JPH11230070A - Compressor - Google Patents
CompressorInfo
- Publication number
- JPH11230070A JPH11230070A JP2871898A JP2871898A JPH11230070A JP H11230070 A JPH11230070 A JP H11230070A JP 2871898 A JP2871898 A JP 2871898A JP 2871898 A JP2871898 A JP 2871898A JP H11230070 A JPH11230070 A JP H11230070A
- Authority
- JP
- Japan
- Prior art keywords
- stage compression
- compression section
- compressor
- low
- refrigerant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/001—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/34—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
- F04C18/356—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
- F04C18/3562—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
- F04C18/3564—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/23—Separators
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、複数の圧縮部を用
いて冷媒を多段圧縮する圧縮機に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compressor for compressing a refrigerant in multiple stages using a plurality of compression units.
【0002】[0002]
【従来の技術】従来冷蔵庫や空気調和機などに用いられ
る冷凍装置には、例えば特公平7−30743号公報
(F04C23/00)に示される如く、それぞれロー
タリー用シリンダとその内部で回転するローラなどから
成る二つの圧縮部を同一の密閉容器内に収納したロータ
リー型の圧縮機が採用されている。そして、圧縮機の各
圧縮部を低段側圧縮部と高段側圧縮部として、低段側圧
縮部により一段圧縮した冷媒ガスを高段側圧縮部に吸い
込ませ、それによって冷媒を多段圧縮する構成とされて
いる。2. Description of the Related Art Conventionally, refrigeration systems used in refrigerators, air conditioners, and the like include rotary cylinders and rollers rotating inside the cylinders, respectively, as disclosed in Japanese Patent Publication No. 7-30743 (F04C23 / 00). The rotary type compressor which accommodated two compression parts consisting of the same in the same closed container is adopted. Then, each compression section of the compressor is made into a low-stage compression section and a high-stage compression section, and the refrigerant gas compressed in one stage by the low-stage compression section is sucked into the high-stage compression section, thereby compressing the refrigerant in multiple stages. It has a configuration.
【0003】係る圧縮機を用いれば、一圧縮当たりのト
ルク変動を抑制しながら、高圧縮比を得ることができる
利点がある。[0003] The use of such a compressor has the advantage that a high compression ratio can be obtained while suppressing the torque fluctuation per compression.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上述の
如き低段側圧縮部と高段側圧縮部を有する多段圧縮機は
低段側圧縮部と高段側圧縮部に吸気する吸気量が決まっ
ており、圧縮機の起動時やプルダウン時、或いは、液圧
縮が生じた場合などには低段側圧縮部内の吐出圧力が異
常に上昇してしまう。これにより、圧縮機の負担が過剰
となって損傷を来す問題があった。However, in the above-described multi-stage compressor having the low-stage compression section and the high-stage compression section, the amount of intake air to be taken into the low-stage compression section and the high-stage compression section is determined. Therefore, when the compressor is started up, when the compressor is pulled down, or when liquid compression occurs, the discharge pressure in the low-stage compression section abnormally increases. As a result, there has been a problem that the load on the compressor becomes excessive and the compressor is damaged.
【0005】本発明は、係る従来の技術的課題を解決す
るために成されたものであり、複数の圧縮部を用い、冷
媒を多段圧縮する圧縮機の低段側圧縮部が異常に上昇す
るのを阻止することを目的とする。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional technical problem, and a plurality of compression sections are used to compress refrigerant in a multi-stage manner. The purpose is to prevent the.
【0006】[0006]
【課題を解決するための手段】本発明の圧縮機は、単一
の密閉容器内に電動機と、この電動機にて駆動される圧
縮要素とを設け、この圧縮要素を、低段側圧縮部と高段
側圧縮部により構成して冷媒を順次多段圧縮するもので
あって、低段側圧縮部の吐出側と密閉容器内、若しく
は、高段側圧縮部の吐出側とを連通する連通路を設け、
この連通路内には、密閉容器内、若しくは、高段側圧縮
部の吐出側方向を順方向とする逆止弁を設けたものであ
る。The compressor according to the present invention includes an electric motor and a compression element driven by the electric motor in a single hermetically sealed container. It is constituted by a high-stage compression section and sequentially compresses the refrigerant in multiple stages, and a communication path communicating between the discharge side of the low-stage compression section and the closed vessel, or the discharge side of the high-stage compression section. Provided,
In the communication passage, a check valve is provided in which the forward direction is in the discharge side of the high-stage compression unit in the closed vessel.
【0007】[0007]
【発明の実施の形態】以下、図面に基づき本発明の実施
形態を詳述する。図1は本発明に係る圧縮機Cを用いた
多段圧縮冷凍装置Rの冷媒回路図、図2は本発明の圧縮
機Cの縦断側面図、図3は本発明の圧縮機Cの低段側圧
縮部と高段側圧縮部の吐出側を連通する連通路34近傍
の拡大断面図をそれぞれ示している。Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a refrigerant circuit diagram of a multi-stage compression refrigeration system R using a compressor C according to the present invention, FIG. 2 is a longitudinal side view of the compressor C of the present invention, and FIG. 3 is a low-stage side of the compressor C of the present invention. 3A and 3B are enlarged cross-sectional views of the vicinity of a communication path 34 that communicates the compression section and the discharge side of the high-stage compression section.
【0008】先ず図2において、1は単一の密閉容器で
あり、内部の上側に電動機(ブラシレスDCモータやA
Cモータなど)2、下側にこの電動機2で回転駆動され
る圧縮要素3が収納されている。密閉容器1は予め2分
割されたものに電動機2、圧縮要素3を収納した後、高
周波溶着などによって密閉されたものである。First, in FIG. 2, reference numeral 1 denotes a single closed container, and an electric motor (brushless DC motor or A
A compression element 3 rotatably driven by the electric motor 2 is accommodated in the lower side. The airtight container 1 contains the electric motor 2 and the compression element 3 in a preliminarily divided into two parts and is sealed by high frequency welding or the like.
【0009】電動機2は、密閉容器1の内壁に固定され
た固定子4と、この固定子4の内側に回転軸6を中心に
して回転自在に支持された回転子5とから構成されてい
る。そして、固定子4は回転子5に回転磁界を与える固
定子巻線7を備えている。尚、W1、W2はそれぞれ回
転子5の上面と下面に取り付けられたバランスウエイト
である。The electric motor 2 includes a stator 4 fixed to the inner wall of the closed casing 1 and a rotor 5 supported inside the stator 4 so as to be rotatable around a rotation shaft 6. . The stator 4 includes a stator winding 7 that applies a rotating magnetic field to the rotor 5. W1 and W2 are balance weights attached to the upper and lower surfaces of the rotor 5, respectively.
【0010】圧縮要素3は中間仕切板8で仕切られた第
1のロータリー用シリンダ9及び第2のロータリー用シ
リンダ10を備えている。各のシリンダ9、10には回
転軸6で回転駆動される偏心部11、12が取り付けら
れており、これら偏心部11、12は偏心位置がお互い
に180度位相がずれている。The compression element 3 has a first rotary cylinder 9 and a second rotary cylinder 10 separated by an intermediate partition plate 8. Eccentric portions 11 and 12 that are driven to rotate by the rotating shaft 6 are attached to the cylinders 9 and 10, respectively. The eccentric portions 11 and 12 are 180 degrees out of phase with each other.
【0011】13、14はそれぞれシリンダ9、10内
を回転する第1のローラ、第2のローラであり、それぞ
れ偏心部11、12の回転でシリンダ内を回る。15、
16はそれぞれ第1の枠体、第2の枠体であり、第1の
枠体15は中間仕切板8との間にシリンダ9の閉じた圧
縮空間を形成させ、第2の枠体16は同様に中間仕切板
8との間にシリンダ10の閉じた圧縮空間を形成させて
いる。また、第1の枠体15、第2の枠体16はそれぞ
れ回転軸6の下部を回転自在に軸支する軸受部17、1
8を備えている。Reference numerals 13 and 14 denote a first roller and a second roller which rotate in the cylinders 9 and 10, respectively, and rotate in the cylinder by rotation of the eccentric portions 11 and 12, respectively. 15,
Reference numeral 16 denotes a first frame and a second frame, respectively. The first frame 15 forms a closed compression space of the cylinder 9 between the first frame 15 and the intermediate partition plate 8, and the second frame 16 is Similarly, a closed compression space of the cylinder 10 is formed between the cylinder 10 and the intermediate partition plate 8. The first frame 15 and the second frame 16 are respectively provided with bearing portions 17, 1 that rotatably support the lower portion of the rotary shaft 6.
8 is provided.
【0012】上記上側のシリンダ9、偏心部11、ロー
ラ13と、シリンダ9内を高圧室及び低圧室に区画する
ベーン(図示せず)などによって高段側圧縮部51が構
成され、下側のシリンダ10、偏心部12、ローラ14
と、シリンダ10内を高圧室及び低圧室に区画するベー
ン(図示せず)などによって低段側圧縮部52が構成さ
れる。The upper cylinder 9, the eccentric portion 11, the roller 13, the vanes (not shown) for dividing the inside of the cylinder 9 into a high-pressure chamber and a low-pressure chamber, and the like constitute a high-stage compression section 51. Cylinder 10, eccentric part 12, roller 14
And a vane (not shown) that partitions the inside of the cylinder 10 into a high-pressure chamber and a low-pressure chamber, and the like, and the low-stage compression section 52 is configured.
【0013】また、低段側圧縮部52の排除容積をD
1、高段側圧縮部51の排除容積をD2とすると、これ
らの排除容積比D2/D1は、0.35±0.15の範
囲に設定されている。The displacement volume of the low-stage compression section 52 is D
1. Assuming that the excluded volume of the high-stage compression section 51 is D2, the excluded volume ratio D2 / D1 is set in the range of 0.35 ± 0.15.
【0014】19は吐出マフラーであり、第1の枠体1
5を覆うように取り付けられている。シリンダ9と吐出
マフラー19は第1の枠体15に設けられた図示しない
吐出孔にて連通されている。Reference numeral 19 denotes a discharge muffler, and the first frame 1
5 is attached. The cylinder 9 and the discharge muffler 19 communicate with each other through a discharge hole (not shown) provided in the first frame 15.
【0015】一方、第2の枠体16には凹所21が設け
られ、この凹所21を蓋体26にて閉塞してボルト27
にて第2の枠体16と一体にシリンダ10に固定するこ
とにより、内部に膨張型消音器28を構成している。そ
して、第2の枠体16にはシリンダ10内と凹所21内
とを連通する吐出ポート29が設けられている。On the other hand, a recess 21 is provided in the second frame 16, and the recess 21 is closed by a lid 26 and a bolt 27 is provided.
By being fixed to the cylinder 10 integrally with the second frame 16 at, an inflatable silencer 28 is formed inside. The second frame 16 is provided with a discharge port 29 that communicates between the inside of the cylinder 10 and the inside of the recess 21.
【0016】尚、この第2の枠体16は密閉容器1内の
最下部に位置しており、その周囲は潤滑油が貯留される
オイル溜まり30とされている。これにより、第2の枠
体16周囲には潤滑油が満たされるかたちとなるので、
密閉容器1内の高圧ガスが膨張型消音器28内に漏れる
危険性が無くなり、冷媒循環量の減少による性能の低下
を防止できる。The second frame 16 is located at the lowermost part in the closed container 1, and its periphery is an oil reservoir 30 for storing lubricating oil. As a result, the periphery of the second frame 16 is filled with the lubricating oil.
There is no danger that the high-pressure gas in the sealed container 1 leaks into the expansion type silencer 28, and a decrease in performance due to a decrease in the amount of circulating refrigerant can be prevented.
【0017】前記吐出ポート29は密閉容器1外に引き
出された配管31に連通しており、この配管31は同じ
く密閉容器1外に設けられた合流器32内に上方から挿
入され、この合流器32内に開口している。また、この
合流器32下端の出口配管32Aはシリンダ9につなが
る吸入管23に連通されている。The discharge port 29 communicates with a pipe 31 drawn out of the closed vessel 1, and this pipe 31 is inserted from above into a merger 32 also provided outside the closed vessel 1. 32. Further, an outlet pipe 32 </ b> A at the lower end of the merger 32 is connected to a suction pipe 23 connected to the cylinder 9.
【0018】他方、22は密閉容器1の上に設けられた
吐出管であり、24はシリンダ10へつながる吸入管で
ある。また、25は密閉ターミナルであり、密閉容器1
の外部から固定子4の固定子巻線7へ電力を供給するも
のである(密閉ターミナル25と固定子巻線7とをつな
ぐリード線は図示せず)。On the other hand, reference numeral 22 denotes a discharge pipe provided on the closed vessel 1, and reference numeral 24 denotes a suction pipe connected to the cylinder 10. Reference numeral 25 denotes a sealed terminal, which is a sealed container 1
To supply electric power to the stator winding 7 of the stator 4 from the outside (not shown are lead wires connecting the sealed terminal 25 and the stator winding 7).
【0019】ここで、前記低段側圧縮部52の吐出側と
吐出マフラ(高段側圧縮部51の吐出側に位置する)
は、前記第1の枠体15、シリンダ9、中間仕切板8及
びシリンダ10を貫通する連通路34によって連通され
ており、この連通路34内にはシリンダ9内に位置して
逆止弁33が設けられている。この逆止弁33には常時
吐出マフラ19内の圧力が背圧として加えられ、これに
よって中間仕切板8に押し付けられて連通路34を閉じ
ており、低段側圧縮部52の吐出圧力が背圧より高くな
ると連通路34を開く。即ち、逆止弁33は高段側圧縮
部51の吐出側に位置する吐出マフラ19方向を順方向
とされて設けられている。Here, the discharge side of the low-stage compression section 52 and the discharge muffler (located on the discharge side of the high-stage compression section 51).
Are communicated with each other by a communication passage 34 penetrating the first frame 15, the cylinder 9, the intermediate partition plate 8 and the cylinder 10. In the communication passage 34, a check valve 33 Is provided. The pressure in the discharge muffler 19 is constantly applied as a back pressure to the check valve 33, whereby the check valve 33 is pressed against the intermediate partition plate 8 to close the communication passage 34, and the discharge pressure of the low-stage compression section 52 is reduced. When the pressure becomes higher than the pressure, the communication passage 34 is opened. That is, the check valve 33 is provided such that the direction of the discharge muffler 19 located on the discharge side of the high-stage compression section 51 is the forward direction.
【0020】次ぎに、図1の冷媒回路において、多段圧
縮冷凍装置Rを構成する前記圧縮機Cの吐出管22は、
配管36を経て凝縮器37の入口に接続され、この凝縮
器37の出口には一次膨張手段としてのキャピラリチュ
ーブ38が接続されている。このキャピラリチューブ3
8の出口には気液分離器39の上部が連通接続されると
共に、この気液分離器39の下端には二次膨張手段とし
てのキャピラリチューブ41が接続されている。Next, in the refrigerant circuit of FIG. 1, the discharge pipe 22 of the compressor C constituting the multi-stage compression refrigeration system R
A condenser 36 is connected via a pipe 36 to an inlet of a condenser 37, and an outlet of the condenser 37 is connected to a capillary tube 38 as primary expansion means. This capillary tube 3
The upper portion of the gas-liquid separator 39 is connected to the outlet of 8, and a capillary tube 41 as secondary expansion means is connected to the lower end of the gas-liquid separator 39.
【0021】そして、キャピラリチューブ41の出口に
冷却器42が接続され、冷却器42の出口に接続された
配管43は前記圧縮機Cの吸入管24に連通されてい
る。更に、気液分離器39の上部には分岐管44が接続
され、この分岐管44は前記合流器32内に上方から挿
入され、内部にて開口されている。A cooler 42 is connected to the outlet of the capillary tube 41, and a pipe 43 connected to the outlet of the cooler 42 is connected to the suction pipe 24 of the compressor C. Further, a branch pipe 44 is connected to an upper portion of the gas-liquid separator 39, and the branch pipe 44 is inserted into the merger 32 from above and opened inside.
【0022】以上によって多段圧縮冷凍装置Rの冷凍サ
イクルが構成される。そして、係る多段圧縮冷凍装置R
の冷媒回路内には例えばR−134aなどのHFC冷媒
やHC冷媒が所定量封入され、潤滑油はエステル油、エ
ーテル油、アルキルベンゼン油、鉱物油などが利用され
るが、実施例ではR−134aが冷媒として用いられ、
また、潤滑油としてはエステル油が使用されている。Thus, the refrigeration cycle of the multistage compression refrigeration system R is constituted. And such a multi-stage compression refrigeration system R
A predetermined amount of an HFC refrigerant or an HC refrigerant such as R-134a is sealed in the refrigerant circuit, and an ester oil, an ether oil, an alkylbenzene oil, a mineral oil, or the like is used as a lubricating oil. Is used as a refrigerant,
Ester oil is used as the lubricating oil.
【0023】以上の構成で次ぎに動作を説明する。電動
機2が駆動されると、低段側圧縮部52は吸入管24か
ら冷媒を吸引して圧縮(一段圧縮)し、吐出ポート29
から膨張型消音器28を経て配管31に吐出する。配管
31に吐出された一段圧縮ガス冷媒は、合流器32を経
て吸入管23から高段側圧縮部51に吸引される。そこ
で圧縮(二段圧縮)された二段圧縮ガス冷媒は、吐出孔
より前記吐出マフラー19に吐出され、吐出マフラー1
9から密閉容器1内に吐出される。The operation of the above configuration will now be described. When the electric motor 2 is driven, the low-stage compression section 52 draws the refrigerant from the suction pipe 24 and compresses it (one-stage compression).
And is discharged to the pipe 31 through the expansion type silencer 28. The one-stage compressed gas refrigerant discharged to the pipe 31 is sucked from the suction pipe 23 to the high-stage compression part 51 via the merger 32. There, the two-stage compressed gas refrigerant compressed (two-stage compression) is discharged from the discharge hole to the discharge muffler 19, and the discharge muffler 1
9 into the closed container 1.
【0024】密閉容器1内の吐出された二段圧縮ガス冷
媒は、吐出管22から配管36に吐出される。そして、
凝縮器37に流入し、そこで放熱して凝縮された後、キ
ャピラリチューブ38にて減圧される。そして、気液分
離器39に流入し、一部はそこで蒸発する。The discharged two-stage compressed gas refrigerant in the closed vessel 1 is discharged from the discharge pipe 22 to the pipe 36. And
After flowing into the condenser 37, where the heat is released and condensed, the pressure is reduced by the capillary tube 38. Then, it flows into the gas-liquid separator 39, and a part thereof evaporates there.
【0025】これにより、気液分離器39内底部には液
冷媒が貯留され、気液分離器39内上部には一段膨張し
た飽和ガス冷媒が溜まることになる。尚、このときの飽
和ガス冷媒の温度、即ち、気液分離温度は−10℃〜+
25℃の範囲となるようにキャピラリチューブ38の絞
り量を選定する。Thus, the liquid refrigerant is stored at the bottom of the gas-liquid separator 39, and the one-stage expanded saturated gas refrigerant is stored at the top of the gas-liquid separator 39. At this time, the temperature of the saturated gas refrigerant, that is, the gas-liquid separation temperature is −10 ° C. to + 10 ° C.
The throttle amount of the capillary tube 38 is selected so as to be in the range of 25 ° C.
【0026】そして、気液分離器39内からは液冷媒の
みがキャピラリチューブ41方向に流出し、そこで減圧
される。そして、冷却器42に流入して蒸発する。この
ときに周囲から熱を奪うことによって冷却器42は冷却
作用を発揮する。そして、冷却器42を出た低温ガス冷
媒は配管43を経て圧縮機Cに帰還し、吸込管24から
低段側圧縮部52に再び吸い込まれる。Then, only the liquid refrigerant flows out of the gas-liquid separator 39 toward the capillary tube 41, where the pressure is reduced. Then, it flows into the cooler 42 and evaporates. At this time, the cooler 42 exerts a cooling action by removing heat from the surroundings. Then, the low-temperature gas refrigerant that has exited the cooler 42 returns to the compressor C via the pipe 43, and is sucked again from the suction pipe 24 into the low-stage compression section 52.
【0027】一方、気液分離器39内上部の飽和ガス冷
媒は、分岐管44に流出し、そこを通って合流器32に
流入する。そこで、低段側圧縮部52から吐出された一
段圧縮ガス冷媒と合流した後、共に吸入管23から高段
側圧縮部51に吸引され、再び圧縮されることになる。On the other hand, the saturated gas refrigerant in the upper part of the gas-liquid separator 39 flows out to the branch pipe 44 and flows into the merger 32 therethrough. Then, after joining with the one-stage compressed gas refrigerant discharged from the low-stage compression part 52, both are sucked from the suction pipe 23 into the high-stage compression part 51 and compressed again.
【0028】ここで、前記圧縮機Cは低段側圧縮部52
と高段側圧縮部51に吸気する吸気量が決まっているた
め、圧縮機Cの起動時や冷凍装置Rのプルダウン時、或
いは、低段側圧縮部52に液圧縮が生じた場合、低段側
圧縮部52の吐出圧力は上昇するが、吐出マフラ19内
の圧力よりも高くなると、前述の如く逆止弁33が連通
路34を開いて、低段側圧縮部52内の圧力を吐出マフ
ラ19に逃がす。これにより、低段側圧縮部52内の異
常昇圧が未然に回避される。Here, the compressor C includes a low-stage compression section 52.
When the compressor C is started, when the refrigerating device R is pulled down, or when liquid compression occurs in the low-stage compression unit 52, the low-stage compression is performed. Although the discharge pressure of the side compression section 52 rises, when it becomes higher than the pressure in the discharge muffler 19, the check valve 33 opens the communication passage 34 as described above, and the pressure in the low-stage side compression section 52 is reduced. Escape to 19. As a result, abnormal pressure rise in the low-stage compression section 52 is avoided.
【0029】また、圧縮機Cの低段側圧縮部52、高段
側圧縮部51、凝縮器37、キャピラリチューブ38、
気液分離器39、キャピラリチューブ41及び冷却器4
2を順次環状に接続して冷凍サイクルを構成している。
そして、気液分離器39内の飽和ガス冷媒を低段側圧縮
部52から吐出された冷媒と共に高段側圧縮部51に吸
い込ませるようにしているので、一段圧縮の冷凍装置に
比較して、一圧縮当たりのトルク変動を抑制しながら、
高圧縮比を得ることができるようになる。Further, the low-stage compression section 52, the high-stage compression section 51 of the compressor C, the condenser 37, the capillary tube 38,
Gas-liquid separator 39, capillary tube 41 and cooler 4
2 are sequentially connected in a ring to form a refrigeration cycle.
Then, since the saturated gas refrigerant in the gas-liquid separator 39 is sucked into the high-stage compression section 51 together with the refrigerant discharged from the low-stage compression section 52, compared with a single-stage compression refrigeration apparatus, While suppressing the torque fluctuation per compression,
A high compression ratio can be obtained.
【0030】また、高段側圧縮部51が吸い込むガス冷
媒の温度を低下させることができるようになり、入力の
低減を図ることが可能となる。また、高段側圧縮部51
の吐出ガス冷媒の温度も低くなるため、潤滑油としてエ
ステル油を用いた場合にも、POE問題の発生や潤滑特
性の劣化を抑制することができるようになる。Further, the temperature of the gas refrigerant sucked by the high-stage compression section 51 can be reduced, and the input can be reduced. Also, the high-stage compression unit 51
Since the temperature of the discharged gas refrigerant becomes low, even when ester oil is used as the lubricating oil, it is possible to suppress the occurrence of the POE problem and the deterioration of the lubricating characteristics.
【0031】そして、気液分離器39内の液冷媒をキャ
ピラリチューブ41に流して冷却器42にて蒸発させる
ようにしているので、冷媒循環量に対する冷凍効果を増
大させ、効率の向上を図ることが可能となる(図4のモ
リエル線図参照)。Since the liquid refrigerant in the gas-liquid separator 39 flows through the capillary tube 41 and evaporates in the cooler 42, the refrigerating effect on the refrigerant circulation amount is increased, and the efficiency is improved. (See Mollier diagram in FIG. 4).
【0032】ここで、低段側圧縮部52の排除容積D1
と高段側圧縮部の排除容積D2の比D2/D1と成績係
数の関係は前記図5に示されており、この図からも明ら
かな如く、成績係数は排除容積比D2/D1の30%付
近をピークとした山なりの特性となっている。Here, the excluded volume D1 of the low-stage compression section 52
The relationship between the ratio of the excluded volume D2 of the high-stage side compression section D2 / D1 and the coefficient of performance is shown in FIG. 5, and as is clear from this figure, the coefficient of performance is 30% of the excluded volume ratio D2 / D1. It has a mountain-like characteristic with a peak in the vicinity.
【0033】次ぎに、キャピラリチューブ38の絞り量
を変更して気液分離器39における気液分離温度を変更
し、各気液分離温度における図5の曲線のピーク値を図
7に示す如く結んで行くと、前記図6或いは図7に示す
如き山なりの特性が得られる。Next, the gas-liquid separation temperature in the gas-liquid separator 39 is changed by changing the throttle amount of the capillary tube 38, and the peak values of the curves in FIG. 5 at each gas-liquid separation temperature are connected as shown in FIG. As a result, a mountain-like characteristic as shown in FIG. 6 or FIG. 7 is obtained.
【0034】即ち、図6或いは図7に示される気液分離
器39における気液分離温度と成績係数の関係を基にし
て、前述の如く気液分離器39内の気液分離温度を−1
0℃〜+25℃の範囲に設定しているので、図7の最下
部に示す一段圧縮の冷凍装置の場合に比して成績係数を
著しく改善することができるようになる。That is, based on the relation between the gas-liquid separation temperature and the coefficient of performance in the gas-liquid separator 39 shown in FIG. 6 or FIG.
Since the temperature is set in the range of 0 ° C. to + 25 ° C., the coefficient of performance can be remarkably improved as compared with the single-stage compression refrigeration apparatus shown at the bottom of FIG.
【0035】また、前記図5からも明らかであるが、成
績係数は低段側圧縮部52と高段側圧縮部51の排除容
積比D2/D1の30%付近をピークとした山なりの特
性となる。そして、本発明では係る排除容積比D2/D
1を、0.35±0.15の範囲に設定しているので、
一段圧縮の冷凍装置に比して成績係数を一層改善し、効
率の向上を図ることができるようになる。As is apparent from FIG. 5, the coefficient of performance has a peak-like characteristic having a peak at around 30% of the excluded volume ratio D2 / D1 of the low-stage compression unit 52 and the high-stage compression unit 51. Becomes In the present invention, the excluded volume ratio D2 / D is used.
Since 1 is set in the range of 0.35 ± 0.15,
The coefficient of performance can be further improved as compared with a single-stage compression refrigeration apparatus, and the efficiency can be improved.
【0036】次に、図8は圧縮機Cの他の実施例を示し
ている。尚、この図において図2と同一符号で示すもの
は同一若しくは同様の機能を奏するものとする。この場
合、連通路34は低段側圧縮部52の吐出側と密閉容器
1内を直接連通している。FIG. 8 shows another embodiment of the compressor C. In this figure, components denoted by the same reference numerals as those in FIG. 2 have the same or similar functions. In this case, the communication path 34 directly communicates the discharge side of the low-stage compression section 52 with the inside of the sealed container 1.
【0037】係る構成によれば、圧縮機Cの起動時や冷
凍装置Rのプルダウン時、或いは、低段側圧縮部52に
液圧縮が生じた場合に、低段側圧縮部52の吐出圧力が
上昇して密閉容器1内の圧力よりも高くなると、逆止弁
33が連通路34を開いて、低段側圧縮部52内の圧力
を密閉容器1内に逃がす。これにより、低段側圧縮部5
2内の異常昇圧が未然に回避される。According to this configuration, when the compressor C is started, when the refrigeration system R is pulled down, or when liquid compression occurs in the low-stage compression section 52, the discharge pressure of the low-stage compression section 52 is increased. When the pressure rises and becomes higher than the pressure in the closed container 1, the check valve 33 opens the communication passage 34, and releases the pressure in the low-stage compression section 52 into the closed container 1. Thereby, the low-stage compression unit 5
Abnormal pressurization in 2 is avoided beforehand.
【0038】尚、実施例では二段圧縮式の圧縮機で説明
したが、それに限らず、三段、四段と更に多段に圧縮す
るものに適用しても本発明は有効である。Although the embodiment has been described with reference to a two-stage compression type compressor, the present invention is not limited to this, and the present invention is also effective when applied to a three-stage or four-stage compressor.
【0039】[0039]
【発明の効果】以上詳述した如く本発明によれば、単一
の密閉容器内に電動機と、この電動機にて駆動される圧
縮要素とを設け、この圧縮要素を、低段側圧縮部と高段
側圧縮部により構成して冷媒を順次多段圧縮する圧縮機
において、低段側圧縮部の吐出側と密閉容器内、若しく
は、高段側圧縮部の吐出側とを連通する連通路を設け、
この連通路内には、密閉容器内、若しくは、高段側圧縮
部の吐出側方向を順方向とする逆止弁を設けたので、圧
縮機の起動時やプルダウン時、或いは、液圧縮が生じる
ような状況において、低段側圧縮部の吐出圧力が異常に
上昇した場合、逆止弁が連通路を開く。As described above in detail, according to the present invention, an electric motor and a compression element driven by the electric motor are provided in a single hermetic container, and the compression element is provided with a low-stage compression section. In the compressor configured by the high-stage compression section and sequentially compressing the refrigerant in multiple stages, a communication path is provided to communicate the discharge side of the low-stage compression section with the inside of the closed vessel or the discharge side of the high-stage compression section. ,
In the communication passage, a check valve is provided in the closed vessel or in the discharge side of the high-stage compression section as a forward direction, so that when the compressor is started, when the compressor is pulled down, or when the liquid is compressed. In such a situation, if the discharge pressure of the low-stage compression section rises abnormally, the check valve opens the communication passage.
【0040】これにより、低段側圧縮部から冷媒を直接
密閉容器内、若しくは、高段側圧縮部の吐出側に吐出さ
せることができるようになるので、圧縮機の信頼性と耐
久性の向上を図ることができるようになるものである。This makes it possible to discharge the refrigerant from the low-stage compression section directly into the closed vessel or to the discharge side of the high-stage compression section, thereby improving the reliability and durability of the compressor. Can be achieved.
【図1】本発明の圧縮機を適用した多段圧縮冷凍装置の
冷媒回路図である。FIG. 1 is a refrigerant circuit diagram of a multi-stage compression refrigeration apparatus to which a compressor of the present invention is applied.
【図2】本発明の圧縮機の縦断側面図である。FIG. 2 is a vertical sectional side view of the compressor of the present invention.
【図3】本発明の圧縮機の連通路近傍の拡大断面図であ
る。FIG. 3 is an enlarged sectional view of the vicinity of a communication passage of the compressor of the present invention.
【図4】本発明の圧縮機を適用した多段圧縮冷凍装置の
モリエル線図である。FIG. 4 is a Mollier diagram of a multi-stage compression refrigeration apparatus to which the compressor of the present invention is applied.
【図5】本発明の圧縮機の低段側圧縮部(低段側圧縮手
段)と高段側圧縮部(高段側圧縮手段)の排除容積比と
成績係数の関係を示す図である。FIG. 5 is a diagram showing a relationship between a displacement volume ratio and a coefficient of performance of a low-stage compression section (low-stage compression means) and a high-stage compression section (high-stage compression means) of the compressor of the present invention.
【図6】本発明を適用した冷凍装置の気液分離器におけ
る気液分離温度と圧縮機の成績係数の関係を示す図であ
る。FIG. 6 is a diagram showing a relationship between a gas-liquid separation temperature and a coefficient of performance of a compressor in a gas-liquid separator of a refrigeration apparatus to which the present invention is applied.
【図7】同じく気液分離器における気液分離温度と圧縮
機の成績係数の関係を示すもう一つの図である。FIG. 7 is another diagram showing the relationship between the gas-liquid separation temperature in the gas-liquid separator and the coefficient of performance of the compressor.
【図8】本発明の他の実施例の圧縮機の連通路近傍の拡
大断面図である。FIG. 8 is an enlarged sectional view of the vicinity of a communication passage of a compressor according to another embodiment of the present invention.
C 圧縮機 R 多段圧縮冷凍装置 1 密閉容器 2 電動機 3 圧縮要素 8 中間仕切板 9、10 シリンダ 13、14 ローラ 19 吐出マフラ 31 配管 33 逆止弁 34 連通路 42 冷却器 44 分岐管 51 高段側圧縮部 52 低段側圧縮部 C Compressor R Multistage compression refrigeration system 1 Closed vessel 2 Electric motor 3 Compressor 8 Intermediate partition plate 9, 10 Cylinder 13, 14 Roller 19 Discharge muffler 31 Piping 33 Check valve 34 Communication path 42 Cooler 44 Branch pipe 51 Higher side Compression section 52 Low-stage compression section
Claims (1)
機にて駆動される圧縮要素とを設け、この圧縮要素を、
低段側圧縮部と高段側圧縮部により構成して冷媒を順次
多段圧縮する圧縮機において、 前記低段側圧縮部の吐出側と前記密閉容器内、若しく
は、前記高段側圧縮部の吐出側とを連通する連通路を設
け、この連通路内には、前記密閉容器内、若しくは、前
記高段側圧縮部の吐出側方向を順方向とする逆止弁を設
けたことを特徴とする圧縮機。An electric motor and a compression element driven by the electric motor are provided in a single closed container.
In a compressor configured by a low-stage compression section and a high-stage compression section and sequentially compressing the refrigerant in multiple stages, the discharge side of the low-stage compression section and the inside of the closed container, or the discharge of the high-stage compression section A communication path communicating with the high-pressure side compression section is provided in the closed vessel, or a non-return valve having a discharge side direction of the high-stage compression section as a forward direction is provided in the communication path. Compressor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2871898A JPH11230070A (en) | 1998-02-10 | 1998-02-10 | Compressor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2871898A JPH11230070A (en) | 1998-02-10 | 1998-02-10 | Compressor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11230070A true JPH11230070A (en) | 1999-08-24 |
Family
ID=12256235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2871898A Pending JPH11230070A (en) | 1998-02-10 | 1998-02-10 | Compressor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11230070A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002168187A (en) * | 2000-12-01 | 2002-06-14 | Hokuetsu Kogyo Co Ltd | Oil-cooled screw two-stage compressor |
JP2007120354A (en) * | 2005-10-26 | 2007-05-17 | Hitachi Appliances Inc | Rotary compressor |
KR20110072312A (en) * | 2009-12-22 | 2011-06-29 | 엘지전자 주식회사 | Double Rotary Compressor |
JP2018531342A (en) * | 2015-10-15 | 2018-10-25 | グリーン リフリジレイション エクイップメント エンジニアリング リサーチ センター オブ ヂュハイ グリー シーオー.,エルティーディー. | Two-stage variable capacity compressor and air conditioner system including the same |
-
1998
- 1998-02-10 JP JP2871898A patent/JPH11230070A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002168187A (en) * | 2000-12-01 | 2002-06-14 | Hokuetsu Kogyo Co Ltd | Oil-cooled screw two-stage compressor |
JP2007120354A (en) * | 2005-10-26 | 2007-05-17 | Hitachi Appliances Inc | Rotary compressor |
KR20110072312A (en) * | 2009-12-22 | 2011-06-29 | 엘지전자 주식회사 | Double Rotary Compressor |
JP2018531342A (en) * | 2015-10-15 | 2018-10-25 | グリーン リフリジレイション エクイップメント エンジニアリング リサーチ センター オブ ヂュハイ グリー シーオー.,エルティーディー. | Two-stage variable capacity compressor and air conditioner system including the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3619657B2 (en) | Multistage compression refrigeration equipment | |
US6189335B1 (en) | Multi-stage compressing refrigeration device and refrigerator using the device | |
WO2001022008A1 (en) | Multi-stage compression refrigerating device | |
US8967984B2 (en) | Rotary compressor | |
EP2372158A1 (en) | Frequency- variable compressor and control method thereof | |
JP2001091071A (en) | Multi-stage compression refrigerating machine | |
CN100432436C (en) | Refrigeration machine | |
JP2017516024A (en) | Two-stage rotary compressor and cooling cycle equipment | |
US6385995B1 (en) | Apparatus having a refrigeration circuit | |
JPH07318179A (en) | Sealed compressor, and freezer and air conditioner including the compressor | |
JPH11241693A (en) | Compressor | |
JPH11230072A (en) | Compressor | |
JPH1162863A (en) | Compressor | |
JP2001132675A (en) | Two-stage compression type rotary compressor and two- stage compression refrigerating device | |
JPH11230070A (en) | Compressor | |
JP2000097177A (en) | Rotary compressor and refrigerating circuit | |
JP2001082369A (en) | Two-stage compression type rotary compressor | |
JP3599996B2 (en) | Multi-stage compression refrigeration equipment | |
JP3291469B2 (en) | Rotary compressor | |
JP3615364B2 (en) | Multistage compression refrigeration equipment | |
KR101328229B1 (en) | Rotary compressor | |
JPH11230073A (en) | Compressor | |
KR101337082B1 (en) | Rotary compressor | |
JPH11223397A (en) | Freezer refrigerator | |
JP3872249B2 (en) | Hermetic compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Effective date: 20041104 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20041130 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20050128 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Effective date: 20051122 Free format text: JAPANESE INTERMEDIATE CODE: A02 |
|
RD01 | Notification of change of attorney |
Effective date: 20051227 Free format text: JAPANESE INTERMEDIATE CODE: A7421 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060117 |
|
A521 | Written amendment |
Effective date: 20060224 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060301 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Effective date: 20060331 Free format text: JAPANESE INTERMEDIATE CODE: A912 |