JPH11220052A - Semiconductor element mounting structure and wiring board mounting structure - Google Patents
Semiconductor element mounting structure and wiring board mounting structureInfo
- Publication number
- JPH11220052A JPH11220052A JP10018840A JP1884098A JPH11220052A JP H11220052 A JPH11220052 A JP H11220052A JP 10018840 A JP10018840 A JP 10018840A JP 1884098 A JP1884098 A JP 1884098A JP H11220052 A JPH11220052 A JP H11220052A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor element
- thermal expansion
- wiring
- wiring board
- mounting structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73253—Bump and layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/1517—Multilayer substrate
- H01L2924/15172—Fan-out arrangement of the internal vias
- H01L2924/15174—Fan-out arrangement of the internal vias in different layers of the multilayer substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15311—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
Landscapes
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Structure Of Printed Boards (AREA)
Abstract
(57)【要約】
【課題】表面に低熱膨張の半導体素子を実装した高熱膨
張特性を有する配線基板をプリント基板等の外部電気回
路基板に長期に安定した実装構造を提供する。
【解決手段】−40℃乃至80℃における熱膨張係数が
8乃至25ppm/℃のセラミック絶縁基板1とメタラ
イズ配線層2と接続用端子3を備えた配線基板Bを、有
機樹脂を含有する絶縁基体5の表面に配線導体6が被着
された外部電気回路基板Cの配線導体6に、接続用端子
3をロウ付けして実装されてなる配線基板の実装構造に
おいて、配線基板Bの表面に、底面に接続用電極8を備
えた半導体素子Aを載置し、配線基板Bのメタライズ配
線層2と半導体素子Aの接続用電極8とをロウ付けする
とともに、半導体素子Aの表面に−40℃乃至80℃に
おける熱膨張係数が10乃至60ppm/℃、前記温度
範囲におけるヤング率が3〜30GPaの樹脂組成物を
被着した樹脂層10を形成する。
(57) Abstract: Provided is a long-term stable mounting structure of a wiring board having a high thermal expansion characteristic on which a semiconductor element having low thermal expansion is mounted on an external electric circuit board such as a printed board. A ceramic substrate having a thermal expansion coefficient of 8 to 25 ppm / .degree. C. at -40.degree. C. to 80.degree. C., a metallized wiring layer 2, and a wiring substrate B are provided on an insulating substrate containing an organic resin. In the mounting structure of the wiring board in which the connection terminals 3 are soldered to the wiring conductor 6 of the external electric circuit board C having the wiring conductor 6 attached to the surface of the wiring board B, The semiconductor element A provided with the connection electrode 8 on the bottom surface is placed, and the metallized wiring layer 2 of the wiring board B and the connection electrode 8 of the semiconductor element A are brazed. The resin layer 10 is formed by applying a resin composition having a thermal expansion coefficient of 10 to 60 ppm / ° C. at a temperature of from 80 ° C. to 80 ° C. and a Young's modulus of 3 to 30 GPa in the above temperature range.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、絶縁基板と、メタ
ライズ配線層を備えた配線基板の表面に、半導体素子を
ロウ付け実装した実装構造、ならびに半導体素子を搭載
した配線基板の実装構造の改良に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mounting structure in which a semiconductor element is soldered and mounted on a surface of a wiring board provided with an insulating substrate and a metallized wiring layer, and an improved mounting structure of a wiring board in which the semiconductor element is mounted. It is about.
【0002】[0002]
【従来技術】一般に、配線基板は、絶縁基板の表面ある
いは内部にメタライズ配線層が配設された構造からな
る。また、この配線基板の代表的な例として、半導体素
子、特にLSI(大規模集積回路素子)等の半導体素子
を収容するためのパッケージは、一般にアルミナなどの
セラミックスからなる絶縁基板の表面および内部に、メ
タライズ配線層が配設され、表面に実装される半導体素
子と電気的に接続される。また、絶縁基板の下面または
側面には、外部電気回路基板と電気的に接続するための
接続用端子が備えられ、この接続用端子は、メタライズ
配線層と電気的に接続されている。2. Description of the Related Art Generally, a wiring board has a structure in which a metallized wiring layer is provided on the surface or inside of an insulating substrate. As a typical example of the wiring board, a package for accommodating a semiconductor element, particularly a semiconductor element such as an LSI (Large Scale Integrated Circuit) is generally provided on the surface and inside of an insulating substrate made of ceramics such as alumina. , A metallized wiring layer is provided and electrically connected to a semiconductor element mounted on the surface. Further, a connection terminal for electrically connecting to an external electric circuit board is provided on a lower surface or a side surface of the insulating substrate, and the connection terminal is electrically connected to the metallized wiring layer.
【0003】そして、かかる半導体素子収納用パッケー
ジは、絶縁基板下面または側面に設けられた接続用端子
と外部電気回路基板表面に形成された配線導体とを半田
等によりロウ付けして電気的に接続することにより実装
される。In such a package for housing semiconductor elements, connection terminals provided on the lower surface or side surfaces of the insulating substrate and wiring conductors formed on the surface of the external electric circuit substrate are electrically connected by soldering or the like. It is implemented by doing.
【0004】最近にいたり、半導体素子の高集積度に伴
い、これを搭載するパッケージにおける端子数も増大さ
せる必要がある反面、パッケージの小型化も要求されて
いるパッケージの接続用端子の密度を高くすることが必
要となる。Recently, with the increase in the degree of integration of semiconductor devices, it is necessary to increase the number of terminals in a package on which the semiconductor device is mounted. It is necessary to do.
【0005】従来から、パッケージの接続用端子の構造
としては、ピングリッドアレイ(PGA)、クワッドフ
ラットパッケージ(QFP)、リードレスチップキャリ
ア(LCC)が主流であったが、最近では、高密度化に
適した基板として、基板の下面に接続用端子として、半
田からなる球状端子を設けたボールグリッドアレイ(B
GA)等が提案されている。[0005] Conventionally, as a structure of a connection terminal of a package, a pin grid array (PGA), a quad flat package (QFP), and a leadless chip carrier (LCC) have been mainly used. A ball grid array (B) provided with spherical terminals made of solder as connection terminals on the lower surface of the substrate as a substrate suitable for
GA) has been proposed.
【0006】このBGAは、半田などのロウ材からなる
球状端子を電極パッドにロウ付けし、この球状端子を外
部電気回路基板の配線導体上に載置当接させ、しかる
後、前記端子を約200〜400℃の温度で加熱溶融
し、球状端子を配線導体に接合させることによって外部
電気回路基板上に実装するものである。In this BGA, a spherical terminal made of a brazing material such as solder is soldered to an electrode pad, and the spherical terminal is placed on and abuts on a wiring conductor of an external electric circuit board. It is mounted on an external electric circuit board by heating and melting at a temperature of 200 to 400 ° C. and joining the spherical terminal to the wiring conductor.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、BGA
のような高密度で接続用端子を形成した配線基板におい
て、絶縁基板として従来より使用されているアルミナ、
ムライトなどのセラミックスを用いると、ガラス−エポ
キシ樹脂複合材料などの有機樹脂を含むプリント基板な
どの外部電気回路基板に表面実装した場合、半導体素子
の作動時に発する熱が絶縁基板と外部電気回路基板の両
方に繰り返し印加され、前記外部電気回路基板と絶縁基
板との熱膨張係数差によって熱応力が発生し、この応力
によって、接続用端子が絶縁基板より剥離したり、接続
部にクラック等が生じ、配線基板を外部電気回路基板に
長期にわたり安定に実装状態を維持できないという問題
があった。However, the BGA
Alumina, which has been conventionally used as an insulating substrate,
When ceramics such as mullite are used, when they are surface-mounted on an external electric circuit board such as a printed circuit board containing an organic resin such as a glass-epoxy resin composite material, the heat generated during operation of the semiconductor element is generated between the insulating substrate and the external electric circuit board. Repeatedly applied to both, thermal stress is generated due to the difference in thermal expansion coefficient between the external electric circuit board and the insulating substrate, and due to this stress, the connection terminals are peeled off from the insulating substrate, and cracks and the like occur in the connection portion, There has been a problem that the wiring board cannot be stably mounted on the external electric circuit board for a long time.
【0008】そこで、従来のアルミナ、ムライト等のセ
ラミックスに替えて、特開平8―279574号、特願
平8−322038号においては、絶縁基板を高熱膨張
ガラスセラミックスによって形成することによって配線
基板と外部電気回路基板との熱膨張差を小さくすること
により接続信頼性を改善するに至った。Therefore, in place of conventional ceramics such as alumina and mullite, Japanese Patent Application Laid-Open Nos. 8-279574 and 8-3222038 disclose that an insulating substrate is formed of a high-thermal-expansion glass ceramic so that a wiring substrate and an external circuit are formed. The connection reliability was improved by reducing the thermal expansion difference with the electric circuit board.
【0009】しかしながら、このような高熱膨張材料を
絶縁基板として用いた場合には、配線基板表面に実装さ
れるシリコンよりなる半導体素子(熱膨張係数:2乃至
3ppm/℃)との熱膨張係数差が大きくなり、その結
果、半導体素子と配線基板との熱膨張差により半導体素
子の作動、停止に発生する応力によって配線基板が変形
する等の弊害が発生し、半導体素子の接続用電極と絶縁
基板に設けられたメタライズ配線層との間に接続不良が
生ずるという新たな問題を生していた。However, when such a high thermal expansion material is used as an insulating substrate, a difference in thermal expansion coefficient from a semiconductor element made of silicon (thermal expansion coefficient: 2 to 3 ppm / ° C.) mounted on the surface of the wiring board is obtained. As a result, the thermal expansion difference between the semiconductor element and the wiring board causes adverse effects such as deformation of the wiring board due to the stress generated when the semiconductor element operates and stops, and the connection electrodes of the semiconductor element and the insulating substrate A new problem that a connection failure occurs with the metallized wiring layer provided in the semiconductor device.
【0010】かかる問題は、半導体素子の底面に設けら
れた接続用電極と、配線基板表面のメタライズ配線層と
をロウ付けにより接続するとともに、半導体素子のサイ
ズが配線基板のサイズにより近似したチップサイズパッ
ケージ等において特に顕著に見られる。[0010] Such a problem arises because the connection electrode provided on the bottom surface of the semiconductor element is connected to the metallized wiring layer on the surface of the wiring board by brazing, and the size of the semiconductor element is approximated to the size of the wiring board. This is particularly noticeable in packages and the like.
【0011】従って、本発明は、絶縁基板が高熱膨張特
性を有するセラミック配線基板表面に半導体素子をロウ
付けにより実装する際に、強固に且つ長期にわたり安定
した接続状態を維持できる高信頼性の半導体素子の実装
構造を提供することを目的とするものである。Accordingly, the present invention provides a highly reliable semiconductor which can maintain a strong and stable connection state for a long period of time when a semiconductor element is mounted on the surface of a ceramic wiring substrate having a high thermal expansion characteristic by brazing. An object of the present invention is to provide an element mounting structure.
【0012】さらに、本発明は、半導体素子を搭載した
セラミック配線基板を、有機樹脂を含む絶縁基体を具備
する外部電気回路基板に対して強固に且つ長期にわたり
安定した接続状態を維持できる高信頼性の配線基板の実
装構造を提供することを目的とするものである。Further, the present invention provides a highly reliable ceramic wiring board on which a semiconductor element is mounted, which can maintain a stable and stable connection state for a long period of time with an external electric circuit board having an insulating base containing an organic resin. It is an object of the present invention to provide a wiring board mounting structure.
【0013】[0013]
【課題を解決するための手段】本発明者らは、半導体素
子の配線基板へのロウ付け実装時または半導体素子の作
動時において発生する熱応力を緩和させる方法について
検討を重ねた結果、半導体素子の接続用電極形成面の反
対の表面に高熱膨張の樹脂を被着することにより、半導
体素子と絶縁基板との反りを抑え、長期にわたり安定し
た実装が実現できることを見いだし、本発明に至った。Means for Solving the Problems The present inventors have repeatedly studied a method of relaxing thermal stress generated when a semiconductor element is mounted on a wiring board by brazing or during operation of the semiconductor element. It has been found that by applying a resin having a high thermal expansion to the surface opposite to the surface on which the connection electrode is formed, warpage between the semiconductor element and the insulating substrate can be suppressed and stable mounting can be realized for a long period of time.
【0014】即ち、本発明の半導体素子の実装構造は、
−40℃乃至80℃における熱膨張係数が8乃至25p
pm/℃のセラミック絶縁基板と、該絶縁基板表面に配
設されたメタライズ配線層と、外部電気回路基板との接
続用端子を備えた配線基板の表面に、底面に接続用電極
を備えた半導体素子を載置し、前記配線基板のメタライ
ズ配線層と前記半導体素子の接続用電極とをロウ付けす
るとともに、前記半導体素子の表面に−40℃乃至80
℃における熱膨張係数が10乃至60ppm/℃、前記
温度範囲におけるヤング率が3〜30GPaの樹脂組成
物を被着した樹脂層を形成したことを特徴とするもので
ある。That is, the mounting structure of the semiconductor device of the present invention is as follows.
Thermal expansion coefficient at -40 ° C to 80 ° C is 8 to 25p
A semiconductor having a pm / ° C. ceramic insulating substrate, a metallized wiring layer disposed on the surface of the insulating substrate, and a wiring substrate provided with terminals for connection to an external electric circuit board, and a connection electrode provided on the bottom surface. An element is mounted, and a metallized wiring layer of the wiring substrate and a connection electrode of the semiconductor element are brazed.
A resin layer is formed by applying a resin composition having a thermal expansion coefficient at 10 ° C. of 10 to 60 ppm / ° C. and a Young's modulus in the temperature range of 3 to 30 GPa.
【0015】また、本発明の配線基板の実装構造は、−
40℃乃至80℃における熱膨張係数が8乃至25pp
m/℃のセラミック絶縁基板と、該絶縁基板表面に配設
されたメタライズ配線層と、外部電気回路基板との接続
用端子を備えた配線基板を、有機樹脂を含有する絶縁基
体の表面に配線導体が被着された外部電気回路基板の前
記配線導体に、前記接続用端子をロウ付けして実装され
てなる配線基板の実装構造において、前記配線基板の表
面に、底面に接続用電極を備えた半導体素子を載置し、
前記配線基板のメタライズ配線層と前記半導体素子の接
続用電極とをロウ付けするとともに、前記半導体素子の
表面に−40℃乃至80℃における熱膨張係数が10乃
至60ppm/℃、前記温度範囲におけるヤング率が3
〜30GPaの樹脂組成物を被着した樹脂層を形成した
ことを特徴とする。Further, the mounting structure of the wiring board of the present invention is as follows.
The coefficient of thermal expansion at 40 ° C to 80 ° C is 8 to 25 pp
A wiring board having a ceramic insulating substrate of m / ° C., a metallized wiring layer provided on the surface of the insulating substrate, and terminals for connection to an external electric circuit board is wired on the surface of an insulating base containing an organic resin. In a wiring board mounting structure in which the connection terminal is soldered to the wiring conductor of the external electric circuit board on which a conductor is attached, a connection electrode is provided on a bottom surface of the wiring board. Placed semiconductor element,
A metallized wiring layer of the wiring substrate and a connection electrode of the semiconductor element are brazed, and a coefficient of thermal expansion at −40 ° C. to 80 ° C. is 10 to 60 ppm / ° C. at a temperature of -40 ° C. to 80 ° C. Rate 3
It is characterized in that a resin layer coated with a resin composition of up to 30 GPa is formed.
【0016】[0016]
【発明の実施の形態】以下、本発明を実施例を示す添付
図面に基づき詳細に説明する。図1は、本発明の実装構
造の一例を示す概略断面図である。本発明における配線
基板は、その表面あるいは内部にはメタライズ配線層が
配設された、いわゆる配線基板を基本構造とするもの
で、図1は、本発明における配線基板としてBGA型パ
ッケージを例としたものであり、Aは半導体素子、Bは
BGA型パッケージ、Cは外部電気回路基板である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the accompanying drawings showing embodiments. FIG. 1 is a schematic sectional view showing an example of the mounting structure of the present invention. The wiring board of the present invention has a basic structure of a so-called wiring board in which a metallized wiring layer is provided on the surface or inside thereof. FIG. 1 shows a BGA type package as an example of the wiring board of the present invention. A is a semiconductor element, B is a BGA type package, and C is an external electric circuit board.
【0017】図1において、パッケージBは、セラミッ
ク絶縁基板1の表面および内部にメタライズ配線層2が
被着形成されており、またパッケージBの底面には、接
続パッド3が形成され、絶縁基板1の表面及び内部に配
設されたメタライズ配線層2と電気的に接続されてい
る。この図1のBGA型パッケージにおいては、接続パ
ッド3には、接続用端子として球状端子4が半田などに
より接続されている。In FIG. 1, a package B has a metallized wiring layer 2 formed on the surface and inside of a ceramic insulating substrate 1, and a connection pad 3 is formed on the bottom surface of the package B. Is electrically connected to the metallized wiring layer 2 disposed on the surface and inside. In the BGA type package of FIG. 1, a spherical terminal 4 as a connection terminal is connected to the connection pad 3 by soldering or the like.
【0018】一方、外部電気回路基板Cは、いわゆるプ
リント基板からなり、ガラス−エポキシ樹脂、ガラス−
ポリイミド樹脂複合材料などの有機樹脂を含む材料から
成る絶縁基体5の表面に、Cu、Au、Al、Ni、P
b−Snなどの金属からなる配線導体6が被着形成され
たものである。On the other hand, the external electric circuit board C is made of a so-called printed board, and is made of glass-epoxy resin, glass-
Cu, Au, Al, Ni, P on the surface of the insulating substrate 5 made of a material containing an organic resin such as a polyimide resin composite material.
A wiring conductor 6 made of a metal such as b-Sn is adhered and formed.
【0019】そして、この外部電気回路基板Cの配線導
体6にパッケージBの球状端子4が半田7などにより接
続されて、パッケージBが外部電気回路基板C表面に実
装されている。Then, the spherical terminals 4 of the package B are connected to the wiring conductors 6 of the external electric circuit board C by solder 7 or the like, and the package B is mounted on the surface of the external electric circuit board C.
【0020】かかる実装構造において、パッケージBを
構成する絶縁基板1は、−40℃乃至80℃における熱
膨張係数が8乃至25ppm/℃のセラミックスから構
成される。これは、有機樹脂を含む絶縁基体5を具備す
る外部電気回路基板Cとの熱膨張係数を近似させること
により、パッケージBと外部電気回路基板Cとの長期接
続信頼性を得るために必要である。よって、絶縁基板1
の熱膨張係数が8ppm/℃よりも小さいか、あるいは
25ppm/℃よりも大きいと、外部電気回路基板Cと
の熱膨張差が大きくなり、熱膨張差に起因する応力によ
って接続信頼性が損なわれるためである。In such a mounting structure, the insulating substrate 1 forming the package B is made of ceramics having a coefficient of thermal expansion of 8 to 25 ppm / ° C. at -40 ° C. to 80 ° C. This is necessary in order to obtain long-term connection reliability between the package B and the external electric circuit board C by approximating the thermal expansion coefficient of the external electric circuit board C having the insulating base 5 containing the organic resin. . Therefore, the insulating substrate 1
If the thermal expansion coefficient of the external electric circuit board C is smaller than 8 ppm / ° C. or larger than 25 ppm / ° C., the difference in thermal expansion with the external electric circuit board C increases, and the connection reliability is impaired by the stress caused by the difference in thermal expansion. That's why.
【0021】また、パッケージBの表面に実装される半
導体素子Aは、その底面に複数の接続用電極8が設けら
れており、パッケージBの表面のメタライズ配線層2と
半田などのロウ材により電気的に接続されており、その
周りは通常、熱硬化性樹脂からなるアンダーフィル材9
で補強されている。The semiconductor element A mounted on the surface of the package B is provided with a plurality of connection electrodes 8 on the bottom surface, and is electrically connected to the metallized wiring layer 2 on the surface of the package B by a brazing material such as solder. The underfill material 9 made of a thermosetting resin is generally connected therearound.
It is reinforced with.
【0022】本発明によれば、上記の半導体素子Aをパ
ッケージBの表面にロウ付け実装した構造において、半
導体素子Aの上面、即ち、半導体素子AのパッケージB
への実装面の反対側の面に、高熱膨張特性の樹脂組成物
を被着して樹脂層10を形成する。According to the present invention, in the structure in which the semiconductor element A is mounted on the surface of the package B by brazing, the upper surface of the semiconductor element A, that is, the package B of the semiconductor element A is provided.
A resin composition having a high thermal expansion characteristic is applied to the surface opposite to the mounting surface to form a resin layer 10.
【0023】この樹脂層10は、−40℃乃至80℃に
おける熱膨張係数が10乃至60ppm/℃、特に、1
5〜50ppm/℃、さらには20〜40ppm/℃で
あること、さらには、前記温度範囲におけるヤング率が
3〜30GPa、特に5〜20GPaであることが重要
である。The resin layer 10 has a coefficient of thermal expansion at -40 ° C. to 80 ° C. of 10 to 60 ppm / ° C.,
It is important that it is 5 to 50 ppm / ° C., further 20 to 40 ppm / ° C., and that the Young's modulus in the above temperature range is 3 to 30 GPa, especially 5 to 20 GPa.
【0024】本発明における実装構造においては、低熱
膨張の半導体素子Aと高熱膨張のパッケージBとの熱膨
張差によって、半導体素子Aに圧縮応力が、パッケージ
B側には引張応力が発生しており、その応力によってパ
ッケージBが変形し、パッケージBと外部電気回路基板
Cとの接続が不安定となる。In the mounting structure according to the present invention, a compressive stress is generated in the semiconductor element A and a tensile stress is generated in the package B due to a difference in thermal expansion between the semiconductor element A having a low thermal expansion and the package B having a high thermal expansion. The package B is deformed by the stress, and the connection between the package B and the external electric circuit board C becomes unstable.
【0025】そこで、本発明により、半導体素子Aの表
面に上記高熱膨張係数、ヤング率の樹脂層10を形成す
ることにより、樹脂層10と半導体素子Aとの熱膨張係
数差によって前記低熱膨張の半導体素子Aと高熱膨張の
パッケージBとの熱膨張差によって発生する圧縮応力と
は反対方向の圧縮応力が発生することになり、これらの
圧縮応力によって互いに相殺される結果、パッケージB
の反りを抑えるとともに、外部電気回路基板Cとの接続
部の発生応力を小さくすることができる。Therefore, according to the present invention, by forming the resin layer 10 having a high coefficient of thermal expansion and a Young's modulus on the surface of the semiconductor element A, the difference in the coefficient of thermal expansion between the resin layer 10 and the semiconductor element A is reduced. A compressive stress is generated in a direction opposite to a compressive stress generated due to a difference in thermal expansion between the semiconductor element A and the package B having a high thermal expansion, and these compressive stresses cancel each other out.
And the stress generated at the connection with the external electric circuit board C can be reduced.
【0026】この樹脂層10の熱膨張係数又はヤング率
が、上記範囲よりも小さいと、この樹脂層10の被着に
よる応力の相殺効果が十分でなく、パッケージBと半導
体素子Aとの熱膨張係数差で生じる応力によりパッケー
ジBが反り、外部電気回路基板Cとの接続部に高応力が
発生してしまう。If the coefficient of thermal expansion or the Young's modulus of the resin layer 10 is smaller than the above range, the effect of offsetting the stress due to the adhesion of the resin layer 10 is not sufficient, and the thermal expansion of the package B and the semiconductor element A is not sufficient. The package B warps due to the stress generated due to the coefficient difference, and high stress is generated at a connection portion with the external electric circuit board C.
【0027】また、樹脂層10の熱膨張係数又はヤング
率が前記範囲より大きいと、この樹脂層10と半導体素
子Aに発生する応力が、半導体素子AとパッケージBと
の間に発生する応力より大きくなり、パッケージBが逆
側に反り、外部電気回路基板Cとの接続部に高応力が発
生してしまう。When the coefficient of thermal expansion or Young's modulus of the resin layer 10 is larger than the above range, the stress generated between the resin layer 10 and the semiconductor element A is smaller than the stress generated between the semiconductor element A and the package B. As a result, the package B warps to the opposite side, and high stress is generated at the connection portion with the external electric circuit board C.
【0028】この樹脂層10の材質は、例えばフェノー
ル樹脂、ユリア樹脂、メラミン樹脂、エポキシ樹脂、不
飽和ポリエステル樹脂、フタル酸ジアリル樹脂、ポリイ
ミド樹脂、シリコーン樹脂、ポリウレタン樹脂などを挙
げることができる。これらの中でもビスフェノール系エ
ポキシ樹脂、フェノールノボラック系エポキシ樹脂、ク
レゾールノボラック系エポキシ樹脂、ブロム化エポキシ
樹脂、脂環式エポキシ樹脂などのエポキシ樹脂等のエポ
キシ樹脂が特に好ましい。Examples of the material of the resin layer 10 include phenol resin, urea resin, melamine resin, epoxy resin, unsaturated polyester resin, diallyl phthalate resin, polyimide resin, silicone resin, polyurethane resin and the like. Among these, epoxy resins such as bisphenol epoxy resins, phenol novolak epoxy resins, cresol novolak epoxy resins, brominated epoxy resins, and epoxy resins such as alicyclic epoxy resins are particularly preferred.
【0029】また、樹脂層10の熱膨張係数およびヤン
グ率を前記の範囲に制御するためには、前記樹脂内にフ
ィラーとして、石英ガラス、アルミナ、マイカ、ジルコ
ニウムシリケート、リチウムシリケートなどの無機物を
前記樹脂層100重量部に対し、25〜300重量部を
配合することにより調整できる。In order to control the coefficient of thermal expansion and the Young's modulus of the resin layer 10 within the above ranges, an inorganic substance such as quartz glass, alumina, mica, zirconium silicate, lithium silicate, etc. is used as a filler in the resin. It can be adjusted by blending 25 to 300 parts by weight with respect to 100 parts by weight of the resin layer.
【0030】本発明において、半導体素子Aの表面への
樹脂層10の形成は、半導体素子AをパッケージBに実
装後、ディスペンサーにより樹脂組成物を所定厚みで塗
布する。その後、乾燥機により100乃至200℃に加
熱し硬化させることにより樹脂層10を形成できる。In the present invention, the resin layer 10 is formed on the surface of the semiconductor element A by mounting the semiconductor element A on a package B and then applying a resin composition to a predetermined thickness by a dispenser. Thereafter, the resin layer 10 can be formed by heating and curing at 100 to 200 ° C. with a dryer.
【0031】なお、本発明におけるパッケージBの熱膨
張係数が8乃至25ppm/℃で、ヤング率が200G
Pa以下の絶縁基板1は、例えば前記特願平8―322
038号の明細書中に記載されているような、リチウム
珪酸系ガラス、PbO系ガラス、ZnO系ガラス、Ba
O系ガラス等のガラス成分にエンスタタイト、フォルス
テライト、フォルステライトとSiO2 系フィラー、M
gO、ZrO2 、ペタライト等の各種セラミックフィラ
ーの複合材料によって形成される。The package B of the present invention has a coefficient of thermal expansion of 8 to 25 ppm / ° C. and a Young's modulus of 200 G
The insulating substrate 1 having a pressure of Pa or less is formed, for example, by the method described in Japanese Patent Application No. 8-322.
No. 038, lithium silicate glass, PbO glass, ZnO glass, Ba
Enstatite, forsterite, forsterite and SiO 2 filler, M
It is formed of a composite material of various ceramic fillers such as gO, ZrO 2 and petalite.
【0032】例えば、上記ガラス20〜90体積%、上
記フィラー成分80〜10体積%の割合で混合した混合
粉末に、適宜有機バインダーを添加してスラリーを形成
し、そのスラリーをシート状に成形した後、そのシート
状成形体の表面に、銅、金、銀などの低抵抗金属を含む
導体ペーストを印刷塗布する。また所望により、シート
状成形体の所定箇所にマイクロドリルやレーザー等によ
りスルーホールを形成して、ホール内に前記導体ペース
トを充填する。そして、そのシート状成形体を複数積層
圧着して積層体を作製した後、これを窒素雰囲気、ある
いは水蒸気を含む窒素雰囲気中で脱脂後、800〜10
00℃の温度で焼成することにより作製できる。For example, an organic binder is appropriately added to a mixed powder obtained by mixing 20 to 90% by volume of the glass and 80 to 10% by volume of the filler component to form a slurry, and the slurry is formed into a sheet. Thereafter, a conductor paste containing a low-resistance metal such as copper, gold, or silver is printed and applied to the surface of the sheet-shaped molded body. If desired, a through hole is formed at a predetermined position of the sheet-like molded body by a micro drill, a laser, or the like, and the hole is filled with the conductive paste. Then, after laminating and pressing a plurality of the sheet-shaped molded bodies to form a laminated body, the laminated body is degreased in a nitrogen atmosphere or a nitrogen atmosphere containing water vapor.
It can be manufactured by firing at a temperature of 00 ° C.
【0033】[0033]
【実施例】表1に示す各種セラミック材料について、5
×4×40mmの形状の焼結体を作製した後、各焼結体
について熱膨張係数を測定した。測定値を表1に示す。EXAMPLES For various ceramic materials shown in Table 1, 5
After producing a sintered body having a shape of × 4 × 40 mm, the thermal expansion coefficient of each sintered body was measured. Table 1 shows the measured values.
【0034】また、表1に示す各種セラミック材料を用
いて、それらに銅からなるメタライズ配線層、スルーホ
ール導体を形成し、また、配線基板上面のスルーホール
導体に接続する個所に多数の半導体素子と接続される電
極用パッドを形成し、さらに底面には、外部電気回路基
板と接続するための接続用パッドを形成し、メタライズ
配線層、スルーホール導体、電極パッド、接続用パッド
とともに絶縁基板と、窒素雰囲気中で950℃で同時焼
成して配線基板を作製した。A metallized wiring layer made of copper and a through-hole conductor are formed on each of the ceramic materials shown in Table 1, and a large number of semiconductor elements are connected to the through-hole conductors on the upper surface of the wiring board. Form electrode pads to be connected to the board, and on the bottom surface, form connection pads for connection to an external electric circuit board.Then, metallized wiring layers, through-hole conductors, electrode pads, and connection pads together with the insulating board At 950 ° C. in a nitrogen atmosphere to produce a wiring substrate.
【0035】そして、配線基板の底面の接続用パッド
に、高融点半田(Sn:Pb重量比=10:90)から
なる球状端子を低融点半田(Sn:Pb重量比=63:
37)により取り付けて配線基板を作製した。作製した
配線基板は、縦×横が13mm×13mm、厚みが0.
4mmとした。Then, a spherical terminal made of a high melting point solder (Sn: Pb weight ratio = 10: 90) is connected to a connection pad on the bottom surface of the wiring board by a low melting point solder (Sn: Pb weight ratio = 63: 90).
37) to produce a wiring board. The manufactured wiring board was 13 mm × 13 mm in length × width and 0.3 mm in thickness.
4 mm.
【0036】そして、電極用パッドにNiメッキを施し
た後、電極用パッドに対して、0〜40℃における熱膨
張係数が2.6ppm/℃のSiからなる半導体素子を
準備し、半導体素子の底面に配設された接続用電極を低
融点半田により接続して実装した後、半導体素子と配線
基板との間の空隙にアンダーフィル材(ビスフェノール
A系エポキシ樹脂)を注入し、180℃で2時間熱処理
して硬化させて半導体素子を配線基板に固着した。After the electrode pad is plated with Ni, a semiconductor element made of Si having a thermal expansion coefficient of 2.6 ppm / ° C. at 0 to 40 ° C. is prepared for the electrode pad. After connecting and mounting the connection electrodes disposed on the bottom surface with low melting point solder, an underfill material (bisphenol A-based epoxy resin) is injected into the gap between the semiconductor element and the wiring board, and the temperature is 2 ° C. at 180 ° C. The semiconductor element was fixed to the wiring board by heat treatment and curing for a time.
【0037】その後、配線基板の上面に実装された半導
体素子の上面に表2、表3に示す熱硬化性樹脂に石英ガ
ラスまたはアルミナを表2、表3の比率で配合、混練し
て調製したペーストをディスペンサーにより塗布し、1
50℃で硬化させて厚さ1.0mmの樹脂層を被着し
た。Thereafter, on the upper surface of the semiconductor element mounted on the upper surface of the wiring board, quartz glass or alumina was mixed and kneaded with the thermosetting resin shown in Tables 2 and 3 at the ratios shown in Tables 2 and 3. Apply the paste with a dispenser,
After curing at 50 ° C., a resin layer having a thickness of 1.0 mm was applied.
【0038】その後、半導体素子を実装した配線基板
を、ガラスエポキシ基板からなる0〜40℃の熱膨張係
数が14ppm/℃の絶縁基体の表面に銅箔からなる配
線導体が形成されたプリント基板に対して、配線基板の
球状端子と、プリント基板の配線導体とが接続されるよ
うに位置合わせして低融点半田を用いて窒素雰囲気中で
240℃で3分間熱処理して配線基板をプリント基板の
表面に実装した。Then, the wiring board on which the semiconductor element is mounted is mounted on a printed board having a wiring conductor made of a copper foil formed on the surface of an insulating base made of a glass epoxy board and having a thermal expansion coefficient of 0 ppm / ° C. of 14 ppm / ° C. On the other hand, the wiring board is positioned so that the spherical terminals of the wiring board are connected to the wiring conductors of the printed board, and heat-treated at 240 ° C. for 3 minutes in a nitrogen atmosphere using low-melting solder, so that the printed board is Mounted on the surface.
【0039】この配線基板をプリント基板表面に実装し
たものを大気の雰囲気にて−40℃と125℃の各温度
に制御した高温槽に15分/15分の保持を1サイクル
として最高1000サイクル繰り返した。The printed circuit board mounted on the surface of the printed circuit board is repeated at a maximum of 1,000 cycles in a high-temperature bath controlled at temperatures of -40 ° C. and 125 ° C. in an atmosphere of air at a rate of 15 minutes / 15 minutes as one cycle. Was.
【0040】そして、100サイクル毎にプリント基板
の配線導体と配線基板との電気抵抗を測定し電気抵抗に
変化が生じるまでのサイクル数を表2、表3に示した。The electrical resistance between the wiring conductor of the printed circuit board and the wiring board was measured every 100 cycles, and the number of cycles until the electrical resistance changed was shown in Tables 2 and 3.
【0041】[0041]
【表1】 [Table 1]
【0042】[0042]
【表2】 [Table 2]
【0043】[0043]
【表3】 [Table 3]
【0044】表2、表3からも明らかなように、半導体
素子の表面に何ら樹脂層を形成しない試料No.28〜3
0では、配線基板がプリント基板側との接続側が凹とな
る変形が大きく、配線基板とプリント基板との接続部の
内側に位置する半田接合部の破壊が著しく、いずれも2
00サイクル以下で断線した。As is clear from Tables 2 and 3, Samples Nos. 28 to 3 in which no resin layer was formed on the surface of the semiconductor element were used.
In the case of 0, the deformation of the wiring board at the connection side with the printed board side is large, and the solder joint located inside the connection section between the wiring board and the printed board is significantly damaged.
The disconnection occurred in 00 cycles or less.
【0045】これに対して、半導体素子上面に熱膨張係
数が10乃至60ppm/℃でヤング率が3乃至30G
Paの樹脂層を形成した試料No.4、5、9、10、1
6、17、21、22では、1000回までの熱サイク
ル試験においても、配線基板の反り、変形はなく、配線
基板と外部電気回路基板間に電気抵抗変化は全く見られ
ず、極めて安定で良好な電気的接続を維持された。On the other hand, the upper surface of the semiconductor element has a coefficient of thermal expansion of 10 to 60 ppm / .degree.
Sample Nos. 4, 5, 9, 10, 1 on which a resin layer of Pa was formed
In 6, 17, 21, and 22, even in a thermal cycle test up to 1000 times, there is no warpage or deformation of the wiring board, no change in electric resistance is observed between the wiring board and the external electric circuit board, and it is extremely stable and good. Good electrical connections were maintained.
【0046】しかし、樹脂層の熱膨張係数およびヤング
率が本発明の範囲を逸脱する試料では、配線基板がプリ
ント基板側との接続側が凹となる変形が100μm以上
と大きく、配線基板とプリント基板側との接続部の内側
で接続不良が発生したり(試料No.1、2、7、13、
14)、変形量は100μm未満であっても内側で接続
不良が発生したり(試料No.3、8、15、19、2
0)、樹脂層が半導体素子から剥がれる(試料No.6、
11、12、18、23、24)等の不具合が生じ、実
装後の信頼性に欠けることがわかる。However, in the sample in which the coefficient of thermal expansion and the Young's modulus of the resin layer deviate from the range of the present invention, the deformation of the wiring board on the connection side with the printed board side is large as 100 μm or more. Connection failure occurs on the inside of the connection part with the side (Sample Nos. 1, 2, 7, 13,
14) Even if the deformation amount is less than 100 μm, poor connection may occur inside (Sample Nos. 3, 8, 15, 19, 2).
0), the resin layer is peeled off from the semiconductor element (Sample No. 6,
11, 12, 18, 23, 24) and the like, and the reliability after mounting is lacking.
【0047】さらに、絶縁基板材料の熱膨張係数が8p
pm/℃未満の試料No.25〜27でも、配線基板がプ
リント基板との接続側に対して凸となる変形がわずか生
じ、接続部の外側において接続不良が生じた。Further, the thermal expansion coefficient of the insulating substrate material is 8p
Even in Samples Nos. 25 to 27 having a temperature of less than pm / ° C., the wiring board slightly deformed to be convex with respect to the connection side with the printed board, and poor connection occurred outside the connection portion.
【0048】[0048]
【発明の効果】上述した通り、本発明の半導体素子の実
装構造によれば、高熱膨張特性の配線基板に対して低熱
膨張の半導体素子を実装するに際し、半導体素子上面に
高熱膨張、高ヤング率の樹脂組成物を被着させることに
より、配線基板と半導体素子との熱膨張差に起因する応
力を相殺して配線基板の反りを抑制できる結果、半導体
素子を実装した配線基板を、有機樹脂を含む絶縁基体か
らなる外部電気回路基板に対して、長期にわたり正確か
つ強固に電気的接続させることが可能となる。As described above, according to the semiconductor device mounting structure of the present invention, when mounting a semiconductor device having a low thermal expansion on a wiring board having a high thermal expansion characteristic, a high thermal expansion and a high Young's modulus are provided on the upper surface of the semiconductor device. By applying the resin composition of the above, the warpage of the wiring board can be suppressed by canceling the stress caused by the difference in thermal expansion between the wiring board and the semiconductor element. It is possible to make accurate and strong electrical connection to an external electric circuit board made of an insulating base including the same for a long period of time.
【図1】本発明における実装構造を説明するための概略
断面図である。FIG. 1 is a schematic cross-sectional view for explaining a mounting structure according to the present invention.
A 半導体素子、 B BGA型パッケージ C 外部電気回路基板 1 絶縁基板 2 メタライズ配線層 3 接続パッド 4 球状端子 5 絶縁基体 6 配線導体 7 半田 8 接続用電極 9 アンダーフィル材 10 樹脂層 Reference Signs List A semiconductor element, B BGA type package C external electric circuit board 1 insulating substrate 2 metallized wiring layer 3 connection pad 4 spherical terminal 5 insulating base 6 wiring conductor 7 solder 8 connection electrode 9 underfill material 10 resin layer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 米倉 秀人 鹿児島県国分市山下町1番4号 京セラ株 式会社総合研究所内 (72)発明者 永田 公一 鹿児島県国分市山下町1番4号 京セラ株 式会社総合研究所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Hideto Yonekura, Inventor 1-4, Yamashita-cho, Kokubu-shi, Kagoshima Inside the Kyocera Research Institute (72) Inventor Koichi Nagata 1-4-1, Yamashita-cho, Kokubu-shi, Kagoshima Kyocera Research Institute
Claims (2)
8乃至25ppm/℃のセラミック絶縁基板と、該絶縁
基板表面に配設されたメタライズ配線層と、外部電気回
路基板との接続用端子を備えた配線基板の表面に、底面
に接続用電極を備えた半導体素子を載置し、前記配線基
板のメタライズ配線層と前記半導体素子の接続用電極と
をロウ付けするとともに、前記半導体素子の表面に−4
0℃乃至80℃における熱膨張係数が10乃至60pp
m/℃、前記温度範囲におけるヤング率が3〜30GP
aの樹脂組成物を被着した樹脂層を形成したことを特徴
とする半導体素子の実装構造。1. A terminal for connecting a ceramic insulating substrate having a thermal expansion coefficient of 8 to 25 ppm / ° C. at -40 ° C. to 80 ° C., a metallized wiring layer disposed on the surface of the insulating substrate, and an external electric circuit board. A semiconductor element provided with a connection electrode on the bottom surface is placed on the surface of the wiring board provided with, and a metallized wiring layer of the wiring board and a connection electrode of the semiconductor element are brazed, and -4 on the surface
Coefficient of thermal expansion at 0 ° C to 80 ° C is 10 to 60 pp
m / ° C, Young's modulus in the above temperature range is 3 to 30 GP
A mounting structure of a semiconductor element, wherein a resin layer on which the resin composition a is applied is formed.
8乃至25ppm/℃のセラミック絶縁基板と、該絶縁
基板表面に配設されたメタライズ配線層と、外部電気回
路基板との接続用端子を備えた配線基板を、有機樹脂を
含有する絶縁基体の表面に配線導体が被着された外部電
気回路基板の前記配線導体に、前記接続用端子をロウ付
けして実装されてなる配線基板の実装構造において、前
記配線基板の表面に、底面に接続用電極を備えた半導体
素子を載置し、前記配線基板のメタライズ配線層と前記
半導体素子の接続用電極とをロウ付けするとともに、前
記半導体素子の表面に−40℃乃至80℃における熱膨
張係数が10乃至60ppm/℃、前記温度範囲におけ
るヤング率が3〜30GPaの樹脂組成物を被着した樹
脂層を形成したことを特徴とする配線基板の実装構造。2. A terminal for connecting a ceramic insulating substrate having a thermal expansion coefficient of 8 to 25 ppm / ° C. at -40 ° C. to 80 ° C., a metallized wiring layer provided on the surface of the insulating substrate, and an external electric circuit board. A wiring board comprising: an external electric circuit board having a wiring conductor adhered to a surface of an insulating base containing an organic resin; In the mounting structure, a semiconductor element having a connection electrode on a bottom surface is mounted on a surface of the wiring board, and a metallized wiring layer of the wiring board and a connection electrode of the semiconductor element are brazed, and the semiconductor element is soldered. A resin layer on which a resin composition having a coefficient of thermal expansion at -40 ° C to 80 ° C of 10 to 60 ppm / ° C and a Young's modulus within the above temperature range of 3 to 30 GPa was formed on the surface of the element. Mounting structure of the wiring board characterized by.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01884098A JP3502759B2 (en) | 1998-01-30 | 1998-01-30 | Semiconductor element mounting structure and wiring board mounting structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01884098A JP3502759B2 (en) | 1998-01-30 | 1998-01-30 | Semiconductor element mounting structure and wiring board mounting structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11220052A true JPH11220052A (en) | 1999-08-10 |
JP3502759B2 JP3502759B2 (en) | 2004-03-02 |
Family
ID=11982767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01884098A Expired - Lifetime JP3502759B2 (en) | 1998-01-30 | 1998-01-30 | Semiconductor element mounting structure and wiring board mounting structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3502759B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010212724A (en) * | 2010-05-17 | 2010-09-24 | Rohm Co Ltd | Semiconductor device |
-
1998
- 1998-01-30 JP JP01884098A patent/JP3502759B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010212724A (en) * | 2010-05-17 | 2010-09-24 | Rohm Co Ltd | Semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP3502759B2 (en) | 2004-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3336240B2 (en) | Semiconductor element mounting board | |
US20190273036A1 (en) | Wiring board, electronic device, and electronic module | |
JPH0288471A (en) | Ceramic joining body | |
JP3631638B2 (en) | Mounting structure of semiconductor device package | |
JP3842478B2 (en) | Mounting structure of semiconductor device mounting wiring board | |
JP3502759B2 (en) | Semiconductor element mounting structure and wiring board mounting structure | |
JPH10189815A (en) | Mounting structure of semiconductor element mounting board | |
JP2000252392A (en) | Semiconductor element mounting wiring board and its mounting structure | |
JP3732923B2 (en) | Wiring board | |
JP3426827B2 (en) | Semiconductor device | |
JP3297567B2 (en) | Package for housing semiconductor element and its mounting structure | |
JP3318498B2 (en) | Circuit board for mounting semiconductor elements | |
US10290591B2 (en) | Wiring board, electronic device, and electronic module | |
JP2001015649A (en) | Wiring board for semiconductor element mounting and wiring board mounting structure | |
JP3347583B2 (en) | Wiring board mounting structure | |
JP2001244390A (en) | Package for semiconductor device and its mounting structure | |
JP2000114424A (en) | Semiconductor element mounting board | |
JP2000022017A (en) | Ceramic wiring board and its mounting structure | |
JP2000188362A (en) | Semiconductor element mounting structure | |
JP4071893B2 (en) | Wiring board and its mounting structure | |
JP2001102492A (en) | Wiring board and its mounting structure | |
JP2002016176A (en) | Wiring board and its connection structure | |
JP3610239B2 (en) | Wiring board for mounting semiconductor device and mounting structure thereof | |
JP3692215B2 (en) | Wiring board mounting structure | |
JP3420447B2 (en) | Wiring board mounting structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20031125 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20031208 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081212 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091212 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101212 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101212 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111212 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111212 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121212 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121212 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131212 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |