移動し、
磁気記録媒体から受ける磁場の大きさを上述の磁気抵抗
効果によって検出するものである。なお、磁気抵抗効果
膜の成膜方法及び膜厚は実施例1と同様とし、電極22
・22にはTa/Cu/Ta積層膜を用いた。
[Embodiment 11] In this embodiment, the magnetoresistance effect element shown in FIG. 2 was manufactured using the magnetoresistance effect film described in the first embodiment. This magnetoresistive element moves relative to the medium on which information is magnetically recorded,
The magnitude of the magnetic field received from the magnetic recording medium is detected by the above-described magnetoresistance effect. The method and thickness of the magnetoresistive film were the same as in the first embodiment.
For 22, a Ta / Cu / Ta laminated film was used.

【0130】本磁気抵抗効果素子に磁界を印加し、再生
出力を測定したところ、従来構造の磁気抵抗効果素子
(図24の磁気抵抗効果膜を備えた磁気抵抗効果素子)
に比べて磁気的な外乱に対して安定した再生出力が得ら
れた。その際得られた再生出力は、トラック幅2.5μ
m,MRhight 1.5μmで0.9〜1.0mV/μm
であった。
When a magnetic field was applied to the present magnetoresistive element and the reproduction output was measured, the magnetoresistive element having the conventional structure (the magnetoresistive element having the magnetoresistive film shown in FIG. 24) was used.
As compared with the above, a stable reproduction output with respect to magnetic disturbance was obtained. The reproduction output obtained at that time has a track width of 2.5μ.
m, MRhight 0.9 to 1.0 mV / μm at 1.5 μm
Met.

【0131】〔実施例12〕本実施例では、実施例4で
述べた磁気抵抗効果膜を用いて、前述の図3に示す磁気
抵抗効果素子を作製した。本磁気抵抗効果素子は、磁気
的に情報を記録している媒体に対して相対的に移動し、
磁気記録媒体から受ける磁場の大きさを上述の磁気抵抗
効果によって検出するものである。
[Embodiment 12] In this embodiment, the magnetoresistance effect element shown in FIG. 3 was manufactured by using the magnetoresistance effect film described in the fourth embodiment. This magnetoresistive element moves relative to the medium on which information is magnetically recorded,
The magnitude of the magnetic field received from the magnetic recording medium is detected by the above-described magnetoresistance effect.

【0132】なお、磁気抵抗効果膜の成膜方法及び膜厚
は実施例4と同様とし、電極にはTa/Cu/Ta積層
膜を用いた。また、磁区制御層25・25にはCo−P
tを用いた。
The method and thickness of the magnetoresistive film were the same as in Example 4, and a Ta / Cu / Ta laminated film was used for the electrode. The magnetic domain control layers 25 and 25 have Co-P
t was used.

【0133】本磁気抵抗効果素子に磁界を印加し、再生
出力を測定したところ、従来構造の磁気抵抗効果素子
(図24の磁気抵抗効果膜を備えた磁気抵抗効果素子)
に比べて磁気的な外乱に対して安定した再生出力が得ら
れた。その際得られた再生出力は、トラック幅2.5μ
m,MRhight1.5μmで0.9〜1.0mV/
μmであった。
When a magnetic field was applied to the present magnetoresistance effect element and the reproduction output was measured, the magnetoresistance effect element having the conventional structure (the magnetoresistance effect element having the magnetoresistance effect film shown in FIG. 24) was obtained.
As compared with the above, a stable reproduction output with respect to magnetic disturbance was obtained. The reproduction output obtained at that time has a track width of 2.5μ.
m, 0.9 to 1.0 mV / at MR height 1.5 μm
μm.

【0134】なお、以上述べた本発明の各実施例におい
ては、フリー層3は一例としてNi−Fe膜とCo膜と
の2層積層膜によって構成されているが、フリー層3が
単層膜あるいは3層以上の積層膜で構成されている場合
においても、同様の効果が得られた。
In each of the embodiments of the present invention described above, the free layer 3 is constituted by, for example, a two-layer laminated film of a Ni—Fe film and a Co film. Alternatively, the same effect was obtained in a case where the film was composed of three or more laminated films.

【0135】また、磁気抵抗効果膜の積層順序に関して
も、本発明の各実施例では基板1上にフリー層3/非磁
性層4/ピン層5/磁化固定層6の順序で磁気抵抗効果
膜を積層成膜したが、適当な下地を用いて配向を制御し
てやることで、逆の順序で積層成膜しても本実施例と同
様の効果が得られる。
In each embodiment of the present invention, the order of lamination of the magnetoresistive film is also such that the free layer 3 / nonmagnetic layer 4 / pinned layer 5 / magnetization fixed layer 6 are formed on the substrate 1 in this order. Is deposited, but by controlling the orientation using an appropriate underlayer, the same effect as in the present embodiment can be obtained even if the layers are deposited in the reverse order.

【0136】また、以上述べた本発明にかかる磁気抵抗
効果膜を作成するに際しては、磁化固定層6にMn系規
則合金膜を用いる場合には交換結合磁界を発生させるた
めに、少なくとも磁化固定層6とピン層5の積層膜を作
成した後で、磁界中熱処理を施すことが必要である。そ
の際の熱処理条件は真空中で印加磁界300Oe以上、
熱処理温度230〜270℃、保持時間6時間の条件で
ある。
In producing the above-described magnetoresistive effect film according to the present invention, when a Mn-based ordered alloy film is used for the magnetization fixed layer 6, at least the magnetization fixed layer is required to generate an exchange coupling magnetic field. It is necessary to perform a heat treatment in a magnetic field after the formation of the laminated film of the pin 6 and the pinned layer 5. The heat treatment conditions at that time were applied magnetic field of 300 Oe or more in vacuum,
The conditions are a heat treatment temperature of 230 to 270 ° C. and a holding time of 6 hours.

【0137】[0137]

【発明の効果】本発明は、以上説明したようなものであ
るから、以下に記載されるような効果を奏する。
Since the present invention has been described above, it has the following effects.

【0138】即ち、本発明の磁気抵抗効果素子は、熱的
外乱あるいは磁気的外乱による、交換結合磁界の低下や
第2磁性層の保磁力増大を抑制し、高い交換結合磁界と
優れた熱安定性を持つスピンバルブ型磁気抵抗効果膜を
備えた磁気抵抗効果素子となる。
That is, the magnetoresistance effect element of the present invention suppresses a decrease in the exchange coupling magnetic field and an increase in the coercive force of the second magnetic layer due to thermal disturbance or magnetic disturbance. A magnetoresistive element having a spin-valve magnetoresistive film having a property.

【0139】その結果、本発明にかかる磁気抵抗効果素
子を応用することで、外乱磁界に対して安定で環境によ
る磁気特性の経時変化や温度上昇による磁気特性の劣化
が少ない、磁気ヘッドや磁気センサ等を始めとする優れ
た磁気デバイスを提供することができる。
As a result, by applying the magnetoresistive effect element according to the present invention, a magnetic head or a magnetic sensor which is stable against a disturbance magnetic field and has little change in magnetic characteristics over time due to the environment and deterioration in magnetic characteristics due to temperature rise is small. It is possible to provide an excellent magnetic device including the above.

【0140】したがって、本発明にかかる磁気抵抗効果
素子を備えた本発明の磁気ヘッドは、外乱磁界に対して
安定で環境による磁気特性の経時変化や温度上昇による
磁気特性の劣化が少ない優れた磁気ヘッドとなる。
Therefore, the magnetic head of the present invention provided with the magnetoresistive effect element according to the present invention is an excellent magnetic head which is stable against a disturbance magnetic field and has little change in magnetic properties over time due to environment and deterioration of magnetic properties due to temperature rise. Become the head.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態のスピンバルブ型磁気抵
抗効果膜の断面図である。
FIG. 1 is a cross-sectional view of a spin-valve magnetoresistive film according to an embodiment of the present invention.

【図2】図1のスピンバルブ型磁気抵抗効果膜を備えた
磁気抵抗効果素子の斜視図である。
FIG. 2 is a perspective view of a magnetoresistive element including the spin-valve magnetoresistive film of FIG. 1;

【図3】図1のスピンバルブ型磁気抵抗効果膜を備えた
他の磁気抵抗効果素子の斜視図である。
FIG. 3 is a perspective view of another magnetoresistive element including the spin-valve magnetoresistive film of FIG. 1;

【図4】実施例1を示すもので、磁化固定層の反強磁性
体膜にRu−Mn膜、ピン層(単層)の強磁性体膜にC
o膜を用いた場合の、交換結合磁界及び保磁力のCo膜
厚依存性を示す特性図である。
FIG. 4 shows a first embodiment, in which a Ru—Mn film is used as an antiferromagnetic material film of a magnetization fixed layer, and a C—C film is used as a ferromagnetic material film of a pinned layer (single layer).
FIG. 9 is a characteristic diagram showing the dependence of the exchange coupling magnetic field and the coercive force on the Co film thickness when an o film is used.

【図5】実施例1を示すもので、磁化固定層の反強磁性
体膜にRu−Mn膜、ピン層(単層)の強磁性体膜にN
i−Fe膜を用いた場合の、交換結合磁界及び保磁力の
Ni−Fe膜厚依存性を示す特性図である。
FIG. 5 shows a first embodiment, in which a Ru—Mn film is used as an antiferromagnetic film of a fixed magnetization layer, and an N—N film is used as a ferromagnetic film of a pinned layer (single layer).
FIG. 4 is a characteristic diagram showing the dependency of the exchange coupling magnetic field and the coercive force on the Ni—Fe film thickness when an i-Fe film is used.

【図6】実施例1を示すもので、磁化固定層の反強磁性
体膜にRu−Mn膜、ピン層(3層積層膜)の第2強磁
性体膜にNi−Fe−Nb膜を用いた場合の、交換結合
磁界及び保磁力のNi−Fe−Nb膜厚依存性を示す特
性図である。
FIG. 6 shows Example 1, in which a Ru—Mn film is used as an antiferromagnetic film of a fixed magnetization layer, and a Ni—Fe—Nb film is used as a second ferromagnetic film of a pinned layer (three-layered film). FIG. 4 is a characteristic diagram showing the dependency of the exchange coupling magnetic field and the coercive force on the Ni—Fe—Nb film thickness when used.

【図7】実施例2を示すもので、Ni−Fe膜によって
構成されるピン層(3層積層膜)の第2強磁性体膜にN
b,Zr,Crをそれぞれ添加したときのピン層全体の
総磁化量の変化を示す特性図である。
FIG. 7 is a view showing a second embodiment, in which N is added to a second ferromagnetic film of a pinned layer (three-layer laminated film) composed of a Ni—Fe film.
FIG. 9 is a characteristic diagram showing a change in the total magnetization amount of the entire pinned layer when b, Zr, and Cr are respectively added.

【図8】実施例2を示すもので、磁化固定層の反強磁性
体膜にRu−Mn膜、ピン層(3層積層膜)の第2強磁
性体膜にNi−Fe−Nb膜を用いた場合の、交換結合
磁界及び保磁力のNb添加量依存性を示す特性図であ
る。
FIG. 8 shows a second embodiment, in which a Ru—Mn film is used as an antiferromagnetic film of a fixed magnetization layer, and a Ni—Fe—Nb film is used as a second ferromagnetic film of a pinned layer (three-layered film). FIG. 4 is a characteristic diagram showing the dependence of the exchange coupling magnetic field and the coercive force on the Nb addition amount when used.

【図9】実施例2を示すもので、磁化固定層の反強磁性
体膜にRu−Mn膜、ピン層(3層積層膜)の第2強磁
性体膜にNi−Fe−Zr膜を用いた場合の、交換結合
磁界及び保磁力のZr添加量依存性を示す特性図であ
る。
FIG. 9 shows a second embodiment, in which a Ru—Mn film is used as an antiferromagnetic film of a magnetization fixed layer, and a Ni—Fe—Zr film is used as a second ferromagnetic film of a pinned layer (three-layered film). FIG. 7 is a characteristic diagram showing the dependence of the exchange coupling magnetic field and the coercive force on the amount of added Zr when used.

【図10】実施例2を示すもので、磁化固定層の反強磁
性体膜にRu−Mn膜、ピン層(3層積層膜)の第2強
磁性体膜にNi−Fe−Cr膜を用いた場合の、交換結
合磁界及び保磁力のCr添加量依存性を示す特性図であ
る。
FIG. 10 shows a second embodiment, in which a Ru—Mn film is used as an antiferromagnetic film of a fixed magnetization layer, and a Ni—Fe—Cr film is used as a second ferromagnetic film of a pinned layer (three-layer laminated film). FIG. 6 is a characteristic diagram showing the dependence of the exchange coupling magnetic field and the coercive force on the amount of added Cr when used.

【図11】実施例3を示すもので、磁化固定層の反強磁
性体膜にPt−Mn膜、ピン層(単層)の強磁性体膜に
Ni−Fe膜を用いた場合の、交換結合磁界及び保磁力
のNi−Fe膜厚依存性を示す特性図である。
FIG. 11 shows an example 3 in which a Pt—Mn film is used as the antiferromagnetic film of the magnetization fixed layer and a Ni—Fe film is used as the ferromagnetic film of the pinned layer (single layer). FIG. 3 is a characteristic diagram showing the dependency of a coupling magnetic field and a coercive force on a Ni—Fe film thickness.

【図12】実施例3を示すもので、磁化固定層の反強磁
性体膜にPt−Mn膜、ピン層(単層)の強磁性体膜に
Co膜を用いた場合の、交換結合磁界及び保磁力のCo
膜厚依存性を示す特性図である。
FIG. 12 shows Example 3, and shows an exchange coupling magnetic field when a Pt—Mn film is used as an antiferromagnetic film of a fixed magnetization layer and a Co film is used as a ferromagnetic film of a pinned layer (single layer). And Coercivity Co
FIG. 4 is a characteristic diagram showing film thickness dependence.

【図13】実施例3を示すもので、磁化固定層の反強磁
性体膜にPt−Mn膜、ピン層(3層積層膜)にCo/
Ni−Fe/Co積層膜を用いた場合の、交換結合磁界
及び保磁力のNi−Fe膜厚依存性を示す特性図であ
る。
FIG. 13 shows a third embodiment, in which a Pt—Mn film is used as an antiferromagnetic material film of a magnetization fixed layer, and Co / is used as a pinned layer (three-layer laminated film).
FIG. 4 is a characteristic diagram showing the dependency of the exchange coupling magnetic field and the coercive force on the Ni—Fe film thickness when a Ni—Fe / Co laminated film is used.

【図14】実施例4を示すもので、磁化固定層の反強磁
性体膜にPt−Mn膜、ピン層(3層積層膜)の第2強
磁性体膜にNi−Fe−Nb膜を用いた場合の、交換結
合磁界及び保磁力のNb添加量依存性を示す特性図であ
る。
FIG. 14 shows Example 4, in which a Pt—Mn film is used as an antiferromagnetic film of a magnetization fixed layer, and a Ni—Fe—Nb film is used as a second ferromagnetic film of a pinned layer (three-layered film). FIG. 4 is a characteristic diagram showing the dependence of the exchange coupling magnetic field and the coercive force on the Nb addition amount when used.

【図15】実施例4を示すもので、磁化固定層の反強磁
性体膜にPt−Mn膜、ピン層(3層積層膜)の第2強
磁性体膜にNi−Fe−Zr膜を用いた場合の、交換結
合磁界及び保磁力のZr添加量依存性を示す特性図であ
る。
FIG. 15 shows Example 4, in which a Pt—Mn film was used as the antiferromagnetic film of the magnetization fixed layer, and a Ni—Fe—Zr film was used as the second ferromagnetic film of the pinned layer (three-layer laminated film). FIG. 7 is a characteristic diagram showing the dependence of the exchange coupling magnetic field and the coercive force on the amount of added Zr when used.

【図16】実施例4を示すもので、磁化固定層の反強磁
性体膜にPu−Mn膜、ピン層(3層積層膜)の第2強
磁性体膜にNi−Fe−Cr膜を用いた場合の、交換結
合磁界及び保磁力のCr添加量依存性を示す特性図であ
る。
FIG. 16 shows a fourth embodiment, in which a Pu—Mn film is used as an antiferromagnetic film of a magnetization fixed layer, and a Ni—Fe—Cr film is used as a second ferromagnetic film of a pinned layer (three-layered film). FIG. 6 is a characteristic diagram showing the dependence of the exchange coupling magnetic field and the coercive force on the amount of added Cr when used.

【図17】実施例5を示すもので、(a)はピン層にお
ける磁化固定層に接する側にCo膜がない場合の磁化曲
線であり、(b)はピン層における磁化固定層に接する
側にCo膜が有る場合の磁化曲線である。
17A and 17B show Example 5 in which (a) is a magnetization curve in the case where there is no Co film on the pinned layer in contact with the fixed magnetization layer, and (b) is a magnetization curve in the pinned layer in contact with the fixed magnetization layer. 7 shows a magnetization curve when a Co film exists.

【図18】実施例5を示すもので、磁化固定層の反強磁
性体膜にPt−Mn膜、ピン層に磁化固定層側からNi
−Fe/Coの積層膜、Co/Ni−Fe/Coの積層
膜を用いた2サンプルの交換結合磁界及び保磁力のNi
−Fe膜厚依存性を示す特性図である。
FIG. 18 shows a fifth embodiment, in which a Pt—Mn film is used as the antiferromagnetic film of the fixed magnetization layer, and Ni is used as the pinned layer from the magnetization fixed layer side.
-Coupling magnetic field and coercive force Ni of two samples using a laminated film of -Fe / Co and a laminated film of Co / Ni-Fe / Co
FIG. 3 is a characteristic diagram showing dependency on Fe film thickness.

【図19】実施例6を示すもので、磁化固定層の反強磁
性体膜にPt−Mn膜、ピン層を磁化固定層側からCo
/Ni−Fe/Coの積層膜とした場合の、交換結合磁
界及び保磁力の磁化固定層側の第1強磁性体膜であるC
o膜厚依存性を示す特性図である。
FIG. 19 shows a sixth embodiment, in which a Pt—Mn film is used as the antiferromagnetic film of the magnetization fixed layer, and a pin layer is made of Co from the magnetization fixed layer side.
/ Ni—Fe / Co, which is the first ferromagnetic film on the magnetization fixed layer side of the exchange coupling magnetic field and the coercive force,
6 is a characteristic diagram showing the film thickness dependence.

【図20】実施例6を示すもので、磁化固定層の反強磁
性体膜にPt−Mn膜、ピン層を磁化固定層側からCo
/Ni−Fe/Coの積層膜とした場合の、磁気抵抗変
化率(MR比)の磁化固定層側の第1強磁性体膜である
Co膜厚依存性を示す特性図である。
FIG. 20 shows Example 6, in which a Pt—Mn film is used as the antiferromagnetic film of the magnetization fixed layer, and a pin layer is made of Co from the magnetization fixed layer side.
FIG. 7 is a characteristic diagram showing the dependency of the magnetoresistance ratio (MR ratio) on the Co film thickness of the first ferromagnetic film on the magnetization fixed layer side when a / Ni—Fe / Co laminated film is used.

【図21】実施例7を示すもので、磁化固定層の反強磁
性体膜にPt−Mn膜、ピン層を磁化固定層側からCo
/Ni−Feの積層膜とした場合の、磁気抵抗変化率
(MR比)の磁化固定層であるPt−Mn膜厚依存性を
示す特性図である。
FIG. 21 shows a seventh embodiment, in which a Pt—Mn film is used as the antiferromagnetic film of the magnetization fixed layer, and a pin layer is made of Co from the magnetization fixed layer side.
FIG. 4 is a characteristic diagram showing the dependency of the magnetoresistance ratio (MR ratio) on the thickness of a Pt—Mn film serving as a magnetization fixed layer in the case of a stacked film of / Ni—Fe.

【図22】実施例8を示すもので、磁化固定層の反強磁
性体膜にPt−Mn膜、ピン層を磁化固定層側からCo
/Ni−Fe/Coの積層膜とした場合の、磁気抵抗変
化率(MR比)の非磁性層側の第3強磁性体膜であるC
o膜厚依存性を示す特性図である。
FIG. 22 shows Example 8, in which a Pt—Mn film is used as the antiferromagnetic film of the magnetization fixed layer, and a pin layer is made of Co from the magnetization fixed layer side.
/ Ni—Fe / Co, which is the third ferromagnetic film on the non-magnetic layer side of the magnetoresistance ratio (MR ratio) in the case of a laminated film of C / Ni—Fe / Co
6 is a characteristic diagram showing the film thickness dependence.

【図23】実施例9を示すもので、磁化固定層の反強磁
性体膜にPt−Mn膜、ピン層を磁化固定層側からCo
/Ni−Fe/Coの積層膜とした場合の、磁気抵抗効
果膜の感度の、非磁性層であるCu膜厚依存性を示す特
性図である。
FIG. 23 shows a ninth embodiment, in which a Pt—Mn film is used as the antiferromagnetic film of the magnetization fixed layer, and a pin layer is made of Co from the magnetization fixed layer side.
FIG. 10 is a characteristic diagram showing the dependency of the sensitivity of the magnetoresistive film in the case of a laminated film of / Ni—Fe / Co on the thickness of a Cu film as a nonmagnetic layer.

【図24】従来のスピンバルブ型磁気抵抗効果膜の断面
図である。
FIG. 24 is a sectional view of a conventional spin-valve magnetoresistive film.

【符号の説明】[Explanation of symbols]

1 基板(ガラス) 2 下地膜(下地層) 3 フリー層(第1磁性層) 4 非磁性層 5 ピン層(第2磁性層) 5a,5b,5c 強磁性体膜 6 磁化固定層 7 保護膜 21 スピンバルブ型磁気抵抗効果膜 22 電極 23,24 シールド層 25 磁区制御層 DESCRIPTION OF SYMBOLS 1 Substrate (glass) 2 Underlayer (underlayer) 3 Free layer (1st magnetic layer) 4 Nonmagnetic layer 5 Pinned layer (2nd magnetic layer) 5a, 5b, 5c Ferromagnetic film 6 Fixed magnetization layer 7 Protective film Reference Signs List 21 spin valve type magnetoresistive film 22 electrode 23, 24 shield layer 25 magnetic domain control layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 出口 治彦 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 (72)発明者 中林 敬哉 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Haruhiko 22-22, Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Inside Sharp Corporation (72) Inventor Keiya Nakabayashi 22-22, Nagaike-cho, Abeno-ku, Osaka-shi, Osaka Sharp Corporation

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】第1磁性層/非磁性層/第2磁性層/磁化
固定層の4層構造を基本構造とするスピンバルブ型磁気
抵抗効果膜を備えた磁気抵抗効果素子において、 上記磁化固定層が反強磁性体膜から構成される一方、 上記第2磁性層は、2層以上の強磁性体膜からなる多層
膜で、そのうちの磁化固定層と接する側の層が、磁化固
定層との界面で高い交換結合エネルギーが得られる強磁
性体膜からなり、かつ、該磁化固定層と接する側の層以
外の層に、飽和磁化の小さい強磁性体膜からなる層を含
むことを特徴とする磁気抵抗効果素子。
1. A magnetoresistive element provided with a spin-valve magnetoresistive film having a four-layer structure of a first magnetic layer / nonmagnetic layer / second magnetic layer / magnetization fixed layer as a basic structure. The layer is composed of an antiferromagnetic film, while the second magnetic layer is a multilayer film composed of two or more ferromagnetic films, of which a layer in contact with the magnetization fixed layer is a magnetization fixed layer. And a layer other than the layer on the side in contact with the magnetization fixed layer includes a layer made of a ferromagnetic film having a small saturation magnetization. Magnetoresistive element.
【請求項2】上記第2磁性層をなす多層膜における磁化
固定層と接する側の層以外の層が、飽和磁化の小さい強
磁性体膜からなる層と該強磁性体膜とは異なる強磁性体
膜からなる層との多層膜であることを特徴とする請求項
1に記載の磁気抵抗効果素子。
2. A layer other than a layer in contact with the fixed magnetization layer in the multilayer film constituting the second magnetic layer, a layer made of a ferromagnetic film having a small saturation magnetization and a ferromagnetic film different from the ferromagnetic film. 2. The magnetoresistive element according to claim 1, wherein the magnetoresistive element is a multilayer film including a body film.
【請求項3】上記第2磁性層をなす多層膜における非磁
性層と接する側の層が、非磁性層との間で相互拡散し難
い強磁性体膜からなることを特徴とする請求項1又は2
に記載の磁気抵抗効果素子。
3. A multi-layered film constituting the second magnetic layer, wherein a layer on the side in contact with the non-magnetic layer is made of a ferromagnetic film which does not easily diffuse with the non-magnetic layer. Or 2
3. The magnetoresistive effect element according to item 1.
【請求項4】上記第2磁性層をなす多層膜における飽和
磁化の小さい強磁性体膜からなる層の層厚が、該多層膜
におけるそれ以外の層より厚いことを特徴とする請求項
1ないし3のいずれかに記載の磁気抵抗効果素子。
4. The multi-layered film forming the second magnetic layer, wherein a layer made of a ferromagnetic film having a small saturation magnetization has a larger thickness than other layers in the multi-layered film. 3. The magnetoresistive element according to any one of 3.
【請求項5】上記磁化固定層が、Mn系反強磁性規則合
金膜からなり、かつ、少なくとも第2磁性層と磁化固定
層とを積層した後で、磁化中の熱処理が施されているこ
とを特徴とする請求項1ないし4のいずれかに記載の磁
気抵抗効果素子。
5. The method according to claim 1, wherein the magnetization fixed layer is made of a Mn-based antiferromagnetic ordered alloy film, and is heat-treated during magnetization after laminating at least the second magnetic layer and the magnetization fixed layer. The magnetoresistive element according to any one of claims 1 to 4, wherein
【請求項6】上記Mn系反強磁性規則合金膜が、PtM
n合金膜、或いはPdPtMn合金膜からなることを特
徴とする請求項5に記載の磁気抵抗効果素子。
6. The Mn-based antiferromagnetic ordered alloy film is made of PtM.
6. The magnetoresistive element according to claim 5, comprising an n alloy film or a PdPtMn alloy film.
【請求項7】上記PtMn合金膜、或いはPdPtMn
合金膜からなる層の層厚が、150Å以上であることを
特徴とする請求項6に記載の磁気抵抗効果素子。
7. The PtMn alloy film or PdPtMn
7. The magnetoresistive element according to claim 6, wherein the layer made of the alloy film has a thickness of 150 [deg.] Or more.
【請求項8】上記第2磁性層における磁化固定層と接す
る側の層が、Co膜、或いはCoFe合金膜等のCo系
合金膜からなることを特徴とする請求項5ないし7のい
ずれかに記載の磁気抵抗効果素子。
8. The method according to claim 5, wherein a layer of the second magnetic layer in contact with the magnetization fixed layer is made of a Co film or a Co-based alloy film such as a CoFe alloy film. The magnetoresistive effect element as described in the above.
【請求項9】上記Co膜、或いはCo系合金膜からなる
層の層厚が、5Å以上であることを特徴とする請求項8
に記載の磁気抵抗効果素子。
9. The method according to claim 8, wherein the thickness of the layer made of the Co film or the Co-based alloy film is 5 ° or more.
3. The magnetoresistive effect element according to item 1.
【請求項10】上記第2磁性層をなす多層膜における飽
和磁化の小さい強磁性体膜からなる層が、NiFe合金
膜からなることを特徴とする請求項5ないし9のいずれ
かに記載の磁気抵抗効果素子。
10. The magnetic layer according to claim 5, wherein the layer made of a ferromagnetic film having a small saturation magnetization in the multilayer film forming the second magnetic layer is made of a NiFe alloy film. Resistance effect element.
【請求項11】上記第2磁性層をなす多層膜における飽
和磁化の小さい強磁性体膜からなる層が、NiFe合金
膜からなる層とCo膜からなる層との多層膜を含むこと
を特徴とする請求項5ないし9のいずれかに記載の磁気
抵抗効果素子。
11. The multi-layered film forming the second magnetic layer, wherein the layer made of a ferromagnetic film having a small saturation magnetization includes a multi-layered film of a layer made of a NiFe alloy film and a layer made of a Co film. The magnetoresistive element according to any one of claims 5 to 9.
【請求項12】上記非磁性層との間で相互拡散し難い強
磁性体膜からなる層が、Co膜、或いはCoFe合金膜
等のCo系合金膜からなることを特徴とする請求項3な
いし11のいずれかに記載の磁気抵抗効果素子。
12. The method according to claim 3, wherein the layer made of a ferromagnetic film that is hardly interdiffused with the nonmagnetic layer is made of a Co film or a Co-based alloy film such as a CoFe alloy film. 12. The magnetoresistive element according to any one of items 11 to 11.
【請求項13】上記Co膜、或いはCo系合金膜からな
る層の層厚が、5Å以上であることを特徴とする請求項
12記載の磁気抵抗効果素子。
13. The magnetoresistive element according to claim 12, wherein the layer made of the Co film or the Co-based alloy film has a thickness of 5 ° or more.
【請求項14】上記非磁性層が、Cu膜からなり、層厚
が28Å〜36Åであることを特徴とする請求項4ない
し13のいずれかに記載の磁気抵抗効果素子。
14. The magnetoresistive element according to claim 4, wherein said nonmagnetic layer is made of a Cu film and has a thickness of 28 ° to 36 °.
【請求項15】上記スピンバルブ型磁気抵抗効果膜が基
板上に配向を制御して結晶性を向上させる下地層を介し
て設けられていることを特徴とする請求項1ないし14
のいずれかに記載の磁気抵抗効果素子。
15. The spin valve type magnetoresistive film according to claim 1, wherein said spin valve type magnetoresistive film is provided on a substrate via an underlayer for controlling the orientation and improving the crystallinity.
The magnetoresistance effect element according to any one of the above.
【請求項16】請求項1ないし15のいずれかに記載の
磁気抵抗効果素子と、 該磁気抵抗効果素子に電流を流す通電手段と、 磁気記録媒体に記録された磁気的な情報に応じた磁場の
大きさに対応して変化する該磁気抵抗効果素子の電気抵
抗を検出する検出手段とを備えていることを特徴とする
磁気ヘッド。
16. A magnetoresistive element according to claim 1, an energizing means for passing a current through said magnetoresistive element, and a magnetic field corresponding to magnetic information recorded on a magnetic recording medium. Detecting means for detecting the electric resistance of the magnetoresistive element, which changes in accordance with the size of the magnetic head.
JP2898598A 1998-02-10 1998-02-10 Magnetoresistive effect element and magnetic head using the same Pending JPH11232617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2898598A JPH11232617A (en) 1998-02-10 1998-02-10 Magnetoresistive effect element and magnetic head using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2898598A JPH11232617A (en) 1998-02-10 1998-02-10 Magnetoresistive effect element and magnetic head using the same

Publications (1)

Publication Number Publication Date
JPH11232617A true JPH11232617A (en) 1999-08-27

Family

ID=12263723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2898598A Pending JPH11232617A (en) 1998-02-10 1998-02-10 Magnetoresistive effect element and magnetic head using the same

Country Status (1)

Country Link
JP (1) JPH11232617A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6388847B1 (en) * 2000-02-01 2002-05-14 Headway Technologies, Inc. Specular spin valve with robust pinned layer
US6819532B2 (en) 2001-10-12 2004-11-16 Nec Corporation Magnetoresistance effect device exchange coupling film including a disordered antiferromagnetic layer, an FCC exchange coupling giving layer, and a BCC exchange coupling enhancement layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6388847B1 (en) * 2000-02-01 2002-05-14 Headway Technologies, Inc. Specular spin valve with robust pinned layer
US6819532B2 (en) 2001-10-12 2004-11-16 Nec Corporation Magnetoresistance effect device exchange coupling film including a disordered antiferromagnetic layer, an FCC exchange coupling giving layer, and a BCC exchange coupling enhancement layer

Similar Documents

Publication Publication Date Title
JP2778626B2 (en) Magnetoresistance effect film, method of manufacturing the same, and magnetoresistance effect element
JP3766565B2 (en) Magnetoresistive film and magnetoresistive head
JP4421822B2 (en) Bottom spin valve magnetoresistive sensor element and manufacturing method thereof
JP3137580B2 (en) Magnetic multilayer film, magnetoresistive element and magnetic transducer
JPH11296823A (en) Magnetoresistance element and its production as well as magnetoresistance sensor and magnetic recording system
EP0814519B1 (en) Magnetoresistive effect device, process for fabricating the same, and magnetic head produced using the same
JP4245318B2 (en) Magnetic detection element
JP4237991B2 (en) Magnetic detection element
GB2420658A (en) Spin valve magnetoresistive element
US6083632A (en) Magnetoresistive effect film and method of manufacture thereof
US6765769B2 (en) Magnetoresistive-effect thin film, magnetoresistive-effect element, and magnetoresistive-effect magnetic head
JP2925542B1 (en) Magnetoresistive film and magnetoresistive head
JPH10188235A (en) Magneto-resistive film and its production
JP4908685B2 (en) Manufacturing method of spin valve structure
KR100690492B1 (en) Magnetoresistive element, magnetic head, and magnetic memory apparatus
JP2000022239A (en) Magnetoresistive film and head
JP2924819B2 (en) Magnetoresistive film and method of manufacturing the same
JP2000215421A (en) Spin valve thin film magnetic element, thin film magnetic head, and production of spin valve thin film magnetic element
JP3137598B2 (en) Magnetoresistive element, magnetic transducer and antiferromagnetic film
JP2001307308A (en) Magnetoresistive head and information reproducing apparatus
JP4144831B2 (en) Magnetoresistive element and magnetic recording apparatus
JP3321615B2 (en) Magnetoresistive element and magnetic transducer
JP2001358381A (en) Magnetoresistive film, magnetoresistive head, and information reproducing apparatus
JP3137288B2 (en) Exchange coupling film, magnetoresistive element, magnetoresistive head, and method of manufacturing magnetoresistive element
JP3575672B2 (en) Magnetoresistance effect film and magnetoresistance effect element