JPH112239A - Device to measure various property of rolling bearing - Google Patents
Device to measure various property of rolling bearingInfo
- Publication number
- JPH112239A JPH112239A JP15680597A JP15680597A JPH112239A JP H112239 A JPH112239 A JP H112239A JP 15680597 A JP15680597 A JP 15680597A JP 15680597 A JP15680597 A JP 15680597A JP H112239 A JPH112239 A JP H112239A
- Authority
- JP
- Japan
- Prior art keywords
- rolling bearing
- frequency
- bearing
- vibration
- raceway
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/52—Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/14—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
- F16C19/16—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
- F16C19/163—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2233/00—Monitoring condition, e.g. temperature, load, vibration
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Rolling Contact Bearings (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明に係る転がり軸受の
各種状態値を測定する装置は、各種転がり軸受の使用時
に於いて、転がり軸受に関する各種状態値を測定する事
により、例えば温度センサによる軸受近傍温度の測定と
組み合わせて、個々の転がり軸受の寿命を予測する為に
利用する。BACKGROUND OF THE INVENTION The present invention relates to an apparatus for measuring various state values of a rolling bearing, which measures various state values relating to the rolling bearing when using the various rolling bearings. Used in conjunction with temperature measurements to predict the life of individual rolling bearings.
【0002】[0002]
【従来の技術及び発明が解決しようとする課題】従来か
ら、各種機械装置の回転支持部分には、玉軸受、ころ軸
受等の転がり軸受が組み込まれている。これら各種転が
り軸受のうち、例えばラジアル玉軸受は、内周面に外輪
軌道を有する外輪と、外周面に内輪軌道を有する内輪
と、上記外輪軌道と内輪軌道との間に転動自在に設けら
れた複数の玉とから成る。そして、この玉の転動に基づ
き、上記外輪を内嵌支持した部材と、上記内輪を外嵌支
持した部材との相対回転を自在としている。この様な転
がり軸受の使用時に於いて、転がり軸受に関する各種状
態値を測定する装置として、例えば回転速度検出用セン
サや温度検出用センサを用いて、転がり軸受の回転速度
や軸受近傍温度を検出する装置がある。そして、この様
な装置により検出した回転速度や軸受近傍温度は、転が
り軸受の運転の制御や、転がり軸受に異常が発生した場
合の監視の為に利用している。2. Description of the Related Art Conventionally, rolling bearings such as ball bearings and roller bearings have been incorporated in the rotary support portions of various types of mechanical devices. Among these various rolling bearings, for example, a radial ball bearing is provided rotatably between an outer ring having an outer raceway on an inner peripheral surface, an inner race having an inner raceway on an outer peripheral surface, and the outer raceway and the inner raceway. And a plurality of balls. Then, based on the rolling of the ball, relative rotation between the member that internally supports the outer ring and the member that externally supports the inner ring can be freely rotated. When such a rolling bearing is used, as a device for measuring various state values related to the rolling bearing, for example, a rotation speed detection sensor or a temperature detection sensor is used to detect the rotation speed of the rolling bearing and the temperature near the bearing. There is a device. The rotational speed and the temperature in the vicinity of the bearing detected by such a device are used for controlling the operation of the rolling bearing and monitoring when an abnormality occurs in the rolling bearing.
【0003】一方、転がり軸受を使用するに際しては、
その寿命を予め予測する必要がある。しかし、転がり軸
受の寿命、即ち、故障(損傷)が発生するまでの時間
は、多種多様の要因が作用し、且つ、ばらつきが極めて
大きい為、個々の転がり軸受に対してその寿命を正確に
予測する事は極めて困難である。即ち、転がり軸受の
故。は、個々の転がり軸受の取り付け誤差及び使用状況
等によりさまざまに異なる。又、故障の発生要因も、例
えば過大な取り付け誤差による早期フレーキングや焼き
付き、予圧・隙間・はめ合いの不適正による発熱・焼き
付き、異物等の侵入による摩耗・腐食等、さまざまな要
因がある。On the other hand, when using a rolling bearing,
Its life needs to be predicted in advance. However, the life of a rolling bearing, that is, the time until failure (damage) occurs, is affected by various factors and is extremely large, so that the life of each rolling bearing is accurately predicted. It is extremely difficult to do. That is, because of the rolling bearing. Varies depending on the mounting error of each rolling bearing and the use condition. In addition, there are various factors that cause the failure, such as early flaking and seizure due to an excessive mounting error, heat and seizure due to improper preload, clearance and fitting, and abrasion and corrosion due to invasion of foreign matter and the like.
【0004】しかし、転がり軸受が予期せずに突然寿命
に至ると、この転がり軸受により支持される部材の損傷
を招くだけでなく、転がり軸受を組み込んだ機械装置全
体の機能に重大な障害を及ぼす可能性もある。この為、
個々の転がり軸受の寿命を予測する事は重要な問題であ
る。この様な問題を解決すべく、個々の転がり軸受の寿
命を予測する方法として、上述した様な転がり軸受の回
転速度や軸受近傍温度を検出する装置を用いる方法も考
えられる。しかし、この様に転がり軸受の回転速度や軸
受近傍温度を検出するだけでは、個々の転がり軸受の運
転状況を十分に把握できず、その寿命を正確に予測する
事ができなかった。即ち、個々の転がり軸受の寿命を正
確に予測するには、上記回転速度や軸受近傍温度の検出
のみならず、転がり軸受に付与されるアキシアル荷重
量、ラジアル荷重量、予圧量、傷分析値、騒音レベル等
の転がり軸受に関する各種状態値を常時把握しつつ経時
的に観察する必要がある。そして、この様に転がり軸受
の各種状態値を経時的に観察する事で、個々の転がり軸
受の寿命をより正確に予測すると共に、転がり軸受に故
障が発生した場合の要因分析をする事が可能になる。However, if the rolling bearing unexpectedly reaches the end of its service life, it not only causes damage to the members supported by the rolling bearing, but also seriously impairs the function of the entire machine incorporating the rolling bearing. There is a possibility. Because of this,
Predicting the life of individual rolling bearings is an important issue. In order to solve such a problem, as a method of estimating the life of each rolling bearing, a method of using a device for detecting the rotation speed of the rolling bearing and the temperature near the bearing as described above can be considered. However, only by detecting the rotational speed of the rolling bearing and the temperature near the bearing in this way, the operating condition of each rolling bearing cannot be sufficiently grasped, and the life thereof cannot be accurately predicted. That is, in order to accurately predict the life of each rolling bearing, not only detection of the rotation speed and the temperature in the vicinity of the bearing, but also an axial load, a radial load, a preload, a flaw analysis value applied to the rolling bearing, It is necessary to constantly observe various state values related to the rolling bearing such as the noise level while observing them over time. By observing the various state values of the rolling bearing over time, it is possible to more accurately predict the life of each rolling bearing and to analyze the causes when a failure occurs in the rolling bearing. become.
【0005】転がり軸受の使用時に、上記各種状態値を
常時把握する為には、個々の転がり軸受に各種センサを
複数個設けて、この転がり軸受の上記各種状態値を測定
する事も可能ではある。しかし、個々の転がり軸受に多
くのセンサを設けると、この転がり軸受装置全体の生産
コストの上昇を招くばかりでなく、上記センサを備えた
転がり軸受装置全体の重量増を招く可能性がある為、好
ましくない。本発明の転がり軸受の各種状態値を測定す
る装置は、上述の様な問題を鑑みて、最少限のセンサに
より個々の転がり軸受の各種状態値を測定する事によ
り、転がり軸受装置全体の生産コスト及び重量の増加を
極力抑えつつ、この転がり軸受の寿命をより正確に予測
可能にすべく考えたものである。[0005] In order to constantly grasp the various state values when the rolling bearing is used, it is possible to provide a plurality of various sensors for each rolling bearing and measure the various state values of the rolling bearing. . However, if a large number of sensors are provided for each rolling bearing, not only does the production cost of the entire rolling bearing device increase, but also the weight of the entire rolling bearing device including the sensor can increase, Not preferred. The device for measuring various state values of the rolling bearing according to the present invention measures the various state values of the individual rolling bearings with a minimum number of sensors in view of the problems described above, thereby reducing the production cost of the entire rolling bearing device. The present invention has been made to make it possible to more accurately predict the life of the rolling bearing while minimizing an increase in weight.
【0006】[0006]
【課題を解決するための手段】本発明の転がり軸受の各
種状態値を測定する装置は、片面に第一の軌道面を有す
る第一の軌道輪相当部材と、上記片面に対向する面に第
二の軌道面を有する第二の軌道輪相当部材と、上記第一
の軌道面と第二の軌道面との間に転動自在に設けられた
複数の転動体とから成る転がり軸受に関する各種状態値
を測定する装置であって、振動測定素子と、周波数変換
器と、演算器とから成る。このうち振動測定素子は、上
記第一の軌道輪相当部材と第二の軌道輪相当部材とのう
ち何れか一方の部材を固定し、上記第一の軌道輪相当部
材と第二の軌道輪相当部材とのうち他方の部材を回転さ
せた状態で、上記一方の部材の振動を測定する。又、上
記周波数変換器は、上記振動測定素子の出力信号を送り
込んで周波数変換する。そして、上記演算器は、周波数
変換器により求めた回転周波数、共振周波数、内輪、外
輪、転動体成分周波数等の各周波数により、上記転がり
軸受の接触角と、アキシアル剛性値と、ラジアル剛性値
と、アキシアル荷重量と、ラジアル荷重量と、予圧量と
の全部又は一部を求める。According to the present invention, there is provided an apparatus for measuring various state values of a rolling bearing, comprising: a first bearing ring-equivalent member having a first raceway surface on one side; Various states related to a rolling bearing including a second raceway-equivalent member having two raceway surfaces, and a plurality of rolling elements rotatably provided between the first raceway surface and the second raceway surface. An apparatus for measuring a value, comprising a vibration measuring element, a frequency converter, and a calculator. Among them, the vibration measuring element fixes one of the first and second raceway equivalent members, and the first and second raceway equivalent members correspond to the first and second raceway equivalent members. With the other member being rotated with respect to the member, the vibration of the one member is measured. Further, the frequency converter sends the output signal of the vibration measuring element and converts the frequency. The computing unit calculates the contact angle of the rolling bearing, the axial rigidity value, and the radial rigidity value by using the rotation frequency, the resonance frequency, the inner ring, the outer ring, and the rolling element component frequency, which are obtained by the frequency converter. , The axial load, the radial load, and the preload are obtained.
【0007】[0007]
【作用】上述の様に構成される本発明の転がり軸受の各
種状態値を測定する装置によれば、必要とするセンサを
最少限に抑えつつ、個々の転がり軸受の寿命を予測する
際に必要とされる各種状態値を測定する事ができる。即
ち、1個のセンサである振動測定素子により、固定した
一方の部材の振動を測定するのみで、上記寿命の予測に
必要とされる転がり軸受の回転周波数、アキシアル荷重
量、ラジアル荷重量、予圧量、アキシアル剛性値、ラジ
アル剛性値、接触角、傷分析値、騒音値の各種状態値を
求める事ができる。そして、この様にして求めた各種状
態値と、温度検出用センサにより求めた軸受近傍温度と
を用いて、転がり軸受の使用時にこれら各種状態値と軸
受近傍温度とを常時把握しつつ経時的に観察できる。従
って、これら各種状態値と軸受近傍温度とのそれぞれに
しきい値を設定しておけば、このしきい値に至った時
期、並びに至るまでの過程を考察する事により、個々の
転がり軸受の寿命を予測する事ができ、且つ、その寿命
に至る要因も知る事ができる。従って、本発明の転がり
軸受の各種状態値を測定する装置は、転がり軸受装置全
体の生産コスト及び重量の増加を最小限に抑えつつ、個
々の転がり軸受の使用時にその寿命をより正確に予測す
る事により、この転がり軸受の突然の故障を防止して、
この転がり軸受により支持される部材の損傷等を防止で
きる。According to the apparatus for measuring various state values of the rolling bearing of the present invention configured as described above, it is necessary to minimize the number of required sensors and to estimate the service life of each rolling bearing. Can be measured. That is, the vibration frequency of the rolling bearing, the axial load, the radial load, and the preload required for predicting the service life are measured only by measuring the vibration of one fixed member using a vibration measuring element as one sensor. Various state values such as quantity, axial rigidity value, radial rigidity value, contact angle, flaw analysis value, and noise value can be obtained. Then, using the various state values obtained in this manner and the temperature near the bearing obtained by the temperature detection sensor, these various state values and the temperature near the bearing are constantly grasped during use of the rolling bearing, and these values are obtained over time. Observable. Therefore, if a threshold value is set for each of these various state values and the temperature in the vicinity of the bearing, the life of each rolling bearing can be extended by examining when the threshold value is reached and the process leading to the threshold value. It can be predicted and the factors leading to its life can be known. Therefore, the apparatus for measuring various state values of the rolling bearing of the present invention more accurately predicts the life of an individual rolling bearing when it is used, while minimizing the production cost and weight increase of the entire rolling bearing apparatus. This prevents sudden failure of this rolling bearing,
Damage to the members supported by the rolling bearing can be prevented.
【0008】[0008]
【発明の実施の形態】図1〜2は、本発明の実施の形態
の1例を示している。又、本発明の測定対象である転が
り軸受の1例として、図6にアンギュラ型の玉軸受1を
示している。この玉軸受1は、各種機械装置の回転支持
部分に、2個以上を1組として組み込まれるもので、内
周面に外輪軌道2を有する外輪3と、外周面に内輪軌道
4を有する内輪5と、上記外輪軌道2と内輪軌道4との
間に転動自在に設けられた、転動体の一種である複数の
玉6、6とから構成している。そして、この玉6、6の
転動に基づき、上記外輪3を内嵌支持したハウジング等
の部材と、上記内輪5を外嵌支持した軸等の部材との相
対回転を自在としている。例えば、本例の場合には、上
記外輪3をハウジングに内嵌固定し、上記内輪5を回転
させる。この様な玉軸受1は、ラジアル方向の荷重だけ
でなくアキシアル方向の荷重も支承できる様に、各玉
6、6の転動面と外輪軌道2及び内輪軌道4との接触点
を結ぶ直線aを、各玉6、6の中心同士を結ぶ直線bに
対して、所定の角度(接触角)αだけ傾斜させている。
そして、上記外輪軌道2と内輪軌道4との間で各玉6、
6を押圧する、所謂予圧付与を行なっている。但し、本
発明の対象となる転がり軸受は、必ずしもアンギュラ型
の玉軸受である必要はなく、深溝型等の他のラジアル玉
軸受、スラスト玉軸受であっても良い。1 and 2 show an embodiment of the present invention. FIG. 6 shows an angular type ball bearing 1 as an example of a rolling bearing to be measured according to the present invention. The ball bearing 1 has two or more bearings incorporated in a rotating support portion of various mechanical devices as one set. The outer ring 3 has an outer raceway 2 on an inner peripheral surface, and the inner race 5 has an inner raceway 4 on an outer peripheral surface. And a plurality of balls 6, which are a kind of rolling element, provided between the outer raceway 2 and the inner raceway 4 so as to roll freely. Based on the rolling of the balls 6, 6, relative rotation between a member such as a housing in which the outer ring 3 is internally fitted and supported and a member such as a shaft in which the inner ring 5 is externally fitted is supported. For example, in the case of the present example, the outer ring 3 is fixedly fitted in the housing, and the inner ring 5 is rotated. Such a ball bearing 1 has a straight line a connecting the rolling surface of each ball 6, 6 and the contact point between the outer ring raceway 2 and the inner ring raceway 4 so as to support not only the radial load but also the axial load. Is inclined by a predetermined angle (contact angle) α with respect to a straight line b connecting the centers of the balls 6, 6.
Each ball 6 between the outer raceway 2 and the inner raceway 4,
A so-called preload application is performed to press the pressure 6. However, the rolling bearing to which the present invention is applied does not necessarily need to be an angular type ball bearing, but may be another radial ball bearing such as a deep groove type or a thrust ball bearing.
【0009】本発明の転がり軸受の各種状態値を測定す
る装置を構成するには、図1に示す様に、上記アンギュ
ラ型の玉軸受1、1を2個1組として、これら玉軸受
1、1の外輪3、3をハウジング12に内嵌固定する。
そして、このハウジング12と内輪5、5を外嵌固定し
た軸部材13との相対回転を自在とする。又、上記外輪
3、3を固定したハウジング12のアキシアル方向片側
面に、センサの一種である振動測定素子の振動ピックア
ップ7の測定子8を当接させる。この振動ピックアップ
7は、上記外輪3のアキシアル方向に亙る振動を測定
し、測定値を表す信号をアンプ9に送る。尚、振動測定
素子としては、変位計、速度計、加速度計等、上記アキ
シアル方向に亙る振動を検出できるものであれば、何れ
も使用可能である。In order to construct a device for measuring various state values of the rolling bearing of the present invention, as shown in FIG. The first outer ring 3 is internally fitted and fixed to the housing 12.
Then, relative rotation between the housing 12 and the shaft member 13 to which the inner rings 5 and 5 are externally fitted and fixed is made free. Further, a measuring element 8 of a vibration pickup 7 of a vibration measuring element, which is a kind of sensor, is brought into contact with one axial side surface of a housing 12 to which the outer rings 3 are fixed. The vibration pickup 7 measures the vibration of the outer ring 3 in the axial direction, and sends a signal representing the measured value to the amplifier 9. As the vibration measuring element, any one can be used as long as it can detect vibration in the axial direction, such as a displacement meter, a speedometer, and an accelerometer.
【0010】上記アンプ9により増幅された信号は、次
に、変換しないままのノーマル信号と、エンベロープ処
理した信号とに分けて取り出す。このうちのノーマル信
号は、フーリエ変換器を含んで構成される周波数変換器
10に送る。この周波数変換器10は、高速フーリエ変
換(FFT=Fast Fourier Transform)を利用して、上
記ノーマル信号の低周波数成分により上記玉軸受1の回
転周波数、即ち内輪回転周波数fr を求める。尚、この
内輪回転周波数fr は、上記玉6、6の回転状況に拘ら
ずに、上記内輪5の回転数に起因する振動の信号から求
める事ができる。即ち、玉軸受1、1の取り付け誤差、
内輪5、5の楕円度等により、上記内輪5の回転数に比
例する周波数の振動が生じる。そこで、この振動を、固
定部材である外輪3のラジアル方向振動、角方向振動、
アキシアル方向振動の何れかとして測定し、この振動の
ノーマル信号の低周波成分から、上記内輪回転周波数f
rを知る事ができる。Next, the signal amplified by the amplifier 9 is extracted separately into a normal signal without conversion and a signal subjected to envelope processing. The normal signal is sent to a frequency converter 10 including a Fourier transformer. The frequency converter 10, a fast Fourier transform by using the (FFT = Fast Fourier Transform), the rotational frequency of the ball bearing 1 by the low-frequency components of the normal signal, i.e. obtaining the inner ring rotation frequency f r. Incidentally, the inner ring rotation frequency f r is regardless of the rotation state of the ball 6, 6, it can be determined from the vibration signal caused by the rotational speed of the inner ring 5. That is, the mounting error of the ball bearings 1 and 1,
Due to the ellipticity of the inner races 5, 5, vibration of a frequency proportional to the rotation speed of the inner race 5 is generated. Therefore, this vibration is caused by radial vibration, angular vibration,
It is measured as any of the axial vibrations, and from the low frequency component of the normal signal of this vibration, the inner ring rotation frequency f
You can know r .
【0011】更に、上記エンベロープ処理した信号も、
ノーマル信号と同様に、上記周波数変換器10に送る。
そして、この周波数変換器10は、上記エンベロープ処
理した信号に基づき、高速フーリエ変換を利用して、図
4に示す様な、上記内輪5の傷等に基づく振動に起因す
る内輪成分周波数n・z・fi 、外輪3の傷等に基づく
振動に起因する外輪成分周波数n・z・fc 、玉6、6
の傷等に基づく振動に起因する玉成分周波数2n・fb
を、それぞれ取り出す(ここで、nは自然数、zは玉数
である。以下同じ。)。尚、図4は、本発明者の行なっ
た測定結果の1例として、エンベロープ処理した信号の
周波数分析結果から、上記内輪5、外輪3、玉6、6の
傷等に基づく振動に起因する内輪、外輪、玉成分周波数
n・z・fi 、n・z・fc 、2n・fb を示した図で
ある。即ち、上記内輪5及び外輪3は、その外周面又は
内周面に形成した内輪軌道4及び外輪軌道2に、僅かな
傷等が存在する。そしてこの傷等と玉6、6の転動面と
の衝合に基づいて、上記内輪5の回転時に内輪5及び外
輪3が、ラジアル方向、角方向、アキシアル方向に振動
する。尚、この振動の周波数は、玉数zに比例する。一
方、上記玉6、6の転動面の一部で上記内輪軌道4及び
外輪軌道2と接する軌道面にも、微小の傷等が存在す
る。そしてこの傷等に基づいて、上記玉6、6の自転時
にこの玉6、6と内輪5及び外輪3とが、ラジアル方
向、角方向、アキシアル方向に振動する。但し、この様
な玉6、6の転動面の微小な傷等に基づく振動は、アキ
シアル方向に大きく発生し易く、上記玉6、6の1回の
自転に付、上記内輪軌道4と外輪軌道2との衝合に基づ
き、2回ずつ発生する。この様にして玉6、6の転動面
の傷等に基づいて、上記内輪5、外輪3、玉6、6が振
動する周波数n・z・fi 、n・z・fc 、2n・fb
は、固定部材である外輪3のラジアル方向振動、角方向
振動、アキシアル方向振動の何れかを測定し、この振動
をエンベロープ処理した信号を周波数変換する事により
求める事ができる。この様にして求めた、玉6、6の傷
等に基づいて上記内輪5、外輪3、玉6、6が振動する
周波数n・z・fi 、n・z・fc 、2n・fb を、そ
れぞれ演算器11、11に送り込み、玉6、6の公転に
対する内輪回転周波数fi 、玉公転周波数fc 、玉自転
周波数fb のそれぞれの平均値を求める。尚、上記玉公
転周波数fc は、上記玉6、6の自転及び公転を自在に
保持する図示しない保持器の回転周波数と一致する。Further, the signal subjected to the envelope processing is
Like the normal signal, the signal is sent to the frequency converter 10.
Then, based on the envelope-processed signal, the frequency converter 10 uses the fast Fourier transform, and as shown in FIG. 4, the inner ring component frequency n · z caused by the vibration caused by the scratch on the inner ring 5 or the like. · f i, the outer ring component frequency n · z · f c caused by vibration based on scratches of the outer ring 3 and the like, ball 6,6
Ball component frequency 2n · f b due to vibration based on scratches on the surface
(Where n is a natural number and z is the number of balls; the same applies hereinafter). FIG. 4 shows an example of a measurement result performed by the present inventor, based on a frequency analysis result of an envelope-processed signal, from an inner ring 5 caused by vibration of the inner ring 5, the outer ring 3, and the balls 6, 6, and the like. a diagram showing an outer ring, balls component frequency n · z · f i, n · z · f c, the 2n · f b. That is, the inner race 5 and the outer race 3 have slight scratches or the like on the inner raceway 4 and the outer raceway 2 formed on the outer peripheral surface or the inner peripheral surface. The inner ring 5 and the outer ring 3 vibrate in the radial, angular, and axial directions when the inner ring 5 rotates, based on the abutment between the scratches and the rolling surfaces of the balls 6, 6. The frequency of this vibration is proportional to the number z of balls. On the other hand, a small flaw or the like is also present on a raceway surface which is in contact with the inner raceway 4 and the outer raceway 2 at a part of the rolling surfaces of the balls 6, 6. Then, based on the scratches, the balls 6, 6 and the inner ring 5 and the outer ring 3 vibrate in the radial, angular, and axial directions when the balls 6, 6 rotate. However, such vibrations due to minute scratches or the like on the rolling surfaces of the balls 6, 6 tend to be large in the axial direction, and are accompanied by one rotation of the balls 6, 6, and the inner raceway 4 and the outer race Occurs twice each based on collision with orbit 2. Based on the wounds of the rolling surfaces of the balls 6, 6 in this manner, the inner ring 5, outer ring 3, the frequency balls 6,6 oscillates n · z · f i, n · z · f c, 2n · f b
Can be obtained by measuring any of radial vibration, angular vibration, and axial vibration of the outer ring 3 as a fixed member, and converting the vibration-enveloped signal into a frequency. Was determined in this manner, the inner ring 5 on the basis of the wound ball 6,6 etc., the outer ring 3, the frequency balls 6,6 oscillates n · z · f i, n · z · f c, 2n · f b the respective feed to the calculator 11, 11, seeking inner ring rotation frequency f i to the orbital revolution of the balls 6,6, ball revolution frequency f c, the respective mean value of the ball rotation frequency f b. Incidentally, the ball revolution frequency f c is consistent with the rotational frequency of the retainer (not shown) for holding freely rotation and revolution of the ball 6,6.
【0012】尚、上記玉公転周波数fc は、玉6、6の
公転に対する内輪回転周波数fi と、上記内輪回転周波
数fr とからも求める事ができる。即ち、これら玉6、
6の公転に対する内輪回転周波数fi と、上記内輪回転
周波数fr とを演算器11に送り込み、上記内輪回転周
波数fr から上記玉6、6の公転に対する内輪回転周波
数fi を引いて(fr −fc )、上記玉公転周波数fc
を求める事ができる。但し、本発明の要旨は、個々の転
がり軸受の寿命をより正確に予測する為に、転がり軸受
に関する各種状態値を測定する事にあり、上述した玉公
転周波数fc 、玉6、6の公転に対する内輪回転周波数
fi を求める事は、本発明の要旨ではない。[0012] Incidentally, the ball revolution frequency f c is an inner ring rotation frequency f i to the orbital revolution of the balls 6 and 6, can be obtained from the inner ring rotation frequency f r. That is, these balls 6,
And the inner ring rotation frequency f i for 6 revolution of said the inner ring rotation frequency f r fed to the arithmetic unit 11, by pulling the inner ring rotation frequency f i to the orbital revolution of the balls 6, 6 from the inner ring rotation frequency f r (f r -f c), the ball revolution frequency f c
Can be requested. However, the gist of the present invention, in order to predict the lifetime of the individual rolling bearing more precisely, lies in that measuring various state values for the rolling bearing, ball revolution frequency f c as described above, the revolution of the balls 6 and 6 possible to find the inner ring rotation frequency f i for is not the gist of the present invention.
【0013】次に、上述の様にして求めた内輪回転周波
数fr と玉自転周波数fb の平均値とを、図2に示す様
に、演算器11に送り込む事で、玉軸受1に組み込んだ
各玉6、6の接触角αを求める事ができる。即ち、玉自
転数na は次の(1)式で示す様に表される。尚、Dpw
は玉ピッチ径、Dw は玉直径、ne は外輪回転数、ni
は内輪回転数である。 na ={Dpw/Dw −Dw ×(cosα)2 /Dpw)}×(ne −ni )/2 −−−(1) そして、この(1)式に於いて外輪3を非回転(ne =
0)とすると、次の(2)式が導かれる。 fb ={Dpw/Dw −Dw (cosα)2 /Dpw}(−fr /2)−−−(2 ) この(2)式に於ける転動体ピッチ径Dpw、転動体直径
Dw は製造時に定まる寸法であり、既知である。従っ
て、上記接触角αは上記内輪回転周波数fr と玉自転周
波数fb との関数として求める事ができる。従って、
(2)式を組み込んだ(処理機能を有する)上記演算器
11に、上記内輪回転周波数fr と玉自転周波数fb の
平均値とを送り込めば、上記接触角αを求める事ができ
る。[0013] Then, the average value of the inner ring was determined in the manner described above rotational frequency f r and Ball rotation frequency f b, as shown in FIG. 2, by feeding to the arithmetic unit 11, incorporated in the ball bearing 1 The contact angle α of each ball 6, 6 can be obtained. That is, the ball rotation number n a is expressed as shown in the following equation (1). Note that D pw
Is the ball pitch diameter, Dw is the ball diameter, ne is the outer ring rotation speed, ni
Is the inner ring rotation speed. n a = {D pw / D w -D w × (cosα) 2 / D pw)} × (n e -n i) / 2 --- (1) The outer ring 3 In this equation (1) Is non-rotated ( ne =
0), the following equation (2) is derived. f b = {D pw / D w -D w (cosα) 2 / D pw} (- f r / 2) --- (2) in the rolling element pitch diameter D pw in the equation (2), rolling elements The diameter D w is a dimension determined at the time of manufacture and is known. Therefore, the contact angle α may be calculated as a function of the inner ring rotation frequency f r and Ball rotation frequency f b. Therefore,
(2) the incorporated (with a processing function) The calculator 11, if Okurikome the average value of the inner ring rotation frequency f r and Ball rotation frequency f b, can be calculated the contact angle alpha.
【0014】更に、この様にして求めた接触角αを、演
算器11に送り込む事により、上記各玉6、6の弾性変
形量δn を求める事ができる。この点について、図5を
参照しつつ説明する。この図5には、初期接触角α0 を
有する深溝型の玉軸受である玉軸受1aに、アキシアル
荷重Fn が加わり、この玉軸受1aを構成する内輪5a
がアキシアル方向にδn だけ変位した状態を示してい
る。この場合、上記内輪5aの溝半径中心Oi もOi ′
にアキシアル方向にδn だけ変位して、接触角はα0 か
らαに変化する。図5から明らかな様に、外輪溝半径中
心Oe と初期内輪溝半径中心Oi との距離a、並びに外
輪溝半径中心Oe と変位後の内輪溝半径中心Oi ′との
距離bは、次の(3)、(4)式で表される。尚、ri
は内輪5aの溝半径、re は外輪3aの溝半径である。 a=ri +re −Dw −−−(3) b=ri +re +δn −Dw −−−(4) 従って、これら(3)、(4)式より内輪5aの溝半径
中心Oi (Oi ′)と外輪3aの溝半径中心Oe とのラ
ジアル方向距離cを表す、次の(5)式が導かれる。 (ri +re −Dw )cosα=(ri +re +δn −Dw )cosα0 −− −(5) この(5)式に於いて、内輪5aの溝半径ri と、外輪
3aの溝半径re と、転動体直径Dw と、初期接触角α
0 とは、何れも製造時に定まる寸法であり、既知であ
る。従って、上記弾性変形量δn は接触角αの関数とな
る。この様な関係は、深溝型の玉軸受1aに限らず、図
6に示したアンギュラ型の玉軸受1等、各種ラジアル型
の玉軸受で成り立つ。従って、(5)式を組み込んだ上
記演算器11に、前述の様にして求めた接触角αを送り
込めば、上記弾性変形量δn を求める事ができる。Furthermore, the contact angle α calculated in this way, by feeding to the arithmetic unit 11, it is possible to determine the elastic deformation amount [delta] n of the balls 6, 6. This will be described with reference to FIG. The 5, the ball bearing 1a is a deep groove ball bearing having an initial contact angle alpha 0, joined by axial load F n, the inner ring 5a which constitutes the ball bearing 1a
There is shown a state in which displaced by [delta] n in the axial direction. In this case, the groove radius center O i of the inner ring 5a is also O i '
In the axial direction displaced by [delta] n, the contact angle is changed to alpha from alpha 0. As is apparent from FIG. 5, the distance a between the outer ring groove radius center Oe and the initial inner ring groove radius center Oi, and the distance b between the outer ring groove radius center Oe and the displaced inner ring groove radius center O i ′ are: , And are expressed by the following equations (3) and (4). Note that r i
The groove radius, r e of the inner ring 5a is a groove radius of the outer ring 3a. a = r i + r e -D w --- (3) b = r i + r e + δ n -D w --- (4) Therefore, these (3), (4) a groove radius center of the inner ring 5a from the equation The following equation (5), which represents a radial distance c between O i (O i ′) and the groove radius center O e of the outer ring 3a, is derived. (R i + r e -D w ) cosα = (r i + r e + δ n -D w) cosα 0 - - (5) The (5) In the formula, the groove radius r i of the inner ring 5a, the outer ring 3a and the groove radius r e of the rolling element diameter D w, initial contact angle α
“0” is a dimension determined at the time of manufacture, and is known. Therefore, the elastic deformation amount [delta] n is a function of the contact angle alpha. Such a relationship is not limited to the deep-groove type ball bearing 1a, but is realized by various radial type ball bearings such as the angular type ball bearing 1 shown in FIG. Thus, equation (5) to the arithmetic unit 11 incorporating, if Okurikome contact angle α determined in the manner described above, it can be obtained the elastic deformation amount [delta] n.
【0015】次に、この様にして求めた弾性変形量δn
を演算器11に送り込む事により、上記玉6、6に付与
される玉荷重量Qを求める事ができる。即ち、この玉荷
重量Qは次の(6)式で表される。尚、KN は、転動体
の材料、寸法、形状により定まる定数である。 Q=KN ×δn 3/2 −−−(6) 前述の様にして求めた弾性変形量δn を、(6)式を組
み込んだ上記演算器11に送り込めば、上記玉荷重量Q
を求める事ができる。Next, the amount of elastic deformation δ n obtained in this manner
Is sent to the computing unit 11, the ball load Q applied to the balls 6, 6 can be obtained. That is, the ball load Q is expressed by the following equation (6). K N is a constant determined by the material, dimensions and shape of the rolling elements. Q = K N × δ n 3/2 (6) If the elastic deformation amount δ n obtained as described above is sent to the arithmetic unit 11 incorporating the equation (6), the ball load amount is obtained. Q
Can be requested.
【0016】そして、この様にして求めた玉荷重量Qを
演算器11に送り込む事により、上記玉軸受1のアキシ
アル荷重量Fa と、ラジアル荷重量Fr と、この玉軸受
1を構成する各玉6、6の接触剛性値Kとを求める事が
できる。即ち、上記アキシアル荷重量Fa と、ラジアル
荷重量Fr とは、それぞれ次の(7)、(8)式で表さ
れる。 Fa =z×Q×sinα−−−(7) Fr =z×Q×cosα−−−(8) 従って、上記玉荷重量Qと、玉数Zと、接触角αとを、
これら(7)、(8)式を組み込んだ上記演算器11に
送り込めば、上記アキシアル荷重量Fa とラジアル荷重
量Fr とを求める事ができる。[0016] Then, by feeding the ball load amount Q calculated in this manner to the arithmetic unit 11, constitutes the axial load amount F a of the ball bearing 1, the radial load amount F r, the ball bearing 1 The contact rigidity value K of each ball 6, 6 can be obtained. That, and the axial load amount F a, the radial load amount F r, the following respective (7), represented by equation (8). F a = z × Q × sinα --- (7) F r = z × Q × cosα --- (8) Therefore, the above ball load amount Q, the number of balls Z, and a contact angle alpha,
These (7), (8) if Okurikome formula above calculator 11 incorporating, can be calculated and the axial load amount F a and radial load amount F r.
【0017】一方、上記(6)式から、次の(9)式が
導かれる。 dQ/dδ=3/2×KN ×δn 1/2 −−−(9) この(9)式に示した、玉荷重量Qの、弾性変形量によ
る微分dQ/dδは、接触剛性値Kである(K=dQ/
dδ)。従って、この(9)式を組み込んだ上記演算器
11に上記弾性変形量δn を送り込めば、上記接触剛性
値Kを求める事ができる。On the other hand, the following equation (9) is derived from the above equation (6). dQ / dδ = 3/2 × K N × δ n 1/2 (9) The differential dQ / dδ of the ball load Q by the elastic deformation shown in the equation (9) is a contact rigidity value. K (K = dQ /
dδ). Therefore, the (9) if Okurikome the elastic deformation amount [delta] n type in the above arithmetic unit 11 incorporating, can be obtained the contact stiffness value K.
【0018】尚、この接触剛性値Kは、上述の様に求め
る他、共振周波数fn によって求める事もできる。即
ち、この共振周波数fn は、次の(10)式で表され
る。尚、kは製造時に定まる定数である。 fn =k×K1/2 −−−(10) 従って、先ず、固定部材である外輪3の振動により発生
する信号を、周波数変換する事により共振周波数fn を
求める。図3は、本発明者の行なった測定結果の1例と
して、ノーマル信号により、上記共振周波数fn を示す
図である。そして、この共振周波数fn を(10)式を
組み込んだ図示しない演算器に送り込めば上記接触剛性
値Kを求める事ができ、更に、この接触剛性値Kによ
り、アキシアル剛性値Ka とラジアル剛性値Kr とを求
める事ができる。[0018] Incidentally, the contact stiffness value K, in addition to finding as described above, can also be determined by the resonant frequency f n. That is, the resonance frequency f n is expressed by the following equation (10). Here, k is a constant determined at the time of manufacturing. f n = k × K 1/2 (10) Accordingly, first, the resonance frequency f n is obtained by frequency-converting the signal generated by the vibration of the outer ring 3 as the fixed member. Figure 3 is an example of measured results of performing the present inventors, the normal signal, is a diagram showing the resonant frequency f n. If the resonance frequency f n is sent to an arithmetic unit (not shown) incorporating the equation (10), the contact stiffness K can be obtained. Further, the axial stiffness Ka and the radial stiffness K a The rigidity value Kr can be obtained.
【0019】更に、図1に示す様に、固定部材である外
輪3の振動を取り出した信号により、騒音レベルの評価
に利用する事もできる。即ち、上記信号のレベルの最大
値或は任意の周波数帯域の積分値を取り出して比較する
事により、騒音レベルの推移を把握でき、上記玉軸受1
の使用時に異常を発見する等ができる。Further, as shown in FIG. 1, a signal obtained by extracting the vibration of the outer race 3, which is a fixed member, can be used for evaluating the noise level. That is, by extracting and comparing the maximum value of the signal level or the integrated value of an arbitrary frequency band, the transition of the noise level can be grasped, and the ball bearing 1 can be obtained.
Can be used to detect abnormalities.
【0020】又、固定部材である外輪3の振動により発
生する信号をエンベロープ処理した信号とし、周波数変
換したものにより、前述した様に内輪5、外輪3、玉
6、6の接触面に存在する微小な傷等に起因する振動の
周波数を求める事ができる為、更に上記外輪3の振動に
より発生する信号を用いて傷ピークカウントを求める事
もできる。この傷ピークカウントは、上記玉軸受1の傷
信号として、外輪軌道2、内輪軌道4、玉6、6の転動
面に存在する傷の数に比例して発生し、且つ、傷の程度
によりレベルが異なる。従って、上記玉軸受1の傷の数
及び程度を傷分析値として求める事ができる。The signal generated by the vibration of the outer ring 3, which is a fixed member, is converted into an envelope-processed signal, and the frequency-converted signal is present on the contact surfaces of the inner ring 5, the outer ring 3, and the balls 6, 6 as described above. Since the frequency of the vibration caused by the minute flaw or the like can be obtained, the flaw peak count can be further obtained using the signal generated by the vibration of the outer ring 3. The flaw peak count is generated as a flaw signal of the ball bearing 1 in proportion to the number of flaws existing on the rolling surfaces of the outer raceway 2, the inner raceway 4, and the balls 6, 6, and depends on the degree of the flaw. Different levels. Therefore, the number and degree of scratches on the ball bearing 1 can be determined as scratch analysis values.
【0021】上述した様に、本発明の転がり軸受の各種
状態値を測定する装置は、転がり軸受の使用時に、1個
のセンサである振動測定素子を用いて、転がり軸受の回
転周波数fn 、アキシアル荷重量Fa 、ラジアル荷重量
Fr 、アキシアル剛性値Ka、ラジアル剛性値Kr 、接
触角α、傷分析値、騒音値、更に予圧量Fの各種状態値
を求める事ができる。従って、本発明の測定対象である
転がり軸受に更に温度センサを設けて、この転がり軸受
の軸受近傍温度を求める事と合わせて、転がり軸受の寿
命をより正確に予測する事ができる。即ち、転がり軸受
の使用時に、上記各種状態値と軸受近傍温度とを常時把
握でき、且つ、その推移についても経時的に観察でき
る。従って、これら各種状態値と軸受近傍温度とのそれ
ぞれにしきい値を設定しておけば、このしきい値に至っ
た時期、並びに至るまでの過程を知る事により、個々の
転がり軸受の寿命を知る事ができ、且つ、その寿命に至
る要因も知る事ができる。従って、本発明の転がり軸受
の各種状態値を測定する装置は、生産コスト及び重量の
増加を最小限に抑えつつ、個々の転がり軸受の使用時に
その寿命をより正確に予測し、この転がり軸受の突然の
故障を防止して、この転がり軸受により支持される部材
に重大な損傷が発生する事等を防止できる。As described above, the apparatus for measuring various state values of the rolling bearing according to the present invention uses the vibration measuring element, which is a single sensor, when the rolling bearing is used, and uses the vibration measuring element as a single sensor to measure the rotation frequency f n , axial load amount F a, radial load amount F r, axial rigidity value K a, the radial stiffness value K r, contact angle alpha, wound analysis, noise level, can be further determine various status values of preload F. Therefore, it is possible to more accurately predict the life of the rolling bearing together with obtaining the temperature near the bearing of the rolling bearing by further providing a temperature sensor on the rolling bearing to be measured according to the present invention. That is, when the rolling bearing is used, the various state values and the temperature in the vicinity of the bearing can be constantly grasped, and the transition can be observed with time. Therefore, if a threshold value is set for each of these various state values and the temperature near the bearing, the life of each rolling bearing can be known by knowing when the threshold value is reached and the process leading to the threshold value. And the factors that lead to its lifetime can be known. Therefore, the apparatus for measuring various state values of the rolling bearing according to the present invention predicts the life of each rolling bearing more accurately at the time of use, while minimizing the increase in production cost and weight, and realizes the rolling bearing. By preventing a sudden failure, it is possible to prevent the member supported by the rolling bearing from being seriously damaged.
【0022】尚、接触角α及び共振周波数fn より軸受
剛性Ka を求め、更に予圧量Fを求める方法は、出願人
会社発行の『NSKレポート』1989年11月号の第
59〜66頁、或は養賢堂発行、転がり軸受工学編集委
員会編の『転がり軸受工学』の第248〜252頁等に
記載された式に周知の理論を適用する事により、当業者
が容易に知る事ができる為、詳しい説明は省略する。[0022] Incidentally, seeking contact angle α and the resonance frequency f n bearing rigidity than K a, further methods for determining the preload F, the applicant company issuing the "NSK Report" November 1989 issue of pages 59 to 66 Or by applying a well-known theory to the equations described on pages 248 to 252 of "Rolling Bearing Engineering", edited by the Rolling Bearing Engineering Editing Committee, published by Yokendo, etc. Therefore, detailed description is omitted.
【0023】[0023]
【発明の効果】本発明の転がり軸受の各種状態値を測定
する装置は、以上に述べた通り構成され作用する為、転
がり軸受装置全体の生産コスト及び重量の増加を最小限
に抑えつつ、個々の転がり軸受の使用時にその寿命をよ
り正確に予測し、この転がり軸受が突然損傷する事を防
止して、この転がり軸受により支持される部材に重大な
損傷を生じる事等を有効に防止できる。The apparatus for measuring various state values of a rolling bearing according to the present invention is constructed and operates as described above, so that the production cost and weight increase of the entire rolling bearing apparatus can be minimized while minimizing the increase. It is possible to more accurately predict the life of a rolling bearing when it is used, to prevent the rolling bearing from being suddenly damaged, and to effectively prevent serious damage to members supported by the rolling bearing.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の実施の形態の1例を示すフローチャー
トの前半部。FIG. 1 is a first half of a flowchart showing an example of an embodiment of the present invention.
【図2】同後半部。FIG. 2 is the latter half.
【図3】本発明の実施の形態の1例を用いて本発明者が
行なった測定結果の1例として、ノーマル信号を示す
図。FIG. 3 is a diagram showing a normal signal as an example of a measurement result performed by the inventor using an example of the embodiment of the present invention.
【図4】図3の低周波数部分のみを取り出して示す図。FIG. 4 is a diagram showing only a low-frequency portion of FIG. 3;
【図5】ラジアル玉軸受にアキシアル荷重が加わった状
態を誇張して示す、半部断面図。FIG. 5 is an exaggerated half sectional view showing a state in which an axial load is applied to the radial ball bearing.
【図6】本発明の測定対象である転がり軸受の1例を示
す断面図。FIG. 6 is a sectional view showing an example of a rolling bearing to be measured according to the present invention.
1、1a 玉軸受 2 外輪軌道 3、3a 外輪 4 内輪軌道 5、5a 内輪 6 玉 7 振動ピックアップ 8 測定子 9 アンプ 10 周波数変換器 11 演算器 12 ハウジング 13 軸部材 DESCRIPTION OF SYMBOLS 1, 1a Ball bearing 2 Outer ring track 3, 3a Outer ring 4 Inner ring track 5, 5a Inner ring 6 Ball 7 Vibration pick-up 8 Probe 9 Amplifier 10 Frequency converter 11 Computing unit 12 Housing 13 Shaft member
Claims (1)
輪相当部材と、上記片面に対向する面に第二の軌道面を
有する第二の軌道輪相当部材と、上記第一の軌道面と第
二の軌道面との間に転動自在に設けられた複数の転動体
とから成る転がり軸受に関する各種状態値を測定する装
置であって、上記第一の軌道輪相当部材と第二の軌道輪
相当部材とのうち何れか一方の部材を固定し、上記第一
の軌道輪相当部材と第二の軌道輪相当部材とのうち他方
の部材を回転させた状態で、上記一方の部材の振動を測
定する振動測定素子と、この振動測定素子の出力信号を
送り込んで周波数変換する周波数変換器と、この周波数
変換器により求めた回転周波数、共振周波数、内輪、外
輪、転動体成分周波数等の各周波数により、上記転がり
軸受の接触角と、アキシアル剛性値と、ラジアル剛性値
と、アキシアル荷重量と、ラジアル荷重量と、予圧量と
の全部又は一部を求める演算器とを備える転がり軸受の
各種状態値を測定する装置。A first raceway-equivalent member having a first raceway surface on one side; a second raceway-equivalent member having a second raceway surface on a surface opposite to the one side; An apparatus for measuring various state values related to a rolling bearing composed of a plurality of rolling elements rotatably provided between a raceway surface and a second raceway surface, wherein the first raceway ring-equivalent member and the One of the two bearing ring-equivalent members is fixed, and the other of the first bearing ring-equivalent member and the second bearing ring-equivalent member is rotated while the one of the two members is rotated. A vibration measuring element that measures the vibration of the member, a frequency converter that sends the output signal of the vibration measuring element and converts the frequency, and a rotation frequency, a resonance frequency, an inner ring, an outer ring, and a rolling element component frequency obtained by the frequency converter. The contact angle of the rolling bearing and the An apparatus for measuring various state values of a rolling bearing including a computing unit for calculating all or a part of a axial rigidity value, a radial rigidity value, an axial load amount, a radial load amount, and a preload amount.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15680597A JPH112239A (en) | 1997-06-13 | 1997-06-13 | Device to measure various property of rolling bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15680597A JPH112239A (en) | 1997-06-13 | 1997-06-13 | Device to measure various property of rolling bearing |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH112239A true JPH112239A (en) | 1999-01-06 |
Family
ID=15635718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15680597A Pending JPH112239A (en) | 1997-06-13 | 1997-06-13 | Device to measure various property of rolling bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH112239A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003106960A1 (en) * | 2002-05-31 | 2003-12-24 | 中国電力株式会社 | Method and apparatus for diagnosing residual life of rolling element bearing |
CN103076173A (en) * | 2012-12-20 | 2013-05-01 | 唐德尧 | Rolling bearing fault detection device |
CN103926078A (en) * | 2014-04-29 | 2014-07-16 | 洛阳轴研科技股份有限公司 | Test equipment for detecting axial rigidity of precise miniature bearing |
CN109855870A (en) * | 2018-12-30 | 2019-06-07 | 洛阳轴承研究所有限公司 | A kind of bearing test device |
JP2021032797A (en) * | 2019-08-28 | 2021-03-01 | 日本精工株式会社 | Method and system for monitoring state of rolling bearing |
CN113396292A (en) * | 2018-11-22 | 2021-09-14 | 埃尔特克有限公司 | Detection device for bearing |
JP2022024573A (en) * | 2020-07-28 | 2022-02-09 | 株式会社日立インダストリアルプロダクツ | Device and method of abnormality detection for rolling bearings |
CN116067655A (en) * | 2023-03-06 | 2023-05-05 | 西安航天动力研究所 | Part testing device, part testing equipment and part testing method |
-
1997
- 1997-06-13 JP JP15680597A patent/JPH112239A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003106960A1 (en) * | 2002-05-31 | 2003-12-24 | 中国電力株式会社 | Method and apparatus for diagnosing residual life of rolling element bearing |
JP2004003891A (en) * | 2002-05-31 | 2004-01-08 | Chugoku Electric Power Co Inc:The | Method and system for assessing remaining life of rolling bearing |
KR100715252B1 (en) * | 2002-05-31 | 2007-05-08 | 쥬코쿠 덴료쿠 가부시키 가이샤 | Method and apparatus for diagnosing residual life of rolling element bearing |
CN100451600C (en) * | 2002-05-31 | 2009-01-14 | 中国电力株式会社 | Method and apparatus for diagnosing residual life of rolling element bearing |
US7813906B2 (en) | 2002-05-31 | 2010-10-12 | The Chugoku Electric Power Co., Inc. | Method of predicting residual service life for rolling bearings and a device for predicting residual service life for rolling bearings |
CN103076173A (en) * | 2012-12-20 | 2013-05-01 | 唐德尧 | Rolling bearing fault detection device |
CN103926078A (en) * | 2014-04-29 | 2014-07-16 | 洛阳轴研科技股份有限公司 | Test equipment for detecting axial rigidity of precise miniature bearing |
CN113396292A (en) * | 2018-11-22 | 2021-09-14 | 埃尔特克有限公司 | Detection device for bearing |
CN113396292B (en) * | 2018-11-22 | 2023-11-28 | 埃尔特克有限公司 | Detection equipment for bearing |
US11982584B2 (en) | 2018-11-22 | 2024-05-14 | Eltek S.P.A. | Detection device for bearings |
CN109855870A (en) * | 2018-12-30 | 2019-06-07 | 洛阳轴承研究所有限公司 | A kind of bearing test device |
JP2021032797A (en) * | 2019-08-28 | 2021-03-01 | 日本精工株式会社 | Method and system for monitoring state of rolling bearing |
JP2022024573A (en) * | 2020-07-28 | 2022-02-09 | 株式会社日立インダストリアルプロダクツ | Device and method of abnormality detection for rolling bearings |
CN116067655A (en) * | 2023-03-06 | 2023-05-05 | 西安航天动力研究所 | Part testing device, part testing equipment and part testing method |
CN116067655B (en) * | 2023-03-06 | 2023-07-14 | 西安航天动力研究所 | Part testing device, part testing equipment and part testing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3648919B2 (en) | Bearing preload measuring method and measuring apparatus | |
US9933333B2 (en) | Bearing diagnostic device for machine tool | |
US8315826B2 (en) | Diagnostic method for a ball bearing, in particular for an angular-contact ball bearing, a corresponding diagnostic system, and use of the diagnostic system | |
WO2017203868A1 (en) | Rolling bearing fatigue state prediction device and rolling bearing fatigue state prediction method | |
JPH0961268A (en) | Load measuring apparatus for bearing | |
WO2019221251A1 (en) | Bearing state monitoring method and state monitoring device | |
JP2005345277A (en) | Monitoring device and monitoring method | |
CN105899945A (en) | Viscosity estimation from demodulated acoustic emission | |
JPH112239A (en) | Device to measure various property of rolling bearing | |
TWI815960B (en) | Bearing apparatus | |
JP4165260B2 (en) | Rolling bearing unit with sensor | |
JP2004156779A (en) | Method and apparatus for determining bearing parameter | |
JPH07324972A (en) | Apparatus for measuring vibration of roller bearing | |
JP2005344842A (en) | Monitor and monitoring method | |
WO2007015360A1 (en) | Evaluation method for rolling bearing part | |
JP2008281388A (en) | Bearing with bearing load measuring device, and method of measuring bearing load | |
US12215740B2 (en) | System for determining at least one defect of a bearing and associated method | |
Kakishima et al. | Measurement of acoustic emission and vibration of rolling bearings with an artificial defect | |
JP7351142B2 (en) | Rolling bearing condition monitoring method and condition monitoring device | |
JP2004061151A (en) | Contact angle measuring method and apparatus for bearing device | |
JP2004198246A (en) | Method for diagnosing load state of bearing | |
JP7543649B2 (en) | Calculation method, bearing device and spindle device of machine tool | |
JP2009002447A (en) | Rolling bearing with sensor | |
KR100228023B1 (en) | Prediction method of bearing life | |
JP2018145998A (en) | Device for monitoring state of rolling bearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20041221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041228 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050225 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050419 |