JPH11231005A - Surface charge measuring device - Google Patents
Surface charge measuring deviceInfo
- Publication number
- JPH11231005A JPH11231005A JP3577298A JP3577298A JPH11231005A JP H11231005 A JPH11231005 A JP H11231005A JP 3577298 A JP3577298 A JP 3577298A JP 3577298 A JP3577298 A JP 3577298A JP H11231005 A JPH11231005 A JP H11231005A
- Authority
- JP
- Japan
- Prior art keywords
- surface charge
- optical element
- measured
- measurement
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 92
- 230000005693 optoelectronics Effects 0.000 claims abstract description 22
- 238000005259 measurement Methods 0.000 claims description 62
- 230000000694 effects Effects 0.000 claims description 19
- 230000010287 polarization Effects 0.000 claims description 17
- 238000012937 correction Methods 0.000 claims description 12
- 229910013641 LiNbO 3 Inorganic materials 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 claims description 2
- 230000035945 sensitivity Effects 0.000 abstract description 29
- 239000013078 crystal Substances 0.000 abstract description 28
- 230000005684 electric field Effects 0.000 abstract description 28
- 230000008859 change Effects 0.000 abstract description 6
- 230000007480 spreading Effects 0.000 abstract description 4
- 238000012545 processing Methods 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 10
- 238000001514 detection method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 5
- 230000005697 Pockels effect Effects 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000010408 sweeping Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Landscapes
- Tests Of Electronic Circuits (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高分解能及び高感
度な表面電荷計測を高精度に行うことができる表面電荷
計測装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface charge measuring device capable of measuring a surface charge with high resolution and sensitivity with high accuracy.
【0002】[0002]
【従来の技術】一般に、製版装置、複写装置、レーザプ
ロッタ等の各種の画像記録用途においては、電子写真プ
ロセスを利用して画像記録が行われている。電子写真プ
ロセスによる画像記録は、例えば、光半導体層と導電性
支持体層とを有する電子写真感光体を用い、この電子写
真感光体の光半導体層をコロナ放電等によって一様帯電
した後、光ビーム走査や原稿からの反射光照射等によっ
て画像露光を行うことで光半導体層上の露光部分の帯電
電荷を逃がして静電潜像を形成し、この静電潜像と逆極
性に帯電したトナーによって現像を行い、静電潜像を可
視像化することになる。2. Description of the Related Art Generally, in various image recording applications such as a plate making apparatus, a copying apparatus, a laser plotter, etc., image recording is performed by using an electrophotographic process. Image recording by an electrophotographic process uses, for example, an electrophotographic photosensitive member having an optical semiconductor layer and a conductive support layer, and after uniformly charging the optical semiconductor layer of the electrophotographic photosensitive member by corona discharge or the like, the light By performing image exposure by beam scanning or irradiation of reflected light from the original, the charged charges on the exposed portion on the optical semiconductor layer are released to form an electrostatic latent image, and the toner is charged to the opposite polarity to the electrostatic latent image. To develop the electrostatic latent image into a visible image.
【0003】このような電子写真プロセスの画像記録に
おいて、その画像形成の基礎となるのは静電潜像であ
り、この静電潜像=表面電荷の状態を知ることは電子写
真感光体や印写プロセス(帯電、露光、現像)の個々の
評価や解析、さらには、記録システム全体の評価や解析
を行う上で重要である。特に、近年では電子写真プロセ
スの画像記録でも高画質化が進んでおり、高精細(高分
解能)での静電潜像の測定を行う必要が高まっている。In the image recording of such an electrophotographic process, the basis of the image formation is an electrostatic latent image, and knowing the state of the electrostatic latent image = surface charge is an electrophotographic photosensitive member or a mark. This is important in performing individual evaluation and analysis of the copying process (charging, exposure, development), and further in evaluating and analyzing the entire recording system. In particular, in recent years, image quality has been improved even in image recording in an electrophotographic process, and the need to measure an electrostatic latent image with high definition (high resolution) has increased.
【0004】電子写真感光体上における静電潜像に限ら
ず、沿面放電が生じた気体絶縁ケーブルの高分子スペー
サや、帯電体の表面電荷の計測等に関しても同様であ
る。The same applies to the measurement of not only the electrostatic latent image on the electrophotographic photosensitive member but also the polymer spacer of the gas-insulated cable in which the creeping discharge has occurred, the measurement of the surface charge of the charged member, and the like.
【0005】従来、このような静電潜像等の表面電荷分
布の計測は、誘導電流による表面電位計を用いることに
より行われている。ところが、このような表面電位計に
よる場合、分解能が低く、1〜2mm四方の範囲の全面
の電位しか計測することができない。特に、光ビーム走
査による画像記録では、1走査線(1ラスタ)は通常1
0〜100μm程度であるため、このような微小部分に
おける表面電位分布の計測が必要となるが、前述の如き
表面電位計ではこのような計測を行うことはできず、十
分な計測結果を得ることはできない。Conventionally, such surface charge distribution of an electrostatic latent image or the like has been measured by using a surface electrometer using an induced current. However, in the case of using such a surface voltmeter, the resolution is low, and only the potential of the entire surface in a range of 1 to 2 mm square can be measured. In particular, in image recording by light beam scanning, one scanning line (one raster) is usually one.
Since the thickness is about 0 to 100 μm, it is necessary to measure the surface potential distribution in such a minute portion, but such a surface potential meter cannot perform such a measurement, and a sufficient measurement result is obtained. Can not.
【0006】また、より高精細な表面電荷分布の測定方
法として電子ビームを利用する方法も知られている。し
かし、この方法は空気中で測定できない上に、静電潜像
の破壊検査となってしまう欠点がある。加えて、電子写
真感光体の帯電から測定までの時間が長く、酸化亜鉛や
有機感光物を用いた暗減衰の比較的大きな電子写真感光
体では測定が困難といえる。[0006] A method using an electron beam is also known as a method of measuring the surface charge distribution with higher definition. However, this method has a drawback that it cannot be measured in the air and that it is a destructive inspection of the electrostatic latent image. In addition, it takes a long time from charging of the electrophotographic photosensitive member to measurement, and it can be said that measurement is difficult with an electrophotographic photosensitive member having relatively large dark decay using zinc oxide or an organic photosensitive material.
【0007】このような問題点に対して、高分解能かつ
高精度な表面電位の計測が可能な装置として、電気光学
効果を有する光学素子を利用した表面電荷計測装置が開
発され、本発明者らにより報告されている。例えば、
「電気光学効果を利用した誘電体表面電荷分布の測定に
関する研究」武蔵工業大学論文(平成6年)や、文献
“J.Appl.Phys.76(6),15 September 1994”中
の“ac surface dischargeon dielectric material obs
erved by advanced Pockels effect technique”によ
れば、ポッケルス効果(1次の電気光学効果)を示すB
12SiO20(BSO)単結晶を用い、針対平板電極間の
沿面放電によって誘電体フィルム上に発生する残留電荷
分布の時間変化を計るようにしている。To solve such problems, a surface charge measuring device using an optical element having an electro-optical effect has been developed as a device capable of measuring a surface potential with high resolution and high accuracy. Has been reported by For example,
"Study on measurement of dielectric surface charge distribution using electro-optic effect", Musashi Institute of Technology paper (1994) and "ac surface" in the document "J. Appl. Phys. 76 (6), 15 September 1994". dischargeon dielectric material obs
erved by advanced Pockels effect technique ", which indicates the Pockels effect (first-order electro-optic effect).
Using a 12 SiO 20 (BSO) single crystal, the time change of the residual charge distribution generated on the dielectric film due to the creeping discharge between the needle and the plate electrode is measured.
【0008】また、文献“J.Phys.D:Appl.Phy
s.27(1994)1646-1652.Printedin the UK”中の
“Highly sensitive measurement of surface charge
distribution using the Pockels effect and an imag
e lock-in amplifier” によれば、BSO単結晶を用い
て2次元光位相変調器を構成し、光検出用カメラのフレ
ーム周期に同期させて測定面全体の光位相を変調し、検
出画像を位相検波して、測定された電荷図のS/Nを向
上させることで、表面電荷分布を計るようにしている。[0008] Further, the document "J. Phys. D: Appl.
s. 27 (1994) 1646-1652. “Highly sensitive measurement of surface charge” in “Printedin the UK”
distribution using the Pockels effect and an imag
According to the “e lock-in amplifier”, a two-dimensional optical phase modulator is constructed using BSO single crystal, and the optical phase of the entire measurement surface is modulated in synchronization with the frame period of the photodetection camera, and the detected image is converted. The phase charge is measured to improve the S / N of the measured charge diagram, thereby measuring the surface charge distribution.
【0009】これらの表面電荷計測装置は、被測定物上
の表面電荷から発生した電界を電気光学効果を有する結
晶内に導き、その表面電荷分布に対応した電位を電気光
学結晶に誘起させることにより、この結晶を通過する光
ビームの偏光や位相、屈折率を変化させ、これを検出す
ることにより被測定物の表面電荷分布を計測するもので
ある。このような電気光学効果を利用した表面電荷計測
装置では、電気光学効果を示す結晶の厚さや被測定物の
厚さによって表面電位計測の分解能を調整することがで
き、百μm四方程度の分解能での表面電位の計測が可能
となっている。These surface charge measuring devices introduce an electric field generated from a surface charge on an object to be measured into a crystal having an electro-optic effect, and induces a potential corresponding to the surface charge distribution in the electro-optic crystal. The polarization, phase, and refractive index of the light beam passing through the crystal are changed, and the change is detected to measure the surface charge distribution of the measured object. In such a surface charge measuring device utilizing the electro-optic effect, the resolution of the surface potential measurement can be adjusted by the thickness of the crystal exhibiting the electro-optic effect and the thickness of the object to be measured, and the resolution is about 100 μm square. Of the surface potential can be measured.
【0010】[0010]
【発明が解決しようとする課題】ところが、このような
電気光学効果を利用した表面電荷計測装置の場合、結晶
を薄膜化することにより分解能を高くすることはできる
が、それに応じて機械的強度が弱くなり、測定できる有
効面積も小さくなり、表面電荷計測の感度も低下してし
まう。即ち、全てを両立させて高分解能かつ高感度な表
面電荷計測を実現するのが困難である。However, in the case of such a surface charge measuring device utilizing the electro-optical effect, the resolution can be increased by making the crystal thinner, but the mechanical strength is correspondingly increased. As a result, the effective area that can be measured becomes small, and the sensitivity of the surface charge measurement also decreases. In other words, it is difficult to realize high-resolution and high-sensitivity surface charge measurement by making all of them compatible.
【0011】また、このような電気光学効果を利用した
表面電荷計測装置の場合、高分解能で表面電荷を計測す
るためには、被測定物上の電荷から発生した電気力線
は、下部電極に対して垂直に向かうのが望ましい。しか
し、実際の電気光学結晶を用いた表面電荷計測において
は、ある程度の結晶の厚さが必要であり、電気力線が下
部電極に到達するまでの間に広がってしまい、全体的に
空間分解能の悪い電荷潜像となってしまう。さらに、電
気光学結晶の誘電率は大きいために、入射した電気力線
は結晶界面で面に沿う方向に屈折し、結晶で検出される
電界分布に広がりを生ずるので表面電荷分布の計測結果
に誤差を生じ、空間分解能を低下させる結果となってし
まう。In the case of such a surface charge measuring device utilizing the electro-optical effect, in order to measure the surface charge with high resolution, the electric flux lines generated from the charge on the object to be measured are applied to the lower electrode. It is desirable to move vertically. However, in actual surface charge measurement using an electro-optic crystal, a certain thickness of the crystal is required, and the lines of electric force spread before reaching the lower electrode. The result is a bad charge latent image. Furthermore, since the dielectric constant of the electro-optic crystal is large, the incident lines of electric force are refracted in the direction along the plane at the crystal interface, causing the electric field distribution detected by the crystal to spread, resulting in errors in the measurement results of the surface charge distribution. And the spatial resolution is reduced.
【0012】そこで、本発明は、従来の誘導電流等を利
用した表面電荷計測装置に比べて極めて高分解能、高感
度及び高精度な計測が可能な上に、電気光学効果を有す
る光学素子を利用した改良された表面電荷計測装置をベ
ースとして分解能、感度及び精度を共に両立させて良好
なる表面電荷の計測を実現できる表面電荷計測装置を提
供することを目的とする。Accordingly, the present invention utilizes an optical element having an electro-optic effect in addition to being capable of extremely high resolution, high sensitivity and high precision measurement as compared with a conventional surface charge measuring device utilizing an induced current or the like. It is an object of the present invention to provide a surface charge measuring device capable of realizing good surface charge measurement while satisfying both resolution, sensitivity and accuracy based on the improved surface charge measuring device.
【0013】[0013]
【課題を解決するための手段】請求項1記載の発明は、
横型の電気光学効果を有する光学素子と、この光学素子
に電気的に接触する少なくとも1つの電極と、前記光学
素子に入射する光を射出する光源と、前記光学素子より
射出される光の偏光状態を計測する計測手段とを備え
る。According to the first aspect of the present invention,
An optical element having a horizontal electro-optic effect, at least one electrode electrically contacting the optical element, a light source emitting light incident on the optical element, and a polarization state of light emitted from the optical element And measuring means for measuring.
【0014】従って、光学結晶等の横型の電気光学効果
を有する光学素子に被測定物である帯電体の被検出部分
に応じた電位を誘起させ、この光学素子から射出される
光ビームの偏光、位相、屈折率等の変化を計測すること
により、帯電体の表面電位を計測する。ここに、横型の
電気光学効果を有する光学素子を利用することで、結晶
内の横方向に広がる電界を検出するので、誘電率の大き
い結晶では入射した電界が面に沿った方向を向くので、
極めて高分解能、高感度及び高精度に表面電荷の計測を
行える。Accordingly, an electric potential corresponding to the detected portion of the charged body as the object to be measured is induced in an optical element such as an optical crystal having a horizontal electro-optical effect, and the polarization of the light beam emitted from the optical element is changed. The surface potential of the charged body is measured by measuring changes in phase, refractive index, and the like. Here, by using an optical element having a horizontal electro-optic effect, an electric field spreading in the lateral direction in the crystal is detected.In a crystal having a large dielectric constant, the incident electric field is directed in a direction along the plane.
Surface charge can be measured with extremely high resolution, high sensitivity and high precision.
【0015】請求項2記載の発明は、請求項1記載の表
面電荷計測装置に加えて、計測手段により測定された偏
光状態より得られる被測定物の表面電荷分布をフーリエ
変換し、フーリエ変換した結果を計測系の有する計測領
域の広がり関数により補正した後、逆フーリエ変換して
表面電荷分布の計測結果とする演算手段を備える。According to a second aspect of the present invention, in addition to the surface charge measuring device of the first aspect, the surface charge distribution of the object to be measured obtained from the polarization state measured by the measuring means is subjected to Fourier transform and Fourier transform. After the result is corrected by the spread function of the measurement area of the measurement system, an operation unit is provided which performs an inverse Fourier transform to obtain a measurement result of the surface charge distribution.
【0016】計測手段により計測された信号は、高感度
かつ高分解能ではあるが、横方向の電界を表しているた
め、その計測結果から電荷分布を想像するには時間を要
し、また、電気光学効果を示す結晶には厚みがあるた
め、検出する電界分布に広がりを生じて、表面電荷分布
の計測結果にボケを生じ、分解能や感度が低下する懸念
がある。この点、本発明では、電界の広がりを関数化し
て、この関数及びフーリエ変換を利用して計測結果の補
正を行うので、電場の広がりによるボケのない、高分解
能で高感度かつ高精度な表面電荷分布の計測を行える。Although the signal measured by the measuring means has a high sensitivity and a high resolution, it represents a horizontal electric field. Therefore, it takes time to imagine the charge distribution from the measurement result. Since the crystal exhibiting the optical effect has a thickness, the distribution of the electric field to be detected is widened, and the measurement result of the surface charge distribution is blurred, and there is a concern that the resolution and sensitivity may be reduced. In this regard, in the present invention, the spread of the electric field is converted into a function, and the measurement result is corrected using this function and the Fourier transform. Therefore, the surface is not blurred due to the spread of the electric field, and has high resolution, high sensitivity, and high accuracy. The charge distribution can be measured.
【0017】請求項3記載の発明は、横型の電気光学効
果を有する光学素子と、この光学素子に電気的に接触す
る少なくとも1つの電極と、前記光学素子に入射する光
を射出する光源と、この光源から射出されて前記光学素
子に入射する光を2次元的に広げる光学系と、前記光学
素子より射出される光の偏光状態を2次元的に計測する
計測手段とを備える。According to a third aspect of the present invention, there is provided an optical element having a horizontal electro-optical effect, at least one electrode electrically contacting the optical element, and a light source for emitting light incident on the optical element. An optical system for two-dimensionally expanding light emitted from the light source and incident on the optical element, and measuring means for two-dimensionally measuring a polarization state of light emitted from the optical element are provided.
【0018】従って、請求項1記載の発明と同様である
が、特に、計測手段による検出信号が2次元的な広がり
を持つ画像であるため、電荷分布を観測するために1点
毎の測定を繰返す必要がなく、分布状態を一目で把握し
得ることになり、また、ビームを掃引する必要がないの
で、1画面を得る時間が短くて済み、かつ、連続的に観
測を行えるので、電荷の保持状態など、表面電荷分布の
経時的な変化を観測することもできる。Therefore, it is the same as the first aspect of the present invention, but in particular, since the detection signal by the measuring means is an image having a two-dimensional spread, measurement for each point is performed in order to observe the charge distribution. There is no need to repeat, and the distribution state can be grasped at a glance. Moreover, since there is no need to sweep the beam, the time required to obtain one screen is short, and continuous observation can be performed. It is also possible to observe a change over time in the surface charge distribution, such as the holding state.
【0019】請求項4記載の発明は、請求項2記載の表
面電荷計測装置に加えて、計測手段により測定された2
次元的な偏光状態より得られる被測定物の表面電荷分布
を2次元的にフーリエ変換し、フーリエ変換した結果を
計測系の有する計測領域の広がり関数により補正した
後、2次元的に逆フーリエ変換して表面電荷分布の計測
結果とする演算手段を備える。According to a fourth aspect of the present invention, in addition to the surface charge measuring device according to the second aspect, the second aspect of the present invention is a device for measuring a surface charge measured by a measuring means.
A two-dimensional Fourier transform is performed on the surface charge distribution of the measured object obtained from the two-dimensional polarization state, and the result of the Fourier transform is corrected by a spread function of a measurement area of the measurement system, and then a two-dimensional inverse Fourier transform is performed. And calculating means for obtaining the measurement result of the surface charge distribution.
【0020】従って、請求項2記載の発明と同様であ
り、電界の広がりを関数化して、この関数及び2次元的
なフーリエ変換を利用して計測結果の補正を行うので、
電場の広がりによるボケのない、高分解能で高感度かつ
高精度な表面電荷分布の計測を行える。Therefore, as in the second aspect of the present invention, the spread of the electric field is converted into a function, and the measurement result is corrected using this function and the two-dimensional Fourier transform.
It is possible to measure the surface charge distribution with high resolution, high sensitivity and high accuracy without blurring due to the spread of the electric field.
【0021】請求項5記載の発明は、請求項1,2,3
又は4記載の表面電荷計測装置における横型の電気光学
効果を有する光学素子としてLiNbO3 を用いた。The fifth aspect of the present invention provides the first, second, and third aspects.
Alternatively, LiNbO 3 was used as an optical element having a horizontal electro-optical effect in the surface charge measuring device described in 4.
【0022】従って、LiNbO3 によれば特に横型の
非常に大きな電気光学効果を有するので、一層の高分解
能、高感度及び高精度化を図る上で最適となる。Therefore, LiNbO 3 has a very large electro-optic effect, especially of the horizontal type, and is most suitable for achieving higher resolution, higher sensitivity and higher precision.
【0023】請求項6記載の発明は、請求項1,2,
3,4又は5記載の表面電荷計測装置光学素子より射出
される光が、光学素子と被測定物との界面からの反射光
である。The invention according to claim 6 is the invention according to claims 1, 2, and
The light emitted from the surface charge measuring device optical element described in 3, 4 or 5 is light reflected from the interface between the optical element and the object to be measured.
【0024】従って、検出光は電気光学効果を有する光
学素子を往復で2回透過した光となるので、透過光に対
して2倍の感度が得られ、高感度及び高精度にて表面電
荷の計測を行える上に、感度が高い分、電気光学効果を
有する光学素子を薄くできるので、高分解能での表面電
荷の計測を行うために都合がよい。また、被測定物自身
は光を透過させる必要がないので、光学的に不透明な被
測定物の表面電荷分布も測定可能となる。Accordingly, the detection light is light that has transmitted twice through the optical element having the electro-optical effect in a reciprocating manner, so that the sensitivity is twice as high as that of the transmitted light, and the surface charge can be obtained with high sensitivity and high precision. Since the measurement can be performed and the optical element having the electro-optic effect can be made thinner by the high sensitivity, it is convenient to measure the surface charge with high resolution. In addition, since the DUT itself does not need to transmit light, the surface charge distribution of the optically opaque DUT can also be measured.
【0025】[0025]
【発明の実施の形態】本発明の第一の実施の形態を図1
及び図2に基づいて説明する。図1に本実施の形態の表
面電荷計測装置1の概略構成例を示す。基本的には、測
定光としての光ビームL0を射出する光源2と、横型の
電気光学効果を有する光学素子3を用いて形成された計
測ヘッド4と、この計測ヘッド4を透過(又は、反射)
した光ビームL1の光量等の光情報量を計測する計測手
段としての光電変換素子5と、この光電変換素子5によ
り計測された計測情報に基づいて所定の演算処理を行っ
て表面電荷情報を算出する演算手段の機能を有する信号
処理装置6とにより構成されている。FIG. 1 shows a first embodiment of the present invention.
A description will be given based on FIG. FIG. 1 shows a schematic configuration example of a surface charge measuring device 1 of the present embodiment. Basically, a light source 2 that emits a light beam L0 as measurement light, a measurement head 4 formed using an optical element 3 having a horizontal electro-optic effect, and a transmission (or reflection) through the measurement head 4 )
The photoelectric conversion element 5 as a measuring means for measuring the amount of optical information such as the light amount of the light beam L1 obtained, and the surface charge information is calculated by performing predetermined arithmetic processing based on the measurement information measured by the photoelectric conversion element 5. And a signal processing device 6 having a function of an arithmetic unit.
【0026】ここに、光源2としてはガスレーザ、半導
体レーザ等のレーザ光源が用いられるが、必ずしもレー
ザ光のようなコヒーレント光を射出するものに限らず、
例えば、LED等のように比較的波長の揃った光を射出
する光源であってもよい。光源2から射出される光ビー
ムL0を計測ヘッド4に直接照射し掃引させることで表
面電荷の分布を求めるようにしてもよい。光源2・計測
ヘッド4間の光路上には偏光子7とλ/4板8とが介在
されている。偏光子7は光ビームL0を直線偏光に変換
させるためのものであり、λ/4板8は偏光位相差に光
学的オフセットを印加させるためのものである。Here, as the light source 2, a laser light source such as a gas laser or a semiconductor laser is used. However, the light source 2 is not limited to a light source that emits coherent light such as laser light.
For example, a light source that emits light having a relatively uniform wavelength, such as an LED, may be used. The distribution of surface charges may be obtained by directly irradiating the measurement head 4 with the light beam L0 emitted from the light source 2 and sweeping the same. On an optical path between the light source 2 and the measuring head 4, a polarizer 7 and a λ / 4 plate 8 are interposed. The polarizer 7 is for converting the light beam L0 into linearly polarized light, and the λ / 4 plate 8 is for applying an optical offset to the polarization phase difference.
【0027】前記計測ヘッド4は、図2に拡大して示す
ように、素子面内方向に電束が屈折するような特性を示
す横型の電気光学効果を有する光学素子3をベースとす
るものである。即ち、光学素子3の誘電率は一般に空気
の誘電率に比べて数十倍も大きいので、この光学素子3
に入射した電束9は図2に示すように素子面と平行な方
向(横方向)に大きく屈折し、このとき、ベクトルによ
り示す横方向の電界10H が縦方向の電界10V に比べ
て極端に大きくなる特性を示す。ここに、このような光
学素子3としては、横型の電気光学効果が大きいものが
よく、例えば、LiNbO3 (ニオブ酸リチウム)のγ
22が用いられる。この他、感度面で劣るが、NH4H2
PO4 やKH2PO4のγ63、α水晶のγ11、Bi12
SiO20やBi12GeO20のγ41、ZnS、ZnT
e、Bi4GeO12 のγ41等の如く、殆どの電気光学
結晶を用い得る。また、光学素子3の片面には、電極と
なる導電性膜11が形成されている。本実施の形態で
は、透過光を検出光として用いるため、光源2の波長に
対して光透過性を示す膜、例えば、ITO膜が用いられ
ている。また、本実施の形態では導電性膜11は接地さ
れているが、計測目的によってはバイアス電圧が印加さ
れていてもよい。このような計測ヘッド4の光学素子3
に対して、表面電荷を計測すべき被測定物として例えば
絶縁フィルム12が添付され、この絶縁フィルム12上
に分布する表面電荷13の電界により光学素子3内部に
横型の電気光学効果を誘起させて計測に供される。As shown in FIG. 2, the measuring head 4 is based on an optical element 3 having a horizontal electro-optical effect showing a characteristic that an electric flux is refracted in an in-plane direction of the element. is there. That is, since the permittivity of the optical element 3 is generally several tens times larger than the permittivity of air,
2 is refracted greatly in a direction (lateral direction) parallel to the element surface as shown in FIG. 2, and at this time, the horizontal electric field 10 H indicated by the vector is compared with the vertical electric field 10 V. It shows characteristics that become extremely large. Here, as such an optical element 3, a horizontal type having a large electro-optical effect is preferable, for example, γ of LiNbO 3 (lithium niobate).
22 are used. In addition, although the sensitivity is poor, NH 4 H 2
PO 4 and γ63 of KH 2 PO 4, of the α crystal γ11, Bi 12
Γ41, ZnS, ZnT of SiO 20 or Bi 12 GeO 20
Most electro-optic crystals can be used, such as e, γ41 of Bi 4 GeO 12 and the like. On one surface of the optical element 3, a conductive film 11 serving as an electrode is formed. In the present embodiment, since the transmitted light is used as the detection light, a film exhibiting light transmittance with respect to the wavelength of the light source 2, for example, an ITO film is used. Further, in the present embodiment, the conductive film 11 is grounded, but a bias voltage may be applied depending on the measurement purpose. Such an optical element 3 of the measuring head 4
On the other hand, for example, an insulating film 12 is attached as an object to be measured for the surface charge, and a horizontal electro-optical effect is induced inside the optical element 3 by an electric field of the surface charge 13 distributed on the insulating film 12. Provided for measurement.
【0028】なお、計測ヘッド4と光電変換素子5との
間の光路上には検光子14が介在されている。An analyzer 14 is provided on the optical path between the measuring head 4 and the photoelectric conversion element 5.
【0029】このような構成において、基本的には、電
気光学効果を有する光学素子3に被測定物であり表面電
荷13が存在する絶縁フィルム12を添付することで、
この絶縁フィルム12上に分布する表面電荷13の電界
により光学素子3内部に電気光学効果を誘起させて、そ
の表面電荷13の密度と分布とを測定するものである。
まず、光源2から射出された光ビームL0を偏光子7に
より直線偏光に変換した後、計測ヘッド4の光学素子3
に入射させる。このとき、偏光子7を透過した直線偏光
をλ/4板8を透過させることで偏光位相差に光学的オ
フセットを印加すると、表面電荷13の極性を判別する
ことができる。ここに、光学素子3においては、図2に
拡大して示したように表面電荷13に基づく電界が電界
10H のような横方向に広がりを呈するため、このよう
な光学素子3に入射した光ビームL0は高感度にその電
束9の影響を受けて偏光状態の有無をもって射出される
ことになる。光学素子3から射出される光ビームL1
は、偏光状態を検出する検光子14を透過した後、光電
変換素子5に入射して受光されることにより、光強度分
布が測定される。このような光強度分布に基づく信号処
理装置6での演算処理を経ることにより、電荷量と電荷
分布とが算出・表示される。In such a configuration, basically, by attaching an insulating film 12 which is an object to be measured and has a surface charge 13 to the optical element 3 having an electro-optical effect,
The electro-optical effect is induced inside the optical element 3 by the electric field of the surface charges 13 distributed on the insulating film 12, and the density and distribution of the surface charges 13 are measured.
First, after the light beam L0 emitted from the light source 2 is converted into linearly polarized light by the polarizer 7, the optical element 3 of the measuring head 4
Incident on At this time, if an optical offset is applied to the polarization phase difference by transmitting the linearly polarized light transmitted through the polarizer 7 through the λ / 4 plate 8, the polarity of the surface charge 13 can be determined. Here, in the optical element 3, since exhibits spread laterally as the electric field is an electric field 10 H based on the surface charge 13 as shown in the enlarged view of FIG. 2, light incident on such an optical element 3 The beam L0 is emitted with high sensitivity under the influence of the electric flux 9 with or without the polarization state. Light beam L1 emitted from optical element 3
The light intensity distribution is measured by transmitting the light through the analyzer 14 for detecting the polarization state, then entering the photoelectric conversion element 5 and receiving the light. Through the arithmetic processing in the signal processing device 6 based on the light intensity distribution, the charge amount and the charge distribution are calculated and displayed.
【0030】このように、本実施の形態の表面電荷計測
装置1によれば、横型の電気光学効果を有する光学素子
3に被測定物である絶縁フィルム12の被検出部分の表
面電荷13に応じた電位を誘起させ、この光学素子3か
ら射出される光ビームL1の偏光、位相、屈折率等の変
化を計測することにより、絶縁フィルム12の表面電位
を計測するものであり、横型の電気光学効果を有する光
学素子3を利用することで、結晶内の横方向に広がる電
界10H を検出するが、誘電率の大きい結晶では入射し
た電界10H が面に沿った方向を向くため、極めて高分
解能、高感度及び高精度に表面電荷13の計測を行える
ことになる。特に、光学素子3として横型の非常に大き
な電気光学効果を有するLiNbO3 を用いることによ
り、極めて、高分解能、高感度及び高精度な表面電荷1
3の計測が可能となる。As described above, according to the surface charge measuring device 1 of the present embodiment, the optical element 3 having the horizontal electro-optic effect is applied to the surface charge 13 of the detected portion of the insulating film 12 which is the measured object. The electric potential of the insulating film 12 is measured by inducing the electric potential and measuring changes in the polarization, phase, refractive index, and the like of the light beam L1 emitted from the optical element 3. By using the optical element 3 having an effect, the electric field 10 H spreading in the lateral direction in the crystal is detected. However, in the case of a crystal having a large dielectric constant, the incident electric field 10 H is directed in the direction along the plane. The surface charge 13 can be measured with high resolution, high sensitivity, and high accuracy. In particular, by using a horizontal LiNbO 3 having an extremely large electro-optical effect as the optical element 3, extremely high resolution, high sensitivity and high precision surface charge 1 can be obtained.
3 can be measured.
【0031】ところで、信号処理装置6における信号処
理について説明する。光電変換素子5による計測結果
は、信号処理装置6に転送されて表面電荷分布の算出に
供される。ここに、光電変換素子5の計測結果である出
力は、そのままでは表面電荷分布を表しておらず偏光状
態を示しているだけであるので、計測された信号に対し
て補正関数とフーリエ変換とを利用して補正すること
で、被測定物(絶縁フィルム12)の表面電荷分布とし
て出力するように演算処理を実行する。Now, the signal processing in the signal processing device 6 will be described. The measurement result by the photoelectric conversion element 5 is transferred to the signal processing device 6 and used for calculating the surface charge distribution. Here, the output as the measurement result of the photoelectric conversion element 5 does not represent the surface charge distribution as it is, but merely indicates the polarization state. Therefore, the correction function and the Fourier transform are applied to the measured signal. By performing correction using the calculation, an arithmetic process is performed so as to output the surface charge distribution of the device under test (insulating film 12).
【0032】即ち、本実施の形態の如く、非接触で絶縁
フイルム12の表面電荷13の計測を行う計測系におい
ては、光学素子3内部での電界の広がりを生じてしま
い、完全な線を計測しても線幅に若干の広がりを生じて
しまうので、当該計測系における線像の広がり関数に基
づき補正関数を作成しておき、この補正関数を用いて計
測結果の補正を行うものである。もっとも、既知の電荷
分布や電圧を光学素子3に印加し、そのときの計測信号
と既知の電荷分布から補正関数を作成し、この補正関数
を利用するようにしてもよい。このような計測系の広が
り関数は、印刷物におけるMTF(Modulation Trans
fer Function) と同様に得ることができ、補正関数は
広がり関数をフーリエ変換し、その逆数を逆フーリエ変
換で得ることにより作成できる。このように、信号処理
装置6における演算処理において、電界の広がりを関数
化して、この関数及びフーリエ変換を利用して計測結果
の補正を行うので、電場の広がりによるボケのない、高
分解能で高感度かつ高精度な表面電荷分布の計測を行え
ることになる。That is, in the measurement system for measuring the surface charge 13 of the insulating film 12 in a non-contact manner as in this embodiment, the electric field spreads inside the optical element 3 and a complete line is measured. However, since the line width slightly spreads, a correction function is created based on the spread function of the line image in the measurement system, and the measurement result is corrected using the correction function. However, a known charge distribution or voltage may be applied to the optical element 3, a correction function may be created from the measurement signal at that time and the known charge distribution, and this correction function may be used. The spread function of such a measurement system is based on the MTF (Modulation Trans
The correction function can be obtained in the same manner as in the case of fer Function, and the correction function can be created by performing the Fourier transform on the spread function and obtaining the reciprocal thereof by the inverse Fourier transform. As described above, in the arithmetic processing in the signal processing device 6, the spread of the electric field is converted into a function, and the measurement result is corrected using the function and the Fourier transform. Sensitivity and highly accurate measurement of the surface charge distribution can be performed.
【0033】本発明の第二の実施の形態を説明する。本
実施の形態の表面電荷計測装置も基本的には、図1に示
したような表面電荷計測装置1の構成に準ずるが、光源
2から測定ヘッド4までの光路上に光ビームL0を2次
元的に拡大するビームエキスパンダが拡大用の光学系と
して介在されている。これにより、ビームエキスパンダ
により直径が拡大された光ビームL0は計測ヘッド4全
体或いは一部に照射される。これに対応させて、本実施
の形態では、光電変換素子5に代えて2次元的な光電変
換素子が用いられ、計測ヘッド4の光学素子3を透過し
た光を画像として検出し得るように構成されている。こ
のような2次元的な光電変換素子としては、例えば、C
CDカメラ、MOS型撮像素子などの半導体光検出器、
ビジコン、カルニコンなどの撮像管、PDアレイ、フォ
トトランジスタアレイ、スチルカメラ、デジタルカメラ
等を用い得る。特に、CCDカメラや撮像管などの動画
を出力、記録できる光検出器を用いるようにすれば、電
荷分布の動的観察をも高分解能、高感度に行える。Next, a second embodiment of the present invention will be described. The surface charge measuring device of the present embodiment also basically conforms to the configuration of the surface charge measuring device 1 as shown in FIG. An expanding beam expander is interposed as an expanding optical system. As a result, the light beam L0 whose diameter has been expanded by the beam expander is applied to the entire or a part of the measuring head 4. Correspondingly, in the present embodiment, a two-dimensional photoelectric conversion element is used instead of the photoelectric conversion element 5, and the light transmitted through the optical element 3 of the measuring head 4 can be detected as an image. Have been. As such a two-dimensional photoelectric conversion element, for example, C
Semiconductor photodetectors such as CD cameras and MOS type image sensors,
An imaging tube such as a vidicon or a carnicon, a PD array, a phototransistor array, a still camera, a digital camera, or the like can be used. In particular, if a photodetector such as a CCD camera or an image pickup tube capable of outputting and recording moving images is used, dynamic observation of the charge distribution can be performed with high resolution and high sensitivity.
【0034】よって、測定面内の表面電荷分布の情報を
画像として捕らえるときは、光ビームL0を掃引させる
ことで測定することもできるが、本実施の形態によれ
ば、2次元的な光電変換素子による検出信号が2次元的
な広がりを持つ画像であるため、電荷分布を観測するた
めに1点毎の測定を繰返す必要がなく、分布状態を一目
で把握し得ることになり、また、光ビームを掃引させる
必要がないので、1画面を得る時間が短くて済み、か
つ、連続的に観測を行えるので、電荷の保持状態など、
表面電荷分布の経時的な変化を観測することもできる。Therefore, when the information of the surface charge distribution in the measurement plane is captured as an image, the measurement can be performed by sweeping the light beam L0. However, according to the present embodiment, the two-dimensional photoelectric conversion can be performed. Since the detection signal from the element is an image having a two-dimensional spread, it is not necessary to repeat the measurement for each point in order to observe the charge distribution, and the distribution state can be grasped at a glance. Since there is no need to sweep the beam, the time required to obtain one screen is short, and continuous observation can be performed.
A change with time of the surface charge distribution can also be observed.
【0035】ここに、本実施の形態の場合における信号
処理装置での処理に関して説明すると、基本的には、第
一の実施の形態の場合の信号処理装置6における処理と
同様であるが、特にデジタル的に画像を記録し出力する
カメラによって撮影された電荷図を示す画像は、信号処
理装置において、検出された画像信号と2次元的な補正
関数と2次元的なフーリエ変換とを利用して補正し、被
測定物である絶縁フィルム12の表面電荷分布として出
力される。Here, the processing in the signal processing device in the present embodiment will be described. Basically, it is the same as the processing in the signal processing device 6 in the first embodiment. An image showing a charge diagram captured by a camera that digitally records and outputs an image is obtained by using a detected image signal, a two-dimensional correction function, and a two-dimensional Fourier transform in a signal processing device. The output is corrected and output as the surface charge distribution of the insulating film 12, which is the object to be measured.
【0036】また、本実施の形態で用いる光学素子3と
しても第一の実施の形態の場合と同様な上に大面積を取
れるものがよく、具体的には、LiNbO3 が好まし
い。この他の電気光学結晶に関しては、例えば、Bi12
SiO20やBi12GeO20等の場合、結晶のインゴット
をスライスすると、縦型の電気光学効果を有する光学素
子となってしまうので、横型として大面積な光学素子を
作製しようとすると非常に大きな体積から切出さなくて
はならないので、不向きである。The optical element 3 used in the present embodiment is preferably the same as that of the first embodiment and has a large area. Specifically, LiNbO 3 is preferable. Regarding other electro-optic crystals, for example, Bi 12
In the case of SiO 20 or Bi 12 GeO 20 or the like, when a crystal ingot is sliced, it becomes a vertical optical element having an electro-optical effect. It is not suitable because it has to be cut out from.
【0037】本発明の第三の実施の形態を図3に基づい
て説明する。図1及び図2で示した部分と同一部分は同
一符号を用いて示し、説明も省略する。本実施の形態の
表面電荷計測装置21は、反射型光学系を利用した構成
とされている。即ち、光源2から射出された光ビームL
0を計測ヘッド4に入射させ、光学素子3と絶縁フィル
ム(被測定物)12との界面22で反射させる構成であ
る。導電性膜11は光を入射及び出射させるために透明
性を有する構成とされている。なお、本実施の形態にお
いては、光源2から射出される光ビームL0を広げる光
学系としてビームエキスパンダ23が設けられ、計測手
段となる光電変換素子24としてはCCDカメラ等の2
次元的な素子が用いられている。また、光学素子3側に
入射して反射する光ビームL1が往復通過するλ/8板
25も設けられている。さらに、本実施の形態の場合、
光ビームL0の入射角は任意に設定し得るものである
が、図示の如く、計測ヘッド4に垂直に入射させる構成
の場合には、図示の如く、ビームスプリッタ26を光路
上に介在させることにより入射光と出射光との経路を分
離させるように構成される。さらには、ビームスプリッ
タ26と光電変換素子24との間に集光光学系(図示せ
ず)を介在させ、アパーチャにより所望の面からの反射
光を選択的に検出させるようにしてよい。なお、光学素
子3に関しては前記第二の実施の形態の場合と同様であ
り、電気光学効果が大きくて大面積が取れるLiNbO
3 が好ましい。A third embodiment of the present invention will be described with reference to FIG. 1 and 2 are denoted by the same reference numerals, and description thereof will be omitted. The surface charge measurement device 21 of the present embodiment is configured to use a reflection type optical system. That is, the light beam L emitted from the light source 2
0 is incident on the measurement head 4 and is reflected at the interface 22 between the optical element 3 and the insulating film (object to be measured) 12. The conductive film 11 is configured to have transparency to allow light to enter and exit. In the present embodiment, a beam expander 23 is provided as an optical system for expanding the light beam L0 emitted from the light source 2, and a photoelectric conversion element 24 serving as a measuring unit is a CCD camera or the like.
A dimensional element is used. Further, a λ / 8 plate 25 through which the light beam L1 incident on and reflected by the optical element 3 reciprocates is also provided. Further, in the case of the present embodiment,
Although the incident angle of the light beam L0 can be set arbitrarily, as shown in the figure, in the case of a configuration in which the light beam L0 is perpendicularly incident on the measuring head 4, as shown in the figure, the beam splitter 26 is interposed on the optical path. It is configured to separate the path between the incident light and the output light. Further, a condensing optical system (not shown) may be interposed between the beam splitter 26 and the photoelectric conversion element 24, and the reflected light from a desired surface may be selectively detected by an aperture. The optical element 3 is the same as that of the second embodiment, and has a large electro-optic effect and a large area of LiNbO 3.
3 is preferred.
【0038】従って、本実施の形態によれば、検出光は
電気光学効果を有する光学素子3を往復で2回透過した
光となるので、第一の実施の形態等の如き透過光に対し
て2倍の感度が得られ、高感度及び高精度にて表面電荷
13の計測を行えることになる。また、感度が高い分、
電気光学効果を有する光学素子3を薄くできるので、高
分解能での表面電荷13の計測を行うために都合がよ
い。さらには、被測定物自身は光を透過させる必要がな
いので、光学的に不透明な被測定物の表面電荷分布も測
定可能となる。Therefore, according to the present embodiment, the detection light is light that has transmitted through the optical element 3 having the electro-optical effect twice in a reciprocating manner, and thus the detection light is not transmitted light as in the first embodiment. The double sensitivity is obtained, and the measurement of the surface charge 13 can be performed with high sensitivity and high accuracy. Also, because the sensitivity is high,
Since the optical element 3 having the electro-optic effect can be made thin, it is convenient to measure the surface charge 13 with high resolution. Further, since the object itself does not need to transmit light, the surface charge distribution of the optically opaque object can be measured.
【0039】ところで、本実施の形態における演算手段
の機能を備える信号処理装置27での信号処理として
は、前述した第二の実施の形態の場合と同様であり、デ
ジタル的に画像を記録し出力するCCDカメラによって
撮影された電荷図を示す画像は、信号処理装置27にお
いて、検出された画像信号と2次元的な補正関数と2次
元的なフーリエ変換とを利用して補正し、被測定物であ
る絶縁フィルム12の表面電荷分布として出力される
が、反射光であることを考慮して、必要に応じて左右反
転などの画像処理が施される。The signal processing in the signal processing device 27 having the function of the calculating means in the present embodiment is the same as that in the second embodiment described above. The image showing the charge diagram captured by the CCD camera is corrected in the signal processing device 27 using the detected image signal, the two-dimensional correction function, and the two-dimensional Fourier transform, and the measurement target object is measured. Is output as the surface charge distribution of the insulating film 12, and image processing such as left-right inversion is performed as necessary in consideration of reflected light.
【0040】[0040]
【発明の効果】請求項1記載の発明によれば、光学結晶
等の横型の電気光学効果を有する光学素子に被測定物で
ある帯電体の被検出部分の表面電荷に応じた電位を誘起
させ、この光学素子から射出される光ビームの偏光、位
相、屈折率等の変化を計測することにより、帯電体の表
面電位を計測するようにしたので、結晶内の横方向に広
がる電界を検出することと等価的となり、誘電率の大き
い結晶では入射した電界が面に沿った方向を向くので、
極めて高分解能、高感度及び高精度に表面電荷の計測を
行うことができる。According to the first aspect of the present invention, a potential corresponding to the surface charge of the portion to be detected of the charged body which is the object to be measured is induced in an optical element such as an optical crystal having a horizontal electro-optic effect. Since the surface potential of the charged body is measured by measuring changes in the polarization, phase, refractive index, etc. of the light beam emitted from this optical element, an electric field spreading in the lateral direction in the crystal is detected. In a crystal with a large dielectric constant, the incident electric field is directed along the plane.
Surface charge can be measured with extremely high resolution, high sensitivity, and high accuracy.
【0041】請求項2記載の発明によれば、請求項1記
載の表面電荷計測装置に加えて、電界の広がりを関数化
して、この関数及びフーリエ変換を利用して計測結果の
補正を行うようにしたので、電場の広がりによるボケの
ない、高分解能で高感度かつ高精度な表面電荷分布の計
測を行うことができる。According to the second aspect of the present invention, in addition to the surface charge measuring device of the first aspect, the spread of the electric field is converted into a function, and the measurement result is corrected using this function and Fourier transform. Therefore, high-resolution, high-sensitivity, and high-accuracy measurement of the surface charge distribution can be performed without blurring due to the spread of the electric field.
【0042】請求項3記載の発明によれば、請求項1記
載の発明と同様な効果が得られるが、特に、計測手段に
よる検出信号が2次元的な広がりを持つ画像であるた
め、電荷分布を観測するために1点毎の測定を繰返す必
要がなく、分布状態を一目で把握し得ることになり、ま
た、ビームを掃引する必要がないので、1画面を得る時
間が短くて済み、かつ、連続的に観測を行うことができ
るので、電荷の保持状態など、表面電荷分布の経時的な
変化を観測することもできる。According to the third aspect of the invention, the same effects as those of the first aspect of the invention can be obtained. However, in particular, since the detection signal by the measuring means is an image having a two-dimensional spread, the charge distribution It is not necessary to repeat the measurement for each point in order to observe, and it is possible to grasp the distribution state at a glance. Moreover, since it is not necessary to sweep the beam, the time for obtaining one screen is short, and Since the observation can be performed continuously, it is also possible to observe a change over time in the surface charge distribution such as the state of retaining electric charges.
【0043】請求項4記載の発明によれば、請求項2記
載の発明と同様であり、電界の広がりを関数化して、こ
の関数及び2次元的なフーリエ変換を利用して計測結果
の補正を行うようにしたので、電場の広がりによるボケ
のない、高分解能で高感度かつ高精度な表面電荷分布の
計測を行うことができる。According to the fourth aspect of the present invention, similar to the second aspect of the invention, the spread of the electric field is converted into a function, and the correction of the measurement result is performed using this function and two-dimensional Fourier transform. Since this is performed, it is possible to measure the surface charge distribution with high resolution, high sensitivity and high accuracy without blurring due to the spread of the electric field.
【0044】請求項5記載の発明によれば、請求項1,
2,3又は4記載の表面電荷計測装置における横型の電
気光学効果を有する光学素子として横型の非常に大きな
電気光学効果を有するLiNbO3 を用いたので、一層
の高分解能、高感度及び高精度化を図る上で最適とな
り、特に、請求項3及び4記載の発明のように2次元化
を図る上でも大面積を取りやすい利点が得られる。According to the invention described in claim 5, according to claim 1,
The use of a horizontal LiNbO 3 having a very large electro-optical effect as the optical element having a horizontal electro-optical effect in the surface charge measuring device described in 2, 3, or 4, further improving the resolution, sensitivity and precision. In particular, there is obtained an advantage that a large area can be easily obtained even in achieving a two-dimensional structure as in the third and fourth aspects of the present invention.
【0045】請求項6記載の発明によれば、請求項1,
2,3,4又は5記載の表面電荷計測装置光学素子より
射出される光を、光学素子と被測定物との界面からの反
射光としており、検出光は電気光学効果を有する光学素
子を往復で2回透過した光となるので、透過光に対して
2倍の感度を得ることができ、高感度及び高精度にて表
面電荷の計測を行える上に、感度が高い分、電気光学効
果を有する光学素子を薄くできるので、高分解能での表
面電荷の計測を行うために都合がよく、さらには、被測
定物自身は光を透過させる必要がないので、光学的に不
透明な被測定物の表面電荷分布も測定することができ
る。According to the invention described in claim 6, according to claim 1,
Light emitted from the surface charge measuring device optical element described in 2, 3, 4 or 5 is reflected light from the interface between the optical element and the object to be measured, and the detection light travels back and forth through the optical element having the electro-optical effect. Is transmitted twice, so that it is possible to obtain twice the sensitivity to the transmitted light, and to measure the surface charge with high sensitivity and high accuracy. Since the thickness of the optical element can be reduced, it is convenient to measure the surface charge with high resolution.Furthermore, since the measured object itself does not need to transmit light, the optically opaque measured object can be measured. The surface charge distribution can also be measured.
【図1】本発明の第一の実施の形態の表面電荷計測装置
を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing a surface charge measuring device according to a first embodiment of the present invention.
【図2】その計測ヘッド部分を拡大して示す説明図であ
る。FIG. 2 is an explanatory diagram showing the measuring head portion in an enlarged manner.
【図3】本発明の第三の実施の形態の表面電荷計測装置
を示す概略構成図である。FIG. 3 is a schematic configuration diagram illustrating a surface charge measuring device according to a third embodiment of the present invention.
2 光源 3 光学素子 5 計測手段 6 演算手段 11 電極 12 被測定物 22 界面 24 計測手段 27 演算手段 Reference Signs List 2 light source 3 optical element 5 measuring means 6 calculating means 11 electrode 12 DUT 22 interface 24 measuring means 27 calculating means
Claims (6)
と、 この光学素子に電気的に接触する少なくとも1つの電極
と、 前記光学素子に入射する光を射出する光源と、 前記光学素子より射出される光の偏光状態を計測する計
測手段と、を備える表面電荷計測装置。1. An optical element having a horizontal electro-optic effect, at least one electrode electrically contacting the optical element, a light source for emitting light incident on the optical element, and an optical element emitted from the optical element. A surface charge measuring device comprising: a measuring unit for measuring a polarization state of light.
得られる被測定物の表面電荷分布をフーリエ変換し、フ
ーリエ変換した結果を計測系の有する計測領域の広がり
関数により補正した後、逆フーリエ変換して表面電荷分
布の計測結果とする演算手段を備える請求項1記載の表
面電荷計測装置。2. A Fourier transform of a surface charge distribution of an object to be measured obtained from a polarization state measured by a measuring means, and a result of the Fourier transform is corrected by a spread function of a measurement area of the measurement system, and then an inverse Fourier transform is performed. 2. The surface charge measuring device according to claim 1, further comprising a calculation unit that calculates a surface charge distribution measurement result.
と、 この光学素子に電気的に接触する少なくとも1つの電極
と、 前記光学素子に入射する光を射出する光源と、 この光源から射出されて前記光学素子に入射する光を2
次元的に広げる光学系と、 前記光学素子より射出される光の偏光状態を2次元的に
計測する計測手段と、を備える表面電荷計測装置。3. An optical element having a horizontal electro-optical effect, at least one electrode electrically contacting the optical element, a light source for emitting light incident on the optical element, and a light source emitted from the light source. The light incident on the optical element is 2
A surface charge measurement device comprising: an optical system that expands two-dimensionally; and measurement means that two-dimensionally measures the polarization state of light emitted from the optical element.
光状態より得られる被測定物の表面電荷分布を2次元的
にフーリエ変換し、フーリエ変換した結果を計測系の有
する計測領域の広がり関数により補正した後、2次元的
に逆フーリエ変換して表面電荷分布の計測結果とする演
算手段を備える請求項2記載の表面電荷計測装置。4. A two-dimensional Fourier transform of a surface charge distribution of an object to be measured obtained from a two-dimensional polarization state measured by a measuring means, and a result of the Fourier transform is used as a spread function of a measurement area of a measuring system. 3. The surface charge measuring device according to claim 2, further comprising: an arithmetic unit that performs a two-dimensional inverse Fourier transform after the correction by the above and performs a measurement result of the surface charge distribution.
してLiNbO3 を用いた請求項1,2,3又は4記載
の表面電荷計測装置。5. The surface charge measuring device according to claim 1, wherein LiNbO 3 is used as an optical element having a horizontal electro-optic effect.
と被測定物との界面からの反射光である請求項1,2,
3,4又は5記載の表面電荷計測装置。6. The light emitted from the optical element is light reflected from an interface between the optical element and an object to be measured.
The surface charge measuring device according to 3, 4, or 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3577298A JPH11231005A (en) | 1998-02-18 | 1998-02-18 | Surface charge measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3577298A JPH11231005A (en) | 1998-02-18 | 1998-02-18 | Surface charge measuring device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11231005A true JPH11231005A (en) | 1999-08-27 |
Family
ID=12451180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3577298A Pending JPH11231005A (en) | 1998-02-18 | 1998-02-18 | Surface charge measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11231005A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111784654A (en) * | 2020-06-28 | 2020-10-16 | 武汉大学 | A method of insulator surface charge inversion based on digital image processing technology |
WO2020239002A1 (en) * | 2019-05-29 | 2020-12-03 | 同济大学 | Two-sided in-situ measurement system and method for charge distribution in thin dielectric film |
CN112710906A (en) * | 2021-01-05 | 2021-04-27 | 华北电力大学 | Photoelectronics space charge measurement platform with nanometer spatial resolution and method |
KR20220109696A (en) * | 2021-01-29 | 2022-08-05 | 조선대학교산학협력단 | Optical based non-contact sensor |
-
1998
- 1998-02-18 JP JP3577298A patent/JPH11231005A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020239002A1 (en) * | 2019-05-29 | 2020-12-03 | 同济大学 | Two-sided in-situ measurement system and method for charge distribution in thin dielectric film |
CN111784654A (en) * | 2020-06-28 | 2020-10-16 | 武汉大学 | A method of insulator surface charge inversion based on digital image processing technology |
CN111784654B (en) * | 2020-06-28 | 2022-06-14 | 武汉大学 | A method of insulator surface charge inversion based on digital image processing technology |
CN112710906A (en) * | 2021-01-05 | 2021-04-27 | 华北电力大学 | Photoelectronics space charge measurement platform with nanometer spatial resolution and method |
CN112710906B (en) * | 2021-01-05 | 2023-08-25 | 华北电力大学 | An optoelectronic space charge measurement platform and method with nanometer spatial resolution |
KR20220109696A (en) * | 2021-01-29 | 2022-08-05 | 조선대학교산학협력단 | Optical based non-contact sensor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20010091010A (en) | Apparatus and method for evaluating electric characteristics of semiconductor | |
US20180058934A1 (en) | Measuring polarisation | |
CN114858314B (en) | Diamond stress measurement system and method based on NV color center | |
JPH11231005A (en) | Surface charge measuring device | |
US7271900B2 (en) | Magneto-optical imaging method and device | |
CN111795980B (en) | An X-ray Boundary Illumination Imaging Method Based on Pixel-by-Pixel Gaussian Function Fitting | |
JPH0580083A (en) | Method and apparatus for testing integrated circuit | |
JPH06258368A (en) | Surface potential measuring device | |
KR102089583B1 (en) | Method for deciding x-ray image of liquid crystal x-ray detector | |
KR20190082093A (en) | Measuring path delay through a liquid-crystal variable retarder at non-uniform retardance intervals | |
CN115219965A (en) | Wide-field-of-view rapid imaging measurement system and method based on diamond NV color center | |
JP4008362B2 (en) | Surface potential measuring device | |
JP3264450B2 (en) | Method and apparatus for measuring electric field on photoreceptor surface | |
JPH07181211A (en) | Surface potential measuring apparatus | |
Rickermann et al. | A high resolution real-time temporal heterodyne interferometer for refractive index topography | |
EP0564209B1 (en) | Picture information memory device and picture information reproducing device using Pockels readout optical modulator element | |
Zhu et al. | Two-dimensional optical measurement techniques based on optical birefringence effects | |
KR102140732B1 (en) | Method for deciding x-ray image of liquid crystal x-ray detector | |
KR102025777B1 (en) | Method for deciding x-ray image of liquid crystal x-ray detector | |
Lutz et al. | Development of a dynamic spot size diagnostic for flash radiographic X-ray sources | |
JP3877875B2 (en) | X-ray sensor and X-ray detection method | |
JPH04105072A (en) | Measuring device for surface potential | |
JP2875141B2 (en) | Speed measuring device and speed measuring method | |
JP2661822B2 (en) | Surface potential measuring device | |
JPH06281707A (en) | Device for measuring voltage distribution |