JPH11219891A - Mask inspection method and apparatus - Google Patents
Mask inspection method and apparatusInfo
- Publication number
- JPH11219891A JPH11219891A JP2291998A JP2291998A JPH11219891A JP H11219891 A JPH11219891 A JP H11219891A JP 2291998 A JP2291998 A JP 2291998A JP 2291998 A JP2291998 A JP 2291998A JP H11219891 A JPH11219891 A JP H11219891A
- Authority
- JP
- Japan
- Prior art keywords
- mask
- ray
- inspection apparatus
- optical system
- exposure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
(57)【要約】
【課題】X線縮小露光用マスクの欠陥を精度よく検出す
る。
【解決手段】X線縮小露光を行うときと同じNA,σ
値,波長でマスクを照明し、結像させてマスク検査を行
う。(57) [Summary] To accurately detect a defect of an X-ray reduction exposure mask. Kind Code: A1 Abstract: The same NA, σ as when performing X-ray reduction exposure
The mask is inspected by illuminating the mask with the values and wavelengths and forming an image.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、X線縮小露光用の
マスクの検査方法、及び前記検査方法による検査の後、
修正されたマスクを用いた露光方法、及びその露光方法
を用いて作製されたデバイスに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of inspecting a mask for X-ray reduction exposure, and an inspection method using the inspection method.
The present invention relates to an exposure method using a corrected mask and a device manufactured using the exposure method.
【0002】[0002]
【従来の技術】マスク上に描かれた半導体集積回路等の
パターンをウエハ上に転写する投影露光においては、解
像度と焦点深度が重要である。一般に、結像光学系の開
口数をNA,露光波長をλとすると、解像度Rと焦点深
度DOFはそれぞれ数1および数2で与えられる。2. Description of the Related Art In projection exposure for transferring a pattern of a semiconductor integrated circuit or the like drawn on a mask onto a wafer, resolution and depth of focus are important. Generally, assuming that the numerical aperture of the imaging optical system is NA and the exposure wavelength is λ, the resolution R and the depth of focus DOF are given by Equations 1 and 2, respectively.
【0003】[0003]
【数1】 R=k1λ/NA …(1)R = k 1 λ / NA (1)
【0004】[0004]
【数2】 DOF=k2λ/NA2 …(2) ただし k1 ,k2 は定数である。## EQU2 ## DOF = k 2 λ / NA 2 (2) where k 1 and k 2 are constants.
【0005】現在、波長248nmのKrFエキシマレ
ーザーと、NA0.6 程度のレンズ光学系,位相シフト
マスク,多層レジストを用いて、解像度0.13μm ,
焦点深度1μmが実現されている。At present, using a KrF excimer laser having a wavelength of 248 nm, a lens optical system having a NA of about 0.6, a phase shift mask, and a multilayer resist, a resolution of 0.13 μm,
A depth of focus of 1 μm has been realized.
【0006】半導体集積回路を高密度化するために、更
に高解像度の投影露光方法が要求されている。上記数1
から分かるように、NAが大きいほど、あるいは露光波
長が短いほど解像度は向上する。しかしNAを大きくす
ると、上記数2にしたがって焦点深度が低下するので、
この方法による高解像度化は限界がある。In order to increase the density of a semiconductor integrated circuit, a projection exposure method with higher resolution is required. Equation 1 above
As can be seen from the graph, the larger the NA or the shorter the exposure wavelength, the higher the resolution. However, when the NA is increased, the depth of focus decreases according to the above equation (2).
There is a limit to increasing the resolution by this method.
【0007】一方、露光波長を数十nmないしは数nm
の軟X線領域まで短波長化すると、焦点深度1μmを確
保しながら解像度0.1μm 以下を達成することが可能
である。しかし軟X線では物質の屈折率が極めて1に近
いので、レンズ型光学系の適用は困難であり、ミラー
(反射型)光学系を使用する必要がある。On the other hand, the exposure wavelength is set to several tens nm or several nm.
When the wavelength is shortened to the soft X-ray region, it is possible to achieve a resolution of 0.1 μm or less while securing a depth of focus of 1 μm. However, since the refractive index of a substance is very close to 1 with soft X-rays, it is difficult to apply a lens type optical system, and it is necessary to use a mirror (reflection type) optical system.
【0008】近年、屈折率の異なる2種類の物質の薄膜
を交互に多数積層した多層膜ミラーが実用化され、軟X
線を任意の入射角度で高効率で反射させることが可能と
なった。そこで、多層膜ミラーを用いた結像光学系によ
るX線投影露光方法の検討が盛んに行われている。多層
膜の周期長をΛ,反射波長をλ,入射角をθ(θ=0°
で直入射)とすると数3の条件が満たされたときに反射
が起こる。In recent years, a multilayer mirror in which a large number of thin films of two kinds of substances having different refractive indexes are alternately laminated has been put to practical use.
Lines can be reflected with high efficiency at any angle of incidence. Therefore, an X-ray projection exposure method using an imaging optical system using a multilayer mirror has been actively studied. The period length of the multilayer film is Λ, the reflection wavelength is λ, and the incident angle is θ (θ = 0 °
), Reflection occurs when the condition of Equation 3 is satisfied.
【0009】[0009]
【数3】 2Λcosθ=nλ(n=1,2,3,4,…) …(3) 多層膜の反射には選択性があり、数3より、入射角が変
化すると反射される波長領域が変化することが分かる。
X線縮小露光用のマスクは、この軟X線反射用多層膜を
平滑な基板上に形成して軟X線の反射部とし、その反射
部上に軟X線を吸収する物質を形成し(吸収体)、エッ
チング等の手段で吸収体をパターニングすることで非反
射部(遮光部)とした反射型構造を有している。2Λcos θ = nλ (n = 1, 2, 3, 4,...) (3) The reflection of the multilayer film has selectivity. It can be seen that it changes.
The mask for X-ray reduction exposure forms this soft X-ray reflection multilayer film on a smooth substrate to form a soft X-ray reflection portion, and forms a soft X-ray absorbing substance on the reflection portion ( It has a reflective structure in which a non-reflective portion (light-shielding portion) is formed by patterning the absorber by means such as an absorber and etching.
【0010】[0010]
【発明が解決しようとする課題】このような構造を持つ
X線縮小露光用のマスクは露光光である軟X線に対し、
反射部と非反射部が十分なコントラストをとるように設
計されているので、レーザー等の可視光や電子線に対し
て必ずしもコントラストが高くなく、従来のレーザー等
の可視光や電子線をプローブとした検査装置では十分な
検出感度をもつ欠陥・異物,パターン寸法の検査が出来
ていなかった。A mask for X-ray reduction exposure having such a structure is not suitable for soft X-rays as exposure light.
The reflective part and non-reflective part are designed to have sufficient contrast, so the contrast is not always high with respect to visible light and electron beams such as lasers. Inspection of the defect, foreign matter, and pattern dimensions with sufficient detection sensitivity could not be performed with the inspection device.
【0011】これに対し、X線縮小露光用マスクの検査
方法,検査装置が特開平6−349715号公報において開示
されている。ここでは、X線縮小露光で露光光として用
いる軟X線と全く同じ波長の軟X線が、検査装置のプロ
ーブとして用いられている。On the other hand, an inspection method and an inspection apparatus for an X-ray reduction exposure mask are disclosed in Japanese Patent Application Laid-Open No. 6-349715. Here, soft X-rays having exactly the same wavelength as soft X-rays used as exposure light in X-ray reduction exposure are used as probes of an inspection apparatus.
【0012】図3は上記従来例の検査装置を示すブロッ
ク図である。図において光源としてレーザープラズマX
線源37を用い、発生した軟X線を多層膜コーティング
された回転楕円体ミラー31で集光、単色化し、フィル
ター32で紫外〜可視光領域の長波長成分を除去した。
得られた軟X線33を検査対象である反射型マスク34
に照射した。マスク34で反射した軟X線をゾーンプレ
ート35(SiNメンブレン上にゾーンプレートパター
ンがAuで形成された構造)によりX線用CCD36上
に拡大結像させ、その像をX線用CCD36で取り込ん
で、数値処理した後その画像をマスクパターンとして設
計したデータと比較し、マスク検査を行う。また分解能
は0.2μm 寸法のパターンを認識できる領域は50μ
m角程度なので、マスクステージ38を移動させてマス
クの全領域を検査する。FIG. 3 is a block diagram showing the conventional inspection apparatus. In the figure, laser plasma X is used as the light source.
Using a radiation source 37, the generated soft X-rays were condensed and monochromatized by a spheroid mirror 31 coated with a multilayer film, and a filter 32 was used to remove long-wavelength components from the ultraviolet to visible light regions.
The obtained soft X-ray 33 is reflected by a reflective mask 34 to be inspected.
Irradiation. The soft X-rays reflected by the mask 34 are enlarged and imaged on the X-ray CCD 36 by the zone plate 35 (structure in which the zone plate pattern is formed of Au on the SiN membrane), and the image is captured by the X-ray CCD 36. After the numerical processing, the image is compared with data designed as a mask pattern, and a mask inspection is performed. The resolution is 50 μm in the area where a pattern having a size of 0.2 μm can be recognized.
Since the angle is about m square, the mask stage 38 is moved to inspect the entire area of the mask.
【0013】この検査方法は、反射部である多層膜の欠
陥について原理的には検出可能であるという点で、前出
の可視光や電子線がプローブの検査方法より遥かにメリ
ットがある。そのためX線縮小露光用マスクの欠陥・異
物等に関して、検出感度と精度が大きく向上している。This inspection method is much more advantageous than the above-described probe inspection method in that visible light and an electron beam can detect a defect of a multilayer film as a reflecting portion in principle. As a result, the detection sensitivity and accuracy of the X-ray reduction exposure mask for defects and foreign substances are greatly improved.
【0014】しかしマスク検査装置の光学系について、
マスク側のNAやσ値が可変でないため、異なる寸法の
マスクパターンを転写する際にX線縮小露光装置のNA
やσ値を変更すると、検査装置のCCD上で得られるパ
ターンのコントラストや欠陥・異物の検出感度・精度
が、X線縮小露光による露光でウエハ上で実際に得られ
る光強度のコントラストや欠陥・異物の検出感度・精度
と異なる場合がある。However, regarding the optical system of the mask inspection apparatus,
Since the NA or σ value on the mask side is not variable, the NA of the X-ray reduction exposure
When the σ value is changed, the contrast of the pattern obtained on the CCD of the inspection device and the detection sensitivity and accuracy of defects / contaminants are changed by the contrast of the light intensity and the defects / defects actually obtained on the wafer by the exposure using the X-ray reduction exposure. The detection sensitivity / accuracy of foreign matter may be different.
【0015】以上のように、従来のマスク検査装置では
X線縮小露光用のマスクに対して十分な検査方法は開示
されていなかった。As described above, the conventional mask inspection apparatus does not disclose a sufficient inspection method for a mask for X-ray reduction exposure.
【0016】[0016]
【課題を解決するための手段】本発明は、X線縮小露光
用マスク検査装置において、X線縮小露光を行うときと
同じ波長のプローブで、かつ同じNA,σ値でマスクを
照明し、マスクからの散乱光を結像することにより、上
記の課題を解決した。According to the present invention, there is provided a mask inspection apparatus for X-ray reduction exposure, wherein the mask is illuminated with a probe having the same wavelength and the same NA and σ value as those used in X-ray reduction exposure. The above problem was solved by forming an image of the scattered light from the light source.
【0017】[0017]
【発明の実施の形態】(実施例1)図1に本発明の第1
の実施例を示す。マスク検査装置のプローブの線源とし
てレーザプラズマX線源10を用いる。光源より発生し
た軟X線11を斜入射ミラー12で集光した後、回折格
子13を用いて波長13nmの軟X線を取り出し、検査
対象であるX線縮小露光用マスク14上に照明する。こ
の波長はX線縮小露光装置でパターン転写に用いる軟X
線の波長とほぼ同じである。マスクによって散乱された
光は、透過型ゾーンプレート15(SiNメンブレン上
にゾーンプレートパターンがAuで形成された構造)に
よりX線用CCD16上に拡大結像させ、その像を露光
波長に対して感度を持つCCD16で取り込んだ。そし
て、この像のデータに対しソフトウエア計算、もしくは
専用電子回路などによる数値処理を行い、X線縮小露光
装置のウエハ上で得られる像に相当する像のデータに変
換する。(Embodiment 1) FIG. 1 shows a first embodiment of the present invention.
The following shows an example. A laser plasma X-ray source 10 is used as a source of a probe of a mask inspection apparatus. After the soft X-rays 11 generated from the light source are condensed by the oblique incidence mirror 12, soft X-rays having a wavelength of 13 nm are extracted using the diffraction grating 13 and illuminated on the X-ray reduction exposure mask 14 to be inspected. This wavelength is the soft X-ray used for pattern transfer in the X-ray reduction exposure apparatus.
It is almost the same as the wavelength of the line. The light scattered by the mask is enlarged and imaged on the X-ray CCD 16 by the transmission type zone plate 15 (structure in which the zone plate pattern is formed of Au on the SiN membrane), and the image is sensitive to the exposure wavelength. Captured by CCD 16 with Then, the image data is subjected to software calculation or numerical processing by a dedicated electronic circuit or the like, and is converted into image data corresponding to an image obtained on a wafer of the X-ray reduction exposure apparatus.
【0018】ここで、X線縮小露光装置の倍率は1/
5、ウエハ上に0.08μm L&Sパターンを転写する
ときの露光装置のNAは0.1(マスク側のNAは0.0
2)でσ値が0.5 であるため、本実施例のマスク検査
装置ではマスクの前後に設置した絞り18a,18bを
各々調整し、マスク検査装置において、マスクの照明光
のNA・σ値をそれぞれ0.02,0.5としている。Here, the magnification of the X-ray reduction exposure apparatus is 1 /
5. The NA of the exposure apparatus when transferring the 0.08 μm L & S pattern onto the wafer is 0.1 (the NA on the mask side is 0.0
Since the σ value is 0.5 in 2), the apertures 18a and 18b installed before and after the mask are adjusted in the mask inspection apparatus of the present embodiment, and the NA · σ value of the illumination light of the mask is adjusted in the mask inspection apparatus. Are 0.02 and 0.5, respectively.
【0019】以上のような構成の検査装置に、0.08
μm L&Sパターン転写用のマスク(0.4μm L&
Sパターンが形成)をセットし、該マスクの検査を行っ
た。マスク検査時には、マスクステージ17をX方向,
Y方向に移動し、検査を要する全領域のマスクパターン
の像をCCD16で読み込むことが可能である。従来の
X線縮小露光用マスクの検査装置は、マスクの照明光の
NAとσ値が固定でそれぞれ0.024,0.5であった
ため(マスク上でのパターン寸法の1/4に相当す
る)、0.1μm の異物・欠陥に対する検出感度が50
%だったが、本実施例のマスク検査装置を用い、0.0
8μm パターン転写マスクに最適化された照明光のN
A・σ値を設定することが可能なために、マスクの欠陥
検出感度は95%まで向上した。In the inspection apparatus having the above configuration, 0.08
μm L & S pattern transfer mask (0.4 μm L & S
S pattern was formed), and the mask was inspected. At the time of mask inspection, the mask stage 17 is
It is possible to move in the Y direction and read the image of the mask pattern of the entire area requiring inspection by the CCD 16. In a conventional X-ray reduction exposure mask inspection apparatus, the NA and σ value of the mask illumination light are fixed at 0.024 and 0.5, respectively (corresponding to 1 / of the pattern dimension on the mask). ), The detection sensitivity for foreign matter and defects of 0.1 μm is 50
%, But 0.0% using the mask inspection apparatus of this embodiment.
N of illumination light optimized for 8 μm pattern transfer mask
Since the A · σ value can be set, the mask defect detection sensitivity has been improved to 95%.
【0020】(実施例2)次に本発明の第2の実施例を
示す。検査装置の構成は第1の実施例と同様であるが、
検査するマスクのパターンが0.3μm(ウエハ上で0.
06μmL&Sパターン)で、転写に使用するX線縮小
露光装置のNAは0.08(マスク側のNAは0.01
6)でσ値が0.5であるため、本実施例の検査装置で
は絞り18を調整して、マスク側のNAを0.024か
ら0.016へと変更し、σ値を0.5 とした。(Embodiment 2) Next, a second embodiment of the present invention will be described. The configuration of the inspection device is the same as that of the first embodiment,
The pattern of the mask to be inspected is 0.3 μm (0.3 μm on the wafer).
And the NA of the X-ray reduction exposure apparatus used for transfer is 0.08 (the NA on the mask side is 0.01).
Since the σ value is 0.5 in 6), the inspection apparatus of this embodiment adjusts the aperture 18 to change the NA on the mask side from 0.024 to 0.016, and changes the σ value to 0.5. And
【0021】第1の実施例と同様にマスク(0.3μm
L&Sパターンが形成)の検査を行ったところ、従来の
X線縮小露光用マスク検査装置の(マスク上でのパター
ン寸法の1/4に相当する)0.075μmの異物・欠陥
に対する検出感度が30%だったが、本実施例の検査装
置の検出感度は85%まで向上した。また、CCDで得
られる像コントラストも2倍に増加したため、画像処理
等の数値処理時間が短縮され、マスクの検査時間が従来
方法の70%にまで減少した。As in the first embodiment, a mask (0.3 μm
(L & S pattern is formed), the detection sensitivity of the conventional X-ray reduction exposure mask inspection apparatus for foreign matter and defects of 0.075 μm (corresponding to の of the pattern size on the mask) is 30. %, But the detection sensitivity of the inspection apparatus of this example was improved to 85%. Further, since the image contrast obtained by the CCD is also doubled, the time for numerical processing such as image processing is shortened, and the inspection time of the mask is reduced to 70% of the conventional method.
【0022】(実施例3)次に本発明の第3の実施例と
して、半導体デバイスを製造した例を示す。N−基板2
0を通常の方法でPウェル層21,P層22,フィール
ド酸化膜23,poly−Si/SiO2 ゲート24,P高
濃度拡散層25,N高濃度拡散層26などを形成した
(図2(a))。次に通常の方法でBPSG等の絶縁膜
27を形成した(図2(b))。その上にレジスト30
を塗布した後、本発明による第1の実施例で示した方法
を用いて検査し、FIB装置で修正したマスクを用い
て、ホールパターンを形成した(図2(c))。次にこ
のレジストをマスクとして絶縁膜27をドライエッチン
グし、コンタクトホールを形成した。そして通常の方法
によりW/Ti電極配線28を形成した後、層間絶縁膜
29をCVDにより成膜した(図2(d))。(Embodiment 3) Next, as a third embodiment of the present invention, an example in which a semiconductor device is manufactured will be described. N-substrate 2
0 was formed by a usual method to form a P well layer 21, a P layer 22, a field oxide film 23, a poly-Si / SiO 2 gate 24, a P high concentration diffusion layer 25, an N high concentration diffusion layer 26 (FIG. 2 ( a)). Next, an insulating film 27 such as BPSG was formed by a normal method (FIG. 2B). Resist 30 on top
After the application, was inspected using the method described in the first embodiment of the present invention, and a hole pattern was formed using a mask modified by an FIB apparatus (FIG. 2C). Next, using this resist as a mask, the insulating film 27 was dry-etched to form a contact hole. Then, after forming the W / Ti electrode wiring 28 by a normal method, an interlayer insulating film 29 was formed by CVD (FIG. 2D).
【0023】以降の工程は通常と同様の方法で形成し
た。なお本実施例では主な製造工程のみを説明したが、
コンタクトホール形成のリソグラフィ工程で使用したマ
スクが本発明の第1の実施例を用いて検査されているこ
と以外は従来と同じ工程を用いた。マスクの欠陥の検出
感度が従来方法と比べ向上しているため、CMOS−L
SIを高歩留まりで作製することができた。The subsequent steps were formed in the same manner as usual. Although only the main manufacturing steps have been described in this embodiment,
The same process as the conventional process was used except that the mask used in the lithography process for forming the contact hole was inspected using the first embodiment of the present invention. Since the detection sensitivity of the mask defect is improved as compared with the conventional method, the CMOS-L
The SI could be manufactured with a high yield.
【0024】上記実施例では、検査装置の結像光学系と
してゾーンプレートをあげたが、結像光学系が1枚もし
くは複数枚の全反射ミラーの組みであっても多層膜ミラ
ーを用いたシュバルツシルト光学系であっても、露光波
長とほぼ同じ波長に対し結像機能をもつものであれば、
本発明が適用可能であることは言うまでもない。また、
NAやσ値を制御するための絞り機構をマスクの前後に
一つずつ配置しているが、本発明の構成はこのような絞
りの配置場所や数には制限されない。なお本発明は、露
光波長13nmのX線縮小露光に対するマスク検査装置
に限定されず、X線領域,真空紫外,極真空紫外領域の
任意の波長の露光装置に適用できることも言うまでもな
い。In the above embodiment, the zone plate is used as the image forming optical system of the inspection apparatus. However, even if the image forming optical system is a combination of one or a plurality of total reflection mirrors, a Schwarz mirror using a multilayer mirror is used. Even if it is a silt optical system, if it has an imaging function at a wavelength almost the same as the exposure wavelength,
It goes without saying that the present invention is applicable. Also,
Although aperture mechanisms for controlling NA and σ values are arranged one by one before and after the mask, the configuration of the present invention is not limited to the location and number of such apertures. It is needless to say that the present invention is not limited to a mask inspection apparatus for X-ray reduction exposure at an exposure wavelength of 13 nm, but can be applied to an exposure apparatus having an arbitrary wavelength in the X-ray region, vacuum ultraviolet, or extreme vacuum ultraviolet region.
【0025】[0025]
【発明の効果】以上詳述したように、X線縮小露光用マ
スク検査装置は、X線縮小露光を行うときと同じNA,
σ値,波長でマスクが照明・結像することにより、検出
可能な欠陥の検出感度が向上し、かつ検査時間の短縮が
実現できた。また本発明の検査装置で欠陥検査し、修正
したマスクを微細パターン転写に使用することで、デバ
イス製造時の歩留まりが向上した。As described in detail above, the mask inspection apparatus for X-ray reduction exposure has the same NA,
By illuminating and forming an image on the mask at the σ value and the wavelength, the detection sensitivity of detectable defects is improved, and the inspection time can be shortened. In addition, by using the mask, which has been inspected for defects by the inspection apparatus of the present invention and corrected, for transferring a fine pattern, the yield at the time of manufacturing the device has been improved.
【図1】本発明の第1の実施例のX線縮小露光用マスク
検査装置のブロック図。FIG. 1 is a block diagram of an X-ray reduction exposure mask inspection apparatus according to a first embodiment of the present invention.
【図2】本発明の第3の実施例を用いたデバイスの製造
工程を示す断面図。FIG. 2 is a sectional view showing a device manufacturing process using a third embodiment of the present invention.
【図3】従来のX線縮小露光用マスク検査装置のブロッ
ク図。FIG. 3 is a block diagram of a conventional X-ray reduction exposure mask inspection apparatus.
10…レーザープラズマX線源、11…回転楕円体ミラ
ー、12…フィルター、13…軟X線、14…反射型マ
スク、15…ゾーンプレート、16…X線用CCD、1
7…マスクステージ、18…絞り、19…光路折り返し
用ミラー、20…N−基板、21…Pウェル層、22…
P層、23…フィールド酸化膜、24…poly−Si
/SiO2 ゲート、25…P高濃度拡散層、26…N高
濃度拡散層、27…絶縁膜、28…W/Ti電極配線、
29…層間絶縁膜、30…レジスト、31…回転楕円体
ミラー、32…フィルター、33…軟X線、34…反射
型マスク、35…ゾーンプレート、36…X線用CC
D、37…レーザープラズマX線源、38…マスクステ
ージ。DESCRIPTION OF SYMBOLS 10 ... Laser plasma X-ray source, 11 ... Spheroid mirror, 12 ... Filter, 13 ... Soft X-ray, 14 ... Reflection mask, 15 ... Zone plate, 16 ... X-ray CCD, 1
7: Mask stage, 18: Stop, 19: Optical path turning mirror, 20: N-substrate, 21: P-well layer, 22:
P layer, 23: field oxide film, 24: poly-Si
/ SiO 2 gate, 25: P high concentration diffusion layer, 26: N high concentration diffusion layer, 27: insulating film, 28: W / Ti electrode wiring,
29: interlayer insulating film, 30: resist, 31: spheroid mirror, 32: filter, 33: soft X-ray, 34: reflective mask, 35: zone plate, 36: CC for X-ray
D, 37: laser plasma X-ray source, 38: mask stage.
Claims (10)
査方法において、X線縮小露光を行うときと同じNA,
σ値,波長で前記マスクが照明・結像されていることを
特徴とするマスク検査方法。In a mask inspection method for inspecting an X-ray reduction exposure mask, the same NA, NA as when performing X-ray reduction exposure is used.
A mask inspection method, wherein the mask is illuminated and imaged at a σ value and a wavelength.
査装置において、X線縮小露光を行うときと同じNA,
σ値,波長で前記マスクが照明・結像されていることを
特徴とするマスク検査装置。2. A mask inspection apparatus for inspecting an X-ray reduction exposure mask, which has the same NA and NA as when performing X-ray reduction exposure.
A mask inspection apparatus, wherein the mask is illuminated and imaged at a σ value and a wavelength.
スクを照明・結像する光学系のNA,σ値,照明光の波
長の少なくとも一つを可変としたことを特徴とするマス
ク検査装置。3. The mask inspection apparatus according to claim 2, wherein at least one of NA, σ value, and wavelength of illumination light of an optical system for illuminating and forming an image on the mask is variable. .
において、結像光学系がゾーンプレートを含んでいるこ
とを特徴とするマスク検査装置。4. The mask inspection apparatus according to claim 2, wherein the imaging optical system includes a zone plate.
査装置において、結像光学系が少なくとも1枚の多層膜
ミラーもしくは斜入射ミラーを含んでいることを特徴と
するマスク検査装置。5. The mask inspection apparatus according to claim 2, wherein the imaging optical system includes at least one multilayer mirror or oblique incidence mirror.
査装置において、検査用プローブ光の光源がシンクロト
ロン放射光,レーザプラズマX線源,X線レーザ,電子
線励起型X線源、エキシマレーザもしくは半導体レーザ
のいずれか少なくとも一者であることを特徴とするマス
ク検査装置。6. A mask inspection apparatus according to claim 2, wherein the light source of the inspection probe light is a synchrotron radiation light, a laser plasma X-ray source, an X-ray laser, an electron beam excitation type X-ray source. A mask inspection apparatus, which is at least one of an excimer laser and a semiconductor laser.
ビームを照明光学系を介してマスク上に照明し、前記マ
スク上に描かれている微細パターンを結像光学系を介し
て、基板上に縮小転写する微細パターン転写方法におい
て、前記マスクの欠陥・異物検査が請求項1〜6のいず
れかに記載の検査方法もしくは検査装置にて行われてい
ることを特徴とする微細パターン転写方法。7. An X-ray and a beam in a vacuum ultraviolet or extreme ultraviolet region are illuminated on a mask through an illumination optical system, and a fine pattern drawn on the mask is irradiated on a substrate through an imaging optical system. 7. A fine pattern transfer method, wherein a defect / foreign matter inspection of the mask is performed by the inspection method or the inspection apparatus according to claim 1.
ビームを照明光学系を介してマスク上に照明し、前記マ
スク上に描かれている微細パターンを結像光学系を介し
て、基板上に縮小転写する露光装置において、前記マス
クの検査を請求項1〜6のいずれかに記載の検査方法、
もしくは検査装置で行った前記マスクが装備されている
ことを特徴とする露光装置。8. An X-ray and a beam in a vacuum ultraviolet or extreme ultraviolet region are illuminated on a mask through an illumination optical system, and a fine pattern drawn on the mask is irradiated on a substrate through an imaging optical system. An inspection apparatus according to any one of claims 1 to 6, wherein the mask is inspected in an exposure apparatus that reduces and transfers the mask.
Alternatively, an exposure apparatus comprising the mask performed by an inspection apparatus.
ビームを照明光学系を介してマスク上に照明し、前記マ
スク上に描かれている微細パターンを結像光学系を介し
て、基板上に縮小転写する露光装置において、露光波長
の光に感度を持つ検出器の位置と前記ウエハもしくは前
記ウエハを保持する部材の位置を置き換えて、パターン
転写時に前記ウエハが得る光強度分布をモニターする手
段を有してなることを特徴とする露光装置。9. An X-ray and a beam in a vacuum ultraviolet or extreme ultraviolet region are illuminated on a mask via an illumination optical system, and a fine pattern drawn on the mask is irradiated on a substrate via an imaging optical system. Means for monitoring the light intensity distribution obtained by the wafer at the time of pattern transfer, by replacing the position of a detector having sensitivity to light of an exposure wavelength with the position of the wafer or a member holding the wafer. An exposure apparatus comprising:
微細パターン転写方法,露光装置を用いて製作された電
子デバイス。10. An electronic device manufactured using at least one of a fine pattern transfer method and an exposure apparatus according to claim 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2291998A JPH11219891A (en) | 1998-02-04 | 1998-02-04 | Mask inspection method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2291998A JPH11219891A (en) | 1998-02-04 | 1998-02-04 | Mask inspection method and apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11219891A true JPH11219891A (en) | 1999-08-10 |
Family
ID=12096059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2291998A Pending JPH11219891A (en) | 1998-02-04 | 1998-02-04 | Mask inspection method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11219891A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1197803A3 (en) * | 2000-10-10 | 2004-09-29 | ASML Netherlands B.V. | Lithographic apparatus |
US6954266B2 (en) | 2001-10-05 | 2005-10-11 | National Institute Of Advanced Industrial Science And Technology | Method and apparatus for inspecting multilayer masks for defects |
JP2010282192A (en) * | 2009-06-03 | 2010-12-16 | Samsung Electronics Co Ltd | Apparatus and method for spatial image measurement for EUV mask |
KR101030637B1 (en) * | 2009-02-02 | 2011-04-20 | 포항공과대학교 산학협력단 | Surface Defect Inspection System |
JP4761588B1 (en) * | 2010-12-01 | 2011-08-31 | レーザーテック株式会社 | EUV mask inspection system |
JP2012531042A (en) * | 2009-06-19 | 2012-12-06 | ケーエルエー−テンカー・コーポレーション | Inspection system and method for defect detection of extreme ultraviolet mask blanks |
JP2013019793A (en) * | 2011-07-12 | 2013-01-31 | Hyogo Prefecture | Defect characteristic evaluation device |
JP2013504774A (en) * | 2009-09-11 | 2013-02-07 | カール ツァイス エスエムエス ゲーエムベーハー | Mask inspection microscope with variable illumination settings |
JP2013520690A (en) * | 2010-02-22 | 2013-06-06 | カール・ツァイス・エスエムティー・ゲーエムベーハー | Illumination system and projection objective of mask inspection system |
CN107957429A (en) * | 2016-10-14 | 2018-04-24 | 西门子医疗有限公司 | Method for generating X-ray image data |
-
1998
- 1998-02-04 JP JP2291998A patent/JPH11219891A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1197803A3 (en) * | 2000-10-10 | 2004-09-29 | ASML Netherlands B.V. | Lithographic apparatus |
US6954266B2 (en) | 2001-10-05 | 2005-10-11 | National Institute Of Advanced Industrial Science And Technology | Method and apparatus for inspecting multilayer masks for defects |
KR101030637B1 (en) * | 2009-02-02 | 2011-04-20 | 포항공과대학교 산학협력단 | Surface Defect Inspection System |
JP2010282192A (en) * | 2009-06-03 | 2010-12-16 | Samsung Electronics Co Ltd | Apparatus and method for spatial image measurement for EUV mask |
JP2016145989A (en) * | 2009-06-19 | 2016-08-12 | ケーエルエー−テンカー・コーポレーションKla−Tencor Corporation | Inspection systems and methods for detecting defects on extreme ultraviolet mask blanks |
JP2012531042A (en) * | 2009-06-19 | 2012-12-06 | ケーエルエー−テンカー・コーポレーション | Inspection system and method for defect detection of extreme ultraviolet mask blanks |
JP2013504774A (en) * | 2009-09-11 | 2013-02-07 | カール ツァイス エスエムエス ゲーエムベーハー | Mask inspection microscope with variable illumination settings |
JP2013520690A (en) * | 2010-02-22 | 2013-06-06 | カール・ツァイス・エスエムティー・ゲーエムベーハー | Illumination system and projection objective of mask inspection system |
US10114293B2 (en) | 2010-02-22 | 2018-10-30 | Carl Zeiss Smt Gmbh | Illumination system and projection objective of a mask inspection apparatus |
JP4761588B1 (en) * | 2010-12-01 | 2011-08-31 | レーザーテック株式会社 | EUV mask inspection system |
JP2013019793A (en) * | 2011-07-12 | 2013-01-31 | Hyogo Prefecture | Defect characteristic evaluation device |
CN107957429A (en) * | 2016-10-14 | 2018-04-24 | 西门子医疗有限公司 | Method for generating X-ray image data |
CN107957429B (en) * | 2016-10-14 | 2019-12-13 | 西门子医疗有限公司 | Method for generating X-ray image data |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9335206B2 (en) | Wave front aberration metrology of optics of EUV mask inspection system | |
JP3513236B2 (en) | X-ray mask structure, method for manufacturing X-ray mask structure, X-ray exposure apparatus and X-ray exposure method using the X-ray mask structure, and semiconductor device manufactured using the X-ray exposure method | |
US8823922B2 (en) | Overlay measurement apparatus, lithographic apparatus and device manufacturing method using such overlay measurement apparatus | |
KR100294359B1 (en) | Lithography Processing Method for Device Fabrication Using Multilayer Mask | |
US7630068B2 (en) | Method and system of defect inspection for mask blank and method of manufacturing semiconductor device using the same | |
US20160216613A1 (en) | System and method for lithography alignment | |
JP2001116900A (en) | Reflecting soft x-ray microscope | |
US20060292459A1 (en) | EUV reflection mask and method for producing it | |
JP2009200466A (en) | Inspection method and apparatus, lithographic apparatus, lithography processing cell, and device manufacturing method | |
JP2007258708A (en) | Lithographic apparatus having reduced scribe lane usage for substrate measurement, and device manufacturing method | |
JPH11354404A (en) | Inspection method and inspection apparatus for blanks and reflective mask | |
CN114113100A (en) | Substrate defect inspection method and defect inspection device | |
JPH11219891A (en) | Mask inspection method and apparatus | |
JP5275763B2 (en) | Mask defect inspection method and semiconductor device manufacturing method | |
JP3336361B2 (en) | Inspection apparatus and inspection method for reflection type X-ray mask for reduction projection exposure | |
US5353116A (en) | Defect inspection system for phase shift masks | |
KR100695583B1 (en) | Reflective mask, semiconductor component manufacturing process and reflective mask manufacturing method | |
US7101645B1 (en) | Reflective mask for short wavelength lithography | |
US7821650B2 (en) | Lithographic apparatus and device manufacturing method with reduced scribe lane usage for substrate measurement | |
JP2002313694A (en) | Reflective mask | |
JPH07130636A (en) | Position detector and manufacture of semiconductor element using same | |
US7016030B2 (en) | Extended surface parallel coating inspection method | |
JP2009071169A (en) | Method of manufacturing reflection type exposure mask, reflection type exposure method, and manufacturing method of semiconductor integrated circuit | |
JP2002217097A (en) | Reflection-type x-ray mask structure, method of manufacturing device using the same x-ray exposure apparatus, and x-ray exposure method | |
JPH09326347A (en) | Fine pattern transfer method and apparatus |