[go: up one dir, main page]

JPH11218765A - Method for aligning polymer thin film and liquid crystal display - Google Patents

Method for aligning polymer thin film and liquid crystal display

Info

Publication number
JPH11218765A
JPH11218765A JP1876798A JP1876798A JPH11218765A JP H11218765 A JPH11218765 A JP H11218765A JP 1876798 A JP1876798 A JP 1876798A JP 1876798 A JP1876798 A JP 1876798A JP H11218765 A JPH11218765 A JP H11218765A
Authority
JP
Japan
Prior art keywords
liquid crystal
thin film
polymer thin
polarized light
linearly polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1876798A
Other languages
Japanese (ja)
Other versions
JP3594786B2 (en
Inventor
Takao Miwa
崇夫 三輪
Yasushi Tomioka
冨岡  安
Hidetoshi Abe
英俊 阿部
Katsumi Kondo
克己 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1876798A priority Critical patent/JP3594786B2/en
Publication of JPH11218765A publication Critical patent/JPH11218765A/en
Application granted granted Critical
Publication of JP3594786B2 publication Critical patent/JP3594786B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

(57)【要約】 【課題】 直線偏光を照射する配向方法により液晶表示
装置に充分適用できる液晶配向膜を得る。 【解決手段】 直線偏光によって配向可能な部位を有す
るガラス転移温度が200℃以上の高分子薄膜5に、配
向可能な部位が容易に動ける状態において直線偏光を照
射して配向させる。高分子薄膜の配向可能な部位を容易
に動ける状態にするためには、高分子薄膜のガラス転移
温度−150℃以上ガラス転移温度以下に加熱、あるい
は溶剤を接触させる。
(57) [Object] To provide a liquid crystal alignment film which can be sufficiently applied to a liquid crystal display device by an alignment method of irradiating linearly polarized light. SOLUTION: A polymer thin film 5 having a portion which can be oriented by linearly polarized light and having a glass transition temperature of 200 ° C. or more is irradiated with linearly polarized light in a state where the orientable portion can be easily moved to be oriented. In order to easily move the orientable portion of the polymer thin film to a state where the polymer thin film can be easily moved, the polymer thin film is heated to a glass transition temperature of −150 ° C. or more and a glass transition temperature or less, or is brought into contact with a solvent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高分子薄膜の配向
方法及びその液晶表示装置への応用に関する。
The present invention relates to a method for aligning a polymer thin film and its application to a liquid crystal display.

【0002】[0002]

【従来の技術】液晶表示素子においては液晶を配向させ
るための液晶配向膜が重要な働きをしている。従来、液
晶配向膜としては、ポリイミド薄膜をロール等によって
機械的に摩擦して配向させたものが主流であった。しか
し、この方法は、その摩擦工程において塵の発生及び静
電気の発生による塵の基板への付着などを招き品質管理
上好ましくない。
2. Description of the Related Art In a liquid crystal display device, a liquid crystal alignment film for aligning liquid crystal plays an important role. Conventionally, as a liquid crystal alignment film, a film obtained by mechanically rubbing a polyimide thin film with a roll or the like has been mainly used. However, this method is not preferable in terms of quality control because dust is generated in the friction step and dust adheres to the substrate due to generation of static electricity.

【0003】また、液晶表示装置の性能についても、T
FT間ショートによる画素欠陥、ラビング時の傷が原因
となる配向不良による表示不良などが生じ最適のもので
はないことは、特許2608661号及び特開平2−2
77025号公報などに詳しく述べられている。これら
の問題を解決する方法として、特許2608661号及
び特開平2−277025号公報に、配向膜に直線偏光
を照射することによって配向させる方法が開示されてい
る。
The performance of a liquid crystal display device is
It is described in Japanese Patent Application Laid-Open No. 2686661 and Japanese Patent Application Laid-Open No. Hei 2-2 that a pixel defect due to a short circuit between FTs and a display defect due to a defective orientation due to a scratch during rubbing are caused.
It is described in detail in, for example, Japanese Patent Publication No. 77025. As a method for solving these problems, Japanese Patent No. 2608661 and Japanese Patent Application Laid-Open No. 2-277025 disclose a method of aligning an alignment film by irradiating the alignment film with linearly polarized light.

【0004】[0004]

【発明が解決しようとする課題】前記の方法によれば、
吸収異方性分子を含む配向膜材料に直線偏光を照射する
ことによって、摩擦法によらずに配向膜を得ることがで
きる。しかし、これらの方法で配向された配向膜は、そ
の特性は十分ではなく、液晶表示素子に用いることはで
きなかった。
According to the above method,
By irradiating the alignment film material containing the absorption anisotropic molecules with linearly polarized light, an alignment film can be obtained without using the friction method. However, the properties of the alignment films aligned by these methods are not sufficient, and they cannot be used for liquid crystal display devices.

【0005】本発明は、液晶表示素子に用いられる配向
膜のこのような現状に鑑みてなされたもので、吸収異方
性分子を含む配向膜材料に直線偏光を照射する配向方法
を改良して液晶表示装置に充分適用できる液晶配向膜を
得ること、及びそのようにして得られた配向膜を用いた
液晶表示素子を提供することを目的とする。
The present invention has been made in view of such a current situation of an alignment film used for a liquid crystal display element, and has improved an alignment method of irradiating an alignment film material containing anisotropic molecules with linearly polarized light. It is an object of the present invention to obtain a liquid crystal alignment film that can be sufficiently applied to a liquid crystal display device, and to provide a liquid crystal display element using the alignment film thus obtained.

【0006】[0006]

【課題を解決するための手段】横電界方式の液晶表示素
子においては、表示部分の電圧がオン状態からオフ状態
に変化した際に残像が生じ、この残像現象の解消が解決
すべき技術課題の一つとなっている。本発明者らは、こ
の残像を小さくするための検討を進めた結果、残像は用
いる高分子のガラス転移温度が高くなるに従い小さくな
ることが明らかになり、高分子のガラス転移温度が20
0℃以上では残像現象が実質的に現れないことが明らか
になった。
In a horizontal electric field type liquid crystal display device, an afterimage occurs when the voltage of a display portion changes from an on state to an off state, and the technical problem to be solved to eliminate the afterimage phenomenon is as follows. It is one. The present inventors have conducted studies to reduce the afterimage, and as a result, it has become clear that the afterimage decreases as the glass transition temperature of the polymer used increases.
It became clear that the afterimage phenomenon did not substantially appear above 0 ° C.

【0007】次に、本発明者らは、この成果をふまえ、
これらの高分子薄膜の直線偏光による配向について実験
を積み重ねて検討した。その結果、直線偏光による高分
子薄膜の配向は、室温で直線偏光を照射した場合には不
十分で、液晶表示素子とした場合に十分なコントラスト
が得られないのに対して、高分子薄膜をそのガラス転移
温度より150℃低い温度からガラス転移温度以下の温
度に加熱した状態で直線偏光を照射することによって、
効率的な配向が実現でき、液晶表示素子とした場合に高
いコントラストを得ることができることが明らかになっ
た。この効果は、加熱温度をガラス転移温度の100℃
低い温度からガラス転移温度以下とした場合にいっそう
顕著であった。加熱温度をガラス転移温度の150℃以
下とした場合、及びガラス転移温度以上とした場合には
効率的な配向の効果は認められなかった。
Next, based on this result, the present inventors,
Experiments were conducted on the alignment of these polymer thin films by linearly polarized light. As a result, the orientation of the polymer thin film by linearly polarized light is insufficient when irradiated with linearly polarized light at room temperature, and a sufficient contrast cannot be obtained when a liquid crystal display device is used. By irradiating linearly polarized light in a state of being heated from a temperature 150 ° C. lower than the glass transition temperature to a temperature equal to or lower than the glass transition temperature,
It has been clarified that efficient alignment can be realized and high contrast can be obtained when a liquid crystal display device is used. This effect is achieved by setting the heating temperature to the glass transition temperature of 100 ° C.
It was more remarkable when the temperature was changed from a low temperature to a glass transition temperature or lower. When the heating temperature was lower than the glass transition temperature of 150 ° C. or higher, the effect of the efficient orientation was not recognized.

【0008】また、ポリイミドを高分子薄膜として用い
る場合には、ポリイミドの前駆体であるポリアミド酸や
ポリアミド酸エステルは対応するポリイミドに比べガラ
ス転移温度が低いことを利用して、イミド化があまり進
んでいない状態で光配向を行い、その後さらにイミド化
を進行させることによって優れた特性を有する配向膜を
得ることができることが明らかとなった。
Further, when polyimide is used as a polymer thin film, imidization proceeds very little, taking advantage of the fact that polyamide acid or polyamic acid ester, which is a precursor of polyimide, has a lower glass transition temperature than the corresponding polyimide. It has been clarified that an alignment film having excellent characteristics can be obtained by performing photo-alignment in a state where it is not in the above-mentioned state and then further performing imidization.

【0009】本発明は、このような検討に基づいてなさ
れたものである。すなわち、本発明による高分子薄膜の
配向方法は、直線偏光によって配向可能な部位を有する
ガラス転移温度が200℃以上の高分子薄膜に、配向可
能な部位が容易に動ける状態において直線偏光を照射す
ることを特徴とする。高分子薄膜の配向可能な部位を容
易に動ける状態にする方法としては、加熱による方法あ
るいは溶剤による方法を採用することができる。加熱に
より配向可能な部位が容易に動ける状態にする場合に
は、高分子薄膜のガラス転移温度−150℃以上ガラス
転移温度以下に加熱すればよく、好ましくは高分子薄膜
のガラス転移温度−100℃以上ガラス転移温度以下に
加熱すればよい。
The present invention has been made based on such a study. That is, in the method for aligning a polymer thin film according to the present invention, a polymer thin film having a portion that can be oriented by linearly polarized light and having a glass transition temperature of 200 ° C. or higher is irradiated with linearly polarized light in a state where the orientable portion can move easily. It is characterized by the following. As a method for making the orientable portion of the polymer thin film easily movable, a method using heating or a method using a solvent can be adopted. In the case where the orientable portion can be easily moved by heating, the polymer thin film may be heated to a glass transition temperature of −150 ° C. or more and a glass transition temperature or less, preferably, the glass transition temperature of the polymer thin film −100 ° C. What is necessary is just to heat below the glass transition temperature.

【0010】本発明による液晶表示素子は、直線偏光に
よって配向可能な部位を有する高分子薄膜に配向可能な
部位が容易に動ける状態において直線偏光を照射して配
向させた膜を、液晶配向膜として用いたことを特徴とす
る液晶表示装置である。表示方式が横電界方式である液
晶表示装置の液晶配向膜として前記配向膜を用いると
き、残像現象を生じることのない高品質の液晶表示装置
が得られる。
The liquid crystal display element according to the present invention is characterized in that a polymer thin film having a portion which can be orientated by linearly polarized light is irradiated with linearly polarized light in a state where the orientable portion can easily move. A liquid crystal display device characterized by using: When the alignment film is used as a liquid crystal alignment film of a liquid crystal display device in which a display method is an in-plane switching method, a high quality liquid crystal display device that does not cause an afterimage phenomenon can be obtained.

【0011】また、本発明による高分子薄膜は、配向可
能な部位が容易に動ける状態において直線偏光を照射し
て配向させたことを特徴とするガラス転移温度が200
℃以上の高分子薄膜である。高分子は、ポリイミド系高
分子及びその前駆体を主成分とするものを用いることが
できる。特に、ポリイミド前駆体のイミド化率が60%
以下の状態において直線偏光を照射することで、加熱条
件を緩和することができる。
Further, the polymer thin film according to the present invention has a glass transition temperature of 200, characterized in that the polymer thin film is oriented by irradiating it with linearly polarized light in a state where the orientable portion can easily move.
It is a polymer thin film of not less than ° C. As the polymer, a polymer containing a polyimide polymer and its precursor as main components can be used. In particular, the imidation ratio of the polyimide precursor is 60%.
By irradiating linearly polarized light in the following conditions, heating conditions can be relaxed.

【0012】本発明による液晶表示装置は、前述の高分
子薄膜を液晶配向膜として用いたことを特徴とする液晶
表示装置である。表示方式が横電界方式であるとき、残
像現象を生じることのない高品質の液晶表示装置が得ら
れる。本発明に用いられる、ガラス転移温度200℃以
上の高分子は、特定の光を吸収することによって異性化
する二色性色素や光二両化可能な部分を有するのが一般
的であるが、高分子自体が光吸収によって配列する場合
には二色性色素や光二両化可能な部分を特に付与する必
要はない。これらの二色性色素や光二両化可能な構造に
ついては種々のものが知られており、本発明ではそのい
ずれも用いることができるが、一例を挙げるとアゾベン
ゼン誘導体、スチルベン誘導体、スピロピラン誘導体、
a−アリール−b−ケト酸エステル誘導体、カルコン酸
誘導体、ケイヒ酸誘導体等である。
A liquid crystal display device according to the present invention is a liquid crystal display device using the above-mentioned polymer thin film as a liquid crystal alignment film. When the display method is the horizontal electric field method, a high-quality liquid crystal display device that does not cause an afterimage phenomenon can be obtained. The polymer having a glass transition temperature of 200 ° C. or higher used in the present invention generally has a dichroic dye or a photo-amphibitable portion that isomerizes by absorbing specific light. In the case where the molecules themselves are arranged by light absorption, it is not necessary to particularly provide a dichroic dye or a portion capable of photoamplitude. Various types of dichroic dyes and structures capable of photoamplitude are known, and any of them can be used in the present invention. Examples thereof include azobenzene derivatives, stilbene derivatives, spiropyran derivatives,
a-aryl-b-keto acid ester derivatives, chalconic acid derivatives, cinnamic acid derivatives and the like.

【0013】本発明で用いる直線偏光を照射するための
光源は、紫外線を発生するものであれば特に制限はな
く、高圧水銀ランプ、超高圧水銀ランプ、キセノンラン
プ等を用いることができる。また、He−Neレーザ、
Ar−Fレーザ、Xe−Clレーザ等のレーザも光源と
して用いることができる。本発明の方法によって形成し
た配向膜を用いて製造した横電界方式の液晶素子は、直
線偏光照射時に加熱あるいは溶剤を用いない従来の方法
で形成した配向膜を用いた場合に比べ、残像、コントラ
ストいずれについても大幅な改善がみられた。このよう
に、本発明によると、直線偏光照射方法で充分実用に耐
え得る液晶配向膜を得ることができ、従って従来の摩擦
法で問題となっている塵の発生及び静電気の発生による
塵の基板への付着などの問題を完全に解決して、残像が
少なくコントラストの高い横電界方式液晶表示装置を得
ることができる。
The light source for irradiating linearly polarized light used in the present invention is not particularly limited as long as it generates ultraviolet rays, and a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a xenon lamp, or the like can be used. He-Ne laser,
Lasers such as an Ar-F laser and a Xe-Cl laser can also be used as the light source. The in-plane switching mode liquid crystal device manufactured using the alignment film formed by the method of the present invention has a higher image lag and contrast than the alignment film formed by the conventional method without heating or using a solvent when irradiating linearly polarized light. In both cases, significant improvements were seen. As described above, according to the present invention, it is possible to obtain a liquid crystal alignment film that can sufficiently withstand practical use by the linearly polarized light irradiation method. By completely solving the problem such as adhesion to the liquid crystal display, it is possible to obtain an in-plane switching mode liquid crystal display device having less afterimage and high contrast.

【0014】[0014]

【発明の実施の形態】次に、本発明を実施例により具体
的に説明する。 〔実施例1〕p−フェニレンジアミン(0.04mo
l)と4,4’−ジアミノスチルベン(0.01mo
l)のN−メチルピロリドン溶液に3,3’,4,4’
−ビフェニルテトラカルボン酸二無水物(0.05mo
l)を加え、室温で反応させ、15重量%のポリアミド
酸(1)を得た。このポリアミド酸をシリコン基板上に
スピンコート法により製膜し、210℃で30分加熱
し、膜厚5μmのフィルムを得た。このフィルムの動的
粘弾性挙動を測定した結果より求めたガラス転移温度
は、250℃であった。また、赤外吸収スペクトルによ
って求めたイミド化率は80%であった。
Next, the present invention will be described specifically with reference to examples. [Example 1] p-phenylenediamine (0.04mo
l) and 4,4′-diaminostilbene (0.01 mol)
l) 3,3 ', 4,4' in N-methylpyrrolidone solution
-Biphenyltetracarboxylic dianhydride (0.05mo
l) was added and reacted at room temperature to obtain a polyamic acid (1) of 15% by weight. This polyamic acid was formed on a silicon substrate by a spin coating method and heated at 210 ° C. for 30 minutes to obtain a film having a thickness of 5 μm. The glass transition temperature determined from the result of measuring the dynamic viscoelastic behavior of this film was 250 ° C. The imidation ratio determined by an infrared absorption spectrum was 80%.

【0015】基板として、厚みが1.1mmで表面を研
磨した透明なガラス基板を2枚用い、これらの基板のう
ち一方の基板の上に横電界が印加できる薄膜トランジス
タおよび配線電極を形成し、更にその上の最表面に窒化
シリコンからなる絶縁保護膜を形成した。薄膜トランジ
スタおよび各種電極の構造を図1に示す。図1(a)は
基板面に垂直な方向から見た正面図であり、図1(b)
は正面図のA−A側断面図、図1(c)は正面図のB−
Bにおける側断面図である。
As a substrate, two transparent glass substrates having a thickness of 1.1 mm and a polished surface are used, and a thin film transistor and a wiring electrode to which a lateral electric field can be applied are formed on one of these substrates. An insulating protective film made of silicon nitride was formed on the outermost surface thereon. FIG. 1 shows the structure of a thin film transistor and various electrodes. FIG. 1A is a front view seen from a direction perpendicular to the substrate surface, and FIG.
Is a sectional view taken along the line AA of the front view, and FIG.
It is a sectional side view in B.

【0016】薄膜トランジスタ素子14は画素電極(ソ
ース電極)4、信号電極(ドレイン電極)3、走査電極
(ゲート電極)12およびアモルファスシリコン13か
ら構成される。共通電極1と走査電極12、および信号
電極3と画素電極4とはそれぞれ同一の金属層をパター
ン化して構成した。画素電極4は正面図において、3本
の共通電極1の間に配置されている。
The thin film transistor element 14 comprises a pixel electrode (source electrode) 4, a signal electrode (drain electrode) 3, a scanning electrode (gate electrode) 12, and amorphous silicon 13. The common electrode 1 and the scanning electrode 12, and the signal electrode 3 and the pixel electrode 4 were each formed by patterning the same metal layer. The pixel electrodes 4 are arranged between the three common electrodes 1 in the front view.

【0017】画素ピッチは横方向(すなわち信号電極3
間)は100μm、縦方向(すなわち走査電極12間)
は300μmである。電極幅は、複数画素間にまたがる
配線電極である走査電極、信号電極、共通電極配線部
(走査配線電極に並行に延びた部分)を広めにし、線欠
陥を回避した。幅はそれぞれ10μm、8μm、8μm
である。一方、開口率向上のために、1画素単位で独立
に形成した画素電極、および共通電極の信号配線電極の
長手方向に延びた部分の幅は若干狭くし、それぞれ5μ
m、6μmとした。これらの電極の幅を狭くしたことで
異物などの混入により断線する可能性が高まるが、この
場合1画素の部分的欠落ですみ、線欠陥には至らない。
信号電極3と共通電極1は絶縁膜を介して2μmの間隔
を設けた。画素数は、640×3本(R、G、B)の信
号配線電極と、480本の配線電極とにより640×3
×480個とした。
The pixel pitch is in the horizontal direction (that is, the signal electrode 3).
Is 100 μm, in the vertical direction (that is, between the scanning electrodes 12).
Is 300 μm. As for the electrode width, a scanning electrode, a signal electrode, and a common electrode wiring portion (a portion extending in parallel with the scanning wiring electrode), which are wiring electrodes extending over a plurality of pixels, were widened to avoid line defects. Widths are 10 μm, 8 μm and 8 μm respectively
It is. On the other hand, in order to improve the aperture ratio, the widths of the pixel electrodes independently formed in pixel units and the portions of the common electrode extending in the longitudinal direction of the signal wiring electrodes are slightly reduced to 5 μm each.
m and 6 μm. By reducing the width of these electrodes, the possibility of disconnection due to the incorporation of foreign matter and the like increases, but in this case, only one pixel is partially missing and no line defect occurs.
The signal electrode 3 and the common electrode 1 were spaced apart by 2 μm via an insulating film. The number of pixels is 640 × 3 by 640 × 3 (R, G, B) signal wiring electrodes and 480 wiring electrodes.
× 480.

【0018】この基板上に、上記ポリアミド酸(1)を
N−メチルピロリドンを用いて6%に希釈し、γ−アミ
ノプロピルトリエトキシシランを固形分で0.3重量%
添加後、印刷形成して210℃/30分の熱処理を行
い、膜厚約800Åの緻密なポリイミド配向膜を形成し
た。次に、基板をホットプレート上で100℃に加熱し
た状態でXe−Clレーザを光源とする直線偏光を照射
し、液晶配向能を付与した。
On this substrate, the above-mentioned polyamic acid (1) was diluted to 6% with N-methylpyrrolidone, and γ-aminopropyltriethoxysilane was added in a solid content of 0.3% by weight.
After the addition, printing and heat treatment at 210 ° C. for 30 minutes were performed to form a dense polyimide alignment film having a thickness of about 800 °. Next, while the substrate was heated to 100 ° C. on a hot plate, the substrate was irradiated with linearly polarized light using a Xe—Cl laser as a light source to impart liquid crystal alignment capability.

【0019】図2に示すように、もう一方の基板18a
には、遮光層付きカラーフィルタ(ブラックマトリクス
16及びカラーフィルタ17)を形成し、その上に膜厚
約1.5μmのエポキシ樹脂からなるオーバーコート膜
15を形成し、上記と同様にして最表面に膜厚約800
Åのポリイミド配向膜5aを形成した。次に、上記と同
様にホットプレート上で100℃に加熱した状態でポリ
イミド配向膜5aにXe−Clレーザを光源とする直線
偏光を照射し、液晶配向能を付与した。
As shown in FIG. 2, the other substrate 18a
A color filter with a light-shielding layer (black matrix 16 and color filter 17) is formed thereon, and an overcoat film 15 made of epoxy resin having a thickness of about 1.5 μm is formed thereon. About 800
The polyimide alignment film 5a of Å was formed. Next, in the same manner as described above, the polyimide alignment film 5a was irradiated with linearly polarized light using a Xe-Cl laser as a light source while being heated to 100 ° C. on a hot plate to impart liquid crystal alignment ability.

【0020】次に、これらの2枚の基板をそれぞれの液
晶配向能を有する表面を相対向させて、分散させた球形
のポリマビーズからなるスペーサを介在させて、周辺部
にシール剤を塗布し、セルを組み立てた。図3は、この
ようにして組み立てられた本発明による液晶セルの側断
面を示す概略図である。2枚の基板18,18aに形成
した配向膜5,5aの配向方向は互いにほぼ並行で、か
つ印加横電界方向とのなす角度を75゜とした。このセ
ルに誘電異方性Δεが正でその値が10.2(1kH
z、20℃)であり、屈折率異方性Δnが0.075
(波長590nm、20℃)、ネマティック−等方相転
移温度T(N−I)が約76℃のネマテック液晶組成物
20を真空で注入し、紫外線硬化型樹脂からなる封止材
で封止した。こうして、液晶層20の厚み(ギャップ)
が4.8μmの液晶パネルを製作した。この液晶パネル
のリタデーション(Δn・d)は、0.36μmとな
る。
Next, a sealing agent is applied to the peripheral portion of the two substrates with the surfaces having the liquid crystal alignment ability facing each other and a spacer made of dispersed spherical polymer beads interposed therebetween. The cell was assembled. FIG. 3 is a schematic diagram showing a side cross section of the liquid crystal cell according to the present invention assembled in this manner. The alignment directions of the alignment films 5 and 5a formed on the two substrates 18 and 18a are substantially parallel to each other, and the angle between the alignment films 5 and 5a and the direction of the applied lateral electric field is 75 °. In this cell, the dielectric anisotropy Δε is positive and the value is 10.2 (1 kHz).
z, 20 ° C.) and the refractive index anisotropy Δn is 0.075.
(Wavelength 590 nm, 20 ° C.), nematic-liquid crystal composition 20 having a nematic-isotropic phase transition temperature T (NI) of about 76 ° C. was injected in vacuum, and sealed with a sealing material made of an ultraviolet-curable resin. . Thus, the thickness (gap) of the liquid crystal layer 20
Manufactured a 4.8 μm liquid crystal panel. The retardation (Δn · d) of this liquid crystal panel is 0.36 μm.

【0021】この液晶パネルを2枚の偏光板(日東電工
社製G1220DU)19,19aで挾み、一方の偏光
板の偏光透過軸を上記配向膜の配向方向とほぼ並行と
し、他方をそれに直交させた。その後、駆動回路、バッ
クライトなどを接続してモジュール化し、アクティブマ
トリクス液晶表示装置を得た。本実施例では、低電圧で
暗表示、高電圧で明表示となるノーマリクローズ特性と
した。
This liquid crystal panel is sandwiched between two polarizing plates (G1220DU manufactured by Nitto Denko Corporation) 19 and 19a, and the polarization transmission axis of one of the polarizing plates is substantially parallel to the alignment direction of the alignment film, and the other is perpendicular to the same. I let it. Thereafter, a driving circuit, a backlight, and the like were connected to form a module, and an active matrix liquid crystal display device was obtained. In the present embodiment, the normally closed characteristic is such that dark display is performed at a low voltage and bright display is performed at a high voltage.

【0022】このようにして作製した液晶表示装置の画
像の焼き付け、残像及びコントラストを定量的に測定す
るため、ホトダイオードを組合せたオシロスコープを用
いて評価した。まず、画面上に最大輝度でウインドウの
パターンを30分間表示し、その後、残像が最も目立つ
中間調表示、ここでは輝度が最大輝度の10%となるよ
うに全面を切り換え、ウインドウのエッジ部のパターン
が消えるまでの時間を残像時間として評価し、またウイ
ンドウの残像部分と周辺中間調部分の輝度Bの輝度変動
分の大きさΔB/B(10%)を残像強度として評価し
た。すなわち、ΔB/B(10%)は、最大輝度で30
分放置した前後の、最大輝度の10%の輝度での輝度変
動率である。ここで、表示装置として許容される残像強
度は3%以下である。
In order to quantitatively measure the image sticking, the afterimage, and the contrast of the image of the liquid crystal display device manufactured as described above, evaluation was performed using an oscilloscope combined with a photodiode. First, the window pattern is displayed on the screen at the maximum luminance for 30 minutes, and then the entire screen is switched so that the afterimage is most noticeable, in this case, the luminance is 10% of the maximum luminance. The time until disappears was evaluated as an afterimage time, and the magnitude ΔB / B (10%) of the luminance variation of the luminance B between the afterimage portion of the window and the peripheral halftone portion was evaluated as the afterimage intensity. That is, ΔB / B (10%) is 30 at the maximum luminance.
This is the luminance variation rate at a luminance of 10% of the maximum luminance before and after standing for a minute. Here, the afterimage intensity allowed as a display device is 3% or less.

【0023】その結果、輝度変動分である残像強度ΔB
/B(10%)は約2%であり、残像が消失するまでの
時間は約50ミリ秒で、ここで用いた液晶の立ち下がり
応答時間約35ミリ秒とほとんど同じであった。目視に
よる画質残像検査においても、画像の焼き付け、残像に
よる表示むらも一切見られず、高い表示特性が得られ
た。このように上記配向膜を使用することにより画像の
焼き付き、残像の表示不良が低減された液晶表示素子を
得ることができた。また、電圧印加部と非印加部のコン
トラストは200と高い値を得ることができた。 〔実施例2〕直線偏光照射時の基板加熱温度を150℃
として、実施例1と同様の検討を行った。その結果ΔB
/B(10%)は約1.5%であり、残像が消失するま
での時間は約50ミリ秒でここで用いた液晶の立ち下が
り応答時間約35ミリ秒とほとんど同じであった。ま
た、電圧印加部と非印加部のコントラストは250と高
い値を得ることができた。 〔実施例3〕実施例1のp−フェニレンジアミンを2,
2−ビス{4−(p−アミノフェノキシ)フェニル}プ
ロパンに、3,3’,4,4’−ビフェニルテトラカル
ボン酸二無水物を3,3’,4,4’−ジフェニルエー
テルテトラカルボン酸二無水物に換え、実施例1と同様
にしてポリアミド酸(2)を得た。このポリアミド酸
(2)を用い実施例1と同様の検討を行った。
As a result, the afterimage intensity ΔB, which is the luminance variation,
/ B (10%) was about 2%, and the time until the afterimage disappeared was about 50 milliseconds, which was almost the same as the fall response time of the liquid crystal used here, which was about 35 milliseconds. In the image quality afterimage inspection by visual inspection, no image burn-in or display unevenness due to the afterimage was observed, and high display characteristics were obtained. As described above, by using the alignment film, it was possible to obtain a liquid crystal display device in which image sticking and after-image display defects were reduced. In addition, the contrast between the voltage application part and the non-application part was as high as 200. [Example 2] The substrate heating temperature during irradiation of linearly polarized light was 150 ° C.
The same examination as in Example 1 was performed. As a result, ΔB
/ B (10%) was about 1.5%, and the time until the afterimage disappeared was about 50 milliseconds, which was almost the same as the fall response time of the liquid crystal used here, which was about 35 milliseconds. In addition, the contrast between the voltage application part and the non-application part was as high as 250. Example 3 The p-phenylenediamine of Example 1 was replaced with 2,
3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride is added to 2-bis {4- (p-aminophenoxy) phenyl} propane to 3,3 ′, 4,4′-diphenylethertetracarboxylic dianhydride. Polyamic acid (2) was obtained in the same manner as in Example 1 except that the anhydride was changed to an anhydride. The same study as in Example 1 was conducted using this polyamic acid (2).

【0024】その結果、動的粘弾性測定から求めたポリ
イミドのガラス転移温度は210℃であった。また、Δ
B/B(10%)は約1.7%であり、残像が消失する
までの時間は約50ミリ秒であり、ここで用いた液晶の
立ち下がり応答時間約35ミリ秒とほとんど同じであっ
た。また、電圧印加部と非印加部のコントラストは23
0と高い値を得ることができた。 〔比較例1〕直線偏光照射時の基板温度を25℃とした
以外は実施例1と同様にして液晶パネルを作製した。こ
の液晶表示パネルを用いて液晶表示装置を作製し、実施
例1と同様の検討を行った。その結果ΔB/B(10
%)は約4%であり、残像が消失するまでの時間は約7
0ミリ秒であった。また、電圧印加部と非印加部のコン
トラストは70であった。 〔比較例2〕実施例3で用いたポリアミド酸(2)を用
い、カラーフィルターを形成しない方の直線偏光照射時
の加熱温度を220℃とした他は実施例1と同様にして
液晶表示装置を作製し、実施例1と同じ検討を行った。
As a result, the glass transition temperature of the polyimide determined from the dynamic viscoelasticity measurement was 210 ° C. Also, Δ
B / B (10%) is about 1.7%, and the time until the afterimage disappears is about 50 ms, which is almost the same as the fall response time of the liquid crystal used here which is about 35 ms. Was. The contrast between the voltage application part and the non-application part is 23.
A high value of 0 was obtained. Comparative Example 1 A liquid crystal panel was manufactured in the same manner as in Example 1 except that the substrate temperature during irradiation with linearly polarized light was changed to 25 ° C. A liquid crystal display device was manufactured using this liquid crystal display panel, and the same examination as in Example 1 was performed. As a result, ΔB / B (10
%) Is about 4%, and the time until the afterimage disappears is about 7%.
0 ms. The contrast between the voltage applied portion and the non-applied portion was 70. [Comparative Example 2] A liquid crystal display device was prepared in the same manner as in Example 1 except that the polyamic acid (2) used in Example 3 was used and the heating temperature during irradiation of linearly polarized light without forming a color filter was 220 ° C. Was manufactured, and the same examination as in Example 1 was performed.

【0025】その結果、その結果ΔB/B(10%)は
約10%であり、残像が消失するまでの時間は約100
ミリ秒であった。また、電圧印加部と非印加部のコント
ラストは50であった。 〔実施例4〕15重量%のポリアミド酸(1)をシリコ
ン基板上にスピンコート法により製膜し、120℃で3
0分加熱して膜厚5μmのフィルムを得た。このフィル
ムの動的粘弾性挙動を測定した結果より求めたガラス転
移温度は、140℃であった。また、赤外吸収スペクト
ルによって求めたイミド化率は50%であった。
As a result, ΔB / B (10%) was about 10%, and the time until the afterimage disappeared was about 100%.
Milliseconds. The contrast between the voltage applied portion and the non-applied portion was 50. Example 4 A film of 15% by weight of polyamic acid (1) was formed on a silicon substrate by a spin coating method.
After heating for 0 minutes, a film having a thickness of 5 μm was obtained. The glass transition temperature determined from the result of measuring the dynamic viscoelastic behavior of this film was 140 ° C. The imidation ratio determined by an infrared absorption spectrum was 50%.

【0026】薄膜トランジスタと配線電極を形成した実
施例1と同様の基板上に、ポリアミド酸(1)をN−メ
チルピロリドンを用いて6%に希釈し、γ−アミノプロ
ピルトリエトキシシランを固形分で0.3重量%添加
後、印刷形成して120℃/30分の熱処理を行い、約
900Åの配向膜を形成した。次に、基板を室温(25
℃)において、Xe−Clレーザを光源とする直線偏光
を照射して液晶配向能を付与した。
Polyamic acid (1) was diluted to 6% with N-methylpyrrolidone on the same substrate as in Example 1 on which a thin film transistor and a wiring electrode were formed, and γ-aminopropyltriethoxysilane was converted to a solid content. After the addition of 0.3% by weight, printing was performed, and heat treatment was performed at 120 ° C. for 30 minutes to form an alignment film of about 900 °. Next, the substrate is brought to room temperature (25
C), the liquid crystal alignment ability was imparted by irradiating linearly polarized light using a Xe-Cl laser as a light source.

【0027】もう一方の基板には、実施例1と同様にし
て遮光層付きカラーフィルタを形成し、上記と同様の処
理によって最表面にポリアミド酸(1)からなる配向膜
を形成し、上記と同様に室温にてXe−Clレーザを光
源とする直線偏光を照射して液晶配向能を付与した。次
に、これら2枚の基板に対して210℃/30分の熱処
理を行なった。引き続き、これら2枚の基板を用いて実
施例1と同様に液晶表示装置を組み立て、その特性を評
価した。
On the other substrate, a color filter with a light-shielding layer was formed in the same manner as in Example 1, and an alignment film made of polyamic acid (1) was formed on the outermost surface by the same processing as described above. Similarly, a liquid crystal alignment ability was imparted by irradiating linearly polarized light using a Xe-Cl laser as a light source at room temperature. Next, a heat treatment was performed on these two substrates at 210 ° C. for 30 minutes. Subsequently, a liquid crystal display device was assembled using these two substrates in the same manner as in Example 1, and the characteristics were evaluated.

【0028】その結果、輝度変動分である残像強度ΔB
/B(10%)は約2%であり、残像が消失するまでの
時間は約45ミリ秒で、ここで用いた液晶の立ち下がり
応答時間約35ミリ秒とほとんど同じであった。目視に
よる画質残像検査においても、画像の焼き付け、残像に
よる表示むらも一切見られず、高い表示特性が得られ
た。このように、本発明による配向膜を使用することに
より画像の焼き付き、残像の表示不良が低減される液晶
表示素子を得ることができた。また、電圧印加部と非印
加部のコントラストは250と高い値を得ることができ
た。 〔実施例5〕実施例3に記載したポリアミド酸(2)を
N−メチルピロリドンを用いて6%に希釈し、γ−アミ
ノプロピルトリエトキシシランを固形分で0.3重量%
添加後、実施例1と同様の2枚の基板に印刷形成して2
10℃/30分の熱処理を行い、約900Åの配向膜を
形成した。次に、形成した配向膜を3分間N−メチルピ
ロリドンに接触させ、表面のN−メチルピロリドンを取
り除いた後直ちに、基板加熱を行わないことを除き実施
例1と同様にして直線偏光を照射し、液晶配向能を付与
した。偏向を照射した後、基板を150℃/10分加熱
した。これら2枚の基板を用いて実施例1と同様に液晶
表示装置を作製し、その特性を評価した。その結果、Δ
B/B(10%)は約1.8%であり、残像が消失する
までの時間は約45ミリ秒で、ここで用いた液晶の立ち
下がり応答時間35ミリ秒とほとんど同じであった。ま
た、電圧印加部と非印加部のコントラストは220と高
い値を得ることができた。 〔比較例3〕形成した配向膜を3分間N−メチルピロリ
ドンに接触させないことを除き、実施例5と同様にして
液晶表示装置を作製し、その特性を評価した。その結
果、ΔB/B(10%)は約5%であり、残像が消失す
るまでの時間は約110ミリ秒であった。また、電圧印
加部と非印加部のコントラストは30であった。
As a result, the afterimage intensity ΔB, which is the luminance variation,
/ B (10%) was about 2%, and the time until the afterimage disappeared was about 45 milliseconds, which was almost the same as the fall response time of the liquid crystal used here, which was about 35 milliseconds. In the image quality afterimage inspection by visual inspection, no image burn-in or display unevenness due to the afterimage was observed, and high display characteristics were obtained. As described above, by using the alignment film according to the present invention, it was possible to obtain a liquid crystal display element in which image sticking and after-image display defects were reduced. In addition, the contrast between the voltage application part and the non-application part was as high as 250. Example 5 The polyamic acid (2) described in Example 3 was diluted to 6% with N-methylpyrrolidone, and γ-aminopropyltriethoxysilane was added in a solid content of 0.3% by weight.
After the addition, printing was performed on the same two substrates as in Example 1 to obtain 2
Heat treatment was performed at 10 ° C. for 30 minutes to form an alignment film of about 900 °. Next, the formed alignment film was brought into contact with N-methylpyrrolidone for 3 minutes, and immediately after removing N-methylpyrrolidone on the surface, irradiation with linearly polarized light was performed in the same manner as in Example 1 except that the substrate was not heated. Liquid crystal alignment ability. After irradiation with the deflection, the substrate was heated at 150 ° C./10 minutes. Using these two substrates, a liquid crystal display device was manufactured in the same manner as in Example 1, and its characteristics were evaluated. As a result, Δ
B / B (10%) was about 1.8%, and the time until the afterimage disappeared was about 45 milliseconds, which was almost the same as the fall response time of the liquid crystal used here of 35 milliseconds. In addition, the contrast between the voltage application part and the non-application part was as high as 220. Comparative Example 3 A liquid crystal display device was manufactured in the same manner as in Example 5 except that the formed alignment film was not brought into contact with N-methylpyrrolidone for 3 minutes, and its characteristics were evaluated. As a result, ΔB / B (10%) was about 5%, and the time until the afterimage disappeared was about 110 milliseconds. The contrast between the voltage applied portion and the non-applied portion was 30.

【0029】[0029]

【発明の効果】本発明によると、直線偏光照射による方
法で充分実用に耐え得る液晶配向膜を得ることができ、
また残像が少なくコントラストの高い横電界方式の液晶
表示装置を得ることができる。
According to the present invention, it is possible to obtain a liquid crystal alignment film that can sufficiently withstand practical use by a method using linearly polarized light,
Further, it is possible to obtain a horizontal electric field type liquid crystal display device having a small contrast and a high contrast.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の薄膜トランジスタの電極の配線構造を
示す図であり、(a)は正面図、(b)はA−A側断面
図、(c)はB−B側断面図。
1A and 1B are diagrams showing a wiring structure of an electrode of a thin film transistor of the present invention, wherein FIG. 1A is a front view, FIG. 1B is a cross-sectional view along AA, and FIG. 1C is a cross-sectional view along BB.

【図2】液晶セルを構成する他方の基板の概略断面図。FIG. 2 is a schematic cross-sectional view of the other substrate constituting the liquid crystal cell.

【図3】本発明による液晶セルの概略断面図。FIG. 3 is a schematic sectional view of a liquid crystal cell according to the present invention.

【符号の説明】[Explanation of symbols]

1…共通電極(コモン電極)、2…ゲート絶縁膜、3…
信号電極(ドレイン電極)、4…画素電極(ソース電
極)、5…配向膜、12…走査電極(ゲート電極)、1
3…アモルファスシリコン、14…薄膜トランジスタ素
子、15…オーバーコート膜、16…ブラックマトリッ
クス、17…カラーフィルタ、18…ガラス基板、19
…偏向フィルム、20…液晶
DESCRIPTION OF SYMBOLS 1 ... Common electrode (common electrode), 2 ... Gate insulating film, 3 ...
Signal electrode (drain electrode), 4 ... pixel electrode (source electrode), 5 ... alignment film, 12 ... scanning electrode (gate electrode), 1
3: amorphous silicon, 14: thin film transistor element, 15: overcoat film, 16: black matrix, 17: color filter, 18: glass substrate, 19
... deflection film, 20 ... liquid crystal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 克己 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Katsumi Kondo 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 直線偏光によって配向可能な部位を有す
るガラス転移温度が200℃以上の高分子薄膜に、前記
配向可能な部位が容易に動ける状態において直線偏光を
照射することを特徴とする高分子薄膜の配向方法。
1. A polymer, which irradiates a polymer thin film having a portion which can be oriented by linearly polarized light and has a glass transition temperature of 200 ° C. or higher with linearly polarized light in a state where the orientable portion can easily move. How to align the thin film.
【請求項2】 請求項1記載の高分子薄膜の配向方法に
おいて、加熱により前記配向可能な部位が容易に動ける
状態にすることを特徴とする高分子薄膜の配向方法。
2. The method for aligning a polymer thin film according to claim 1, wherein the orientable portion is easily moved by heating.
【請求項3】 請求項2記載の高分子薄膜の配向方法に
おいて、高分子薄膜のガラス転移温度−150℃以上ガ
ラス転移温度以下に加熱することを特徴とする高分子薄
膜の配向方法。
3. The method for aligning a polymer thin film according to claim 2, wherein the polymer thin film is heated to a glass transition temperature of −150 ° C. or higher and a glass transition temperature or lower.
【請求項4】 請求項2記載の高分子薄膜の配向方法に
おいて、高分子薄膜のガラス転移温度−100℃以上ガ
ラス転移温度以下に加熱することを特徴とする高分子薄
膜の配向方法。
4. The method for aligning a polymer thin film according to claim 2, wherein the polymer thin film is heated to a glass transition temperature of −100 ° C. or higher and a glass transition temperature or lower.
【請求項5】 請求項1記載の高分子薄膜の配向方法に
おいて、溶剤により前記配向可能な部位が容易に動ける
状態にすることを特徴とする高分子薄膜の配向方法。
5. The method for aligning a polymer thin film according to claim 1, wherein the portion capable of being oriented is easily moved by a solvent.
【請求項6】 直線偏光によって配向可能な部位を有す
る高分子薄膜に前記配向可能な部位が容易に動ける状態
において直線偏光を照射して配向させた膜を、液晶配向
膜として用いたことを特徴とする液晶表示装置。
6. A liquid crystal alignment film formed by irradiating a polymer thin film having a portion that can be oriented by linearly polarized light with linearly polarized light in a state where the orientable portion can easily move, and using the film as a liquid crystal alignment film. Liquid crystal display device.
【請求項7】 直線偏光によって配向可能な部位を有す
る高分子薄膜に前記配向可能な部位が容易に動ける状態
において直線偏光を照射して配向させた膜を、液晶配向
膜として用いたことを特徴とする横電界方式の液晶表示
装置。
7. A liquid crystal alignment film formed by irradiating a polymer thin film having a portion that can be oriented by linearly polarized light with linearly polarized light in a state where the orientable portion can easily move is used as a liquid crystal alignment film. A horizontal electric field type liquid crystal display device.
【請求項8】 配向可能な部位が容易に動ける状態にお
いて直線偏光を照射して配向させたことを特徴とするガ
ラス転移温度が200℃以上の高分子薄膜。
8. A polymer thin film having a glass transition temperature of 200 ° C. or higher, wherein the polymer thin film is oriented by irradiating it with linearly polarized light in a state where an orientable portion can easily move.
【請求項9】 請求項8記載の高分子薄膜において、ポ
リイミド系高分子及びその前駆体を主成分とすることを
特徴とする高分子薄膜。
9. The polymer thin film according to claim 8, comprising a polyimide polymer and its precursor as main components.
【請求項10】 請求項9記載の高分子薄膜において、
ポリイミド前駆体のイミド化率が60%以下の状態にお
いて直線偏光を照射したことを特徴とする高分子薄膜。
10. The polymer thin film according to claim 9, wherein
A polymer thin film, which is irradiated with linearly polarized light in a state where the imidation ratio of the polyimide precursor is 60% or less.
【請求項11】 請求項8、9又は10記載の高分子薄
膜を液晶配向膜として用いたことを特徴とする液晶表示
装置。
11. A liquid crystal display device using the polymer thin film according to claim 8, 9 or 10 as a liquid crystal alignment film.
【請求項12】 請求項8、9又は10記載の高分子薄
膜を液晶配向膜として用いたことを特徴とする横電界方
式の液晶表示装置。
12. A liquid crystal display device of a horizontal electric field type, wherein the polymer thin film according to claim 8, 9 or 10 is used as a liquid crystal alignment film.
JP1876798A 1998-01-30 1998-01-30 Liquid crystal display Expired - Fee Related JP3594786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1876798A JP3594786B2 (en) 1998-01-30 1998-01-30 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1876798A JP3594786B2 (en) 1998-01-30 1998-01-30 Liquid crystal display

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003011020A Division JP2003241197A (en) 2003-01-20 2003-01-20 Method for aligning polymer thin film, polymer thin film, and liquid crystal display device

Publications (2)

Publication Number Publication Date
JPH11218765A true JPH11218765A (en) 1999-08-10
JP3594786B2 JP3594786B2 (en) 2004-12-02

Family

ID=11980799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1876798A Expired - Fee Related JP3594786B2 (en) 1998-01-30 1998-01-30 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP3594786B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001154196A (en) * 1999-11-29 2001-06-08 Agency Of Ind Science & Technol Liquid crystal alignment treatment method and liquid crystal display device
JP2007279691A (en) * 2006-03-16 2007-10-25 Chisso Corp Photo-alignment film and liquid crystal display element
JP2009288298A (en) * 2008-05-27 2009-12-10 Hitachi Displays Ltd Liquid crystal display device
US7718234B2 (en) 2002-12-09 2010-05-18 Hitachi Displays, Ltd. Liquid crystal display and method for manufacturing same
US7742138B2 (en) 2004-06-08 2010-06-22 Hitachi Displays, Ltd. Liquid crystal display
JP2011175121A (en) * 2010-02-25 2011-09-08 Jnc Corp Liquid crystal alignment agent, liquid crystal alignment layer and liquid crystal display element
US8263732B2 (en) 2006-03-16 2012-09-11 Jnc Corporation Photo-alignment film and liquid crystal display element
JP2014044430A (en) * 2013-10-24 2014-03-13 Japan Display Inc Liquid crystal display device, and alignment film material for photo-alignment film
CN109884823A (en) * 2017-12-01 2019-06-14 夏普株式会社 The manufacturing method of polarized light illumination device and the substrate with light-sensitive surface
JP2020008716A (en) * 2018-07-06 2020-01-16 Jnc株式会社 Liquid crystal alignment film, manufacturing method therefor, and liquid crystal display element using the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001154196A (en) * 1999-11-29 2001-06-08 Agency Of Ind Science & Technol Liquid crystal alignment treatment method and liquid crystal display device
JP4605677B2 (en) * 1999-11-29 2011-01-05 経済産業大臣 Liquid crystal alignment treatment method
US8025939B2 (en) 2002-12-09 2011-09-27 Hitachi Displays, Ltd. Liquid crystal display and method for manufacturing same
US11520186B2 (en) 2002-12-09 2022-12-06 Nissan Chemical Corporation Liquid crystal display and method for manufacturing same
US9405152B2 (en) 2002-12-09 2016-08-02 Japan Display Inc. Liquid crystal display and method for manufacturing same
US7718234B2 (en) 2002-12-09 2010-05-18 Hitachi Displays, Ltd. Liquid crystal display and method for manufacturing same
US8758871B2 (en) 2002-12-09 2014-06-24 Japan Display Inc. Liquid crystal display and method for manufacturing same
US7742138B2 (en) 2004-06-08 2010-06-22 Hitachi Displays, Ltd. Liquid crystal display
US8263732B2 (en) 2006-03-16 2012-09-11 Jnc Corporation Photo-alignment film and liquid crystal display element
JP2007279691A (en) * 2006-03-16 2007-10-25 Chisso Corp Photo-alignment film and liquid crystal display element
US9285636B2 (en) 2008-05-27 2016-03-15 Japan Display Inc. Liquid crystal display device
JP2009288298A (en) * 2008-05-27 2009-12-10 Hitachi Displays Ltd Liquid crystal display device
JP2011175121A (en) * 2010-02-25 2011-09-08 Jnc Corp Liquid crystal alignment agent, liquid crystal alignment layer and liquid crystal display element
JP2014044430A (en) * 2013-10-24 2014-03-13 Japan Display Inc Liquid crystal display device, and alignment film material for photo-alignment film
CN109884823A (en) * 2017-12-01 2019-06-14 夏普株式会社 The manufacturing method of polarized light illumination device and the substrate with light-sensitive surface
US10571808B2 (en) 2017-12-01 2020-02-25 Sharp Kabushiki Kaisha Polarized light irradiation apparatus and photosensitive film-coated substrate manufacturing method
CN109884823B (en) * 2017-12-01 2021-09-28 夏普株式会社 Polarized light irradiation device and method for manufacturing substrate with optical alignment film
JP2020008716A (en) * 2018-07-06 2020-01-16 Jnc株式会社 Liquid crystal alignment film, manufacturing method therefor, and liquid crystal display element using the same

Also Published As

Publication number Publication date
JP3594786B2 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
US20200201126A1 (en) Liquid crystal display and method for manufacturing same
JP4653421B2 (en) Liquid crystal display device
US8085372B2 (en) Liquid crystal display device and manufacturing method thereof
US20110109857A1 (en) Liquid crystal display device
JPH08328005A (en) Liquid crystal oriented film, treatment of liquid crystal oriented film, liquid crystal holding substrate, liquid crystal display element, production of liquid crystal display element and material for liquid crystal oriented film
JP2001281671A (en) Liquid crystal display
CN105511165B (en) Liquid crystal display device and method of manufacturing the same
KR100402065B1 (en) Liquid crystal display
JP3594786B2 (en) Liquid crystal display
KR20130050862A (en) Liquid crystal display and method of fabricating the same
JPH11305256A (en) Active matrix type liquid crystal display
JP4836141B2 (en) Liquid crystal display element and liquid crystal display device
JP2002214613A (en) Liquid crystal display
JP2000137229A (en) Liquid crystal display
JPH11212095A (en) Liquid crystal display device and manufacturing method thereof
JP4103207B2 (en) Liquid crystal display
JPH11249142A (en) Liquid crystal display
JP3303766B2 (en) Liquid crystal display
JP2003241197A (en) Method for aligning polymer thin film, polymer thin film, and liquid crystal display device
WO2007144998A1 (en) Process for manufacturing liquid crystal display apparatus and liquid crystal display apparatus
TWI534180B (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display device
JP5939589B2 (en) Alignment film material
JPH11326912A (en) Liquid crystal display
JP5594835B2 (en) Alignment film material and liquid crystal display device
JPH1010538A (en) Liquid crystal display element and its production

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees