[go: up one dir, main page]

JPH11232456A - Method for extracting expression from face animation - Google Patents

Method for extracting expression from face animation

Info

Publication number
JPH11232456A
JPH11232456A JP2837398A JP2837398A JPH11232456A JP H11232456 A JPH11232456 A JP H11232456A JP 2837398 A JP2837398 A JP 2837398A JP 2837398 A JP2837398 A JP 2837398A JP H11232456 A JPH11232456 A JP H11232456A
Authority
JP
Japan
Prior art keywords
expression
facial expression
hmm
facial
probability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2837398A
Other languages
Japanese (ja)
Other versions
JP2948186B2 (en
Inventor
Naohiro Otsuka
尚宏 大塚
Atsushi Otani
淳 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ATR CHINO EIZO TSUSHIN KENKYUS
ATR CHINO EIZO TSUSHIN KENKYUSHO KK
Original Assignee
ATR CHINO EIZO TSUSHIN KENKYUS
ATR CHINO EIZO TSUSHIN KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ATR CHINO EIZO TSUSHIN KENKYUS, ATR CHINO EIZO TSUSHIN KENKYUSHO KK filed Critical ATR CHINO EIZO TSUSHIN KENKYUS
Priority to JP2837398A priority Critical patent/JP2948186B2/en
Publication of JPH11232456A publication Critical patent/JPH11232456A/en
Application granted granted Critical
Publication of JP2948186B2 publication Critical patent/JP2948186B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for extracting an expression from a face animation, by which a section where the expression is extracted is extracted. SOLUTION: A velocity vector is calculated from the inputted face animation, two-dimensional Fourier transform is executed in the respective components of the velocity vector and a feature vector string corresponding to the movement of the expression is extracted in a pre-processing part S10. An expression change detecting part S20 calculates a motion vector by integrating feature vectors by time and collates it with the previously decided respective expression patterns. An extraction recognizing part 30 previously generates HMM(hidden Marcov model) at every expression category of an object to be recognized by learning and calculates the feature vector string and a probability for generation in accordance with a collation result through the use of HMM. Then, the expression category corresponding to HMM by which the calculated probability becomes the max. one is adopted as a recognition result.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は顔動画像からの表
情抽出方法に関し、特に、顔動画像中の連続する画像か
ら表情を抽出するような表情抽出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for extracting a facial expression from a face moving image, and more particularly to a method for extracting a facial expression from a continuous image in a facial moving image.

【0002】[0002]

【従来の技術】人間の表情のうち、6種類の基本表情
(怒り,嫌悪,恐れ,悲しみ,幸福,驚き)は人種・文
化によらず共通であることが知られている。基本表情
は、それぞれの表情が独立に生成される場合もあるが、
複数の表情が連続して生成される場合もある。
2. Description of the Related Art Among human facial expressions, it is known that six basic facial expressions (anger, disgust, fear, sadness, happiness, and surprise) are common regardless of race or culture. Basic facial expressions may be generated independently of each other,
A plurality of facial expressions may be continuously generated.

【0003】たとえば、ジェット機が上空を通過したと
きに、まず騒音に驚き、次に騒音の継続に対して嫌悪感
と怒りを表わし、最後に騒音が終わって幸福感を示すと
いう表情シーケンスが考えられる。このような表情シー
ケンスを正しく認識するには、表情の変化を検出し、ど
の表情に変化したかを認識する必要がある。
[0003] For example, when the jet passes over the sky, an expression sequence is conceivable in which the noise is surprised first, then the disgust and anger are expressed for the continuation of the noise, and finally the noise ends and the feeling of happiness is considered. . To correctly recognize such a facial expression sequence, it is necessary to detect a change in facial expression and recognize which facial expression has changed.

【0004】そこで、本願発明者らは、特願平9−55
886において、顔画像からの表情認識方法を提案し
た。この方法では、顔動画像から顔要素の速度ベクトル
を算出してフーリエ変換し、そのフーリエ変換係数から
特徴ベクトルを抽出し、各表情ごとに連続した出力確率
を正規分布を用いて近似した複数の隠れマルコフモデル
(HMM)を作成し、HMMによって特徴ベクトルを生
成する確率を算出し、算出したHMMに対応する表情を
認識結果とするものである。
[0004] The inventors of the present application have proposed a technique disclosed in Japanese Patent Application No. 9-55.
886 proposed a method for recognizing facial expressions from face images. In this method, a velocity vector of a face element is calculated from a face moving image, Fourier-transformed, a feature vector is extracted from the Fourier transform coefficient, and a plurality of output probabilities obtained by approximating a continuous output probability for each expression using a normal distribution. A hidden Markov model (HMM) is created, a probability of generating a feature vector by the HMM is calculated, and a facial expression corresponding to the calculated HMM is used as a recognition result.

【0005】[0005]

【発明が解決しようとする課題】上述の提案された方法
では、HMMの動作は初期状態から始まり、終了状態で
終わるため、1つの表情しか認識することができない。
また、表情筋が静止している状態は出力される特徴量の
分布が類似しているため、HMMの誤動作が発生してし
まうおそれがあった。
In the proposed method described above, the operation of the HMM starts from an initial state and ends at an end state, so that only one facial expression can be recognized.
In addition, since the distribution of the output feature amounts is similar in the state where the facial muscles are stationary, there is a possibility that a malfunction of the HMM may occur.

【0006】それゆえに、この発明の主たる目的は、H
MMにおける出力確率の値を出力確率が割付けられた状
態の生起確率に応じて制御することにより、表情が表出
された区間を抽出するような表情抽出方法を提供するこ
とである。
[0006] Therefore, the main object of the present invention is to provide H
An object of the present invention is to provide a facial expression extracting method for extracting a section in which a facial expression is expressed by controlling a value of an output probability in the MM according to an occurrence probability of a state to which the output probability is assigned.

【0007】[0007]

【課題を解決するための手段】請求項1に係る発明は、
顔動画像から個別の表情を抽出する方法であって、顔動
画像中の連続する画像から顔要素の各位置の速度ベクト
ルを算出し、算出された速度ベクトルの各成分にフーリ
エ変換を施し、そのフーリエ変換係数を特徴ベクトル列
として抽出し、抽出された特徴ベクトルを時間積分する
ことによって表情の移動ベクトルを算出し、算出された
表情の移動ベクトルと予め定められる各表情パターンと
の照合を行ない、予め各表情ごとに連続した出力確率を
正規分布を用いて近似した複数の隠れマルコフモデルを
作成し、前述の照合結果に基づいて、特徴ベクトル列が
生成される生成確率を複数の隠れマルコフモデルによっ
てそれぞれ算出し、複数の隠れマルコフモデルのうち最
大の生成確率を算出した隠れマルコフモデルに対応する
表情を認識結果として判断するものである。
The invention according to claim 1 is
A method of extracting individual facial expressions from a face moving image, calculating a velocity vector at each position of a face element from a continuous image in the face moving image, performing a Fourier transform on each component of the calculated speed vector, The Fourier transform coefficients are extracted as a feature vector sequence, and the extracted feature vectors are time-integrated to calculate a facial expression movement vector, and the calculated facial expression movement vector is collated with each predetermined facial expression pattern. A plurality of hidden Markov models, in which continuous output probabilities for each expression are previously approximated using a normal distribution, are created, and a generation probability at which a feature vector sequence is generated is calculated based on a plurality of hidden Markov models. And the facial expression corresponding to the hidden Markov model for which the maximum generation probability was calculated among the multiple hidden Markov models was recognized as the recognition result. It is intended to determine Te.

【0008】[0008]

【発明の実施の形態】図1はこの発明の一実施形態にお
ける顔動画像からの表情変化を検出して抽出し、認識す
る過程を説明するためのフローチャートである。図1に
おいて、この発明の一実施形態では、前処理部S10と
表情変化検出部S20と抽出・認識部S30とからなっ
ている。前処理部S10ではS11において入力された
顔動画像から速度ベクトルが算出され、S12において
算出された速度ベクトルの各成分に2次元フーリエ変換
が施され、S13において表情の動きに応じた特徴ベク
トル列が抽出される。
FIG. 1 is a flowchart for explaining a process of detecting, extracting and recognizing a facial expression change from a face moving image according to an embodiment of the present invention. In FIG. 1, one embodiment of the present invention includes a preprocessing unit S10, a facial expression change detection unit S20, and an extraction / recognition unit S30. In the preprocessing unit S10, a velocity vector is calculated from the face moving image input in S11, two-dimensional Fourier transform is performed on each component of the velocity vector calculated in S12, and in S13, a feature vector sequence according to the movement of the facial expression Is extracted.

【0009】一方、表情変化検出部S20では、S21
で特徴ベクトルを時間積分することによって表情の移動
ベクトルが算出され、S22で予め定められた各表情パ
ターンとの照合が行なわれる。また、抽出認識部S30
では、S31において予め認識対象の表情カテゴリごと
にHMMを学習により作成し、S32において前述のS
22で照合された結果に応じて、特徴ベクトル系列の生
成される確率がHMMを用いて算出される。そして、算
出された確率が最大となるHMMに対応する表情カテゴ
リが認識結果とされる。
On the other hand, in the facial expression change detecting section S20, S21
Then, the motion vector of the facial expression is calculated by time-integrating the feature vector in step (2), and collation with each predetermined facial expression pattern is performed in S22. In addition, the extraction recognition unit S30
In step S31, an HMM is created in advance for each facial expression category to be recognized by learning.
According to the result of the comparison in 22, the probability of generation of the feature vector sequence is calculated using the HMM. Then, the expression category corresponding to the HMM having the maximum calculated probability is set as the recognition result.

【0010】なお、以下においては、表情カテゴリとし
て怒り,嫌悪,恐れ,悲しみ,幸福,驚きの合計6種類
の基本表情を考え、無表情から各基本表情への時系列画
像の処理について説明する。
In the following, processing of a time-series image from no expression to each basic expression will be described by considering six types of basic expressions including anger, disgust, fear, sadness, happiness, and surprise as expression categories.

【0011】図2は状態がループされたLeft−to
−Right型HMMの構成を示す図である。本願発明
の一実施形態では、表情ごとに用意したHMMの状態に
より表情の種類および表情筋の状態(収縮,弛緩など)
が区別され、画像処理により得られる特徴量に基づい
て、推定結果(各状態に割付けられた確率分布)が更新
される。
FIG. 2 is a left-to-state looped state.
FIG. 3 is a diagram illustrating a configuration of a Right-type HMM. In one embodiment of the present invention, the type of facial expression and the state of the facial muscle (contraction, relaxation, etc.) are determined by the state of the HMM prepared for each facial expression.
Are distinguished, and the estimation result (probability distribution assigned to each state) is updated based on the feature amount obtained by the image processing.

【0012】各表情の時間変化は図2に示すように、L
eft−to−Right型のHMMを用いてモデル化
される。各表情は無表情S1 から表情筋の収縮S2 ,収
縮の終了S3 ,表情筋の弛緩S4 を経て無表情S5 に戻
り、このループが繰返される。各表情は状態Si から単
位時間後に状態Sj に遷移する確率αij(遷移確率)
と、状態Si にいるときにベクトルOを出力する確率b
i (O)(出力確率密度)より特徴付けられる。遷移確
率と出力確率密度は、各表情を表出する動画像を画像処
理して得られる特徴ベクトルの時系列からBaum−W
elchアルゴリズムを用いて推定される。
As shown in FIG. 2, the time change of each expression is L
It is modeled using an HMM of the left-to-right type. Shrinkage S 2 of mimic muscles each facial expression from expressionless S 1, the end of the contraction S 3, returned to expressionless S 5 through relaxation S 4 of facial muscles, this loop is repeated. The probability α ij (transition probability) that each expression transits to state S j after a unit time from state S i
If the probability that a vector O when you are in a state S i b
i (O) (output probability density). The transition probability and the output probability density are calculated from a time series of feature vectors obtained by performing image processing on a moving image expressing each expression.
Estimated using elch algorithm.

【0013】画像処理は、縦横それぞれ1/8に圧縮し
た画像を用い、時間軸上で連続する2枚の画像からオプ
ティカルフローが求められる。オプティカルフローの分
布のうち、右眼および口の周期の領域に2次元フーリエ
変換が施され、変換係数の低周波成分15個(右眼領
域:7個,口領域:8個)が特徴量とされる。
The image processing uses an image compressed to 1/8 in both the vertical and horizontal directions, and an optical flow is obtained from two continuous images on the time axis. In the distribution of the optical flow, a two-dimensional Fourier transform is applied to the period region of the right eye and the mouth. Is done.

【0014】表情抽出処理では、次の第(1)式を用い
て表情Ek における状態Si の確率Pi (k) (t)を算
出し、表情筋の収縮が終了した状態S3 の確率P3 (k)
(t)があるしきい値Pa を越えたときに表情Ek が表
出されたものと判定される。
[0014] In expression extraction process, using the following equation (1) to calculate the probability P i of the state S i at the expression E k (k) (t), the state S 3 contraction of facial muscles has been completed Probability P 3 (k)
(T) is the expression E k when exceeding the threshold value P a with is determined to have been exposed.

【0015】[0015]

【数1】 (Equation 1)

【0016】ここで、Nは状態数,aik (k) ,bi (k)
(O)は表情Ek の遷移確率,出力確率密度である。遷
移確率aik (k) は図2の矢印で結ばれた状態間のみ0で
ない値を持つ。ただし、状態S1 ,S3 ,S5 は表情筋
が静止した状態であるため、出力確率密度b1 (O),
3 (O),b5 (O)は類似した関数となり、表情変
化の微小なノイズにより状態S1 からS3 への遷移が発
生する。
Here, N is the number of states, a ik (k) , b i (k)
(O) is the transition probability expression E k, which is the output probability density. The transition probability a ik (k) has a non-zero value only between states connected by arrows in FIG. However, the states S 1 , S 3 , and S 5 are states in which the facial muscles are at rest, so that the output probability densities b 1 (O),
b 3 (O) and b 5 (O) are similar functions, and a transition from the state S 1 to the state S 3 occurs due to a slight noise of a facial expression change.

【0017】そこで、このような遷移をなくすために、
状態S3 の確率P3 (k) (t)を計算する際に、P2
(k) (t−1)の値があるしきい値Pb より小さい場合
にはP 2 (k) (t−1)を0とする。状態S5 の場合も
同様である。また、状態S5 の確率があるしきい値Pc
を越えたときは、無表情に戻ったものと見なして、状態
の確率分布を次の第(2)式のように初期化する。
Therefore, in order to eliminate such a transition,
State SThreeProbability PThree (k)When calculating (t), PTwo
(k)Threshold P with value of (t-1)bIf less than
P Two (k)(T-1) is set to 0. State SFiveAlso
The same is true. Also, state SFiveThreshold P with probabilityc
When it exceeds, it is regarded as having returned to the expressionless state
Is initialized as in the following equation (2).

【0018】[0018]

【数2】 (Equation 2)

【0019】図3は表情シーケンスを示す図であり、図
4は図3の表情シーケンスに対する表情Ek における状
態S3 の確率P3 (k) の変化と抽出された区間(矢印)
を示す。
FIG. 3 is a diagram showing an expression sequence, and FIG. 4 is a diagram showing changes in the probability P 3 (k) of the state S 3 in the expression E k with respect to the expression sequence of FIG.
Is shown.

【0020】表情シーケンスとしては、約15秒の間に
6種類の基本表情、怒り,嫌悪,恐れ,悲しみ,幸福,
驚きの順に表出されている。ここで、異なった表情の間
に無表情を経由する。図3より個別表情を精度よく抽出
していることがわかる。また、確率の変化が急峻である
ため、抽出結果のしきい値Pa に対する依存性が少な
い。
As a facial expression sequence, six types of basic facial expressions, anger, disgust, fear, sadness, happiness,
They are listed in order of surprise. Here, the different expressions go through a non-expression. From FIG. 3, it can be seen that the individual expressions are accurately extracted. Further, since the change probability is steep, less dependence of the extraction result for the threshold P a.

【0021】上述のごとく、この実施形態では、表情ご
とに用意したHMMの状態により表情の種類および表情
筋の状態(収縮,弛緩など)を区別し、画像処理により
得られる特徴量に基づいて、推定結果(各状態に割付け
られた確率分布)を更新することにより、6種類の表情
のシーケンスから個別表情を精度よく抽出できる。
As described above, in this embodiment, the type of facial expression and the state of the facial muscle (contraction, relaxation, etc.) are distinguished based on the state of the HMM prepared for each facial expression, and based on the feature amount obtained by image processing. By updating the estimation result (probability distribution assigned to each state), individual facial expressions can be accurately extracted from a sequence of six types of facial expressions.

【0022】なお、上述の実施形態では、無表情から始
まりある単一の表情が表出されて無表情に戻るというシ
ーケンスしか抽出することができず、ある表情が表出さ
れている状態から無表情を介さずに別の表情に変化する
ようなシーケンスを抽出することはできない。
In the above-described embodiment, only a sequence in which a single expression starts from an expressionless expression and returns to an expressionless expression can be extracted. It is not possible to extract a sequence that changes to another expression without passing through the expression.

【0023】そこで、次に、表情ごとに独立に構成され
たHMMを基に、任意の2つの表情の直接変化に対応す
る状態およびそれらの状態と元のHMMの表出状態との
間の遷移を付加することにより、ある表情の表出過程に
おける別の表情への変化が発生する場合にも表情を正し
く抽出できる実施形態について説明する。
Then, next, based on the HMM independently constructed for each facial expression, states corresponding to any two direct changes of the facial expressions and transitions between those states and the original HMM's expressed state A description will be given of an embodiment in which an expression can be correctly extracted even when a change to another expression occurs in the process of expressing one expression by adding.

【0024】図5はこの発明の他の実施形態のHMMの
構成を示す図である。図5において、無表情を介さない
表情変化を抽出するために、状態数Nが2の場合とし
て、1番目および2番目のカテゴリの表情が単独で表出
されるシーケンスを抽出するループHMM1 ,HMM2
と、1(2)番目のカテゴリから2(1)番目のカテゴ
リに直接変化する際に遷移する状態S12(S21)および
HMM1 ,HMM2 の(表情表出)状態S3 へのリンク
とから構成されている。
FIG. 5 is a diagram showing a configuration of an HMM according to another embodiment of the present invention. In FIG. 5, loops HMM 1 , HMM for extracting sequences in which the first and second categories of facial expressions are independently expressed assuming that the number of states N is 2 in order to extract facial expression changes that do not involve expressionlessness Two
And a link to a state S 12 (S 21 ) that transits when directly changing from the 1 (2) th category to the 2 (1) th category and a (expression of expression) state S 3 of HMM 1 and HMM 2 It is composed of

【0025】HMMのパラメータとしては、ループHM
i に関するものは単一の表情シーケンスから学習され
たパラメータが用いられる。ただし、状態S3 からは状
態S ijへのリンクが追加されているので、元の遷移確率
34を2つの状態への遷移確率a34とa3,i,j に2等分
される。状態Sijに関するパラメータは、単一の表情シ
ーケンスから学習されたパラメータから算出される。こ
れにより、すべての組合せの表情変化のシーケンスを用
いてパラメータを学習する必要がなくなる。
The parameters of the HMM include a loop HM
MiAre learned from a single facial expression sequence
Parameters are used. However, state SThreeFrom
State S ijSince the link to was added, the original transition probability
a34Is the transition probability a to two states34And a3, i, jEqually divided into two
Is done. State SijParameters for a single facial expression
Calculated from the parameters learned from the sequence. This
This allows the use of a sequence of facial expression changes for all combinations.
This eliminates the need to learn parameters.

【0026】出力確率分布はカテゴリiの筋肉伸長とカ
テゴリjの筋肉収縮とが同時に起こるものと仮定して次
の第(3)式より求められる。
The output probability distribution is obtained from the following equation (3), assuming that muscle elongation of category i and muscle contraction of category j occur simultaneously.

【0027】[0027]

【数3】 (Equation 3)

【0028】ここで、μj (i) ,σj (i) はカテゴリj
の状態Sj の出力分布密度の平均,標準偏差である。一
方、生起確率は第(4),第(5)式に示すように、筋
肉伸長と筋肉収縮状態のうち継続時間が長い方の生起確
率が選択される。
Here, μ j (i) and σ j (i) are the categories j
Are the average and standard deviation of the output distribution density in the state Sj . On the other hand, as shown in Expressions (4) and (5), the occurrence probability having the longer duration of the muscle elongation or muscle contraction state is selected.

【0029】[0029]

【数4】 (Equation 4)

【0030】図6および図7はこの発明の他の実施形態
において、“幸福”から“驚き”に変化するシーケンス
の抽出結果例を示す図である。図7は表情変化が遅い場
合であって、ループに沿って状態遷移しているのに対し
て、図6は表情変化が速い場合であって、筋肉の収縮と
伸長が同時に起こる状態を示している。
FIGS. 6 and 7 are diagrams showing an example of the result of extracting a sequence that changes from "happiness" to "surprise" in another embodiment of the present invention. FIG. 7 shows the case where the facial expression change is slow and the state transitions along the loop, while FIG. 6 shows the case where the facial expression change is fast and the muscle contraction and extension occur simultaneously. I have.

【0031】[0031]

【発明の効果】以上のように、この発明によれば、HM
Mにおける出力確率の値を出力確率が割付けられた状態
の生起確率に応じて制御することにより、表情が表出さ
れた区間を抽出することができる。
As described above, according to the present invention, the HM
By controlling the value of the output probability in M according to the occurrence probability of the state to which the output probability is assigned, it is possible to extract the section in which the facial expression is expressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施形態における顔動画像から表
情変化を検出して抽出し、認識する過程を説明するため
のフローチャートである。
FIG. 1 is a flowchart illustrating a process of detecting, extracting, and recognizing a facial expression change from a face moving image according to an embodiment of the present invention.

【図2】状態がループにされたLeft−to−Rig
ht型HMMの構成を示す図である。
FIG. 2 Left-to-Rig with state looped
It is a figure showing composition of ht type HMM.

【図3】表情シーケンスを示す図である。FIG. 3 is a diagram showing an expression sequence.

【図4】表情シーケンスに対する表情の認識結果と抽出
された区間を示す図である。
FIG. 4 is a diagram showing a recognition result of a facial expression for a facial expression sequence and an extracted section;

【図5】この発明の他の実施形態のHMMの構成を示す
図である。
FIG. 5 is a diagram showing a configuration of an HMM according to another embodiment of the present invention.

【図6】この発明の他の実施形態における表情変化が速
い場合の抽出結果例を示す図である。
FIG. 6 is a diagram illustrating an example of an extraction result when a facial expression changes rapidly according to another embodiment of the present invention.

【図7】この発明の他の実施形態における表情変化が遅
い場合の抽出結果例を示す図である。
FIG. 7 is a diagram showing an example of an extraction result when a facial expression change is slow in another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

S10 前処理部 S20 表情変化検出部 S30 抽出・認識部 S10 Preprocessing unit S20 Facial expression change detection unit S30 Extraction / recognition unit

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年3月11日[Submission date] March 11, 1999

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0007】[0007]

【課題を解決するための手段】請求項1に係る発明は、
顔動画像から個別の表情を抽出する方法であって、顔動
画像中の連続する画像から顔要素の各位置の速度ベクト
ルを算出し、算出された速度ベクトルの各成分にフーリ
エ変換を施し、そのフーリエ変換係数を表情の動きに応
じた特徴ベクトル列として抽出し、抽出された特徴ベク
トルを時間積分することによって表情の移動ベクトルを
算出し、算出された表情の移動ベクトルと予め定められ
る各表情パターンとの照合を行ない、第3のステップと
並行して処理され、予め各表情ごとに連続した出力確率
を正規分布を用いて近似した複数の隠れマルコフモデル
を作成し、前述の照合結果に基づいて、特徴ベクトル列
が生成される生成確率を複数の隠れマルコフモデルによ
ってそれぞれ算出し、複数の隠れマルコフモデルのうち
最大の生成確率を算出した隠れマルコフモデルに対応す
る表情を認識結果として判断するものである。
The invention according to claim 1 is
A method of extracting individual facial expressions from a face moving image, calculating a velocity vector at each position of a face element from a continuous image in the face moving image, performing a Fourier transform on each component of the calculated velocity vector, The Fourier transform coefficients are applied to the movement of the facial expression.
Extracted as Flip feature vector sequence, extracted feature vector to calculate the motion vector of the facial expression by integrating the time, performs collation between the facial expression to a predetermined pattern and movement vector of the calculated facial expression, third Steps and
It is processed in parallel and creates a plurality of hidden Markov models in which continuous output probabilities for each facial expression are approximated using a normal distribution in advance, and based on the above-described matching results, a generation probability at which a feature vector sequence is generated is calculated. The expression is calculated using a plurality of hidden Markov models, and an expression corresponding to the hidden Markov model for which the maximum generation probability is calculated among the plurality of hidden Markov models is determined as a recognition result.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 顔動画像から個別の表情を抽出する方法
であって、 前記顔動画像中の連続する画像から顔要素の各位置の速
度ベクトルを算出する第1のステップ、 前記算出された速度ベクトルの各成分にフーリエ変換を
施し、そのフーリエ変換係数を特徴ベクトル列として抽
出する第2のステップ、 前記抽出された特徴ベクトルを時間積分することによっ
て表情の移動ベクトルを算出する第3のステップ、 前記算出された表情の移動ベクトルと予め定められる各
表情パターンとの照合を行なう第4のステップ、 予め各表情ごとに、連続した出力確率を正規分布を用い
て近似した複数の隠れマルコフモデルを作成する第5の
ステップ、 前記第4のステップでの照合結果に基づいて、前記特徴
ベクトル列が生成される生成確率を、前記複数の隠れマ
ルコフモデルによってそれぞれ算出する第6のステッ
プ、および前記複数の隠れマルコフモデルのうち最大の
生成確率を算出した隠れマルコフモデルに対応する表情
を認識結果として判断する第7のステップを備えた、顔
動画像からの表情抽出方法。
1. A method for extracting individual facial expressions from a face moving image, comprising: a first step of calculating a velocity vector of each position of a face element from a continuous image in the face moving image; A second step of performing a Fourier transform on each component of the velocity vector and extracting the Fourier transform coefficients as a feature vector sequence, and a third step of calculating a movement vector of an expression by time-integrating the extracted feature vector. A fourth step of comparing the calculated movement vector of the facial expression with each predetermined facial expression pattern; and for each facial expression, a plurality of hidden Markov models whose continuous output probabilities are approximated using a normal distribution. A fifth step of creating, based on the result of the matching in the fourth step, the generation probabilities that the feature vector sequence is generated And a seventh step of determining as a recognition result a facial expression corresponding to a hidden Markov model for which a maximum generation probability has been calculated among the plurality of hidden Markov models, as a recognition result. Expression extraction method from moving images.
JP2837398A 1998-02-10 1998-02-10 Expression extraction method from facial video Expired - Fee Related JP2948186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2837398A JP2948186B2 (en) 1998-02-10 1998-02-10 Expression extraction method from facial video

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2837398A JP2948186B2 (en) 1998-02-10 1998-02-10 Expression extraction method from facial video

Publications (2)

Publication Number Publication Date
JPH11232456A true JPH11232456A (en) 1999-08-27
JP2948186B2 JP2948186B2 (en) 1999-09-13

Family

ID=12246836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2837398A Expired - Fee Related JP2948186B2 (en) 1998-02-10 1998-02-10 Expression extraction method from facial video

Country Status (1)

Country Link
JP (1) JP2948186B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010044393A (en) * 2001-02-16 2001-06-05 김영익 Pass and security method using human face information
KR100345245B1 (en) * 1999-09-22 2002-07-20 주식회사 드림미르 Method of Processing Face Recognition Robust to Illumination Change, Facial Expression or Eyewear
JP2002352191A (en) * 2001-02-09 2002-12-06 Matsushita Electric Ind Co Ltd Printing control interface system and method having handwriting discrimination capability
WO2005114576A1 (en) * 2004-05-21 2005-12-01 Asahi Kasei Kabushiki Kaisha Operation content judgment device
KR100597152B1 (en) * 2001-08-03 2006-07-05 닛본 덴끼 가부시끼가이샤 User authentication method and user authentication device
KR100702226B1 (en) 2004-11-23 2007-04-03 홍기천 Face detection and authentication device and method
JP2008204479A (en) * 2001-12-03 2008-09-04 Microsoft Corp Method for automatic detection and tracking of multiple individuals using multiple cues and computer readable storage medium
JP2011154665A (en) * 2010-01-25 2011-08-11 Opn Corp Expression change analysis system
KR101309954B1 (en) * 2012-07-20 2013-09-17 고려대학교 산학협력단 Apparatus and method for recognizing conversational expression, recording medium thereof
US8780221B2 (en) 2008-04-09 2014-07-15 Canon Kabushiki Kaisha Facial expression recognition apparatus, image sensing apparatus, facial expression recognition method, and computer-readable storage medium

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100345245B1 (en) * 1999-09-22 2002-07-20 주식회사 드림미르 Method of Processing Face Recognition Robust to Illumination Change, Facial Expression or Eyewear
JP2002352191A (en) * 2001-02-09 2002-12-06 Matsushita Electric Ind Co Ltd Printing control interface system and method having handwriting discrimination capability
KR20010044393A (en) * 2001-02-16 2001-06-05 김영익 Pass and security method using human face information
KR100597152B1 (en) * 2001-08-03 2006-07-05 닛본 덴끼 가부시끼가이샤 User authentication method and user authentication device
JP2008204479A (en) * 2001-12-03 2008-09-04 Microsoft Corp Method for automatic detection and tracking of multiple individuals using multiple cues and computer readable storage medium
WO2005114576A1 (en) * 2004-05-21 2005-12-01 Asahi Kasei Kabushiki Kaisha Operation content judgment device
US7894637B2 (en) 2004-05-21 2011-02-22 Asahi Kasei Corporation Device, program, and method for classifying behavior content of an object person
KR100702226B1 (en) 2004-11-23 2007-04-03 홍기천 Face detection and authentication device and method
US8780221B2 (en) 2008-04-09 2014-07-15 Canon Kabushiki Kaisha Facial expression recognition apparatus, image sensing apparatus, facial expression recognition method, and computer-readable storage medium
US9147107B2 (en) 2008-04-09 2015-09-29 Canon Kabushiki Kaisha Facial expression recognition apparatus, image sensing apparatus, facial expression recognition method, and computer-readable storage medium
US9258482B2 (en) 2008-04-09 2016-02-09 Canon Kabushiki Kaisha Facial expression recognition apparatus, image sensing apparatus, facial expression recognition method, and computer-readable storage medium
JP2011154665A (en) * 2010-01-25 2011-08-11 Opn Corp Expression change analysis system
KR101309954B1 (en) * 2012-07-20 2013-09-17 고려대학교 산학협력단 Apparatus and method for recognizing conversational expression, recording medium thereof

Also Published As

Publication number Publication date
JP2948186B2 (en) 1999-09-13

Similar Documents

Publication Publication Date Title
CN112215280B (en) Small sample image classification method based on meta-backbone network
Grobel et al. Isolated sign language recognition using hidden Markov models
Bauer et al. Video-based sign recognition using self-organizing subunits
Bowden Learning statistical models of human motion
JP2005157679A (en) Object detecting device and method and group learning device and method
Dandıl et al. Real-time facial emotion classification using deep learning
CN113994341A (en) Facial behavior analysis
JP2948186B2 (en) Expression extraction method from facial video
Abdullahi et al. IDF-sign: Addressing inconsistent depth features for dynamic sign word recognition
Pei et al. Multimodal dimensional affect recognition using deep bidirectional long short-term memory recurrent neural networks
Chang et al. Automated facial expression recognition system using neural networks
Foo et al. Recognition of visual speech elements using adaptively boosted hidden Markov models
Yoon et al. Hybrid approaches to frontal view face recognition using the hidden Markov model and neural network
JP7073171B2 (en) Learning equipment, learning methods and programs
Voß et al. Augmented Co-Speech Gesture Generation: Including Form and Meaning Features to Guide Learning-Based Gesture Synthesis
Egges et al. Emotional communication with virtual humans
Bettinger et al. Modelling Facial Behaviours.
CN115349142A (en) Image processing apparatus, image processing method, and computer-readable storage medium
CN115063606B (en) Interactive training method and device based on multi-modal data
Ong et al. Deciphering gestures with layered meanings and signer adaptation
CN111027215A (en) Character training system and method for virtual human
Mohsin Zero-Shot Learning via GANs and SAGANs: A Performance Analysis
CN114358084A (en) A Tactile Material Classification Method Based on DDQN and Generative Adversarial Networks
Caridakis et al. Automatic sign language recognition: vision based feature extraction and probabilistic recognition scheme from multiple cues
Nouisser et al. Deep learning based mobilenet and multi-head attention model for facial expression recognition.

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990601

LAPS Cancellation because of no payment of annual fees