[go: up one dir, main page]

JPH11217425A - Method and apparatus for continuous preparation of lactide - Google Patents

Method and apparatus for continuous preparation of lactide

Info

Publication number
JPH11217425A
JPH11217425A JP1965998A JP1965998A JPH11217425A JP H11217425 A JPH11217425 A JP H11217425A JP 1965998 A JP1965998 A JP 1965998A JP 1965998 A JP1965998 A JP 1965998A JP H11217425 A JPH11217425 A JP H11217425A
Authority
JP
Japan
Prior art keywords
lactide
lactic acid
reactor
condenser
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1965998A
Other languages
Japanese (ja)
Other versions
JP3464905B2 (en
Inventor
Hiroshi Maeda
弘 前田
Yutaka Miyagawa
裕 宮川
Kazuhisa Fujisawa
和久 藤沢
Koji Yamamoto
浩司 山本
Takayasu Fujiura
貴保 藤浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP01965998A priority Critical patent/JP3464905B2/en
Publication of JPH11217425A publication Critical patent/JPH11217425A/en
Application granted granted Critical
Publication of JP3464905B2 publication Critical patent/JP3464905B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus and a method by which lactide can be prepared from lactic acid continuously for a long period of time and highly pure product lactide can be obtained on the premise that the amount of a catalyst for lactidation is as low as possible. SOLUTION: An apparatus for continuous preparation of lactide comprises lactidation reactor 13 which depolymerizes lactic acid oligomer, condenser 16 which condenses evaporated lactide and reflux condenser 15 between lactidation reactor 13 and condenser 16. A continuous preparation method involves continuously effecting the oligomerization step, lactidation step and lactide recovering step and, in distilling lactide in the lactide recovering step, refluxing accompanying oligomer and a catalyst by reflux condenser 15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はラクチドの連続製造
装置及び連続製造方法に関し、詳細にはラクチドを原料
の乳酸から乳酸オリゴマーとした後、解重合させてラク
チドを製造する一連の工程を連続的に行う装置及び方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous production apparatus and a continuous production method of lactide, and more particularly, to a series of steps for producing lactide by depolymerizing lactide from lactic acid as a raw material and then depolymerizing the lactide. And a method for performing the above.

【0002】[0002]

【従来の技術】ラクチドは生分解性ポリマーであるポリ
乳酸の原料である。ポリ乳酸は、生体内で分解されるだ
けでなく機械的特性等にも優れていることから医療分野
で利用されていると共に、自然環境下においては微生物
等によって分解されるので環境保護の観点から種々の工
業用途や民生用途への展開が期待されており、ラクチド
の需要は益々高まっている。
2. Description of the Related Art Lactide is a raw material of polylactic acid which is a biodegradable polymer. Polylactic acid is used in the medical field because it is not only degraded in vivo but also has excellent mechanical properties, and is also degraded by microorganisms in the natural environment. Demand for lactide is increasing more and more, as it is expected to be used for various industrial and consumer applications.

【0003】上記ラクチドの製造方法としては、特開平
7−138253号公報に記載されている方法があり、
(1) 乳酸を加熱・濃縮する工程、(2) 濃縮された乳酸を
還流しながら脱水し乳酸オリゴマーを生成する工程、及
び (3)乳酸オリゴマーを触媒の存在下に解重合して留去
する工程を、夫々回分式で行う方法が提案されている。
但し、上記の方法では、還流工程の温度管理を135℃
から150℃、160℃と段階分けして徐々に昇温しな
がら行うことが必要であり、操作が複雑であると共に、
回分式であることから非効率的でエネルギーコストが大
きく、更に大量処理が困難であるという問題があり、更
には反応器内組成が経時変化するので品質(特にラクチ
ド純度)が不安定であることが指摘されていた。
As a method for producing the above lactide, there is a method described in JP-A-7-138253.
(1) a step of heating and concentrating lactic acid, (2) a step of dehydrating the concentrated lactic acid while refluxing to produce a lactic acid oligomer, and (3) a depolymerization and distillation of the lactic acid oligomer in the presence of a catalyst. A method has been proposed in which the steps are performed in a batch system.
However, in the above method, the temperature control in the reflux step is performed at 135 ° C.
From 150 ° C to 160 ° C, it is necessary to carry out the process while gradually raising the temperature.
The batch system is inefficient, has a large energy cost, and is difficult to process in large quantities. Further, the quality (particularly, lactide purity) is unstable because the composition in the reactor changes over time. Was pointed out.

【0004】回分式ではなく連続的にラクチドを製造す
る方法としては、乳酸を連続的にオリゴマー化する方法
が特開平9−316180号公報に開示されており、ま
た乳酸オリゴマーを連続的にラクチドとする方法が特開
平9−110859号公報に開示されている。従って、
両者の方法を組み合わせることによって乳酸から乳酸オ
リゴマーを介してラクチドを一貫して連続的に製造する
ことが可能であると考えられる。
As a method for producing lactide continuously instead of in a batch system, a method for continuously oligomerizing lactic acid is disclosed in Japanese Patent Application Laid-Open No. 9-316180. A method for performing this is disclosed in JP-A-9-110859. Therefore,
It is considered that by combining both methods, lactide can be produced consistently and continuously from lactic acid via lactic acid oligomers.

【0005】尚、図1は特開平9−110859号公報
に記載されているラクチドの製造装置であり、21は乳
酸オリゴマータンク、22は反応容器、23はコンデン
サ、24はラクチド受器を夫々示す。上記装置によれば
乳酸オリゴマータンク21に貯留されている乳酸オリゴ
マーは、移送ポンプPにより反応容器22に供給される
と共に、電磁弁を開にして5〜25重量%の触媒が触媒
投入用ホッパーHから導入され、真空ポンプVPにより
所定圧に保たれた上記反応容器22内で乳酸オリゴマー
は加熱されてラクチドが合成される。合成されたラクチ
ドは気化し、コンデンサ23で凝縮されてラクチド受器
24に蓄えられるという構成を採用するものである。
FIG. 1 shows an apparatus for producing lactide described in Japanese Patent Application Laid-Open No. 9-110859. Reference numeral 21 denotes a lactic acid oligomer tank, 22 denotes a reaction vessel, 23 denotes a condenser, and 24 denotes a lactide receiver. . According to the apparatus described above, the lactic acid oligomer stored in the lactic acid oligomer tank 21 is supplied to the reaction vessel 22 by the transfer pump P, and the electromagnetic valve is opened to allow 5 to 25% by weight of the catalyst to enter the catalyst hopper H. The lactic acid oligomer is heated in the reaction vessel 22 maintained at a predetermined pressure by the vacuum pump VP to synthesize lactide. The synthesized lactide is vaporized, condensed by the condenser 23 and stored in the lactide receiver 24.

【0006】しかしながら、上記のラクチドの連続製造
方法では、乳酸オリゴマーのラクチド化に用いる触媒が
失活して、100時間前後で連続運転を中止せざるを得
ないという問題があり、乳酸から乳酸オリゴマーを経て
ラクチドを長期間に亘って連続的に製造することができ
る方法及び装置の開発が要望されていた。
[0006] However, in the above-mentioned continuous production method of lactide, there is a problem that the catalyst used for lactide conversion of lactic acid oligomer is deactivated and continuous operation must be stopped after about 100 hours. Therefore, there has been a demand for the development of a method and apparatus capable of continuously producing lactide over a long period of time.

【0007】更に、上記の方法によれば、触媒濃度が
5.1〜25.0%と極端に多く必要とし(従来は0.
5〜2.0重量%程度)、製品であるラクチドに触媒が
混入するので、品質が低下し、触媒除去工程が不可欠で
あり、しかも上記方法で得られる製品ラクチドには、1
0%前後の乳酸オリゴマーも含まれており、純度の改善
も望まれていた。
Further, according to the above-mentioned method, the catalyst concentration needs to be extremely high at 5.1 to 25.0% (conventionally, the catalyst concentration is 0.1 to 25.0%).
(About 5 to 2.0% by weight), since the catalyst is mixed into the product lactide, the quality is reduced, and a catalyst removal step is indispensable.
A lactic acid oligomer of about 0% is also contained, and improvement in purity has been desired.

【0008】[0008]

【発明が解決しようとする課題】本発明は上記事情に着
目してなされたものであって、ラクチド化に用いる触媒
量は極力少なくすることを前提とした上で、長期間に亘
って連続的に乳酸からラクチドを製造することができ、
しかも高純度の製品ラクチドを得ることのできる装置及
び方法を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above circumstances, and is based on the premise that the amount of catalyst used for lactide formation is reduced as much as possible. Can produce lactide from lactic acid,
Moreover, an object of the present invention is to provide an apparatus and a method capable of obtaining a high-purity product lactide.

【0009】[0009]

【課題を解決するための手段】上記課題を解決した本発
明の連続製造装置とは、乳酸オリゴマーを解重合させる
ラクチド化反応器と、蒸発させたラクチドを凝縮させる
コンデンサを有するラクチドの連続製造装置であって、
上記ラクチド化反応器と上記コンデンサの間に、還流冷
却器を介設してなることを要旨とするものである。
Means for Solving the Problems The continuous production apparatus of the present invention which has solved the above problems is a continuous lactide production apparatus having a lactide conversion reactor for depolymerizing lactic acid oligomers and a condenser for condensing the evaporated lactide. And
The gist of the invention is that a reflux condenser is interposed between the lactide reactor and the condenser.

【0010】また上記課題を解決した本発明の連続製造
装置とは、乳酸を加熱重合して乳酸オリゴマーを生成
し、次いで上記乳酸オリゴマーを触媒の存在下に加熱し
て解重合させることによりラクチドを生成するラクチド
の製造方法であって、乳酸を主体とする原料をオリゴマ
ー化反応器に連続的に供給し、乳酸を加熱濃縮しつつ脱
水して乳酸オリゴマーを連続的に生成するオリゴマー化
工程と、上記オリゴマー化反応器より連続的に送液され
る乳酸オリゴマーを、ラクチド化反応器において、触媒
の存在下に解重合させラクチドを連続的に生成するラク
チド化工程と、上記ラクチド化反応器から留出されたラ
クチドを、コンデンサにより液化させることによりラク
チドを連続的に回収するラクチド回収工程を有し、上記
オリゴマー化工程、上記ラクチド化工程、上記ラクチド
回収工程を連続的に行うと共に、前記ラクチド回収工程
においてラクチドを留出させるにあたり、同伴されるオ
リゴマー及び触媒を還流冷却器により還流させることを
要旨とするものである。
The continuous production apparatus of the present invention which has solved the above-mentioned problems is characterized in that lactic acid is heated and polymerized to form a lactic acid oligomer, and then the lactic acid oligomer is heated and depolymerized in the presence of a catalyst to convert lactide. A method for producing lactide to be produced, wherein an oligomerization step of continuously supplying a raw material mainly composed of lactic acid to an oligomerization reactor, dehydrating while heating and concentrating lactic acid, and continuously producing a lactic acid oligomer, A lactide-forming step in which a lactic acid oligomer continuously fed from the oligomerization reactor is depolymerized in the presence of a catalyst in a lactide-forming reactor to continuously produce lactide; The obtained lactide has a lactide recovery step of continuously recovering lactide by liquefaction by a condenser, the oligomerization step, Serial lactide step, performs continuously the lactide recovery step, when distilling the lactide in the lactide recovery step, it is an Abstract that is refluxed by reflux condenser oligomers and catalyst entrained.

【0011】[0011]

【発明の実施の形態】特開平9−110859号公報に
記載されているラクチドの製造方法で、大量に触媒を使
用しているにも係らず、100時間前後で連続運転を中
止せざるを得ない理由を本発明者らが検討した結果、上
記の方法では触媒を多量に用いても、ラクチドの製造過
程で触媒がラクチド蒸気と同伴されてラクチド化反応器
外に排出されているからであるとの知見を得た。そこで
本発明者らが鋭意研究を重ねた結果、ラクチド反応器と
コンデンサの間に、還流冷却器を設けて、ラクチドに気
化同伴する触媒を乳酸オリゴマーと共に還流させれば、
少ない量の触媒で長期間に亘ってラクチド化反応を行う
ことができことを見出し、これにより乳酸から乳酸オリ
ゴマーを介して高純度のラクチドを一貫して連続的に製
造できることに成功したものである。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for producing lactide described in Japanese Patent Application Laid-Open No. 9-110859, continuous operation must be stopped after about 100 hours despite the use of a large amount of catalyst. As a result of investigations by the present inventors on the reason for the absence of the lactide, the catalyst is discharged out of the lactide formation reactor together with the lactide vapor in the lactide production process even when a large amount of the catalyst is used in the above method. I got the knowledge. Therefore, as a result of the present inventors' earnest studies, if a reflux condenser is provided between the lactide reactor and the condenser, and the catalyst accompanying vaporization of lactide is refluxed together with the lactic acid oligomer,
The inventors have found that a lactide-forming reaction can be carried out over a long period of time with a small amount of catalyst, and thereby succeeded in consistently and continuously producing high-purity lactide from lactic acid via lactic acid oligomers. .

【0012】以下、本発明に係るラクチドの連続製造方
法及び連続製造装置を、図2に基づいて詳細に説明す
る。本発明に係るラクチドの製造方法は、原料の乳酸か
ら製品のラクチドまで一貫して連続的に製造することに
特徴を有するものであるが、製造工程に関しては従来の
方法と同様に、乳酸オリゴマーを中間生成物として製造
することから、以下の(A)オリゴマー化工程と、
(B)ラクチド化工程及び(C)ラクチド回収工程に大
別できる。
Hereinafter, a method and an apparatus for continuously producing lactide according to the present invention will be described in detail with reference to FIG. The method for producing lactide according to the present invention is characterized in that it is produced continuously and continuously from lactic acid as a raw material to lactide as a product. Since it is produced as an intermediate product, the following (A) oligomerization step;
(B) lactide conversion step and (C) lactide recovery step.

【0013】A.オリゴマー化工程 図2において、1は原料タンク、2は予熱器、3はフラ
ッシュ弁、4は蒸留塔、5はオリゴマー化反応器、6は
コンデンサ、7は留出水抜出槽、8は外部循環型熱交換
器、9は補助オリゴマー化反応器、10は撹拌機、11
はベーパー管を夫々示す。
A. 2. Oligomerization process In FIG. 2, 1 is a raw material tank, 2 is a preheater, 3 is a flash valve, 4 is a distillation column, 5 is an oligomerization reactor, 6 is a condenser, 7 is a distillate discharge tank, and 8 is external circulation. Type heat exchanger, 9 is an auxiliary oligomerization reactor, 10 is a stirrer, 11
Denotes vapor tubes, respectively.

【0014】原料タンク1に蓄えられた乳酸は、原料送
液ポンプP1 にて予熱器2に送られ、所定温度に加熱さ
れた後、フラッシュ弁3を経て蒸留塔4に供給される。
上記蒸留塔4はオリゴマー化反応器5の上部に配設され
ており、オリゴマー化反応器5に流下した乳酸は、反応
器内で加熱され脱水縮合されて乳酸オリゴマーとなる。
尚、原料乳酸は一般に10%前後の水を含んでおり、脱
水縮合(オリゴマー化)反応でも水が生成する。これら
の水は、加熱によって水蒸気となり、乳酸の蒸気と共に
上昇し、トレイまたは充填物が組み込まれた蒸留塔4に
到達し、乳酸の蒸気は蒸留塔4内で液化し落下してオリ
ゴマー化反応器5に戻され、一方蒸留塔4を通過した水
蒸気は、コンデンサ6に導かれる。水蒸気は、冷却水等
の冷媒が供給される上記コンデンサ6にて冷却・凝縮さ
れ、留出水抜出槽7を経て系外に排出される。また上記
コンデンサ6から留出水抜出槽7に送られる水の一部
は、ポンプP2 により蒸留塔4の頂部に還流され、該頂
部の温度制御及び水と原料成分の分離効率向上のために
利用される。
The lactic acid stored in the raw material tank 1 is sent to a preheater 2 by a raw material feed pump P 1 , heated to a predetermined temperature, and then supplied to a distillation column 4 via a flash valve 3.
The distillation column 4 is disposed above the oligomerization reactor 5, and the lactic acid flowing down into the oligomerization reactor 5 is heated and dehydrated and condensed into a lactic acid oligomer in the reactor.
The raw lactic acid generally contains about 10% of water, and water is also generated by a dehydration condensation (oligomerization) reaction. The water turns into steam by heating, rises together with the lactic acid vapor, reaches the distillation column 4 in which the tray or the packing is incorporated, and the lactic acid vapor liquefies and falls in the distillation column 4 to fall into the oligomerization reactor. The steam returned to 5 while passing through the distillation column 4 is led to the condenser 6. The steam is cooled and condensed by the condenser 6 to which a coolant such as cooling water is supplied, and is discharged out of the system through a distillate extraction tank 7. Also part of the water fed from the capacitor 6 to the distillate drainage unloading tank 7 is returned to the top of the distillation column 4 by a pump P 2, for the separation efficiency of the temperature control and water and the raw material component of said top Used.

【0015】尚、前記オリゴマー化反応器5に配設され
る加熱器は、ジャケット構造による熱媒循環加熱方式や
電熱ヒータ加熱方式のものを用いればよく、また前記予
熱器2の液加熱方式は、シェル/チューブ型の熱媒循環
加熱や電熱ヒータ加熱等が採用できる。
The heater provided in the oligomerization reactor 5 may be a heating medium circulating heating system with a jacket structure or an electric heater heating system. In addition, shell / tube type heating medium circulation heating, electric heater heating, or the like can be employed.

【0016】この様にして、原料中に含まれる水と、オ
リゴマー化反応器5で発生する蒸気中の水分は、蒸留塔
4の頂部から水蒸気として取り出され、オリゴマー化反
応器5内から水分は系外に取り除かれるので、供給系か
らの原料と蒸気中の未反応原料は濃縮されつつオリゴマ
ー化反応器に溜められ、オリゴマー化反応器内の原料の
濃縮が高められ、かつ縮合反応によりオリゴマー化が進
行する。
In this way, the water contained in the raw material and the water in the steam generated in the oligomerization reactor 5 are taken out as steam from the top of the distillation column 4, and the water is removed from the inside of the oligomerization reactor 5. Since it is removed outside the system, the raw material from the supply system and the unreacted raw material in the vapor are concentrated and stored in the oligomerization reactor, the concentration of the raw material in the oligomerization reactor is increased, and the oligomerization is performed by the condensation reaction. Progresses.

【0017】オリゴマー化反応器5は、外部循環型熱交
換器8を介して補助オリゴマー化反応器9に連通してい
る。上記外部循環型熱交換器8及び補助オリゴマー化反
応器9は、加熱器(ジャケット構造による熱媒循環型加
熱器や電熱ヒータ等)を有しており、その内液温度をオ
リゴマー化反応器中の液温よりも高く保つことによっ
て、オリゴマー化反応器から補助オリゴマー化反応器及
び外部循環型熱交換器への液の流れを確保することがで
きる様に構成されている。尚、補助オリゴマー化反応器
9に、撹拌機10を配設して、器内の液を攪拌して給熱
効率を高めることが望ましい(但し、補助オリゴマー化
反応器9の内液の粘度が低く、自然対流で液が器内を循
環する場合には上記撹拌機は必要ない)。
The oligomerization reactor 5 is connected to an auxiliary oligomerization reactor 9 via an external heat exchanger 8. The external circulation type heat exchanger 8 and the auxiliary oligomerization reactor 9 have a heater (a heating medium circulation type heater with a jacket structure, an electric heater, or the like), and the internal liquid temperature is adjusted in the oligomerization reactor. By maintaining the liquid temperature higher than the temperature of the liquid, the flow of the liquid from the oligomerization reactor to the auxiliary oligomerization reactor and the external circulation type heat exchanger can be ensured. In addition, it is desirable that a stirrer 10 is disposed in the auxiliary oligomerization reactor 9 to stir the liquid in the vessel to increase the heat supply efficiency (however, the viscosity of the internal liquid in the auxiliary oligomerization reactor 9 is low. The stirrer is not necessary when the liquid circulates in the vessel by natural convection.)

【0018】外部循環型熱交換器8及び補助オリゴマー
化反応器9を循環する反応液中の水分及び乳酸や乳酸オ
リゴマーの一部は外部循環型熱交換器8による加熱で気
化し、気化した蒸気は、補助オリゴマー化反応器の上部
に設けたベーパー管11を通って、蒸留塔4に戻され
る。戻された蒸気中の水分は、前述の様に蒸留塔の頂部
から水蒸気として取り出され、原料類は濃縮されて再び
反応システム内に戻される。この様に原料及びオリゴマ
ーが、オリゴマー反応器5,外部循環型熱交換器8及び
補助オリゴマー化反応器9を循環すると共に、蒸留塔の
頂部から水分を留出させることにより、原料の濃縮及び
脱水縮合(オリゴマー化)反応が進行する。
The water and a part of lactic acid and lactic acid oligomer in the reaction solution circulating in the external circulation heat exchanger 8 and the auxiliary oligomerization reactor 9 are vaporized by heating by the external circulation heat exchanger 8, and the vaporized vapor Is returned to the distillation column 4 through a vapor tube 11 provided at the upper part of the auxiliary oligomerization reactor. The water in the returned steam is taken out as steam from the top of the distillation column as described above, and the raw materials are concentrated and returned to the reaction system again. In this way, the raw materials and oligomers are circulated through the oligomer reactor 5, the external circulation heat exchanger 8 and the auxiliary oligomerization reactor 9, and at the same time, water is distilled out from the top of the distillation column to concentrate and dehydrate the raw materials. The condensation (oligomerization) reaction proceeds.

【0019】更にオリゴマー化反応器内の液の一定量
は、底部の配管を通じてオリゴマー循環ポンプP3 によ
り原料供給ラインに戻され、原料と一体となって予熱器
2に送られてフラッシュ弁3を経て再び蒸留塔4に供給
される。
Further, a certain amount of the liquid in the oligomerization reactor is returned to the raw material supply line by the oligomer circulation pump P 3 through the bottom pipe, and sent to the preheater 2 together with the raw material, and the flash valve 3 is turned on. After that, it is supplied to the distillation column 4 again.

【0020】尚、蒸留塔4、オリゴマー化反応器5、外
部循環型熱交換器8及び補助オリゴマー化反応器9等
は、コンデンサ6の下流に配設された真空ポンプVP1
により減圧され、圧力調整バルブV1 により一定圧力に
制御されている。
The distillation column 4, the oligomerization reactor 5, the external circulation heat exchanger 8, the auxiliary oligomerization reactor 9 and the like are provided with a vacuum pump VP 1 provided downstream of the condenser 6.
Is controlled to a constant pressure is depressurized by the pressure regulating valve V 1 by.

【0021】オリゴマー化反応器内の気相圧力は、水
を、乳酸やオリゴマーが同伴することなく留去できる範
囲に設定することが望ましく、30Torr未満では、
留去水に乳酸が同伴し、原料ロスとなり、一方200T
orrを超えると、水を十分留去できず、オリゴマーの
分子量が上がらないので30Torr以上200Tor
r以下とすることが望ましい。
The gas phase pressure in the oligomerization reactor is desirably set within a range where water can be distilled off without accompanying lactic acid or oligomer.
Lactic acid accompanies the distilled water, resulting in a raw material loss.
If it exceeds rr, water cannot be sufficiently distilled off, and the molecular weight of the oligomer does not increase.
It is desirable to set r or less.

【0022】またオリゴマー化反応器内の液相温度は、
乳酸の光学異性化を抑え、且つ脱水・縮合反応を進める
範囲に設定することが望ましく、150℃未満では、反
応速度が遅く非効率的であり、一方200℃を超える
と、光学異性化が進行しやすくなると共に、留去水に乳
酸が同伴しやすくなるので、150℃以上200℃以下
に制御してオリゴマー化反応を行うことが推奨される。
The liquid phase temperature in the oligomerization reactor is:
It is desirable to set the range within which optical isomerization of lactic acid is suppressed and the dehydration / condensation reaction proceeds. If the temperature is lower than 150 ° C., the reaction rate is slow and inefficient, whereas if it exceeds 200 ° C., the optical isomerization proceeds. It is recommended that the oligomerization reaction be performed at a temperature of 150 ° C. or more and 200 ° C. or less because lactic acid easily accompanies the distilled water as well as the lactic acid.

【0023】また、オリゴマー化反応器5及び補助オリ
ゴマー化反応器9の上部及び底部、蒸留塔4、予熱器2
以降の原料供給配管、オリゴマー化反応器9底部からの
液送配管、オリゴマー循環ポンプP3 からの液送配管、
外部循環型熱交換器8と補助オリゴマー化反応器9と間
の循環配管、オリゴマー送液ポンプP4 の吸引及び吐出
配管,ベーパー管は電熱ヒータまたはジャケット等にて
加熱・保温することが望ましい。
The upper and lower portions of the oligomerization reactor 5 and the auxiliary oligomerization reactor 9, the distillation column 4, the preheater 2
Since the raw material supply pipe, the liquid feed pipe from the oligomerization reactor 9 bottom, a liquid feed pipe from the oligomer circulation pump P 3,
Circulation piping between the external circulation type heat exchanger 8 and an auxiliary oligomerization reactor 9, the suction and discharge piping oligomeric liquid feed pump P 4, vapor pipe is desirably heated and kept at an electric heater or a jacket or the like.

【0024】この様に本発明に係るオリゴマー化反応器
には蒸留塔を備え、この蒸留塔にて還流操作を行って乳
酸の濃縮すると共に、反応系からの脱水を図るものであ
る。これにより、水分(原料乳酸に含まれる水及びオリ
ゴマー化反応で発生する縮合水)を効率的に除去し、オ
リゴマー化反応を促進できることから、乳酸オリゴマー
の分子量が向上すると共に水分量を減少させることがで
きる。また留出水中の乳酸(=原料ロス)含量が低く、
ラクチドの収率が向上し、しかも効率良く反応を進めら
ることができるので反応器内滞留時間が短くてすみ、異
性化反応を抑えられる。更にはエネルギーコストが小さ
いという利点を有するものである。
As described above, the oligomerization reactor according to the present invention is provided with a distillation column, and the reflux operation is performed in the distillation column to concentrate lactic acid and to dehydrate the reaction system. As a result, water (water contained in the raw lactic acid and condensed water generated in the oligomerization reaction) can be efficiently removed and the oligomerization reaction can be promoted, so that the molecular weight of the lactic acid oligomer is improved and the water content is reduced. Can be. In addition, lactic acid (= raw material loss) content in distillate is low,
Since the yield of lactide is improved and the reaction can proceed efficiently, the residence time in the reactor can be shortened and the isomerization reaction can be suppressed. Further, it has the advantage that the energy cost is small.

【0025】また本発明に係るオリゴマー化反応器は外
部循環加熱型フラッシュ蒸留缶であり、原料乳酸をフラ
ッシュ操作で反応器に連続供給し、かつオリゴマー化反
応器内の反応液を連続的に抜き出し外部加熱した後フラ
ッシュ操作で再び反応器に戻すものである。従って、原
料中の水と乳酸の分離を促進させ、オリゴマー化(十分
な平均分子量に到達する)に必要な反応器滞留時間を短
縮でき、蒸留のみで脱水を図る場合に比べ、エネルギー
コストを低く抑えることができる。
The oligomerization reactor according to the present invention is an external circulation heating type flash distillation can. The lactic acid raw material is continuously supplied to the reactor by a flash operation, and the reaction solution in the oligomerization reactor is continuously withdrawn. After external heating, it is returned to the reactor again by a flash operation. Therefore, the separation of water and lactic acid in the raw material is promoted, the residence time in the reactor required for oligomerization (to reach a sufficient average molecular weight) can be shortened, and the energy cost is reduced as compared with the case where dehydration is performed only by distillation. Can be suppressed.

【0026】更に外部循環型熱交換器8を設けること
で、オリゴマー化反応器5及び補助オリゴマー化反応器
8における液加熱では困難な大熱量供給を可能とし、脱
水縮合反応に必要な熱量を加えることができる。またサ
ーモサイホン効果により外部循環型熱交換器8と補助オ
リゴマー反応器9の間で反応操作・脱水操作に理想的な
循環状況を得ることができる。従って外部循環型熱交換
器8を設けることにより、大容量処理(大量生産)が可
能となる。
Further, by providing the external circulation type heat exchanger 8, it is possible to supply a large amount of heat which is difficult by liquid heating in the oligomerization reactor 5 and the auxiliary oligomerization reactor 8, and to add heat required for the dehydration condensation reaction. be able to. Further, an ideal circulation state for the reaction operation / dehydration operation between the external circulation heat exchanger 8 and the auxiliary oligomer reactor 9 can be obtained by the thermosiphon effect. Accordingly, the provision of the external circulation heat exchanger 8 enables large-capacity processing (mass production).

【0027】以上の重合反応システムで生成したオリゴ
マーは、オリゴマー送液ポンプP4にて所定の送液速度
で抜き出され、次工程であるラクチド化工程の反応シス
テムに供給される。
The oligomer produced in the above polymerization reaction system is withdrawn at a predetermined liquid sending speed by the oligomer liquid sending pump P4, and is supplied to the reaction system in the lactide-forming step which is the next step.

【0028】B.ラクチド化工程 図2において、12は外部循環型熱交換器、13はラク
チド化反応器、14は撹拌機を夫々示す。
B. Lactidation Step In FIG. 2, 12 indicates an external circulation heat exchanger, 13 indicates a lactide reaction reactor, and 14 indicates a stirrer.

【0029】オリゴマー化送液ポンプP4 にて送液され
たオリゴマーは、外部循環型熱交換器12を経てラクチ
ド化反応器13に送られる。またラクチド化触媒は触媒
濃度が所定の範囲となる様に、予めラクチド化反応器1
3に投入される。
The oligomer fed by the oligomerization feed pump P 4 is sent to the lactide reactor 13 via the external circulation type heat exchanger 12. The lactide conversion catalyst is set in advance so that the catalyst concentration is within a predetermined range.
It is thrown into 3.

【0030】上記外部循環型熱交換器12及びラクチド
化反応器13は夫々加熱器(ジャケット構造による熱媒
循環型加熱器や電熱ヒータ等)を有しており、液を加熱
することによって、ラクチド化反応及びラクチドの気化
反応が進行する。またラクチド化反応器13には、撹拌
機14が配設されており、器内の液を撹拌することで給
熱効率が高められる構成となっている。
The external circulation type heat exchanger 12 and the lactide conversion reactor 13 each have a heater (a heating medium circulation type heater having a jacket structure, an electric heater, etc.). And the lactide vaporization reaction proceeds. Further, a stirrer 14 is provided in the lactide-forming reactor 13 so that the heat supply efficiency is increased by stirring the liquid in the reactor.

【0031】またラクチド化反応器内の気相圧力は、ラ
クチドを効率良く留出させる範囲に設定することが望ま
しく、100Torrを超えると、ラクチドの揮発が進
行しにくいので、100Torr以下とすることが推奨
される。尚、圧力が低過ぎても、ラクチドに乳酸オリゴ
マーが同伴し易く、留出物中のラクチド純度が低下する
と共に、高減圧対応のための設備・機器コストが増大す
るので10Torr以上に設定すればよい。
It is desirable that the gas phase pressure in the lactide conversion reactor is set within a range in which lactide is efficiently distilled. If the pressure exceeds 100 Torr, lactide volatilization hardly proceeds, so that the pressure is preferably 100 Torr or less. Recommended. Even if the pressure is too low, lactic acid oligomers are easily entrained in lactide, the purity of lactide in the distillate decreases, and the cost of equipment and equipment for high decompression increases. Good.

【0032】更に、ラクチド化反応器内の温度は、異性
化を抑え、且つラクチドの生成及び気化を進める範囲に
設定することが望ましく、170℃未満では反応速度が
遅く非効率的であり、220℃を超えると、異性化が進
行し易くなると共に、ラクチドにオリゴマーが気化同伴
し易くなるので液相温度を170℃以上220℃以下に
制御してラクチド化反応を行うことが望ましい。
Further, the temperature in the lactide conversion reactor is desirably set within a range in which isomerization is suppressed and lactide generation and vaporization are promoted. If the temperature is lower than 170 ° C., the reaction rate is slow and inefficient. When the temperature exceeds ℃, the isomerization proceeds easily, and the oligomer is easily vaporized and entrained in the lactide. Therefore, it is desirable to carry out the lactide formation reaction by controlling the liquidus temperature to 170 to 220 ° C.

【0033】またラクチド化触媒は、スズ,亜鉛,鉛,
アルカリ金属及びこれらの化合物ないしはそれらの混合
物等の公知のラクチド化反応触媒から適宜選択して用い
れば良く、適正な触媒濃度はその触媒の種類により異な
るが5%以下の添加量で十分であり、例えばラクチド化
触媒として代表的なオクチル酸スズの場合には、100
0〜20000ppm程度用いれば良い。
The lactide catalyst is tin, zinc, lead,
A known lactide reaction catalyst such as an alkali metal and these compounds or a mixture thereof may be appropriately selected and used, and an appropriate catalyst concentration varies depending on the type of the catalyst, but an addition amount of 5% or less is sufficient. For example, in the case of tin octylate as a typical lactide catalyst, 100
It may be used in an amount of about 0 to 20000 ppm.

【0034】尚、前記外部循環型熱交換器12を設ける
ことで、ラクチド化反応器13における液加熱では困難
な大熱量供給を可能とし、ラクチド化反応及びラクチド
の気化に必要な熱量を加えることができる。ラクチド化
反応器13中の液は、反応液循環ポンプP5 により所定
流速で外部循環型熱交換器12に送液され、該反応シス
テム中で液循環を保つことができるため、大容量処理が
可能である(但し、サーモサイホン効果により液が循環
する場合には上記反応液循環ポンプP5 は必要ない)。
The provision of the external circulation type heat exchanger 12 makes it possible to supply a large amount of heat which is difficult to heat by liquid heating in the lactide-forming reactor 13, and to add heat necessary for the lactide-forming reaction and lactide vaporization. Can be. Liquid in the lactide reactor 13 is fed to the outer circulation type heat exchanger 12 at a predetermined flow rate by the reaction liquid circulating pump P 5, it is possible to maintain the liquid circulating in the reaction system, a large volume processing It can be (but not the reaction liquid circulation pump P 5 is required if the liquid is circulated by thermosiphon effect).

【0035】C.ラクチド回収工程 図2において、15が還流冷却器、16はラクチドコン
デンサ、17はラクチド抜出槽を夫々示す。
C. Lactide Recovery Step In FIG. 2, 15 is a reflux condenser, 16 is a lactide condenser, and 17 is a lactide extraction tank.

【0036】気化したラクチド(若干量のオリゴマー成
分を含む)は、ラクチド化反応器13の上部配管を通じ
て還流冷却器15に至る。
The vaporized lactide (containing a small amount of oligomer components) reaches the reflux condenser 15 through the upper piping of the lactide reactor 13.

【0037】還流冷却器15はシェル/チューブ型の熱
媒循環加熱方式の熱交換器を用いれば良く、140〜1
80℃の熱媒を導入することによりラクチド蒸気は通過
させ、乳酸オリゴマー及び触媒は液化してラクチド反応
器13に戻すことができる。還流冷却器15を通過した
ラクチド蒸気は、ラクチドコンデンサ16にて冷却・凝
縮され、ラクチド抜出槽17を経て系外に排出され製品
ラクチドとなる。上記ラクチドコンデンサ16には、ラ
クチド蒸気を液化されることのできる(但し、固化はさ
せない)所定温度の冷媒が供給される。また、ラクチド
コンデンサ16の外殻、ラクチド抜出槽17及びこれら
をつなぐ配管は、電熱ヒータか或いはジャケット構造に
よる熱媒循環方式にて、ラクチドの融解状態を保つ(気
化・固化させず液体状態を保つ)温度に加熱される。
The reflux condenser 15 may be a shell / tube type heat medium circulating heating type heat exchanger.
By introducing a heating medium at 80 ° C., lactide vapor is passed, and the lactic acid oligomer and catalyst can be liquefied and returned to the lactide reactor 13. The lactide vapor that has passed through the reflux condenser 15 is cooled and condensed by the lactide condenser 16, discharged through the lactide extraction tank 17 to the outside of the system, and becomes product lactide. The lactide condenser 16 is supplied with a refrigerant having a predetermined temperature capable of liquefying (but not solidifying) lactide vapor. In addition, the outer shell of the lactide condenser 16, the lactide extraction tank 17, and the pipe connecting these are maintained in a molten state of lactide by an electric heater or a heating medium circulation system with a jacket structure (the liquid state is maintained without vaporization / solidification). Keep) heated to the temperature.

【0038】尚、外部循環型熱交換器12、ラクチド化
反応器13、還流冷却器15、ラクチドコンデンサ16
及びラクチド抜出槽17等は、真空ポンプVP2 により
減圧され、圧力調整バルブV2 により所定圧力に制御さ
れている。
The external circulation heat exchanger 12, the lactide reactor 13, the reflux condenser 15, the lactide condenser 16
And lactide extraction tank 17 and the like is reduced in pressure by the vacuum pump VP 2, is controlled to a predetermined pressure by the pressure regulating valve V 2.

【0039】また18は、ラクチドトラップであり、ラ
クチドコンデンサ16から漏出する微量のラクチド蒸気
を液化して真空ポンプへ流れることを防止するものであ
る。上記ラクチドトラップ18は図3に示す様に2基
(18a,18b)を並設すれば、流路を交互に切り替
え、片方が詰まった場合に他方を用いる様にすることで
連続運転に支障をきたすことなくラクチドの製造ができ
望ましい。尚、上記ラクチドトラップ18a,18bに
は、ラクチドを固化させる際には冷却水を流し、固化し
て捕捉したラクチドを融解させる際にはスチームを導入
すればよい。
Reference numeral 18 denotes a lactide trap for liquefying a small amount of lactide vapor leaking from the lactide condenser 16 to prevent the lactide vapor from flowing to a vacuum pump. If two lactide traps 18 are provided side by side as shown in FIG. 3 (18a, 18b), the flow path is alternately switched, and when one is clogged, the other is used, which hinders continuous operation. Lactide can be produced without causing any problems, which is desirable. The lactide traps 18a and 18b may be supplied with cooling water when solidifying lactide, and steam may be introduced when the solidified lactide is melted.

【0040】以上の操作を行うことによって、効率的に
反応液に熱を与えてラクチド化反応及び生成ラクチドの
気化を進行させることができ、ラクチド以外の成分であ
る触媒やオリゴマーを反応システム内に戻しつつラクチ
ドを捕集することで高純度のラクチドを安定して連続的
に得ることができる。
By performing the above operations, heat can be efficiently given to the reaction solution to promote the lactide formation reaction and the vaporization of the produced lactide, and the catalyst or oligomer other than lactide can be introduced into the reaction system. By collecting lactide while returning, high-purity lactide can be stably and continuously obtained.

【0041】なお、ラクチド化反応器13の上部及び底
部、外部循環型熱交換器12とラクチド化反応器13と
の間の循環配管、ラクチド化反応器13と還流冷却器1
5の間の配管、還流冷却器15とラクチドコンデンサ1
6の間の配管は電熱ヒータ、ジャケット等にて所定温度
に保護される。
The top and bottom of the lactide reactor 13, a circulation pipe between the external circulation heat exchanger 12 and the lactide reactor 13, the lactide reactor 13 and the reflux condenser 1
5, reflux condenser 15 and lactide condenser 1
The piping between 6 is protected at a predetermined temperature by an electric heater, a jacket or the like.

【0042】また上記還流冷却器15に替えて、下部に
トレイや充填物が組み込まれ、上部にはシェル/チュー
ブ型の熱媒循環加熱方式の熱交換器からなる上下2段構
造の分縮器を用いれば、気液接触効率が高まり望まし
い。
In place of the reflux cooler 15, a tray or packing is incorporated in the lower part, and an upper / lower two-stage concentrator comprising a shell / tube type heat medium circulation heating type heat exchanger in the upper part. The use of is preferred because the gas-liquid contact efficiency increases.

【0043】以下、本発明を実施例によって更に詳細に
説明するが、下記実施例は本発明を限定する性質のもの
ではなく、前・後記の主旨に徴して設計変更することは
いずれも本発明の技術的範囲内に含まれるものである。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples do not limit the present invention, and any design changes based on the gist of the preceding and following aspects will be described. Are included within the technical scope of

【0044】[0044]

【実施例】図2に示す装置構成のラクチド製造装置によ
り、ラクチド化触媒としてオクチル酸スズを用いて、表
1に示す条件でラクチドを連続的に製造した。尚、表1
において反応器容量及び液温の欄の及びは、夫々
:オリゴマー化反応器、:補助オリゴマー化反応器
を示す。
EXAMPLE Lactide was continuously produced under the conditions shown in Table 1 using a lactide production apparatus having the apparatus configuration shown in FIG. 2 and using tin octylate as a lactide-forming catalyst. Table 1
And in the columns of the reactor volume and the liquid temperature indicate, respectively: an oligomerization reactor, and an auxiliary oligomerization reactor.

【0045】得られたラクチドの純度、光学純度、水分
含有率を測定すると共に、オリゴマー化工程で得られた
オリゴマーの平均分子量と水分含有率を調べ、更に留去
水の乳酸濃度を測定した。結果は、表2に示す。
The purity, optical purity and water content of the obtained lactide were measured, the average molecular weight and water content of the oligomer obtained in the oligomerization step were examined, and the lactic acid concentration of distilled water was measured. The results are shown in Table 2.

【0046】[0046]

【表1】 [Table 1]

【0047】[0047]

【表2】 [Table 2]

【0048】No.1〜3は本発明の実施例であり、い
ずれも純度及び光学純度が共に高く、しかも200時間
の連続運転を行ったが、均一なラクチドを安定して製造
することができた。
No. Examples 1 to 3 are Examples of the present invention, all of which have high purity and high optical purity, and have been operated continuously for 200 hours. However, uniform lactide could be produced stably.

【0049】No.4は、オリゴマー化反応器内の気相
圧力が高過ぎる場合の比較例であり、オリゴマーの平均
分子量が小さく、得られたラクチドの純度が低かった。
またNo.5はラクチド化反応工程における液温が高過
ぎ、且つ気相圧力が高過ぎる場合の比較例であり、ラク
チドの純度及び光学純度が共に低かった。
No. No. 4 is a comparative example in which the gas phase pressure in the oligomerization reactor was too high, in which the average molecular weight of the oligomer was small and the purity of the obtained lactide was low.
No. No. 5 is a comparative example in which the liquid temperature in the lactide conversion reaction step was too high and the gas phase pressure was too high, and both the purity and the optical purity of lactide were low.

【0050】[0050]

【発明の効果】本発明は以上の様に構成されているの
で、ラクチド化に用いる触媒量は極力少なくすることを
前提とした上で、長期間に亘って連続的に乳酸からラク
チドを製造することができ、しかも高純度の製品ラクチ
ドを得ることのできる装置及び方法が提供できることと
なった。
According to the present invention, the lactide is produced continuously from lactic acid for a long period of time on the assumption that the amount of the catalyst used for lactide formation is minimized. Thus, it is possible to provide an apparatus and a method capable of obtaining a high-purity product lactide.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来のラクチドの製造装置を示す概略説明図で
ある。
FIG. 1 is a schematic explanatory view showing a conventional lactide manufacturing apparatus.

【図2】本発明に係るラクチドの製造装置の代表例を示
す概略説明図である。
FIG. 2 is a schematic explanatory view showing a typical example of an apparatus for producing lactide according to the present invention.

【図3】ラクチドトラップを2基並設した場合の装置構
成を示す概略説明図である。
FIG. 3 is a schematic explanatory view showing an apparatus configuration when two lactide traps are arranged in parallel.

【符号の説明】 1 原料タンク 2 予熱器 3 フラッシュ弁 4 蒸留塔 5 オリゴマー化反応器 6 コンデンサ 7 留出水抜出槽 8 外部循環型熱交換器 9 補助オリゴマー化反応器 10 撹拌機 11 ベーパー管 12 外部循環型熱交換器 13 ラクチド化反応器 14 撹拌機 15 還流冷却器 16 ラクチドコンデンサ 17 ラクチド抜出槽 18 ラクチドトラップ 19 ラクチドタンク 21 乳酸オリゴマータンク 22 反応容器 23 コンデンサ 24 ラクチド受器[Description of Signs] 1 Raw material tank 2 Preheater 3 Flash valve 4 Distillation tower 5 Oligomerization reactor 6 Capacitor 7 Distillate discharge tank 8 External circulation type heat exchanger 9 Auxiliary oligomerization reactor 10 Stirrer 11 Vapor tube 12 External circulation heat exchanger 13 Lactidation reactor 14 Stirrer 15 Reflux cooler 16 Lactide condenser 17 Lactide extraction tank 18 Lactide trap 19 Lactide tank 21 Lactic acid oligomer tank 22 Reaction vessel 23 Condenser 24 Lactide receiver

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 浩司 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 (72)発明者 藤浦 貴保 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Koji Yamamoto 1-5-5 Takatsukadai, Nishi-ku, Kobe City Inside Kobe Research Institute, Kobe Steel Ltd. (72) Takaho Fujiura 1 Takatsukadai, Nishi-ku, Kobe-shi 5-5-5 Kobe Steel, Ltd.Kobe Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 乳酸オリゴマーを解重合させるラクチド
化反応器と、 蒸発させたラクチドを凝縮させるコンデンサを有するラ
クチドの連続製造装置であって、 上記ラクチド化反応器と上記コンデンサの間に、還流冷
却器を介設してなることを特徴とするラクチドの連続製
造装置。
An apparatus for continuously producing lactide, comprising: a lactide conversion reactor for depolymerizing lactic acid oligomers; and a condenser for condensing the evaporated lactide, wherein reflux cooling is provided between the lactide conversion reactor and the condenser. A continuous production apparatus for lactide characterized by being provided with a vessel.
【請求項2】 乳酸を加熱重合して乳酸オリゴマーを生
成し、次いで上記乳酸オリゴマーを触媒の存在下に加熱
して解重合させることによりラクチドを生成するラクチ
ドの製造方法であって、 乳酸を主体とする原料をオリゴマー化反応器に連続的に
供給し、乳酸を加熱濃縮しつつ脱水して乳酸オリゴマー
を連続的に生成するオリゴマー化工程と、 上記オリゴマー化反応器より連続的に送液される乳酸オ
リゴマーを、ラクチド化反応器において、触媒の存在下
に解重合させラクチドを連続的に生成するラクチド化工
程と、 上記ラクチド化反応器から留出されたラクチドを、コン
デンサにより液化させることによりラクチドを連続的に
回収するラクチド回収工程を有し、 上記オリゴマー化工程、上記ラクチド化工程、上記ラク
チド回収工程を連続的に行うと共に、 前記ラクチド回収工程においてラクチドを留出させるに
あたり、同伴されるオリゴマー及び触媒を還流冷却器に
より還流させることを特徴とするラクチドの連続製造方
法。
2. A method for producing lactide, wherein lactic acid is heated and polymerized to form a lactic acid oligomer, and then the lactic acid oligomer is heated and depolymerized in the presence of a catalyst to produce lactide. Is continuously supplied to the oligomerization reactor, and the lactic acid is heated and concentrated and dehydrated to continuously produce lactic acid oligomers; and the liquid is continuously sent from the oligomerization reactor. A lactide-forming step in which lactic acid oligomers are depolymerized in the presence of a catalyst in a lactide-forming reactor to continuously produce lactide; and lactide distilled from the lactide-forming reactor is liquefied by a condenser to form lactide. A lactide recovery step for continuously recovering the lactide, wherein the oligomerization step, the lactide conversion step, and the lactide recovery step are connected in series. , When distilling the lactide in the lactide recovery step, continuous process lactide, characterized in that for returning the reflux condenser oligomers and catalyst entrained with to perform.
JP01965998A 1998-01-30 1998-01-30 Continuous production apparatus and continuous production method of lactide Expired - Fee Related JP3464905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01965998A JP3464905B2 (en) 1998-01-30 1998-01-30 Continuous production apparatus and continuous production method of lactide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01965998A JP3464905B2 (en) 1998-01-30 1998-01-30 Continuous production apparatus and continuous production method of lactide

Publications (2)

Publication Number Publication Date
JPH11217425A true JPH11217425A (en) 1999-08-10
JP3464905B2 JP3464905B2 (en) 2003-11-10

Family

ID=12005386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01965998A Expired - Fee Related JP3464905B2 (en) 1998-01-30 1998-01-30 Continuous production apparatus and continuous production method of lactide

Country Status (1)

Country Link
JP (1) JP3464905B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238496A (en) * 2006-03-08 2007-09-20 Hitachi Ltd Polyhydroxycarboxylic acid synthesis method and polyhydroxycarboxylic acid synthesis apparatus used therefor
JP2007308644A (en) * 2006-05-22 2007-11-29 Hitachi Plant Technologies Ltd Polymer production method and polymer production apparatus
JP2008007664A (en) * 2006-06-30 2008-01-17 Hitachi Plant Technologies Ltd Polyhydroxycarboxylic acid synthesis method and apparatus
WO2012110117A1 (en) * 2011-02-18 2012-08-23 Sulzer Chemtech Ag Method for the manufacture of a polyhydroxy-carboxylic acid
WO2022155762A1 (en) * 2021-01-19 2022-07-28 万华化学(四川)有限公司 Preparation method for lactide and reaction device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238496A (en) * 2006-03-08 2007-09-20 Hitachi Ltd Polyhydroxycarboxylic acid synthesis method and polyhydroxycarboxylic acid synthesis apparatus used therefor
JP2007308644A (en) * 2006-05-22 2007-11-29 Hitachi Plant Technologies Ltd Polymer production method and polymer production apparatus
JP2008007664A (en) * 2006-06-30 2008-01-17 Hitachi Plant Technologies Ltd Polyhydroxycarboxylic acid synthesis method and apparatus
US7723540B2 (en) 2006-06-30 2010-05-25 Hitachi Plant Technologies, Ltd. Method and apparatus for producing polyhydroxy carboxylic acid
WO2012110117A1 (en) * 2011-02-18 2012-08-23 Sulzer Chemtech Ag Method for the manufacture of a polyhydroxy-carboxylic acid
US9637587B2 (en) 2011-02-18 2017-05-02 Sulzer Chemtech Ag Method for the manufacture of a polyhydroxy-carboxylic acid
WO2022155762A1 (en) * 2021-01-19 2022-07-28 万华化学(四川)有限公司 Preparation method for lactide and reaction device

Also Published As

Publication number Publication date
JP3464905B2 (en) 2003-11-10

Similar Documents

Publication Publication Date Title
CN110498787B (en) A kind of purification system and purification method of lactide
US5357034A (en) Lactide polymerization
CN108686397B (en) Method for distilling dimethyl sulfoxide and multi-section distillation tower
CN101080378B (en) Process for purifying hydroxycarboxylic acid, process for producing cyclic ester, and process for producing polylhydroxycaboxylic acid
WO2018200466A1 (en) Thermolysis of polypropiolactone to produce acrylic acid
CN102766132A (en) Method for preparing lactide continuously
EP2172506B1 (en) Equipment and method for producing polyhydroxycarboxylic acid
JPH11217425A (en) Method and apparatus for continuous preparation of lactide
JP2004510856A (en) Single-phase or multi-phase continuous polyamide polymerization method
CN202022870U (en) Device for preparing hydroxycarboxylic acid cyclic dipolymer
CN114286815B (en) Method for obtaining 4,4' -dichlorodiphenyl sulfone
CN113461915A (en) Lactic acid oligomer synthesis system and method capable of regulating polymerization degree
US3952052A (en) Process for producing alkali metal salts of aromatic polycarboxylic acids
JP5229268B2 (en) Polylactic acid synthesis apparatus and method
CN1054233A (en) Continuous preparation method of tetraphosphorus polysulfide
KR102735459B1 (en) Integrated process for preparing bis(fluorosulfonyl)imides
CN211486557U (en) Organic solvent and water continuous removal recovery system in macromolecular compound production
JP2014214166A (en) Method and apparatus for producing polyester
JPH0542460B2 (en)
JPH10512908A (en) Method for producing multicyanate ester
WO2022139675A1 (en) Process for the production of lactide
JP3301311B2 (en) Method for continuously producing 2-hydroxycarboxylic acid oligomer
TW201021905A (en) Process and plant for recovering solid reaction products from solutions
KR101434462B1 (en) Batch type distillation apparatus for the purification of lactide, and the distillation method for the purification of lactide using the same
JP2003300915A (en) Method for producing monomer from polyalkylene terephthalate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030805

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees