[go: up one dir, main page]

JPH11221420A - Apparatus and method for producing and supplying nitrogen and/or oxygen and purified air - Google Patents

Apparatus and method for producing and supplying nitrogen and/or oxygen and purified air

Info

Publication number
JPH11221420A
JPH11221420A JP10027588A JP2758898A JPH11221420A JP H11221420 A JPH11221420 A JP H11221420A JP 10027588 A JP10027588 A JP 10027588A JP 2758898 A JP2758898 A JP 2758898A JP H11221420 A JPH11221420 A JP H11221420A
Authority
JP
Japan
Prior art keywords
air
purified air
oxygen
raw material
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10027588A
Other languages
Japanese (ja)
Other versions
JP3959168B2 (en
Inventor
Itsuki Shibata
厳 柴田
Hideo Ushiku
英雄 牛久
Hiroshi Nakajima
太司 中島
Hideyuki Honda
秀幸 本田
Nobuhisa Kinoshita
暢久 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP02758898A priority Critical patent/JP3959168B2/en
Publication of JPH11221420A publication Critical patent/JPH11221420A/en
Application granted granted Critical
Publication of JP3959168B2 publication Critical patent/JP3959168B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04951Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network
    • F25J3/04957Arrangements of multiple air fractionation units or multiple equipments fulfilling the same process step, e.g. multiple trains in a network and inter-connecting equipments upstream of the fractionation unit (s), i.e. at the "front-end"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04163Hot end purification of the feed air
    • F25J3/04169Hot end purification of the feed air by adsorption of the impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04824Stopping of the process, e.g. defrosting or deriming; Back-up procedures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/82Processes or apparatus using other separation and/or other processing means using a reactor with combustion or catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/02Mixing or blending of fluids to yield a certain product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/40Air or oxygen enriched air, i.e. generally less than 30mol% of O2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/40Processes or apparatus involving steps for recycling of process streams the recycled stream being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/50Processes or apparatus involving steps for recycling of process streams the recycled stream being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/50One fluid being oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/62Details of storing a fluid in a tank

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently, stably and continuously supply purified air by organically connecting an air purifier, an air liquefying and separating device and a backup device. SOLUTION: This apparatus is equipped with an air purifying device A for purifying the compressed air from an air compressor 2 by a purifier 4 to produce and supply general-purpose purified air, an air liquefying and separating device B introducing raw material-purified air compressed by a raw material air compressor 12 and purified by a catalytic purifier 14 and an adsorbing purifier 16 to refine and separate nitrogen gas and oxygen gas to supply them and a backup device C equipped with a liquid nitrogen storage tank 22, a liquid nitrogen evaporator 24, a liquefied oxygen storage tank 32, a liquefied oxygen evaporator 34 and a mixer 40, and has a flow path allowing the raw material purified air and general-purpose purified air to meet with each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒素及び/又は酸
素及び精製空気の製造・供給装置及び方法に関し、詳し
くは、半導体製造工場や液晶製造工場等を代表とする情
報メディア製造産業において大量に使用されている精製
空気と、空気を原料として深冷式空気液化分離装置で生
産する窒素ガス,酸素ガス等を安定かつ効率的に供給す
るための装置及び方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus and a method for producing and supplying nitrogen and / or oxygen and purified air, and more particularly, to a large quantity in the information media manufacturing industry typified by a semiconductor manufacturing plant and a liquid crystal manufacturing plant. The present invention relates to an apparatus and a method for stably and efficiently supplying purified air used, nitrogen gas, oxygen gas, and the like produced by a cryogenic air liquefaction separation apparatus using air as a raw material.

【0002】[0002]

【従来の技術】空気を原料として生産される圧縮精製空
気,窒素ガス,酸素ガスは、そのガス毎の特性を利用し
て各種の産業における製造工場において原料及びユーテ
ィリティとして使用されている。
2. Description of the Related Art Compressed purified air, nitrogen gas, and oxygen gas produced from air are used as raw materials and utilities in manufacturing factories in various industries by utilizing the characteristics of each gas.

【0003】特に、半導体製造工場や液晶製造工場にお
いては、これらのガスが全て大量に使用されており、そ
の用途,使用量及び経済性に応じてそれぞれ各個別に最
適の方法及び装置で製造供給されている。
Particularly, in a semiconductor manufacturing plant or a liquid crystal manufacturing plant, all of these gases are used in large quantities, and each of them is manufactured and supplied by an optimum method and apparatus individually according to the use, the amount of use and the economic efficiency. Have been.

【0004】これらのガスは,継続的に安定供給するこ
とが絶対的条件として求められており、需要先の使用量
の変動に応じて、かつ,製造装置の故障による供給停止
に予め対処して、予備機を設置したり液化ガスを貯蔵し
ておき、これを気化供給するバックアップ装置を設置し
ておき、緊急時等にこれを使用して対応するようにして
いる。
[0004] As an absolute condition, it is required that these gases be continuously supplied in a stable manner, and in response to fluctuations in the amount of use at the demand side, and in advance, taking measures to stop the supply due to a failure in the manufacturing equipment. In addition, a backup device is installed or a liquefied gas is stored, and a backup device for vaporizing and supplying the liquefied gas is installed and used in an emergency or the like.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の産業界における厳しい価格競争により、供給使用され
るユーティリティ製品使用等の供給条件を満足した上
で、より経済的かつ効率的な供給が求められている。
However, due to the severe price competition in these industries, more economical and efficient supply is required while satisfying supply conditions such as use of utility products to be used. I have.

【0006】特に、精製空気は、使用場所によっては余
剰分を大気に放出している一方、酸欠事故の惹起する可
能性等から、窒素ガスによる代替供給が困難であるた
め、精製空気の安定供給が厳しく求められている場合
は、予備機の設置が必要条件となるケースがある。な
お、酸欠等のおそれの無いところでは窒素ガスで代替
し、バックアップを行っている場合もある。
[0006] In particular, the purified air releases excess into the atmosphere depending on the place of use, but it is difficult to substitute and supply with nitrogen gas due to the possibility of an oxygen deficiency accident. When supply is strictly required, the installation of a spare machine may be a necessary condition. In some cases, where there is no possibility of oxygen deficiency or the like, backup may be performed by replacing with nitrogen gas.

【0007】従来、空気液化分離装置を設置して、窒素
ガス,酸素ガス等を継続的に供給している半導体工場等
では、需要変動や事故による供給停止に対応して、窒素
ガス,酸素ガス等の安定供給が可能なように、液化窒素
貯槽,液化酸素貯槽によるバックアップ設備を設置して
いるのが普通であるが、精製空気の需要変動や事故によ
る供給停止に対応するバックアップ設備としては、例え
ば、同一仕様の精製空気製造装置を予備機として設置す
るようにしていた。
Conventionally, in a semiconductor factory or the like which continuously installs an air liquefaction / separation apparatus to supply nitrogen gas, oxygen gas, etc., nitrogen gas, oxygen gas, etc. It is common to install backup equipment with a liquefied nitrogen storage tank and a liquefied oxygen storage tank to enable stable supply of gas, etc. For example, a purified air production apparatus having the same specifications is installed as a spare machine.

【0008】そこで本発明は、既存のこれら装置を有機
的に連結し、精製空気を含む上記各種ガスを効率よく、
かつ、安定的に継続して供給できる装置及び方法を提供
することを目的とする。
Therefore, the present invention organically connects these existing devices to efficiently use the above-mentioned various gases including purified air,
It is another object of the present invention to provide an apparatus and a method capable of stably and continuously supplying.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明の窒素及び/又は酸素及び精製空気の製造・
供給装置は、空気精製装置及び空気液化分離装置によ
り、精製空気,酸素ガス,窒素ガス等を製造・供給する
装置であって、空気圧縮機及び該空気圧縮機で圧縮した
圧縮空気中の少なくとも水分を除去する精製器からな
り、汎用精製空気を製造する空気精製装置と、原料空気
圧縮機及び吸着精製器により原料精製空気を製造し、該
原料精製空気を空気液化分離部に導入して窒素ガス及び
/又は酸素ガスを精留分離する空気液化分離装置と、前
記吸着精製器の出口流路と前記空気精製装置の精製器の
出口流路とを弁を介して連結し、前記原料精製空気を汎
用精製空気に合流させる流路とを備えていることを特徴
としている。
In order to achieve the above object, the production of nitrogen and / or oxygen and purified air of the present invention is performed.
The supply device is a device for producing and supplying purified air, oxygen gas, nitrogen gas, and the like by an air purification device and an air liquefaction separation device. The supply device includes an air compressor and at least water in the compressed air compressed by the air compressor. An air purification device for producing general-purpose purified air, and a raw material air compressor and an adsorption purifier to produce raw material purified air, and the raw material purified air is introduced into an air liquefaction separation section to remove nitrogen gas. And / or an air liquefaction / separation device for rectifying and separating oxygen gas, and an outlet channel of the adsorption purifier and an outlet channel of the purifier of the air purifier are connected via a valve, and the raw material purified air is And a flow path for merging with general-purpose purified air.

【0010】さらに、本発明装置は、空気精製装置,空
気液化分離装置及びそのバックアップ装置により、精製
空気,酸素ガス,窒素ガス等を製造・供給する装置であ
って、空気圧縮機及び該空気圧縮機で圧縮した圧縮空気
中の少なくとも水分を除去する精製器からなり、汎用精
製空気を製造して供給する空気精製装置と、原料空気圧
縮機及び吸着精製器により原料精製空気を製造し、該原
料精製空気を空気液化分離部に導入して窒素ガス及び/
又は酸素ガスを精留分離して供給する空気液化分離装置
と、液化窒素貯槽,液化窒素蒸発器,これらを連結する
配管,弁類を有する窒素ガス供給用バックアップ装置及
び/又は液化酸素貯槽,液化酸素蒸発器,これらを連結
する配管、弁類を有する酸素ガス供給用バックアップ装
置と、前記吸着精製器の出口流路と前記空気精製装置の
精製器の出口流路とを弁を介して連結し、前記原料精製
空気を汎用精製空気に合流させる流路とを備えているこ
とを特徴としている。
Further, the apparatus of the present invention is an apparatus for producing and supplying purified air, oxygen gas, nitrogen gas and the like by means of an air purification device, an air liquefaction separation device and its backup device. An air purifier that comprises a purifier that removes at least moisture from the compressed air that has been compressed by the compressor, produces and supplies general-purpose purified air, and produces a raw material purified air with a raw air compressor and an adsorption purifier. Purified air is introduced into the air liquefaction / separation section and nitrogen gas and / or
A liquefied nitrogen storage tank, a liquefied nitrogen evaporator, a liquefied nitrogen evaporator, a backup device for supplying nitrogen gas and / or a liquefied oxygen storage tank having piping and valves for connecting these, or a liquefied oxygen storage tank, or liquefaction An oxygen evaporator, a backup device for supplying oxygen gas having piping and valves for connecting these, and an outlet flow path of the adsorption purifier and an air flow path of the purifier of the air purifier connected via a valve. And a flow passage for combining the purified air for raw material with general-purpose purified air.

【0011】さらに、前記窒素ガス供給用バックアップ
装置の窒素ガス供給用配管と酸素ガス供給用バックアッ
プ装置の酸素ガス供給用配管とを混合器を介して連結
し、該混合器の出口に合成空気供給配管を設けるととも
に、該合成空気供給配管を前記原料精製空気又は前記汎
用精製空気に合流させる流路を設けたことを特徴として
いる。
Further, a nitrogen gas supply pipe of the nitrogen gas supply backup device and an oxygen gas supply pipe of the oxygen gas supply backup device are connected via a mixer, and synthetic air supply is provided at an outlet of the mixer. A pipe is provided, and a flow path is provided to join the synthetic air supply pipe to the raw material purified air or the general-purpose purified air.

【0012】さらに、前記空気液化分離装置の原料空気
圧縮機の出口流路に触媒精製器を備えたことを特徴とし
ている。
Further, a catalyst purifier is provided in an outlet flow passage of the raw material air compressor of the air liquefaction / separation apparatus.

【0013】さらに、前記吸着精製器の入口から順に水
分除去層、触媒層、そして水分,二酸化炭素除去層を形
成するようにそれぞれの吸着剤及び/又は触媒を充填し
たことを特徴としている。
Further, each of the adsorbents and / or catalysts is filled so as to form a water removing layer, a catalyst layer, and a water and carbon dioxide removing layer in order from the inlet of the adsorption purifier.

【0014】さらに、前記空気液化分離装置の吸着精製
器の出口流路から弁を介して原料精製空気を導出して供
給する流路を設けたことを特徴としている。
[0014] Further, the present invention is characterized in that a flow path for extracting and supplying raw material purified air from an outlet flow path of the adsorption purifier of the air liquefaction separation device via a valve is provided.

【0015】さらに、前記空気精製装置の精製器が吸着
器であること、あるいは、膜分離器であること、あるい
は、水除去熱交換器であることを特徴としている。
Further, the air purifier is characterized in that the purifier is an adsorber, a membrane separator, or a water removal heat exchanger.

【0016】また、本発明の窒素及び/又は酸素及び精
製空気の製造・供給方法は、原料空気を圧縮し、吸着分
離、膜分離又は水除去熱交換器により含有する少なくと
も水分を除去して汎用精製空気を製造して供給し、原料
空気を圧縮し、吸着によって含有する少なくとも水分及
び二酸化炭素を除去して原料精製空気を得、該原料精製
空気を熱交換器,精留塔等を有する空気液化分離部に導
入して液化精留分離し、少なくとも窒素ガス及び/又は
酸素ガスを採取して供給するとともに、前記汎用精製空
気の需要量及び生産量に応じて前記原料精製空気の一部
を前記汎用精製空気に合流して供給することを特徴とし
ている。
The method for producing and supplying nitrogen and / or oxygen and purified air according to the present invention is a general-purpose method comprising compressing raw air and removing at least water contained by an adsorption separation, a membrane separation or a water removal heat exchanger. Producing and supplying purified air, compressing the raw air, removing at least moisture and carbon dioxide contained by adsorption to obtain raw purified air, and converting the raw purified air to air having a heat exchanger, a rectification column, etc. The liquefied fraction is introduced into the liquefaction separation section, and at least nitrogen gas and / or oxygen gas is sampled and supplied, and a part of the raw material purified air is supplied according to the demand and production of the general-purpose purified air. It is characterized in that it is combined with the general-purpose purified air and supplied.

【0017】さらに、本発明方法は、原料空気を圧縮
し、吸着分離,膜分離又は水除去熱交換器により含有す
る少なくとも水分を除去して汎用精製空気を製造して供
給し、原料空気を圧縮し、吸着によって含有する少なく
とも水分及び二酸化炭素を除去して原料精製空気を得、
該原料精製空気を熱交換器,精留塔等を有する空気液化
分離部に導入して液化精留分離し、少なくとも窒素ガス
及び/又は酸素ガスを採取して供給し、窒素ガス及び/
又は酸素ガスの需要量及び生産量に応じて液化窒素貯槽
の液化窒素及び/又は液化酸素貯槽の液化酸素を蒸発さ
せて窒素ガス及び/又は酸素ガスを供給し、かつ、前記
汎用精製空気の需要量及び生産量に応じて前記原料精製
空気の少なくとも一部を前記汎用精製空気に合流して供
給するとともに、これによって減少した液化精留分離に
よる窒素ガス及び/又は酸素ガスは、前記液化窒素貯槽
及び/又は液化酸素貯槽からの気化ガスで補償して供給
することを特徴としている。
Further, in the method of the present invention, the raw material air is compressed, and at least water contained in the raw material air is removed by adsorption separation, membrane separation or water removal heat exchanger to produce and supply general-purpose purified air. And, by removing at least water and carbon dioxide contained by adsorption to obtain a raw material purified air,
The raw material purified air is introduced into an air liquefaction / separation unit having a heat exchanger, a rectification column, etc., for liquefaction / rectification separation, and at least nitrogen gas and / or oxygen gas are sampled and supplied.
Alternatively, the liquefied nitrogen in the liquefied nitrogen storage tank and / or the liquefied oxygen in the liquefied oxygen storage tank is evaporated to supply the nitrogen gas and / or the oxygen gas in accordance with the demand amount and the production amount of the oxygen gas, and the demand for the general-purpose purified air is provided. According to the amount and the production amount, at least a part of the raw material purified air is combined with the general-purpose purified air and supplied, and the nitrogen gas and / or oxygen gas reduced by the liquefaction rectification is reduced by the liquefied nitrogen storage tank. And / or compensated and supplied by the vaporized gas from the liquefied oxygen storage tank.

【0018】さらに、前記液化酸素貯槽からの液化酸素
及び液化窒素貯槽からの液化窒素をそれぞれ蒸発させて
酸素ガス及び窒素ガスとし、これらを混合器により混合
して合成空気として供給するか、又はこれを前記原料精
製空気あるいは前記汎用精製空気として供給することを
特徴としている。
Further, the liquefied oxygen from the liquefied oxygen storage tank and the liquefied nitrogen from the liquefied nitrogen storage tank are evaporated to oxygen gas and nitrogen gas, respectively, and these are mixed by a mixer and supplied as synthetic air, or Is supplied as the raw material purified air or the general-purpose purified air.

【0019】さらに、前記原料空気を圧縮し、吸着によ
って水及び二酸化炭素を除去して原料精製空気を得るに
際し、原料空気を圧縮した後、触媒反応によって原料空
気中の水素,一酸化炭素を水,二酸化炭素にする工程を
設けたこと、また、前記触媒反応工程において、さらに
原料空気中の炭化水素を水,二酸化炭素にすることを特
徴としている。
Further, when the raw material air is compressed and water and carbon dioxide are removed by adsorption to obtain raw material purified air, the raw material air is compressed, and then hydrogen and carbon monoxide in the raw material air are converted into water by a catalytic reaction. And a step of converting carbon dioxide into water and carbon dioxide in the raw material air in the catalytic reaction step.

【0020】さらに、前記吸着によって原料精製空気を
得るに際し、原料精製空気の入口から順に、水分除去
層、触媒層、そして水分,二酸化炭素除去層を充填した
吸着精製器を用いて原料空気中の水分,二酸化炭素,水
素,一酸化炭素及び/又は炭化水素を除去することを特
徴としている。
Further, in obtaining raw material purified air by the above-mentioned adsorption, a water removal layer, a catalyst layer, and an adsorption purifier filled with a water and carbon dioxide removal layer are sequentially used from the inlet of the raw material purified air. It is characterized by removing moisture, carbon dioxide, hydrogen, carbon monoxide and / or hydrocarbons.

【0021】さらに、前記原料精製空気の少なくとも一
部を、前記汎用精製空気に合流させずに供給することを
特徴としている。
Further, at least a part of the raw material purified air is supplied without being combined with the general-purpose purified air.

【0022】[0022]

【発明の実施の形態】図1は本発明の一形態例を示すブ
ロック図、図2は水除去式熱交換器(冷乾式熱交換器)
の各流路と操作状態を示す系統図、図3は空気液化分離
装置の代表的装置構成を示す系統図である。
FIG. 1 is a block diagram showing one embodiment of the present invention, and FIG. 2 is a water removal type heat exchanger (cooling / drying type heat exchanger).
And FIG. 3 is a system diagram showing a typical device configuration of an air liquefaction / separation device.

【0023】まず、図1において、符号Aは、汎用精製
空気を製造する空気精製装置(ユーティリティ用精製空
気供給装置)であり、この装置で精製された精製空気
は、図示しない空気圧作動弁,エアーガンの作動ガス,
基盤搬送,薬液圧送用ガス,純水タンクのシールガス,
パーチクルや水分等のパージ用等の用途に使用される。
First, in FIG. 1, reference numeral A denotes an air purification device (purified air supply device for utility) for producing general-purpose purified air. The purified air purified by this device is supplied with a pneumatic valve, an air gun (not shown). Working gas,
Gas for substrate transportation, gas for chemical pressure feed, seal gas for pure water tank,
Used for purging particles and moisture.

【0024】また、符号2は、流路1から大気を吸入し
て必要圧力まで昇圧する空気圧縮機であり、通常の所要
圧力は0.5〜0.7MPa,流量は1500〜300
0Nm/hであるから、ブロア形式のものを用いる。
Reference numeral 2 denotes an air compressor which draws in air from the flow path 1 and raises the pressure to a required pressure. The normal required pressure is 0.5 to 0.7 MPa, and the flow rate is 1500 to 300.
Since it is 0 Nm 3 / h, a blower type is used.

【0025】4は精製器であり、吸着精製又は膜分離に
よる精製を行うことにより、空気中の水分を除去し、含
有水分を露点(DP)−70℃以下とする。仕様によっ
ては、水分及び二酸化炭素を除去する。この精製器4に
は、通常、切換え使用される2個(又は3個)で構成さ
れる吸着筒又は乾燥器を用いる。一般には、縦型の円筒
にシリカゲル,アルミナゲル,塩化カルシウム,5塩化
燐等を充填して用いる。
Reference numeral 4 denotes a purifier, which removes moisture in the air by performing purification by adsorption or membrane separation to reduce the moisture content to a dew point (DP) of -70 ° C. or less. Depending on specifications, removes water and carbon dioxide. As the purifier 4, an adsorption cylinder or a drier composed of two (or three) units that are normally used in a switching manner is used. Generally, a vertical cylinder is used by filling it with silica gel, alumina gel, calcium chloride, phosphorus pentachloride or the like.

【0026】また、寒冷供給源があり、除去成分が水分
のみで良い場合は、精製器4として低温分離式乾燥器
(水除去熱交換器,凝縮分離式精製器又は冷乾式熱交換
器)を用いることもできる。
If there is a cold supply source and the only component to be removed is moisture, a low-temperature separation dryer (water removal heat exchanger, condensation separation purifier or cold-dry heat exchanger) is used as the purifier 4. It can also be used.

【0027】精製器4で水分及び二酸化炭素を除去する
場会は、Ca−A型又はNa−A型ゼオライト(モレキ
ュラーシーブ4A又は5A)を充填した吸着筒を用い
る。
In the case where moisture and carbon dioxide are removed by the purifier 4, an adsorption column filled with Ca-A type or Na-A type zeolite (molecular sieve 4A or 5A) is used.

【0028】精製器4は、前記のように、切換え使用す
る2個(又は3個)の吸着筒で構成される。この吸着筒
は一つの吸着筒が吸着(精製)工程のとき、他の吸着筒
は再生工程であり、吸着筒の再生工程は、加熱再生段階
と加熱再生段階後の冷却段階とがある。再生工程の加熱
再生段階及び冷却段階に使用する再生ガスは、後述する
空気液化分離装置から取り出される廃ガスを使用する。
加熱再生段階の加熱用ガスは、この廃ガスを前記空気圧
縮機2の圧縮熱を熱交換して回収することにより加温し
て使用する。再生温度は、通常100〜150℃前後で
あるが、空気圧縮機2の圧縮熱で不足の場合は、ヒータ
ー又は他の熱源により更に加温してから吸着筒に導入す
る。この再生温度は、再生時間,再生ガス量等により異
なってくるので、後記する空気液化分離装置Bのプロセ
ス条件により,使用可能な廃ガス量が決まり、それに応
じて決める。
As described above, the purifier 4 is composed of two (or three) adsorption cylinders used for switching. In this adsorption column, when one adsorption column is in the adsorption (purification) process, the other adsorption column is a regeneration process, and the regeneration process of the adsorption column includes a heating regeneration stage and a cooling stage after the heating regeneration stage. As a regeneration gas used in the heating regeneration stage and the cooling stage of the regeneration process, waste gas taken out from an air liquefaction / separation device described later is used.
The heating gas in the heating and regeneration stage is used by heating the waste gas by recovering the waste gas by exchanging the heat of compression of the air compressor 2. The regeneration temperature is usually about 100 to 150 ° C., but if the compression heat of the air compressor 2 is insufficient, the air is further heated by a heater or another heat source before being introduced into the adsorption column. Since the regeneration temperature varies depending on the regeneration time, the regeneration gas amount, and the like, the amount of waste gas that can be used is determined by the process conditions of the air liquefaction / separation apparatus B described later, and is determined accordingly.

【0029】精製器4として膜分離器を使用してもよ
い。空気中の水分除去用の膜としては、通常、ポリ塩化
ビニル,フッ素系ポリマー(テフロン(商品名),フッ
素樹脂等),セルロースエステル(セルロースアセテー
ト等),ポリアミド,ポリスルホン,ポリイミド等が使
用される。
As the purifier 4, a membrane separator may be used. As the membrane for removing moisture in the air, usually, polyvinyl chloride, fluorine-based polymer (Teflon (trade name), fluororesin, etc.), cellulose ester (cellulose acetate, etc.), polyamide, polysulfone, polyimide, etc. are used. .

【0030】また、水分及び二酸化炭素除去用の膜とし
ては、上記同様、ポリ塩化ビニル,フッ素系ポリマー,
ポリアミド(ナイロン6等),ポリスルホン,ポリイミ
ド,セルロースエステル(セルロースアセテート等)の
他、ポリエチレン,ポリプロピレン(ポリ[1−(トリ
メチルシリル)−1−プロピレン]等)、ポリカーボネ
ート(ポリジメチルシロキサン−ポリカーボネート
等),ポリスチレン,ポリエチレンテレフタレート,ポ
リ塩化ビニリデン,ポリ酢酸ビニル,ポリ(4−メチル
ペンテン−1),ポリブタジエン,ポリアクリロニトリ
ル,ポリビニルアルコール,ポリ酸化フェニレン,ポリ
ジメチルシロキサン(シリコーンゴム),天然ゴム,ブ
チルゴム等がある。
As the membrane for removing moisture and carbon dioxide, polyvinyl chloride, a fluoropolymer,
Polyamide (nylon 6, etc.), polysulfone, polyimide, cellulose ester (cellulose acetate, etc.), polyethylene, polypropylene (poly [1- (trimethylsilyl) -1-propylene], etc.), polycarbonate (polydimethylsiloxane-polycarbonate, etc.), Polystyrene, polyethylene terephthalate, polyvinylidene chloride, polyvinyl acetate, poly (4-methylpentene-1), polybutadiene, polyacrylonitrile, polyvinyl alcohol, polyphenylene oxide, polydimethylsiloxane (silicone rubber), natural rubber, butyl rubber, etc. .

【0031】精製器4は、また、水除去熱交換器(冷乾
式熱交換器)であってもよい。この水除去熱交換器は、
図2に示すように、対でなる二流体熱交換器41a,4
1bと、1個の気液分離器49と、1個の四方切換弁4
3と、2個の三方切換弁47a,47bからなり、二流
体熱交換器41a,41bの一方の流路には原料空気、
他の流路には冷媒が流れるようになっている。この水除
去熱交換器の作動の概略は次の通りである。
The purifier 4 may be a water removal heat exchanger (cold-dry heat exchanger). This water removal heat exchanger is
As shown in FIG. 2, a pair of two-fluid heat exchangers 41a, 41
1b, one gas-liquid separator 49, and one four-way switching valve 4
3 and two three-way switching valves 47a and 47b. One flow path of the two-fluid heat exchangers 41a and 41b has raw air,
The refrigerant flows through the other flow paths. The outline of the operation of the water removal heat exchanger is as follows.

【0032】まず、図2(A)に示すように、流路3か
ら空気圧縮機1で昇圧した圧縮空気が四方切換弁43,
流路44aを経て一方の二流体熱交換器41aの流路4
5aに導入され、前周期で凝縮固化した水分を融解して
同伴し、流路46aへ導出し、三方切換弁47a,流路
48aを経て気液分離器49へ入り,同伴水分を分離
し、飽和分の水蒸気のみを伴って流路50に導出する。
このとき、二流体熱交換器41aの流路42aには、冷
媒は流れていない状態になっている。気液分離器49で
分離された水は、流路51,弁52を経て系外へ排出さ
れる。気液分離器49から流路50に導出した圧縮空気
は、四方切換弁43,流路44bを経て他方の二流体熱
交換器41bの流路45bに入り、流路42bを流れる
冷媒により冷却され、同伴した飽和分の水蒸気を凝縮固
化されて分離し、流路46b,三方切換弁47b,流路
53b,流路5を経て汎用精製空気(乾燥空気)として
取り出される。
First, as shown in FIG. 2A, the compressed air pressurized by the air compressor 1 from the flow path 3 is supplied to the four-way switching valve 43,
Flow path 4 of one two-fluid heat exchanger 41a via flow path 44a
The water introduced into 5a and condensed and solidified in the previous cycle is melted and entrained, led out to the flow path 46a, entered the gas-liquid separator 49 through the three-way switching valve 47a and the flow path 48a, and separated the entrained water. It is led out to the flow channel 50 with only the saturated water vapor.
At this time, the refrigerant is not flowing through the flow path 42a of the two-fluid heat exchanger 41a. The water separated by the gas-liquid separator 49 is discharged out of the system via the flow path 51 and the valve 52. The compressed air led from the gas-liquid separator 49 to the flow path 50 passes through the four-way switching valve 43 and the flow path 44b, enters the flow path 45b of the other two-fluid heat exchanger 41b, and is cooled by the refrigerant flowing through the flow path 42b. The entrained saturated water vapor is condensed and solidified and separated, and is taken out as general-purpose purified air (dry air) through the flow passage 46b, the three-way switching valve 47b, the flow passage 53b, and the flow passage 5.

【0033】取り出された乾燥空気の残存水分量は、流
路42a,42bを流れる冷媒の温度に依存するが、L
NG,液化窒素,液化酸素等の液化ガスを使用した場合
は、露点−70℃以下の仕様を十分満足する乾燥空気が
得られる。
The residual moisture content of the extracted dry air depends on the temperature of the refrigerant flowing through the flow paths 42a and 42b.
When a liquefied gas such as NG, liquefied nitrogen, or liquefied oxygen is used, dry air that sufficiently satisfies the specification of a dew point of −70 ° C. or less is obtained.

【0034】一定時間経過後、四方切換弁43及び三方
切換弁47a,47bの流路が切換えられ、二流体熱交
換器41aと二流体熱交換器41bとを切換えて同様の
操作を行い、これを繰り返して継続運転を行う。すなわ
ち、図2(B)に示すように、圧縮空気は、流路3,四
方切換弁43,流路44b,流路45b,流路46b,
三方切換弁47b,流路48b,気液分離器49,流路
50,四方切換弁43,流路44a,流路45a,流路
46a,三方切換弁47a,流路53a,流路5を経て
取り出される。
After a certain period of time, the flow paths of the four-way switching valve 43 and the three-way switching valves 47a and 47b are switched, and the same operation is performed by switching between the two-fluid heat exchanger 41a and the two-fluid heat exchanger 41b. Is repeated to perform continuous operation. That is, as shown in FIG. 2B, the compressed air flows through the flow path 3, the four-way switching valve 43, the flow path 44b, the flow path 45b, the flow path 46b,
Via the three-way switching valve 47b, the flow path 48b, the gas-liquid separator 49, the flow path 50, the four-way switching valve 43, the flow path 44a, the flow path 45a, the flow path 46a, the three-way switching valve 47a, the flow path 53a, and the flow path 5. Taken out.

【0035】冷媒は,隣接設置する後記の空気液化分離
装置Bから製出する液化ガスや、LNG利用設備がある
場合は、その気化工程を利用すればよく、あるいは、後
記するバックアップ装置Cの容量が大きく、かつ、常時
使用している場合は、その蒸発器に流す液化ガスの少な
くとも一部を利用することなどが考えられる。いずれに
しても、隣接装置に利用可能な余剰の寒冷源がある場合
にのみ、この水除去熱交換器が採用される。
The refrigerant may be a liquefied gas produced from an air liquefaction / separation device B described later, which is installed adjacently, or if there is LNG utilization equipment, the vaporization step may be used, or the capacity of a backup device C described later may be used. If the liquefied gas is large and is constantly used, it is conceivable to use at least a part of the liquefied gas flowing through the evaporator. In any case, this water removal heat exchanger is employed only if there is an excess cold source available in the adjacent device.

【0036】また、要求される品質によっては、水分除
去に限定されず、二酸化炭素除去用の吸着器の追加を要
する場合、水素,一酸化炭素,炭化水素除去用の触媒精
製器を追加設置することが必要な場合もある。
Depending on the required quality, the present invention is not limited to water removal. If an additional adsorber for removing carbon dioxide is required, a catalyst purifier for removing hydrogen, carbon monoxide, and hydrocarbons is additionally provided. It may be necessary.

【0037】図1において、符号Bは、窒素ガス,酸素
ガス等を製造する空気液化分離装置であり、詳細は図3
に示す通りである。符号12は、流路11から大気を吸
入してプロセスの必要圧力まで昇圧する原料空気圧縮機
であり、通常の所要圧力は0.5〜0.9MPa,流量
は,本発明の目的の場合は1500〜11000Nm
/hであり、通常はブロア形式のものを用いる。
In FIG. 1, reference numeral B denotes an air liquefaction / separation apparatus for producing nitrogen gas, oxygen gas and the like.
As shown in FIG. Reference numeral 12 denotes a raw material air compressor for sucking the atmosphere from the flow channel 11 and increasing the pressure to the required pressure for the process. The normal required pressure is 0.5 to 0.9 MPa, and the flow rate is in the case of the object of the present invention. 1500-11000Nm 3
/ H, usually using a blower type.

【0038】符号14は触媒精製器であり、空気中の水
素,一酸化炭素,炭化水素を触媒反応により酸化し、
水,二酸化炭素とするものである。この触媒精製器14
で使用する触媒は、Pt,Pd,Au等貴金属系のも
の、Fe,Mn,Ni,Cr,Co等、あるいは、これ
らを含む合金又はこれらを組み合わせた触媒である。
Reference numeral 14 denotes a catalyst purifier which oxidizes hydrogen, carbon monoxide, and hydrocarbons in the air by a catalytic reaction.
Water and carbon dioxide. This catalyst purifier 14
Is a noble metal-based catalyst such as Pt, Pd, or Au, Fe, Mn, Ni, Cr, Co, or the like, or an alloy containing these, or a catalyst combining these.

【0039】触媒反応は、水素,一酸化炭素の除去の場
合は、35〜190℃で行う。炭化水素、特に微量のメ
タンを除去する場合は、350℃まで昇温する必要があ
る。したがって、反応温度が数十℃以上の場合は、原料
空気圧縮機12の吐出温度にもよるが、触媒筒14aの
出口と入口(加熱器14bの前)との空気を熱交換する
熱交換器14cを設ける。
The catalytic reaction is carried out at 35 to 190 ° C. in the case of removing hydrogen and carbon monoxide. When removing hydrocarbons, especially trace amounts of methane, it is necessary to raise the temperature to 350 ° C. Therefore, when the reaction temperature is several tens of degrees Celsius or higher, a heat exchanger for exchanging air between the outlet and the inlet of the catalyst tube 14a (before the heater 14b) depending on the discharge temperature of the raw material air compressor 12. 14c is provided.

【0040】さらに、反応温度が、前記原料空気圧縮機
12の圧縮熱による昇温以上に加熱する必要がある場合
は、上記触媒精製器14には、熱交換器14cの他に加
熱器14bを使用する。なお、加熱源が十分安価な場合
は、熱交換器14cを用いずに加熱器14bのみでもよ
い。
Further, when the reaction temperature needs to be increased to a value higher than the temperature rise due to the heat of compression of the raw material air compressor 12, the catalyst purifier 14 is provided with a heater 14b in addition to the heat exchanger 14c. use. If the heating source is sufficiently inexpensive, only the heater 14b may be used without using the heat exchanger 14c.

【0041】本工程により、大気中に含まれている1乃
至数ppm程度の水素及び一酸化炭素は、0.1ppb
程度まで除去される。本工程で生成した水,二酸化炭素
は、原料空気中の大気空気含有水分及び二酸化炭素と共
に後工程の吸着精製器で除去される。
By this step, about 1 to several ppm of hydrogen and carbon monoxide contained in the atmosphere can be reduced to 0.1 ppb.
Removed to a degree. The water and carbon dioxide generated in this step are removed together with the atmospheric air-containing moisture and carbon dioxide in the raw material air by an adsorption purifier in the subsequent step.

【0042】符号16は、水分,二酸化炭素を除去する
ための吸着精製器である。この吸着精製器16は、切換
え使用する2筒又は3筒で構成される、通常は縦型の円
筒に、Ca−X型,Na−X型,Li −X型,Ca−A
型又はNa−A型ゼオライト(モレキュラーシイーブ4
A,5A又は13X)を充填している。
Reference numeral 16 denotes an adsorption purifier for removing water and carbon dioxide. The adsorption purifier 16 is composed of two or three cylinders to be used for switching, and is usually a vertical cylinder having Ca-X type, Na-X type, Li-X type, and Ca-A type.
Type or Na-A type zeolite (molecular sieve 4
A, 5A or 13X).

【0043】また、原料空気入口部の筒底付近には、水
分除去剤としてのアルミナゲル又はシリカゲルを充填す
る。上記水分除去剤とゼオライトとの充填比率は、重量
比で1:9乃至3:7である。
Around the bottom of the cylinder at the inlet of the raw material air, alumina gel or silica gel as a water removing agent is filled. The filling ratio of the water removing agent and zeolite is 1: 9 to 3: 7 by weight.

【0044】吸着精製器16は、前記のように切換え使
用する2筒又は3筒の吸着器16a,16bで構成され
る。3筒の場合で説明すると、一つの吸着器が吸着工程
のとき、他の2筒の吸着器は再生工程であり、この内、
一方の吸着器が加熱再生段階で、他方の吸着器は加熱再
生段階後の冷却段階である。再生工程の加熱再生段階,
冷却段階の再生ガスは、後記する空気液化分離部18か
ら取り出される廃ガスを使用する。加熱段階には、前記
原料空気圧縮機12の圧縮熱を熱交換して回収すること
により加温して使用する。再生温度は、通常120℃前
後であるが、原料空気圧縮機12の圧縮熱で不足の場合
は、ヒーター又は他の熱源により更に加温してから吸着
器に導入する。この再生温度は、再生時間,再生ガス量
等により異なってくるので、他のプロセス条件との兼ね
合いで決められる。
The adsorption purifier 16 is composed of two or three adsorbers 16a and 16b which are switched and used as described above. To explain in the case of three cylinders, when one adsorber is in the adsorption step, the other two adsorbers are in the regeneration step.
One adsorber is in the heating and regeneration stage, and the other is in the cooling stage after the heating and regeneration stage. Heating regeneration stage of regeneration process,
As the regeneration gas in the cooling stage, waste gas extracted from the air liquefaction / separation unit 18 described later is used. In the heating step, the heat of compression of the raw material air compressor 12 is exchanged and recovered by heat exchange so as to be heated. The regeneration temperature is usually around 120 ° C., but if the compression heat of the raw material air compressor 12 is insufficient, the material is further heated by a heater or another heat source before being introduced into the adsorber. Since the regeneration temperature varies depending on the regeneration time, the amount of the regeneration gas, and the like, it is determined in consideration of other process conditions.

【0045】原料空気は、この吸着精製器16を通過す
ることにより、含有水分が露点−70℃以下に、含有二
酸化炭素が1ppm以下に除去される。また、原料空気
中に含まれる極微量の窒素化合物や硫黄化合物は大気存
在値以下に低減される。
The raw air passes through the adsorption purifier 16 to remove the contained water to a dew point of -70 ° C. or less and the contained carbon dioxide to 1 ppm or less. In addition, the trace amounts of nitrogen compounds and sulfur compounds contained in the raw material air are reduced to the atmospheric presence values or less.

【0046】このようにして得られた原料精製空気(高
純度空気)は、ほとんどの場合、全量が次工程の空気液
化分離部18に導入されて液化精留分離工程が行われ、
製品窒素及び製品酸素になるが、この高純度空気を、圧
力0.01〜0.9MPaの製品ガスとして供給する場
合もあり、また,運転条件により,前記汎用精製空気と
同じ用途に供給する場合もあり、さらに、汎用精製空気
に混合して供給することもある。
In most cases, the raw material purified air (high-purity air) thus obtained is entirely introduced into an air liquefaction / separation unit 18 in the next step, where a liquefied rectification / separation step is performed.
Although it becomes product nitrogen and product oxygen, this high-purity air may be supplied as a product gas at a pressure of 0.01 to 0.9 MPa, and depending on the operating conditions, it may be supplied to the same application as the general-purpose purified air. In some cases, it may be supplied after being mixed with general-purpose purified air.

【0047】この場合のためには、高純度空気の流路1
7に分岐流路6が設けられており、この分岐流路6に
は、逆止弁7、圧力制御弁(流量制御弁)8が設けら
れ、流路9を介して汎用精製空気の流路5に接続してい
る。分岐流路6の高純度空気は、圧力調整後、流路10
から、又は前記流路5の汎用精製空気に合流して半導体
製造工場へ送出される。
For this case, the high purity air flow path 1
7, a branch flow path 6 is provided. The branch flow path 6 is provided with a check valve 7 and a pressure control valve (flow control valve) 8, and a flow path for general-purpose purified air through a flow path 9. 5 is connected. After the pressure is adjusted, the high-purity air in the branch channel 6
Or combined with general-purpose purified air in the flow path 5 and sent to a semiconductor manufacturing plant.

【0048】なお、触媒精製器14及び吸着精製器16
は、この両方を一個の容器に収納した方式のガス精製器
でも勿論よい。この際、吸着器の内部に充填する吸着剤
や触媒の種類,充填層の作り方等は,いろいろなケース
が考えらるが、吸着器の入口から順に水分除去層,触媒
層,そして水分,二酸化炭素除去層を形成するのが通常
の充填形態である。
The catalyst purifier 14 and the adsorption purifier 16
Of course, a gas purifier of the type in which both are contained in one container may be used. At this time, the type of adsorbent and catalyst to be filled in the adsorber, the method of forming the packed bed, etc. may be considered in various cases. Forming a carbon removal layer is a normal filling mode.

【0049】符号18は、上記原料精製空気を導入して
これを冷却し、精留を行って窒素ガス,酸素ガスを分離
する空気液化分離部である。この空気液化分離部18
は、空気液化分離装置Bのなかの,通常,コールドボッ
クスと称する断熱保冷槽内に収納されている部分であ
り、その主要構成機器は、図3に示すように、主熱交換
器181,過冷却器188,精留塔(製品の種類により
複精留塔又は単精留塔、これに粗アルゴン塔,高純アル
ゴン塔が加わる。)183,膨張タービン182,各種
弁及び配管類等である。
Reference numeral 18 denotes an air liquefaction / separation unit for introducing the purified air, cooling it, and rectifying it to separate nitrogen gas and oxygen gas. This air liquefaction separation section 18
Is a part of the air liquefaction / separation apparatus B, which is usually housed in an adiabatic insulated tank called a cold box, and its main components are, as shown in FIG. Cooler 188, rectification tower (double rectification tower or single rectification tower depending on the type of product, to which crude argon tower and high-purity argon tower are added) 183, expansion turbine 182, various valves and piping, etc. .

【0050】この空気液化分離部18から製出される窒
素ガスは、装置内パージ,酸化防止用雰囲気,排ガス希
釈,エッチング工程の希釈ガス等の用途に使用される。
半導体製造工場、情報メデア産業関連工場への通常の供
給量は,500〜4500Nm/hである。純度は9
9.999%、圧力は0.3〜0.8MPaである。
The nitrogen gas produced from the air liquefaction / separation unit 18 is used for purposes such as purging in the apparatus, an atmosphere for preventing oxidation, dilution of exhaust gas, and dilution gas in the etching step.
The normal supply amount to the semiconductor manufacturing factory and the information media industry related factory is 500 to 4500 Nm 3 / h. Purity 9
9.999%, pressure is 0.3-0.8 MPa.

【0051】また、製品酸素ガスは、上記工場における
使用量は、通常30〜200Nm/hであり、用途
は、デバイス上での酸化膜形成用あるいは保護膜形成用
の他、助燃用,プロセス用等に用いられ、純度は99〜
99.999%、圧力は0.3〜0.8MPaである。
The amount of the product oxygen gas used in the above factory is usually 30 to 200 Nm 3 / h, and it is used for forming an oxide film or a protective film on a device, as well as for supporting combustion, and for processing. It is used for applications and the purity is 99 ~
99.999%, pressure 0.3-0.8MPa.

【0052】図1において、符号Cはバックアップ装置
である。液化窒素用の貯槽(液化窒素貯槽)22及びそ
の蒸発器(液化窒素蒸発器)24と、液化酸素貯槽32
及びその蒸発器(液化酸素蒸発器)34と、混合器40
とを主要機器とする。各液化ガス貯槽22,32は、前
記空気液化分離装置Bからの製品液化窒素,製品液化酸
素又は他装置からの液化窒素,液化酸素を受け入れて貯
蔵する。
In FIG. 1, reference numeral C denotes a backup device. Liquefied nitrogen storage tank (liquefied nitrogen storage tank) 22 and its evaporator (liquefied nitrogen evaporator) 24, and liquefied oxygen storage tank 32
And its evaporator (liquefied oxygen evaporator) 34 and mixer 40
And are the main equipment. Each of the liquefied gas storage tanks 22 and 32 receives and stores product liquefied nitrogen and product liquefied oxygen from the air liquefaction / separation device B or liquefied nitrogen and liquefied oxygen from other devices.

【0053】前記空気液化装置Bからの製品にアルゴン
が含まれている場合は、液化アルゴン貯槽及び液化アル
ゴン蒸発器も設置する。
If the product from the air liquefaction apparatus B contains argon, a liquefied argon storage tank and a liquefied argon evaporator are also installed.

【0054】各液化ガス蒸発器24,34は、それぞれ
の液化ガス貯槽22,32から導出した液化ガスをアル
ミニウム製又はステンレススチール製(管部のみ又は内
管)のフィン付き管中に流し、大気との熱交換により蒸
発させて気化させる。条件により、温水,海水,スチー
ム等を加温源としてもよい。
The liquefied gas evaporators 24 and 34 flow the liquefied gas derived from the respective liquefied gas storage tanks 22 and 32 into a finned tube made of aluminum or stainless steel (only the tube portion or the inner tube), and Is evaporated by heat exchange with Depending on the conditions, warm water, seawater, steam, or the like may be used as the heating source.

【0055】気化して生成した各ガスは、流路26,3
6を経て、前記空気液化分離装置Bからの各製品ガスの
流路19,20に合流し、該装置Bからの各製品ガスの
需要量に対する不足分を補給する。
Each gas generated by vaporization flows into the flow paths 26, 3
After passing through 6, it joins the flow paths 19 and 20 for each product gas from the air liquefaction / separation apparatus B, and replenishes the shortage of the demand for each product gas from the apparatus B.

【0056】液化窒素貯槽22の容量は、通常1500
0〜90000リットル、液化窒素蒸発器24の容量は
700〜5000Nm/h、液化酸素貯槽32の容量
は、通常15000〜50000リットル、液化酸素蒸
発器34の容量は60〜1500Nm/hである。
The capacity of the liquefied nitrogen storage tank 22 is usually 1500
0 to 90000 liters, the capacity of the liquefied nitrogen evaporator 24 is 700 to 5000 Nm 3 / h, the capacity of the liquefied oxygen storage tank 32 is usually 15,000 to 50,000 liters, and the capacity of the liquefied oxygen evaporator 34 is 60 to 1500 Nm 3 / h. .

【0057】混合器40は、上記各液化ガス貯槽22,
32から各蒸発器24,34を経て気化した窒素ガスと
酸素ガスとを混合して合成空気を製造するもので、各ガ
スの混合比を調節する機構を備えている。製造した合成
空気は、流路41,45,46及び逆止弁47,流量調
節弁(圧力調節弁)48を経て、流路5の汎用精製空気
及び/又は弁49を介して流路10の原料精製空気に合
流して需要量の不足分を供給する。
The mixer 40 includes the liquefied gas storage tanks 22,
The synthetic air is produced by mixing nitrogen gas and oxygen gas vaporized from 32 through the evaporators 24 and 34, and has a mechanism for adjusting the mixing ratio of each gas. The produced synthetic air passes through the flow paths 41, 45, 46, the check valve 47, and the flow control valve (pressure control valve) 48, and passes through the general-purpose purified air in the flow path 5 and / or the valve 10 through the valve 49. Merge with the raw material purified air to supply the shortfall in demand.

【0058】また、ユーティリティ用精製空気供給装置
(空気精製装置)A及び/又は空気液化分離装置Bが運
転停止したときに、このバックアップ装置Cから精製空
気として供給する。
When the operation of the utility purified air supply device (air purification device) A and / or the air liquefaction / separation device B is stopped, the backup air is supplied as purified air from the backup device C.

【0059】[0059]

【実施例】上記形態例記載の装置において、通常運転時
(ケース1),通常運転時よりも窒素ガス及び酸素ガス
の供給量が増加し、バックアップ装置を稼動してこれら
のガスを増量供給する時(ケース2)、この窒素ガス及
び酸素ガスの増量供給時(ケース2)において、更に汎
用精製空気の使用量が増加した場合(ケース3)、さら
にバックアップ装置を稼動して合成空気を製造し、これ
らのガスを増量供給する時(ケース4)について、その
運転状態を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the apparatus described in the above embodiment, the supply amounts of nitrogen gas and oxygen gas are increased during normal operation (case 1) than during normal operation, and a backup device is operated to increase the supply of these gases. At the time (Case 2), when the use amount of the general-purpose purified air further increases (Case 3) at the time of increasing the supply of the nitrogen gas and the oxygen gas (Case 2), the backup device is further operated to produce the synthetic air. The operation state of the case of increasing the supply of these gases (Case 4) will be described.

【0060】まず、ケース1の場合の運転状態について
説明する。空気精製装置Aにおいては、流路1から大気
空気3000Nm/hが吸入され、空気圧縮機2で圧
力0.5MPaに圧縮されて流路3により精製器4へ導
入される。精製器4で切換え使用される対でなる吸着筒
の一方に導入された圧縮空気は、含有する水分,二酸化
炭素を吸着除去され、露点(DP)が−70℃以下、C
が1ppm以下となった後、流路5に導出し、汎用
精製空気として半導体製造工場に供給される。
First, the operation state in case 1 will be described. In the air purification device A, 3000 Nm 3 / h of atmospheric air is sucked from the flow path 1, compressed to a pressure of 0.5 MPa by the air compressor 2, and introduced into the purifier 4 through the flow path 3. The compressed air introduced into one of the pair of adsorption cylinders that are switched and used in the purifier 4 adsorbs and removes the contained moisture and carbon dioxide, has a dew point (DP) of -70 ° C. or less, and has
After O 2 is reduced to 1 ppm or less, it is led to the channel 5 and supplied to the semiconductor manufacturing plant as general-purpose purified air.

【0061】空気液化分離装置Bにおいては、流路11
から導入された大気空気11000Nm/hが、原料
空気圧縮機12で圧力0.7MPaに圧縮され、流路1
3から触媒精製器14に入り、含有する数ppm程度の
水素及び一酸化炭素(運転条件により1ppm程度の炭
化水素)を酸化して水及び二酸化炭素とした後、流路1
5から吸着精製器16に導入される。触媒反応後の原料
空気は、切換え使用される対でなる吸着器16a,16
bの一方に導入され、ここで含有する水分及び二酸化炭
素が吸着除去され、含有二酸化炭素が1ppm以下、水
分が露点ー70℃以下に精製され、原料精製空気となっ
て流路17に導出する。
In the air liquefaction / separation apparatus B, the flow path 11
11000 Nm 3 / h introduced from the air is compressed to 0.7 MPa by the raw material air compressor 12,
3 and enters the catalyst purifier 14 to oxidize the contained hydrogen and carbon monoxide (about 1 ppm depending on the operating conditions) into water and carbon dioxide.
5 is introduced into the adsorption purifier 16. The raw material air after the catalytic reaction is transferred to the pair of adsorbers 16a and 16
b, where the contained water and carbon dioxide are adsorbed and removed, the contained carbon dioxide is purified to 1 ppm or less, and the moisture is purified to a dew point of −70 ° C. or less, and the purified air is discharged to the flow path 17 as raw material purified air. .

【0062】流路17の原料精製空気は、空気液化分離
部18に入り、まず主熱交換器181に入って冷却さ
れ、中間温度で二分し、一方は中間温度で導出して膨張
タービン182に入り、断熱膨張して約0.05MPa
まで降圧降温し、上部塔185の空気組成の箇所に導入
される。
The raw material purified air in the flow path 17 enters the air liquefaction / separation section 18, first enters the main heat exchanger 181, is cooled and halves at an intermediate temperature, and is discharged at the intermediate temperature to the expansion turbine 182. Enter, adiabatic expansion about 0.05MPa
The pressure is lowered until the temperature is lowered, and the air is introduced into the upper tower 185 at the position of the air composition.

【0063】分岐した他方(量的には大部分)の原料精
製空気は、主熱交換器181の冷端側から、その圧力に
おける略液化温度で導出し、精留塔183の下部塔18
4の下部に導入され、塔内の上昇ガスとなる。下部塔1
84内で予備精留が行われ、塔頂に窒素ガスが、塔底に
酸素富化液化空気が留出する。
The other (mostly quantitatively) branched material purified air is led out from the cold end side of the main heat exchanger 181 at approximately the liquefaction temperature at that pressure, and is fed to the lower column 18 of the rectification column 183.
4 and rises in the tower. Lower tower 1
Preliminary rectification is performed in 84, and nitrogen gas is distilled at the top of the column and oxygen-enriched liquefied air is distilled at the bottom of the column.

【0064】下部塔184の塔頂に分離した窒素ガス
は、連設する上部塔185の底部の液化酸素と熱交換す
る主凝縮蒸発器186に入り、熱交換により凝縮して液
化窒素となり、導出して三分し、その一つは流路21を
経て前記液化窒素貯槽22へ導入貯留される。三分した
二つ目の液化窒素は、再度下部塔184の塔頂部に導入
され、下部塔184の還流液となって塔内を流下し、前
記上昇ガスとの気液接触が行われて精留が進行する。さ
らに三分した三つ目の液化窒素は、流路187から過冷
却器188を経て膨張弁189で膨張降圧後、上部塔1
85の塔頂部に導入され、上部塔185の還流液とな
り、該塔内を流下する。
The nitrogen gas separated at the top of the lower tower 184 enters the main condensing evaporator 186 which exchanges heat with liquefied oxygen at the bottom of the continuous upper tower 185, and is condensed by heat exchange to liquefied nitrogen. One of them is introduced and stored in the liquefied nitrogen storage tank 22 through the flow path 21. The second divided liquefied nitrogen is again introduced into the top of the lower tower 184, becomes a reflux liquid of the lower tower 184, flows down the tower, and comes into gas-liquid contact with the ascending gas to be purified. The stay progresses. The third liquefied nitrogen, which is further divided into three, is expanded and depressurized by an expansion valve 189 through a subcooler 188 from a flow path 187, and then the upper column 1 is cooled.
It is introduced at the top of the column 85 and becomes the reflux liquid of the upper column 185 and flows down in the column.

【0065】下部塔184の塔底に留出した前記酸素富
化液化空気は、流路190に導出して過冷却器188で
過冷却され、膨張弁191で膨張降圧後、上部塔185
の中間部に導入される。
The oxygen-enriched liquefied air distilled at the bottom of the lower tower 184 is led out to a flow path 190 where it is supercooled by a supercooler 188, expanded and depressurized by an expansion valve 191, and then depressurized.
It is introduced in the middle part.

【0066】前記主凝縮蒸発器186で蒸発した酸素ガ
スは、上部塔185内を上昇し、前記塔頂部に導入され
た液化窒素の還流液及び中間部に導入された酸素富化液
化空気の下降液と気液接触を行って精留が進行し、塔頂
部に高純度窒素ガス、塔底部に酸素ガス及び液化酸素を
留出する。
The oxygen gas evaporated in the main condensing evaporator 186 rises in the upper column 185, and the reflux of the liquefied nitrogen introduced into the top of the column and the falling of the oxygen-enriched liquefied air introduced into the intermediate portion. The rectification proceeds by performing gas-liquid contact with the liquid, and high-purity nitrogen gas is distilled at the top of the column, and oxygen gas and liquefied oxygen are distilled at the bottom of the column.

【0067】上部塔185の塔頂部に分離した窒素ガス
4000Nm/hは、流路192に導出し、前記主熱
交換器181を経て流路193から低圧製品窒素ガスと
して取り出され、圧送用ブロア(図示せず)で昇圧して
使用先の半導体製造工場等へ送られる。上部塔185上
部の頂部より下方の段から廃窒素ガスを経路196へ導
出し、前記窒素ガスと同様に、主熱交換器181を通し
て系外へ導出する(図示せず)。
The nitrogen gas 4000 Nm 3 / h separated at the top of the upper tower 185 is led out to the flow path 192, taken out of the flow path 193 through the main heat exchanger 181, and taken out as a low-pressure product nitrogen gas. (Not shown) and the pressure is increased and sent to a semiconductor manufacturing plant or the like where it is used. Waste nitrogen gas is led out to the path 196 from a stage below the top of the upper tower 185, and is led out of the system through the main heat exchanger 181 similarly to the nitrogen gas (not shown).

【0068】上部塔185の塔底部に分離した酸素ガス
200Nm/hは、流路194,主熱交換器181を
経て流路195から製品窒酸素ガスとして取り出され、
使用先の半導体製造工場等へ送られる。また、製品液化
酸素1800Nm3/hは、流路31を経て液化酸素貯
槽32へ導入される。
The oxygen gas 200 Nm 3 / h separated at the bottom of the upper tower 185 is taken out from the flow path 195 through the flow path 194 and the main heat exchanger 181 as product nitrogen oxide gas.
It is sent to the semiconductor manufacturing plant where it is used. The product liquefied oxygen of 1800 Nm3 / h is introduced into the liquefied oxygen storage tank 32 via the flow path 31.

【0069】ケース2は、窒素ガス及び酸素ガスの増量
供給時である。汎用精製空気3000Nm3/hは、ケ
ース1と同量供給であり、空気精製装置Aから全量が供
給される。
Case 2 is when supplying an increased amount of nitrogen gas and oxygen gas. 3000 Nm3 / h of general-purpose purified air is supplied in the same amount as in Case 1, and the entire amount is supplied from the air purification device A.

【0070】窒素ガス供給量は4500Nm/hであ
り、この内、4000Nm/hは空気液化分離装置B
から製出される製品窒素ガス、500Nm/hは液化
窒素貯槽22からの気化窒素ガスである。酸素ガス供給
量は1000Nm/hであり、全量が空気液化分離装
置Bから製出される製品酸素ガスである。製品酸素ガス
を1000Nm/h採取するようにしたことにより、
液化酸素生産量が1800Nm/hから1000Nm
/hとなる。
The supply amount of nitrogen gas was 4500 Nm 3 / h, of which 4000 Nm 3 / h was
, 500 Nm 3 / h is the vaporized nitrogen gas from the liquefied nitrogen storage tank 22. The supply amount of oxygen gas is 1000 Nm 3 / h, and the entire amount is product oxygen gas produced from the air liquefaction / separation apparatus B. By collecting 1000 Nm 3 / h of product oxygen gas,
Liquefied oxygen production from 1800 Nm 3 / h to 1000 Nm
3 / h.

【0071】ケース3は、窒素ガス,酸素ガス,汎用精
製空気の全てが増量供給時である。汎用精製空気400
0Nm/hは、ケース1,2に比して1000Nm
/hの増量供給であり、空気精製装置Aから3000N
/h、空気液化分離装置Bから原料精製空気を10
00Nm/h補給し、合流させて供給する。原料精製
空気1000Nm/hは、前記吸着精製器16を導出
した後、流路6に分岐し、逆止弁7,圧力制御弁8を経
て流路9から流路5に合流する。
Case 3 is when all of nitrogen gas, oxygen gas and general-purpose purified air are supplied in an increased amount. General-purpose purified air 400
0 nm 3 / h is, 1000 Nm 3 compared to cases 1 and 2
/ H, and 3000 N from the air purification unit A
m 3 / h, 10 liters of purified air from the air liquefaction separation unit B
00Nm 3 / h is supplied, combined and supplied. After the raw material purified air 1000 Nm 3 / h is led out of the adsorption purifier 16, it branches into the flow path 6, passes through the check valve 7 and the pressure control valve 8, and joins from the flow path 9 to the flow path 5.

【0072】上記流路6に分岐した分が減量した原料精
製空気は、10000Nm/hがそのまま空気液化分
離部18へ供給され、窒素ガス,酸素ガスに分離されて
使用先へ供給される。原料空気の減量により、製品窒素
ガス製出量が3600Nm/hとなるが、低減分は、
バックアップ装置Cの液化窒素貯槽22から導出した9
00Nm/hを液化窒素蒸発器24で気化し、流路2
5,26を経て流路19に合流し、合計4500Nm
/hとして供給する。製品酸素ガス1000Nm/h
は、液化酸素の生産量を800Nm/hに減量するこ
とにより、全量を空気液化分離装置Bから供給する。
The raw material purified air branched and reduced in the flow path 6 is supplied to the air liquefaction / separation unit 18 at 10,000 Nm 3 / h as it is, separated into nitrogen gas and oxygen gas, and supplied to the place of use. By reducing the amount of the raw air, the production amount of product nitrogen gas becomes 3600 Nm 3 / h.
9 derived from the liquefied nitrogen storage tank 22 of the backup device C
00Nm 3 / h is vaporized by the liquefied nitrogen evaporator 24 and
5, 26 and merge into the flow path 19 for a total of 4500 Nm 3
/ H. Product oxygen gas 1000Nm 3 / h
Reduces the production amount of liquefied oxygen to 800 Nm 3 / h, and supplies the entire amount from the air liquefaction separation device B.

【0073】ケース4は、ケース3と同様に窒素ガス,
酸素ガス,汎用精製空気共に増量供給時であるが、空気
液化分離装置Bの運転を通常運転とし、汎用精製空気の
増量供給分をバックアップ装置Cによる合成空気製造に
よって補給する場合である。
Case 4 is similar to Case 3 in that nitrogen gas,
While oxygen gas and general-purpose purified air are both being supplied in an increased amount, this is a case where the operation of the air liquefaction / separation device B is set to a normal operation, and the increased supply amount of the general-purpose purified air is supplied by synthetic air production by the backup device C.

【0074】汎用精製空気4000Nm/hは、ケー
ス1,2に比して1000Nm/hの増量供給であ
り、空気精製装置Aから3000Nm/hと、前記バ
ックアップ装置Cの混合器40を経て製造される合成空
気1000Nm/hとを合流して供給する。この合成
空気1000Nm/hは、前記液化窒素貯槽22から
導出した液化窒素1300Nm/hを液化窒素蒸発器
24で気化し、このうち800Nm/hを分岐すると
ともに、液化酸素貯槽32から導出した液化酸素200
Nm/hを液化酸素蒸発器34で気化し、これらを混
合器40で混合して合成空気とし、流路41,45,4
6から流路5に合流させ、合計4000Nm/hの汎
用精製空気として供給する。混合器40を導出した後、
流路5に合流する前に、逆止弁47,圧力制御弁48を
経て供給することにより、逆流を防ぐとともに、圧力及
び流量を調節する。上記気化窒素ガス1300Nm
hの残り500Nm/hは、製品窒素ガスの増量供給
分として空気液化分離装置Bからの流路19の製品窒素
ガスと合流して供給される。
[0074] General purpose purified air 4000 Nm 3 / h is different from the cases 1 and 2 are increased supply of 1000 Nm 3 / h, and 3000 Nm 3 / h from the air purifier A, the mixer 40 of the backup device C And 1000 Nm 3 / h of synthetic air produced through the process. This synthetic air 1000 Nm 3 / h, the liquefied nitrogen 1300 Nm 3 / h derived from liquid nitrogen storage tank 22 is vaporized in liquid nitrogen evaporator 24, together with the branches Of this 800 Nm 3 / h, deriving from liquid oxygen storage tank 32 Liquefied oxygen 200
Nm 3 / h is vaporized in the liquefied oxygen evaporator 34, these are mixed in the mixer 40 to form synthetic air, and the channels 41, 45, 4
6 to the flow channel 5 and supply as general-purpose purified air having a total of 4000 Nm 3 / h. After deriving the mixer 40,
Before merging with the flow path 5, the gas is supplied through the check valve 47 and the pressure control valve 48, thereby preventing the backflow and adjusting the pressure and the flow rate. The above-mentioned vaporized nitrogen gas 1300 Nm 3 /
The remaining 500 Nm 3 / h of h is supplied by being combined with the product nitrogen gas in the flow path 19 from the air liquefaction / separation apparatus B as an increased supply of the product nitrogen gas.

【0075】上記混合器40を出た合成空気は、流路4
1から弁43を介し流路42に分岐し、合成空気単独で
供給することも勿論可能である。
The synthetic air exiting the mixer 40 is supplied to the flow path 4
Of course, it is also possible to branch from 1 to the flow path 42 via the valve 43 and supply only the synthetic air.

【0076】このような合成空気の製造・供給は、上記
のケース4に限らず、前記の如く、例えば空気精製装置
A及び空気液化分離装置Bの双方を運転停止した時に精
製空気の供給源として使用することができる。
The production and supply of such synthetic air is not limited to the case 4 described above, but as described above, for example, when the operation of both the air purifier A and the air liquefaction separator B is stopped, the source of purified air is supplied. Can be used.

【0077】上記各ケースにおける各ガスの供給量を表
1に示す。上記各ケース以外に、各ガスの需要量に応じ
て種々の運転態様が可能である。例えば、原料精製空気
(高純度空気)の需要がある場合は、前記流路6から流
路10を経て汎用精製空気とは別に供給することも可能
である。
Table 1 shows the supply amount of each gas in each of the above cases. In addition to the above cases, various operation modes are possible according to the demand of each gas. For example, when there is demand for raw material purified air (high-purity air), it is also possible to supply the purified air separately from general-purpose purified air from the flow path 6 through the flow path 10.

【0078】[0078]

【表1】 [Table 1]

【0079】このように、上記空気精製装置A,空気液
化分離装置B及びバックアップ装置Cを組み合わせて流
路を連結することにより、各種ガスの需要量に応じて供
給量を変化させて対応することができ、各ガスを効率よ
く経済的に供給することが可能になる。
As described above, by connecting the flow paths by combining the air purification device A, the air liquefaction separation device B, and the backup device C, the supply amount can be changed according to the demand amount of various gases. It becomes possible to supply each gas efficiently and economically.

【0080】[0080]

【発明の効果】以上説明したように、本発明によれば、
空気精製装置の規模を最大供給量ではなく、通常供給量
に合わせて設計,製作することができ、装置規模を適正
なものとすることができるので、通常運転時においても
高効率運転となる。
As described above, according to the present invention,
The scale of the air purification device can be designed and manufactured according to the normal supply amount instead of the maximum supply amount, and the device scale can be made appropriate. Therefore, high efficiency operation can be achieved even during normal operation.

【0081】また、改造による場合も、原料精製空気の
分岐流路と、その流路に逆止弁、流量制御弁を設けるだ
けで空気液化分離装置,バックアップ装置は、既設の装
置をそのまま使用できるので、装置トータルとして、汎
用精製空気,窒素ガス,酸素ガスを安定して供給するこ
とができ、かつ、各ガスの経済性を向上することができ
る。
Also, in the case of remodeling, the air liquefaction separation device and the backup device can be used as they are simply by providing a branch flow path for the raw material purified air and a check valve and a flow control valve in the flow path. Therefore, general-purpose purified air, nitrogen gas, and oxygen gas can be stably supplied as a whole of the apparatus, and the economy of each gas can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一形態例を示すブロック図である。FIG. 1 is a block diagram showing one embodiment of the present invention.

【図2】 水除去式熱交換器(冷乾式熱交換器)の各流
路と操作状態とを示す説明図である。
FIG. 2 is an explanatory diagram showing each flow path and an operation state of a water removal type heat exchanger (cooling / drying type heat exchanger).

【図3】 空気液化分離装置の一例を示す系統図であ
る。
FIG. 3 is a system diagram showing an example of an air liquefaction / separation device.

【符号の説明】[Explanation of symbols]

A…空気精製装置、B…空気液化分離装置、C…バック
アップ装置 2…空気圧縮機、4…精製器、12…原料空気圧縮機、
14…触媒精製器、16…吸着精製器、18…空気液化
分離部、22…液化窒素貯槽、24…液化窒素蒸発器、
32…液化酸素貯槽、34…液化酸素蒸発器、40…混
合器
A: air purification device, B: air liquefaction separation device, C: backup device 2: air compressor, 4: purifier, 12: raw material air compressor,
14: catalyst purifier, 16: adsorption purifier, 18: air liquefaction separation unit, 22: liquefied nitrogen storage tank, 24: liquefied nitrogen evaporator,
32 ... liquefied oxygen storage tank, 34 ... liquefied oxygen evaporator, 40 ... mixer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01D 53/87 F25J 3/04 101 F25J 3/04 101 B01D 53/36 B (72)発明者 本田 秀幸 東京都港区西新橋1−16−7 日本酸素株 式会社内 (72)発明者 木下 暢久 東京都港区西新橋1−16−7 日本酸素株 式会社内──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI B01D 53/87 F25J 3/04 101 F25J 3/04 101 B01D 53/36 B (72) Inventor Hideyuki Honda Nishi-Shimbashi, Minato-ku, Tokyo 1-16-7 Nippon Sanso Co., Ltd. (72) Inventor Nobuhisa Kinoshita 1-16-7 Nishi Shimbashi, Minato-ku, Tokyo Nippon Sanso Co., Ltd.

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 空気精製装置及び空気液化分離装置によ
り、精製空気,酸素ガス,窒素ガス等を製造・供給する
装置であって、 空気圧縮機及び該空気圧縮機で圧縮した圧縮空気中の少
なくとも水分を除去する精製器からなり、汎用精製空気
を製造する空気精製装置と、 原料空気圧縮機及び吸着精製器により原料精製空気を製
造し、該原料精製空気を空気液化分離部に導入して窒素
ガス及び/又は酸素ガスを精留分離する空気液化分離装
置と、 前記吸着精製器の出口流路と前記空気精製装置の精製器
の出口流路とを弁を介して連結し、前記原料精製空気を
汎用精製空気に合流させる流路と、を備えていることを
特徴とする窒素及び/又は酸素及び精製空気の製造・供
給装置。
1. An apparatus for producing and supplying purified air, oxygen gas, nitrogen gas, etc. by means of an air purification device and an air liquefaction / separation device, comprising at least an air compressor and at least one of compressed air compressed by the air compressor. An air purifier that consists of a purifier that removes moisture and produces general-purpose purified air, and a raw material purified air is produced by a raw material air compressor and an adsorption purifier. An air liquefaction / separation device for rectifying and separating gas and / or oxygen gas, and an outlet flow path of the adsorption purifier and an outlet flow path of the purifier of the air purification device connected via a valve; And a flow path for combining purified air with general-purpose purified air, the apparatus for producing and supplying nitrogen and / or oxygen and purified air.
【請求項2】 空気精製装置,空気液化分離装置及びそ
のバックアップ装置により、精製空気,酸素ガス,窒素
ガス等を製造・供給する装置であって、 空気圧縮機及び該空気圧縮機で圧縮した圧縮空気中の少
なくとも水分を除去する精製器からなり、汎用精製空気
を製造して供給する空気精製装置と、 原料空気圧縮機及び吸着精製器により原料精製空気を製
造し、該原料精製空気を空気液化分離部に導入して窒素
ガス及び/又は酸素ガスを精留分離して供給する空気液
化分離装置と、 液化窒素貯槽,液化窒素蒸発器,これらを連結する配
管,弁類を有する窒素ガス供給用バックアップ装置及び
/又は液化酸素貯槽,液化酸素蒸発器,これらを連結す
る配管、弁類を有する酸素ガス供給用バックアップ装置
と、 前記吸着精製器の出口流路と前記空気精製装置の精製器
の出口流路とを弁を介して連結し、前記原料精製空気を
汎用精製空気に合流させる流路と、を備えていることを
特徴とする窒素及び/又は酸素及び精製空気の製造・供
給装置。
2. An apparatus for producing and supplying purified air, oxygen gas, nitrogen gas and the like by means of an air purification device, an air liquefaction separation device and its backup device, comprising an air compressor and a compressor compressed by the air compressor. An air purifier, which consists of a purifier that removes at least moisture in the air, produces and supplies general-purpose purified air, and produces a raw material purified air by a raw material air compressor and an adsorption purifier, and liquefies the raw material purified air. An air liquefaction / separation device for rectifying and supplying nitrogen gas and / or oxygen gas by introducing it into a separation section, and a liquefied nitrogen storage tank, a liquefied nitrogen evaporator, and a nitrogen gas supply having piping and valves connecting these components A backup device and / or a liquefied oxygen storage tank, a liquefied oxygen evaporator, a backup device for supplying oxygen gas having piping and valves connecting them, and an outlet flow path of the adsorption purifier Nitrogen and / or oxygen and refining, wherein the refining device of the air refining device is connected via a valve to an outlet flow passage of the purifier, and the refining air is combined with the general-purpose purified air. Air production and supply equipment.
【請求項3】 前記窒素ガス供給用バックアップ装置の
窒素ガス供給用配管と酸素ガス供給用バックアップ装置
の酸素ガス供給用配管とを混合器を介して連結し、該混
合器の出口に合成空気供給配管を設けるとともに、該合
成空気供給配管を前記原料精製空気又は前記汎用精製空
気に合流させる流路を設けたことを特徴とする請求項2
記載の窒素及び/又は酸素及び精製空気の製造・供給装
置。
3. A nitrogen gas supply pipe of the nitrogen gas supply backup device and an oxygen gas supply pipe of the oxygen gas supply backup device are connected via a mixer, and synthetic air is supplied to an outlet of the mixer. A pipe is provided, and a flow path is provided for joining said synthetic air supply pipe to said raw material purified air or said general-purpose purified air.
An apparatus for producing and supplying nitrogen and / or oxygen and purified air as described above.
【請求項4】 前記空気液化分離装置の原料空気圧縮機
の出口流路に触媒精製器を備えたことを特徴とする請求
項1乃至3のいずれかに記載の窒素及び/又は酸素及び
精製空気の製造・供給装置。
4. The nitrogen and / or oxygen and purified air according to claim 1, wherein a catalyst purifier is provided in an outlet flow passage of the raw material air compressor of the air liquefaction / separation apparatus. Manufacturing and supply equipment.
【請求項5】 前記吸着精製器の入口から順に水分除去
層、触媒層、そして水分,二酸化炭素除去層を形成する
ようにそれぞれの吸着剤及び/又は触媒を充填したこと
を特徴とする請求項1乃至3のいずれかに記載の窒素及
び/又は酸素及び精製空気の製造・供給装置。
5. The method according to claim 1, wherein the adsorbent and / or the catalyst are filled so as to form a water removal layer, a catalyst layer, and a water / carbon dioxide removal layer in order from the inlet of the adsorption purifier. 4. The apparatus for producing and supplying nitrogen and / or oxygen and purified air according to any one of 1 to 3.
【請求項6】 前記空気液化分離装置の吸着精製器の出
口流路から弁を介して原料精製空気を導出して供給する
流路を設けたことを特徴とする請求項1乃至5のいずれ
かに記載の窒素及び/又は酸素及び精製空気の製造・供
給装置。
6. The air liquefaction / separation apparatus according to claim 1, further comprising a flow path for drawing out and supplying raw material purified air from an outlet flow path of the adsorption purifier via a valve. 2. The apparatus for producing and supplying nitrogen and / or oxygen and purified air according to item 1.
【請求項7】 前記空気精製装置の精製器が吸着器であ
ることを特徴とする請求項1乃至6のいずれかに記載の
窒素及び/又は酸素及び精製空気の製造・供給装置。
7. The apparatus for producing and supplying nitrogen and / or oxygen and purified air according to claim 1, wherein the purifier of the air purification apparatus is an adsorber.
【請求項8】 前記空気精製装置の精製器が膜分離器で
あることを特徴とする請求項1乃至6のいずれかに記載
の窒素及び/又は酸素及び精製空気の製造・供給装置。
8. The apparatus for producing and supplying nitrogen and / or oxygen and purified air according to claim 1, wherein the purifier of the air purification apparatus is a membrane separator.
【請求項9】 前記空気精製装置の精製器が水除去熱交
換器であることを特徴とする請求項1乃至6のいずれか
に記載の窒素及び/又は酸素及び精製空気の製造・供給
装置。
9. The apparatus for producing and supplying nitrogen and / or oxygen and purified air according to claim 1, wherein the purifier of the air purification apparatus is a water removal heat exchanger.
【請求項10】 原料空気を圧縮し、吸着分離、膜分離
又は水除去熱交換器により含有する少なくとも水分を除
去して汎用精製空気を製造して供給し、 原料空気を圧縮し、吸着によって含有する少なくとも水
分及び二酸化炭素を除去して原料精製空気を得、 該原料精製空気を熱交換器,精留塔等を有する空気液化
分離部に導入して液化精留分離し、少なくとも窒素ガス
及び/又は酸素ガスを採取して供給するとともに、 前記汎用精製空気の需要量及び生産量に応じて前記原料
精製空気の一部を前記汎用精製空気に合流して供給する
ことを特徴とする窒素及び/又は酸素及び精製空気の製
造・供給方法。
10. Raw material air is compressed, and at least moisture contained therein is removed by adsorption separation, membrane separation or water removal heat exchanger to produce and supply general-purpose purified air. Raw material air is compressed and contained by adsorption. The raw material purified air is obtained by removing at least moisture and carbon dioxide, and the raw material purified air is introduced into an air liquefaction / separation unit having a heat exchanger, a rectification tower, etc., and liquefied and rectified. Or nitrogen gas and / or oxygen gas is collected and supplied, and a part of the raw material purified air is combined with the general-purpose purified air and supplied in accordance with a demand amount and a production amount of the general-purpose purified air. Or a method for producing and supplying oxygen and purified air.
【請求項11】 原料空気を圧縮し、吸着分離,膜分離
又は水除去熱交換器により含有する少なくとも水分を除
去して汎用精製空気を製造して供給し、 原料空気を圧縮し、吸着によって含有する少なくとも水
分及び二酸化炭素を除去して原料精製空気を得、 該原料精製空気を熱交換器,精留塔等を有する空気液化
分離部に導入して液化精留分離し、少なくとも窒素ガス
及び/又は酸素ガスを採取して供給し、 窒素ガス及び/又は酸素ガスの需要量及び生産量に応じ
て液化窒素貯槽の液化窒素及び/又は液化酸素貯槽の液
化酸素を蒸発させて窒素ガス及び/又は酸素ガスを供給
し、 かつ、前記汎用精製空気の需要量及び生産量に応じて前
記原料精製空気の少なくとも一部を前記汎用精製空気に
合流して供給するとともに、 これによって減少した液化精留分離による窒素ガス及び
/又は酸素ガスは、前記液化窒素貯槽及び/又は液化酸
素貯槽からの気化ガスで補償して供給することを特徴と
する窒素及び/又は酸素及び精製空気の製造・供給方
法。
11. Raw air is compressed, and at least water contained therein is removed by adsorption separation, membrane separation or water removal heat exchanger to produce and supply general-purpose purified air. Raw air is compressed and contained by adsorption. The raw material purified air is obtained by removing at least moisture and carbon dioxide, and the raw material purified air is introduced into an air liquefaction / separation unit having a heat exchanger, a rectification tower, etc., and liquefied and rectified. Or collecting and supplying oxygen gas, and evaporating liquefied nitrogen in the liquefied nitrogen storage tank and / or liquefied oxygen in the liquefied oxygen storage tank in accordance with the demand and production amount of the nitrogen gas and / or the oxygen gas to obtain the nitrogen gas and / or Oxygen gas is supplied, and at least a part of the raw material purified air is combined with the general purpose purified air and supplied according to the demand amount and the production amount of the general purpose purified air. Nitrogen gas and / or oxygen gas by liquefaction rectification is supplied by compensating with the vaporized gas from the liquefied nitrogen storage tank and / or liquefied oxygen storage tank, and producing nitrogen and / or oxygen and purified air. Supply method.
【請求項12】 前記液化酸素貯槽からの液化酸素及び
液化窒素貯槽からの液化窒素をそれぞれ蒸発させて酸素
ガス及び窒素ガスとし、これらを混合器により混合して
合成空気として供給するか、又はこれを前記原料精製空
気あるいは前記汎用精製空気として供給することを特徴
とする請求項11記載の窒素及び/又は酸素及び精製空
気の製造・供給方法。
12. The liquefied oxygen from the liquefied oxygen storage tank and the liquefied nitrogen from the liquefied nitrogen storage tank are respectively evaporated into oxygen gas and nitrogen gas, and these are mixed by a mixer and supplied as synthetic air, or 12. The method for producing and supplying nitrogen and / or oxygen and purified air according to claim 11, wherein the purified air is supplied as the raw material purified air or the general-purpose purified air.
【請求項13】 前記原料空気を圧縮し、吸着によって
水及び二酸化炭素を除去して原料精製空気を得るに際
し、原料空気を圧縮した後、触媒反応によって原料空気
中の水素,一酸化炭素を水,二酸化炭素にする工程を設
けたことを特徴とする請求項10乃至12のいずれかに
記載の窒素及び/又は酸素及び精製空気の製造・供給方
法。
13. The raw material air is compressed, and water and carbon dioxide are removed by adsorption to obtain raw material purified air. After the raw material air is compressed, hydrogen and carbon monoxide in the raw material air are converted to water by a catalytic reaction. The method for producing and supplying nitrogen and / or oxygen and purified air according to any one of claims 10 to 12, further comprising a step of converting carbon dioxide into carbon dioxide.
【請求項14】 前記触媒反応工程において、さらに原
料空気中の炭化水素を水,二酸化炭素にすることを特徴
とする請求項13記載の窒素及び/又は酸素及び精製空
気の製造・供給方法。
14. The method for producing and supplying nitrogen and / or oxygen and purified air according to claim 13, wherein in the catalytic reaction step, hydrocarbons in the raw material air are further converted to water and carbon dioxide.
【請求項15】 前記吸着によって原料精製空気を得る
に際し、原料精製空気の入口から順に、水分除去層、触
媒層、そして水分,二酸化炭素除去層を充填した吸着精
製器を用いて原料空気中の水分,二酸化炭素,水素,一
酸化炭素及び/又は炭化水素を除去することを特徴とす
る請求項10乃至14のいずれかに記載の窒素及び/又
は酸素及び精製空気の製造・供給方法。
15. When obtaining raw material purified air by the adsorption, a water removal layer, a catalyst layer, and an adsorption purifier filled with a water and carbon dioxide removal layer are sequentially used from the inlet of the raw material purified air. The method for producing and supplying nitrogen and / or oxygen and purified air according to any one of claims 10 to 14, wherein moisture, carbon dioxide, hydrogen, carbon monoxide and / or hydrocarbons are removed.
【請求項16】 前記原料精製空気の少なくとも一部
を、前記汎用精製空気に合流させずに供給することを特
徴とする請求項10乃至15のいずれかに記載の窒素及
び/又は酸素及び精製空気の製造・供給方法。
16. The nitrogen and / or oxygen and purified air according to claim 10, wherein at least a part of the raw material purified air is supplied without being combined with the general-purpose purified air. Manufacturing and supply method.
JP02758898A 1998-02-09 1998-02-09 Apparatus and method for producing and supplying nitrogen and / or oxygen and purified air Expired - Fee Related JP3959168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02758898A JP3959168B2 (en) 1998-02-09 1998-02-09 Apparatus and method for producing and supplying nitrogen and / or oxygen and purified air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02758898A JP3959168B2 (en) 1998-02-09 1998-02-09 Apparatus and method for producing and supplying nitrogen and / or oxygen and purified air

Publications (2)

Publication Number Publication Date
JPH11221420A true JPH11221420A (en) 1999-08-17
JP3959168B2 JP3959168B2 (en) 2007-08-15

Family

ID=12225122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02758898A Expired - Fee Related JP3959168B2 (en) 1998-02-09 1998-02-09 Apparatus and method for producing and supplying nitrogen and / or oxygen and purified air

Country Status (1)

Country Link
JP (1) JP3959168B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309446A (en) * 2007-06-18 2008-12-25 Jfe Steel Kk Production and supply method of nitrogen and / or oxygen and compressed air
JP2010180075A (en) * 2009-02-03 2010-08-19 Toyota Motor Corp Hydrogen generating apparatus
JP2012051753A (en) * 2010-08-31 2012-03-15 Taiyo Nippon Sanso Corp Method and apparatus for purifying gas
KR101403991B1 (en) * 2012-04-26 2014-06-09 주식회사 엔바이온 Method for preparing a catalyst used in elimination of VOCs
WO2018084553A1 (en) * 2016-11-04 2018-05-11 한국화학연구원 Process for separating and recovering carbon monoxide from iron and steel industry byproduct gases
JP2018095527A (en) * 2016-12-15 2018-06-21 Jfeスチール株式会社 Oxygen feeding device in iron manufacture process and method thereof
RU2744415C1 (en) * 2020-08-06 2021-03-09 Игорь Анатольевич Мнушкин Complex for processing main natural gas into marketable products

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309446A (en) * 2007-06-18 2008-12-25 Jfe Steel Kk Production and supply method of nitrogen and / or oxygen and compressed air
JP2010180075A (en) * 2009-02-03 2010-08-19 Toyota Motor Corp Hydrogen generating apparatus
JP2012051753A (en) * 2010-08-31 2012-03-15 Taiyo Nippon Sanso Corp Method and apparatus for purifying gas
KR101403991B1 (en) * 2012-04-26 2014-06-09 주식회사 엔바이온 Method for preparing a catalyst used in elimination of VOCs
WO2018084553A1 (en) * 2016-11-04 2018-05-11 한국화학연구원 Process for separating and recovering carbon monoxide from iron and steel industry byproduct gases
JP2018095527A (en) * 2016-12-15 2018-06-21 Jfeスチール株式会社 Oxygen feeding device in iron manufacture process and method thereof
RU2744415C1 (en) * 2020-08-06 2021-03-09 Игорь Анатольевич Мнушкин Complex for processing main natural gas into marketable products

Also Published As

Publication number Publication date
JP3959168B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
US5656557A (en) Process for producing various gases for semiconductor production factories
CN112005067B (en) System and method for enhanced recovery of argon and oxygen from nitrogen-producing cryogenic air separation units
CA2232968C (en) Cryogenic hybrid system for producing high purity argon
KR100247865B1 (en) Process for recovering high-purity hydrogen and high-purity carbon monoxide
US20120131951A1 (en) Air liquefaction separation method and apparatus
US6077488A (en) Method and apparatus for producing clean dry air having application to air separation
CS145292A3 (en) Process for preparing extremely pure argon
JPH04222381A (en) Manufacture of high-purity argon
WO1999011437A1 (en) Method and apparatus for purification of argon
JP2966999B2 (en) Ultra high purity nitrogen / oxygen production equipment
US9708188B1 (en) Method for argon production via cold pressure swing adsorption
US20110138856A1 (en) Separation method and apparatus
WO1986000693A1 (en) Apparatus for producing high-frequency nitrogen gas
WO2004085941A1 (en) Air separator
JP2579261B2 (en) Method and apparatus for producing crude neon
CN104246401A (en) Method for separating air by means of cryogenic distillation
JPH11221420A (en) Apparatus and method for producing and supplying nitrogen and/or oxygen and purified air
JP2585955B2 (en) Air separation equipment
JPH0789012B2 (en) Carbon monoxide separation and purification equipment
JPS6158747B2 (en)
JP3325805B2 (en) Air separation method and air separation device
EP0756144B1 (en) High purity nitrogen gas generator
US5787730A (en) Thermal swing helium purifier and process
JPH05262506A (en) Production of argon and its apparatus
JP3532465B2 (en) Air separation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070514

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees